The totally real subfield L of Q(exp(2pi/7))
[L:Q] = 3, discriminant = 72.
Minimal polynomial  x^3+x^2-2*x-1
Ramified primes:  7
Inert primes: 2, 3, 5, 11, 17, 19, 23, 31, 37
Split primes: 13, 29

 k factor(k) zL(1-k) denominator of zL(k) 2 2 -1/21 [3, 1; 7, 1] 4 22 79/210 [2, 1; 3, 1; 5, 1; 7, 1] 6 2*3 -7393/63 [3, 2; 7, 1] 8 23 142490119/420 [2, 2; 3, 1; 5, 1; 7, 1] 10 2*5 -1141452324871/231 [3, 1; 7, 1; 11, 1] 12 22*3 2101941875088322867/8190 [2, 1; 3, 2; 5, 1; 7, 1; 13, 1] 14 2*7 -5589087133015782866737/147 [3, 1; 7, 2] 16 24 196210654771718649388061754983/14280 [2, 3; 3, 1; 5, 1; 7, 1; 17, 1] 18 2*32 -38746229519570895574625913188448091/3591 [3, 3; 7, 1; 19, 1] 20 22*5 194530316743193504738135306900338932340229/11550 [2, 1; 3, 1; 5, 2; 7, 1; 11, 1] 22 2*11 -23518697248282245943905832963281144323974983973/483 [3, 1; 7, 1; 23, 1] 24 23*3 4032222871166671567558267339270905870778751618513341627/16380 [2, 2; 3, 2; 5, 1; 7, 1; 13, 1] 26 2*13 -43572916213590401338264590214819357048102430056970149704781/21 [3, 1; 7, 1] 28 22*7 1194089697312559886180765426309942647979398288525057312408625805285251/42630 [2, 1; 3, 1; 5, 1; 7, 2; 29, 1] 30 2*3*5 -12571803511139506277546193662338777041927305831095982842136650566411789737953/21483 [3, 2; 7, 1; 11, 1; 31, 1] 32 25 524593197721878004128074038057347681941806656692550020768994456077596565747791967303/28560 [2, 4; 3, 1; 5, 1; 7, 1; 17, 1] 34 2*17 -17725090082230954879967443748662313102060531752364945964209151256529495969384067713808041/21 [3, 1; 7, 1] 36 22*32 958701643492633236702246155351371972979738625422460183404444752508275969194707626956442493475867873661/17272710 [2, 1; 3, 3; 5, 1; 7, 1; 13, 1; 19, 1; 37, 1]