The totally real subfield L of Q(exp(2pi/5))
[L:Q] = 2, discriminant = 5.
Minimal polynomial  x^2 +x -1
Ramified primes:  5
Inert primes: 2, 3, 7, 13, 17, 23
Split primes: 11, 19, 29, 31

 k factor(k) zL(1-k) denominator of zL(k) 2 2 1/30 [2, 1; 3, 1; 5, 1] 4 22 1/60 [2, 2; 3, 1; 5, 1] 6 2*3 67/630 [2, 1; 3, 2; 5, 1; 7, 1] 8 23 361/120 [2, 3; 3, 1; 5, 1] 10 2*5 412751/1650 [2, 1; 3, 1; 5, 2; 11, 1] 12 22*3 795286411/16380 [2, 2; 3, 2; 5, 1; 7, 1; 13, 1] 14 2*7 568591843/30 [2, 1; 3, 1; 5, 1] 16 24 54701427071177/4080 [2, 4; 3, 1; 5, 1; 17, 1] 18 2*32 571363169189645713/35910 [2, 1; 3, 3; 5, 1; 7, 1; 19, 1] 20 22*5 98510726938027364651/3300 [2, 2; 3, 1; 5, 2; 11, 1] 22 2*11 58282448789678207092153/690 [2, 1; 3, 1; 5, 1; 23, 1] 24 23*3 11364600197977872303826339891/32760 [2, 3; 3, 2; 5, 1; 7, 1; 13, 1] 26 2*13 60097244486962154421889002337/30 [2, 1; 3, 1; 5, 1] 28 22*7 27553534229181632149212403498558667/1740 [2, 2; 3, 1; 5, 1; 29, 1] 30 2*3*5 179897691732312705009829008469165679351567/1074150 [2, 1; 3, 2; 5, 2; 7, 1; 11, 1; 31, 1] 32 25 18959952687425212997198188226124948760804457/8160 [2, 5; 3, 1; 5, 1; 17, 1] 34 2*17 1246857198273009466623646468891606914655865453/30 [2, 1; 3, 1; 5, 1] 36 22*32 32613724432434114882079789497713006473885167100345949413/34545420 [2, 2; 3, 3; 5, 1; 7, 1; 13, 1; 19, 1; 37, 1]