[L:Q] = 3, discriminant = 2335
Minimal polynomial:  x^3 - 9*x - 6
P^3 Primes: 3
P^2 Q Primes: 2
P Primes: 5, 19, 23, 29,
P Q Primes: 7, 11, 13, 17, 31, 37
P Q R Primes:

 k factor(k) zL(1-k) denominator of zL(k) 2 2 -70/3 [3, 1] 4 22 2556221/15 [3, 1; 5, 1] 6 2*3 -4729825529050/63 [3, 2; 7, 1] 8 23 9997094812404686021/30 [2, 1; 3, 1; 5, 1] 10 2*5 -250592144464247084366321530/33 [3, 1; 11, 1] 12 22*3 2538374428615429723833664768222148111/4095 [3, 2; 5, 1; 7, 1; 13, 1] 14 2*7 -433461315504312280903563360244187028747610/3 [3, 1] 16 24 83822500848624173596590790551322515127580563498549957/1020 [2, 2; 3, 1; 5, 1; 17, 1] 18 2*32 -364742122584157895331961380966645483883206501873212554306326430/3591 [3, 3; 7, 1; 19, 1] 20 22*5 205879738370414957568301092103755264632204075545473416927732641514790031/825 [3, 1; 5, 2; 11, 1] 22 2*11 -78355468328264596130915141787914446498935509513825745575185836072639166840155310/69 [3, 1; 23, 1] 24 23*3 74006323190576157208058158096383458610418252656197453601055525620319595601225545836585859111/8190 [2, 1; 3, 2; 5, 1; 7, 1; 13, 1] 26 2*13 -359644318812544143021305426930827897698932292339360028465204728497813042013238510328557064442485950/3 [3, 1] 28 22*7 1108066548754920558210445412572296125884666726428551715691509427511294360035047859522948462012420533767589667087/435 [3, 1; 5, 1; 29, 1] 30 2*3*5 -1799504396502815562306631065958807115143023188206941324372061570299132430010181005899967143838028897010422827881054199083930/21483 [3, 2; 7, 1; 11, 1; 31, 1] 32 25 8442096401439312651786021695269614726020652851158930107911250104134207240013304509177433748696290510443400358163951285517194129118757/2040 [2, 3; 3, 1; 5, 1; 17, 1] 34 2*17 36 22*32