
Forms of Smooth Projective Varieties
and Their Zeta Functions

Yu Zhao

Master of Science

Department of Mathematics and Statistics

McGill University

Montreal,Quebec

2006-08-15

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements of the degree of Master of Science

c©Yu Zhao, 2006





ACKNOWLEDGEMENTS

First, I would like to thank my wife who always has the patience to listen to my

mathematical stories although her background is far away from mathematics.

I thank my supervisor Prof. Eyal Goren who gave me the opportunity to do this

project. He gave me many good ideas on my thesis. I thank him for his patience,

kindness and great help. I am also thankful for the financial support from Prof. Eyal

Goren and the Department, otherwise it would have been impossible for me to finish

my thesis.

Last but not least, I thank to all my professors not only at McGill University, who

have taught me mathematics especially number theory and algebraic geometry.

i





ABSTRACT

In this thesis, I mainly study the forms of a smooth projective variety over a fi-

nite field k and the attached Hasse-Weil zeta functions. I also study the forms of a

scheme.

The study begins with understanding the relationship between étale cohomology

and the Hasse-Weil zeta function of a smooth projective variety over k. In order

to classify forms of a quasi-projective variety V over a perfect field K, I study non-

abelian cohomology and Galois descent to give a proof of the bijection between the

equivalence classes of K ′/K-forms of V and H1(Gal(K ′/K), AutK′(V )), where K ′/K

is some Galois extension. I also present explicitly forms of elliptic curves and their

corresponding Hasse-Weil zeta functions.

The second part of my thesis is focused on forms of a scheme, especially in the affine

case. This is a generalization of forms of a variety. I define an étale form of a scheme

and generalize Milne’s definition of the first Čech cohomology of a non-abelian sheaf

to any (not necessarily abelian) presheaf. I prove there exists an injective map in the

affine case from the set of equivalence classes of affine étale forms into the first Čech

cohomology of a contravariant functor. I prove that the definition of an étale form of

a scheme is compatible with the definition of a form of a variety over a perfect field.

I also prove that the first Galois cohomology can be canonically identified with the

first Čech cohomology when the base is Spec k for some perfect field k.
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ABRÉGÉ

Dans cette thèse, j’étudie les formes d’une variété projective douce au-dessus d’un

corps fini k et les fonctions zeta d’Hasse-Weil ci-jointes. J’étudie également les formes

d’un schéma.

L’étude commence par l’arrangement le rapport entre la cohomologie étale et la

fonction zeta d’Hasse-Weil d’une variété projective douce au-dessus k. Afin de clas-

sifier des formes d’une variété quasi-projective au-dessus d’un corps parfait, j’étudie

la cohomologie galoisienne non abélienne et la descente galoisienne pour fournir

des preuves du bijection entre K ′/K-formes de V et H1(Gal(K ′/K), AutK′(V )),

où K ′/K est galoisien. Je présente également explicitement des formes de courbes

elliptiques et de leurs fonctions zeta d’Hasse-Weil correspondantes.

La deuxième partie de ma thèse est principalement concentrée sur des formes d’un

arrangement, particulièrement dans la caisse affine. C’est une généralisation des

formes d’une variété. Je définis une forme étale d’un schéma et trouve une preuve

dans le cas d’affinage de l’existence d’une carte injective de l’ensemble de classes

d’équivalence de pour formes affines étales dans la première cohomologie de Čech

d’un functor contravariant.
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CHAPTER 1
Introduction

Given a smooth projective variety X of dimension d defined over a finite field k = Fq,

one can attach to it its Hasse-Weil zeta function Z(X/Fq, T ):

Z(X/Fq, T ) = exp
∞∑

r=1

#X(Fqr)
T r

r
,

where #X(Fqr) is the number of Fqr -points of X.

Using étale cohomology, one can prove the Weil’s conjectures and the following for-

mula:

Z(X,T ) =
2d∏
i=0

Pi(X,T )(−1)i+1

,

where Pi(X,T ) = det(1− (Fri)∗T
∣∣H i(X,Q`))(i = 0, 1, . . . , 2d) and Fr is the geomet-

ric or relative Frobenius map. Chapter 1 is devoted to this purpose.

Suppose X is another smooth projective variety defined over k and let K/k be a

Galois extension, then X is a K/k-form of X if X is isomorphic to X when both are

considered defined over K, i.e. X ×k K ∼= X ×k K.

Since Galois descent (or coefficient extension in the language of categories) is satis-

fied, not only can we classify all forms of a smooth projective variety over k using

non-abelian cohomology, but also there is a close relation between the Hasse-Weil

zeta function of a smooth projective variety and the zeta function of a form of it.
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Chapter 3 and 4 are dedicated to this purpose. Chapter 5 provides concrete examples

of varieties in order to illustrate such classification and relations.

Besides giving an overview of the definition of the zeta function of a scheme over

SpecZ based on Serre’s paper [22], the last chapter mainly focuses on forms of a

scheme, whose definition is based on [7]. A form of a scheme is a generalization

of that of a variety over a field. Let X be a scheme. I define an étale form of an

X-scheme Y and prove that when both X and Y are affine, there exists an injective

map from the set of equivalence classes of affine étale forms of Y into the first Čech

cohomology Ȟ1(Xét, Aut(Y ×X −)). Since Aut(Y ×X −) is a contravariant functor

from Xét to the category of groups G but not an abelian sheaf over Xét in general,

I define directly the Čech cohomology Ȟ1(Xét, F ) for any contravariant functor F

from Xét to G. I also show that if X = Spec k where k is some perfect field, the

definition of an étale form of an X-scheme Y coincides with that of a form of a vari-

ety over k, and moreover, Ȟ1((Spec k)ét, Aut(Y ×k −)) can be canonically identified

with H1(Gal(k/k), Aut(Y ×k k)) as pointed sets.



CHAPTER 2
Zeta functions of varieties over finite fields

2.1 Zeta Functions

Let k = Fq be a finite field with q elements. Let X be a projective variety defined

over k. For each positive integer r, X can also be considered as defined over the

finite field kr = Fqr with qr elements. Let Nr be the number of kr-points of X. The

Hasse-Weil zeta function of X is defined as a formal power series

Z(X,T ) = exp

( ∞∑
r=1

Nr
T r

r

)
. (2.1)

When X/k is a smooth projective variety, we have the following famous Weil’s con-

jectures proven by Dwork and Deligne:

Theorem 2.1.1 (Weil’s Conjectures). Let X be a smooth projective variety of di-

mension d defined over Fq. Then

1. Z(X,T ) can be written as

Z(X,T ) =
P1(T )P3(T ) . . . P2d−1(T )

P0(T )P2(T ) . . . P2d(T )
, (2.2)

where P0(T ) = 1− T , P2d(T ) = 1− qdT and for 1 ≤ s ≤ 2d− 1, Ps(T ) ∈ Z[T ]

and

3



2.1 Zeta Functions 4

Ps(T ) =

βs∏
i=1

(1− αs,iT )

for some non-negative integer βs, where each αs,i is an algebraic integer with

|αs,i| = q
s
2 for any choice of complex absolute value.

2. Z(X,T ) satisfies the following functional equation:

Z

(
X,

1

qdT

)
= ±q

χd
2 T χZ(X,T ),

where χ is the self-intersection number of the diagonal ∆ of X ×k X.

The proof can be found in [8]. In the next section, we give a brief introduction to

étale cohomology and the expression of zeta functions in terms of étale cohomology.

2.1.1 ÉtaleCohomology

For general references to étale cohomology, see for example [19] and [26]. Here we

only recall some basic definitions.

Definition 2.1.2. Let X be a scheme. Define ét/X to be the category of X-schemes

such that the morphism C → X is étale for any object C in ét/X. Such a scheme is

called an étale X-scheme.

By properties of étale morphisms ([1], p.116), any morphism between objects in ét/X
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is also étale.

Definition 2.1.3. The étale site Xét consists of the category ét/X and coverings

each of which is some set {Yi
φi−→ Y

∣∣ i ∈ I} of morphisms in ét/X, where I is some

index set, such that Y = ∪
i∈I

φi(Yi).

It is easy to verify that Xét is actually a site in the sense of Grothendieck. For the

definition of Grothendieck’s site, see the Appendix or [26], p.24.

The category of abelian sheaves on Xét is denoted by SXét
; an object in SXét

is

also called an abelian étale sheaf on X.

For each abelian sheaf F on X, and for each étale X-scheme Y, general theorems

([26], Chapter 1) guarantee the existence of cohomology group Hq(Y, F ) with values

in F for any integer q ≥ 0. Hq(Y, F ) is also denoted by Hq(Xét; Y, F ). When Y is a

final object in Xét, i.e. Y ∼= X, Y is omitted and the notation Hq(Xét, F ) is adopted.

2.1.2 `-adic Cohomology

For any abelian group G endowed with the discrete topology, we also use G to denote

the constant sheaf on Xét with respect to G.

Let ` be a prime number. Using the constant sheaves Z/`nZ on Xét, where n ≥ 1 is
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an integer, we define ([18], p.114-116)

Hr(Xét,Z`) := lim←−
n

Hr(Xét,Z/`nZ),

and

Hr(Xét,Q`) := Hr(Xét,Z`)⊗Z`
Q`.

Let X be a scheme of finite type over an algebraically closed field k, then Hr(Xét,Q`)

has the following well-known properties ([11], p.453):

• Hr(Xét,Q`) can be considered as a vector space over Q`.

• Hr(Xét,Q`) = 0 when r > 2 dim X.

• Hr(Xét,Q`) is a finite dimensional vector space over Q` if X is proper over k.

• Hr(Xét,Q`) is a contravariant functor in Xét.

• There is the cup product structure,

Hr(Xét,Q`)×Hs(Xét,Q`) −→ Hr+s(Xét,Q`),

defined for all r and s.

• (Poincaré duality) Suppose X is smooth and proper over k with dimension n,

then H2n(Xét,Q`) is a 1-dimensional vector space over Q` and the cup product,

H i(Xét,Q`)×H2n−i(Xét,Q`) −→ H2n(Xét,Q`),

is a perfect paring for each 0 ≤ i ≤ 2n.

• (Lefschetz trace formula) Let k be an algebraically closed field, X be a complete

smooth variety over k, and φ : X → X be a regular map with isolated fixed
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points. Denote the number of fixed points of φ with multiplicity by #φ, then

#φ =
∑

r

(−1)rTr(φ|Hr(Xét,Q`)). (2.3)

• (Comparison Theorem) Suppose X is a smooth scheme over the field of complex

numbers C and A is a finite abelian group, then Hr(Xét, A) can be canonically

identified by the singular cohomology of X/C, i.e. there is a natural isomor-

phism:

Hr(X/C, A) ∼= Hr(Xét, A),

where the X on the left hand side is regarded as a complex manifold. In

particular, let A = Z/`nZ, then

Hr(X/C,Z/`nZ) ∼= Hr(Xét,Z/`nZ).

So

Hr(X/C,Z`) = lim←−
n

Hr(X/C,Z/`nZ) ∼= lim←−
n

Hr(Xét,Z/`nZ) = Hr(Xét,Z`),

and hence

Hr(X/C,Q`) ∼= Hr(Xét,Q`).

2.1.3 Frobenius Maps

In this section, I mainly follow notes by Gabriel Chênevert ([4]).

Let k be the finite field Fq, where q = pn for some prime number p and some

natural number n ≥ 1. Let X be a scheme over k. Denote by X the scheme X ×k k,
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where k is the algebraic closure of k.

Definition 2.1.4. The absolute Frobenius map FrX : X → X is defined in the

following way:

• As an endomorphism of the topological space X, FrX is the identity map.

• For any open set U ⊂ X, we have the ring homomorphism:

Fr#
U,X : OX(U) → OX(U), α 7→ αq, ∀α ∈ OX(U).

Definition 2.1.5. The relative Frobenius morphism Frr is defined on X as follows:

Frr : X → X, Frr := FrX ×k 1Spec k .

Definition 2.1.6. The arithmetical Frobenius morphism Fra is defined as follows:

Fra := 1X ×k FrSpec k .

Definition 2.1.7. The geometrical Frobenius morphism Frg is defined as follows:

Frg := 1X ×k Fr−1

Spec k
,

which is the inverse of the arithmetical Frobenius morphism.
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Example 2.1.8. Let X = SpecA where A is the polynomial ring Fp[x] for some

finite field Fp, where p is a prime number. Then

X = Spec (Fp ⊗Fp A) = SpecFp[x].

We have:

• Frr corresponds to the map Fp[x] → Fp[x], x 7→ xp.

• Fra corresponds to the map Fp[x] → Fp[x], x 7→ x, a 7→ ap,∀a ∈ Fp.

• Frg corresponds to the map Fp[x] → Fp[x], x 7→ x, a 7→ a
1
p ,∀a ∈ Fp.

• FrX corresponds to the map Fp[x] → Fp[x], x 7→ xp, a 7→ ap,∀a ∈ Fp.

Proposition 2.1.9. Let X be a scheme of characteristic p. For any étale sheaf F

on X = X ×k k, Frr and Frg = Fr−1
a induce the same map on cohomology groups:

Fr∗g = Fr∗r : H∗(X ét, Fr∗rF ) → H∗(X ét, F ).

Since Fr∗rF = F if F is a constant sheaf, we see that Frr induces a linear transfor-

mation of the Q`-vector space Hr(X,Q`) for any r ≥ 0.

2.1.4 Weil’s Conjectures

Using the Lefschetz trace formula, one can prove the following result ([19], p.288):
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Theorem 2.1.10. For any smooth projective variety X/Fq of dimension d,

Z(X,T ) =
2d∏
i=0

Pi(X,T )(−1)i+1

,

where Pi(X,T ) = det(1− (Fri
r)
∗T

∣∣H i(X,Q`))(i = 0, 1, . . . , 2d). Here Fr∗r
∣∣H i(X,Q`)

is the matrix representation of relative Frobenius morphism as a linear transformation

on H i(X,Q`) which is regarded as a Q`-vector space.

When X is a scheme of finite type over Z, we have the fact that a point x ∈ X is

closed in X if and only if the residue field k(x) is finite. Let X̃ be the set of closed

points in X and N(x) the order of k(x) for any x ∈ X̃. The number of closed points

whose orders of residue fields are the same is finite. One can define the zeta function

of scheme X to be the formal product ([22]):

ζ(X, s) =
∏

x∈ eX

1

1−N(x)−s
. (2.4)

This definition coincides with the definition of Hasse-Weil zeta function when the

scheme X is of finite type and defined over Fq. In fact in this case, for any x ∈ X̃,

the residue field k(x) is a finite extension of Fq and we have

N(x) = q[k(x):Fq ].

So

ζ(X, s) =
∏

x∈ eX

1

1− (q−s)[k(x):Fq ]
.

Let T = q−s, then

ζ(X, s) =
∏

x∈ eX

1

1− T [k(x):Fq ]
. (2.5)



2.1 Zeta Functions 11

Denote the rightside of (2.5) by Z(X,T ), then

Z(X,T ) =
∞∏

n=1

∏

x∈ eX
[k(x):Fq ]=n

1

1− T n
=

∞∏
n=1

(
1

1− T n

)αn

,

where αn is the number of closed points whose residue fields are finite field extensions

of Fq with degree n. So

logZ(X,T ) =
∞∑

n=1

αn log

(
1

1− T n

)
=

∞∑
n=1

(
αn

∞∑
i=1

T ni

i

)

=
∞∑

n=1

(
nαn

∞∑
i=1

T ni

ni

)

=
∞∑

n,i=1

nαn
T ni

ni

=
∞∑

j=1




(∑

d|j
dαd

)
T j

j


 . (2.6)

On the other hand, let kj be the finite extension of Fq with degree j. Denote the set

of points of X in kj by X(kj). Each point can be identified with a pair (x, f) for

some x ∈ X̃ and some injective Fq-homomorphism of k(x) into kj which implies k(x)

must be a subfield of kj and hence [k(x) : Fq]|j. Also for each x ∈ X̃, when k(x) is a

subfield of kj, k(x)/Fq is a finite Galois extension and hence the number of distinct

injective homomorphisms of k(x) into kj is just [k(x) : Fq]. So

#X(kj) =
∑

d|j
dαd . (2.7)

Hence we can replace Σ
d|j

dαd in (2.6) with #X(kj) and we obtain

logZ(X,T ) =
∞∑

j=1

#X(kj)
T j

j
,

so

Z(X,T ) = Z(X,T ).
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Example 2.1.11. Let X be the projective n-dimensional space Pn defined over a

finite field k = Fq. X is clearly a smooth projective variety and for any positive

integer r,

#Pn(Fqr) = 1 + qr + q2r + . . . + qnr.

Hence

Z(Pn, T ) = exp(
∞∑

r=1

n∑
j=0

(qj)r T r

r
)

=
1

1− T
· 1

1− q T
· · · · · 1

1− qnT
,

which is clearly a rational function.

On the other hand, when 0 ≤ i ≤ 2n ([19], p.245),

dimQ`
H i(Pn,Q`) =





0 i odd,

1 i even,

so when i is even, Fri
r acts on H i(Pn,Q`) as a multiplication by qi/2 ([20], p.3). Hence

when 0 ≤ i ≤ 2n,

det(1− (Fri
r)
∗T

∣∣H i(Pn,Q`)) =





0 i odd

1− qi/2T i even ,

and we obtain the same zeta function for Pn, as predicted by Theorem 2.1.10.

Example 2.1.12. In the case of an elliptic curve E/Fq ([12], p.248), H1(E ét,Q`)

can be identified with V ∗
` (E) which is the dual of V`(E) = T`(E)⊗ZQ, where T`(E) is
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the Tate module of E/Fq and ` is any prime number not equal to p. For any positive

integer m prime to p, the m-torsion subgroup of E, E[m] ∼= Z/mZ × Z/mZ, and

therefore, V`(E) is a Q`-vector space of dimension 2, and so the dimension of V ∗
` (E)

over Q` is also 2. The zeta function of E/k has the following expression:

Z(E, T ) =
det(1− Fr∗rT

∣∣V ∗
` (E))

(1− T )(1− qT )
=

1− Tr(Fr∗r)T + qT 2

(1− T )(1− qT )
, (2.8)

where Tr(Fr∗r) = Tr(Fr∗r
∣∣V ∗

` (E)). Using the Lefschetz trace formula (2.3), since E

has dimension 1, we have

#E(Fq) =
2∑

i=0

(−1)iTr(Fr∗r
∣∣H i(E ét,Q`))

= Tr(Fr∗r
∣∣H0(E ét,Q`))− Tr(Fr∗r

∣∣H1(E ét,Q`)) + Tr(Fr∗r
∣∣H2(E ét,Q`))

= 1− Tr(Fr∗r) + q.

So

Tr(Fr∗r) = 1 + q −#E(Fq).

Now let E be a supersingular elliptic curve (for the definition, see [12], p.248-251)

defined over Fp for some prime number p (e.g., y2 = x3 + 1 defined over F5, and

y2 + y = x3 defined over F2), then #E(Fp) = p + 1. So in this case Tr(Fr∗r) = 0 and

the zeta function of E is

Z(E, T ) =
1 + pT 2

(1− T )(1− pT )
. (2.9)

On the other hand, let us look at a specific supersingular elliptic curve E given by

y2 = x3−n2x over Fp for some positive integer n and p ≡ 3(mod 4) such that p - 2n.

To see E is supersingular, since p ≡ 3(mod 4), p > 2 and therefore the equation

x3 − n2x = 0 has three distinct roots over Fp, the algebraical closure of Fp. So from
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[25], p.140, to prove E is supersingular, it is enough to show the coefficient of xp−1

in (x3 − n2x)
p−1
2 is zero. On the other hand,

(x3 − n2x)
p−1
2 = x

p−1
2 (x2 − n2)

p−1
2 .

So it is enough to show the coefficient of x
p−1
2 in the binomial expansion of (x2−n2)

p−1
2

is 0. Consequently one has to show there is no positive integer b satisfying 2b = p−1
2

,

i.e. 4 - (p− 1). But this follows from p ≡ 3(mod 4).

Using Gauss sum and Jacobi sum, one can prove ([14], p.56-61):

#E(Fpr) = 1 + pr − (i
√

p)r − (−i
√

p)r, (2.10)

for any positive integer r. Hence

Z(E, T ) = exp

( ∞∑
r=1

#E(Fpr)
T r

r

)

= exp

( ∞∑
r=1

(
1 + pr − (i

√
p)r − (−i

√
p)r

)T r

r

)

= exp

( ∞∑
r=1

T r

r

)
exp

( ∞∑
r=1

(pT )r

r

)
exp

( ∞∑
r=1

(
− (i

√
p)r − (−i

√
p)r

)T r

r

)

=
1

1− T

1

1− pT
exp

( ∞∑
r=1

(
− (−p)r − (−p)r

)T 2r

2r

)

=
1

(1− T )(1− pT )
exp

(
−

∞∑
r=1

(−1)r(2pr)
T 2r

2r

)

=
1

(1− T )(1− pT )
exp

(
−

∞∑
r=1

(−1)r (pT 2)r

r

)

=
1 + pT 2

(1− T )(1− pT )
.

So we obtain the same zeta function for E.



CHAPTER 3
Non-abelian Cohomology

3.1 Cohomology of Profinite Groups

A profinite group G can be defined as lim←−Gi, where {Gi

∣∣ i ∈ I, I is an index set} is

a projective system of finite groups each of which is endowed with the discrete topol-

ogy. Equivalently, a profinite group G can also be defined as a topological group that

is Hausdorff, compact, and totally disconnected. In particular, every Galois group is

profinite. Conversely, every profinite group is a Galois group of some field extension

([21], p.16).

Example 3.1.1.

1. The Prüfer group Ẑ = lim←−
n

Z/nZ is the Galois group of the field extension Fp/Fp

for any prime number p.

2. For any prime `, the ring of `-adic integers Z` can be defined as follows:

Z` = lim←−
n

Z/`nZ,

which is clearly a profinite group and is also a commutative ring. For any finite

field Fp where p is a prime number, consider the following Galois extensions:

Fp ⊂ Fp` ⊂ Fp`2 ⊂ · · · ⊂ Fp`n ⊂ · · ·

15



3.1 Cohomology of Profinite Groups 16

Define

Fp`∞ =
∞∪

n=0
Fp`n .

Then we have ([21], p.6):

Gal(Fp`∞/Fp) ∼= (Z`, +).

Definition 3.1.2. Let G be a profinite group and let A be an abelian group endowed

with the discrete topology (the operation on A is written additively). The group A is

called a (discrete) G-module if we have a continuous map G×A → A, (g, a) 7→ g · a,
such that:

• 1 · a = a,

• (gh) · a = g · (h · a),

• g · (a + b) = g · a + g · b,
for any g, h ∈ G and any a, b ∈ A. Here 1 is the identity of G. The product g · a is

sometimes denoted also by g(a) or ga.

In the notation above, let

Cq(G,A) := {f : Gq → A
∣∣ f is continuous},

for any integer q ≥ 0, and define the coboundary operator,

d : Cq(G,A) → Cq+1(G,A),
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by

(df)(g1, g2, . . . , gq+1) = g1 · f(g2, . . . , gq+1)

+

q∑
i=1

(−1)if(g1, g2, . . . , gigi+1, . . . , gq+1)

+ (−1)q+1f(g1, g2, . . . , gq).

Define q-th cohomology group

Hq(G,A) = Zq(G,A)/Bq(G,A),

where

Zq(G,A) = ker(d : Cq(G,A) → Cq+1(G,A)),

and

Bq(G,A) = Im(d : Cq−1(G,A) → Cq(G,A)).

Let U = {U ⊂ G
∣∣ U is open in G and U C G}, then ([21], p.114)

H1(G,A) = lim−→
U

H1(G/U,AU),

where U runs over U .

Example 3.1.3. For H0(G,A), define B0 = {0}, the group with only the identity

element, and define G0 = {1}. Then clearly

C0(G,A) = {f : {1} → A},

which can be canonically identified with A. We also have

df(g) = g · f(1)− f(1),
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for any g ∈ G. Hence

Z0(G,A) = {f ∈ C0(G,A)
∣∣ g · f(1) = f(1) for any g ∈ G} = AG,

where AG is defined to be {a ∈ A
∣∣ g · a = a,∀g ∈ G}.

For H1(G,A), we have

H1(G,A) = Z1(G,A)/B1(G,A),

where

Z1(G,A) = {f : G → A
∣∣ f is continuous, f(gh) = g · f(h) + f(g),∀g, h ∈ G},

and

B1(G,A) = {f : G → A
∣∣ f is continuous and for some a ∈ G,

f(g) = g · a− a,∀g ∈ G}.

Example 3.1.4. (The Kummer sequence) Let k be a perfect field, then its algebraic

closure k is a Galois extension of k. Given a positive integer n, suppose characteristic

of k is 0 or is prime to n, then we have the exact sequence:

1 → µn(k) → k
× α 7→αn−−−→ k

× → 1,

where µn(k) is the group of the n-th roots of unity in k. Hence we have the following

exact sequence:

1 → H0(Gk, µn(k)) → H0(Gk, k
×
) −→ H0(Gk, k

×
)

→ H1(Gk, µn(k)) → H1(Gk, k
×
),
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where Gk = Gal(k/k). Clearly H0(Gk, µn(k)) = µn(k) and H0(Gk, k
×
) = k×. From

Hilbert’s Theorem 90, we have H1(Gk, k
×
) is trivial. Hence the following sequence is

exact:

1 → µn(k) → k×
n−→ k× → H1(Gk, µn(k)) → 1.

Therefore we have the isomorphism:

H1(Gk, µn(k)) ∼= k×/(k×)n. (3.1)

In particular, let k = Fp for some prime number p ( p - n and not necessarily

µn(k) ⊂ k× ). Since k× is cyclic of order p− 1, we have k×/(k×)2 ∼= µ2 and

k×/(k×)3 ∼=





1, p = 3 or p ≡ 2(mod 3),

µ3, p ≡ 1(mod 3),

(3.2)

and

k×/(k×)4 ∼=





µ4, p > 2 and p ≡ 1(mod 4),

µ2, p > 2 and p ≡ 3(mod 4),

1, p = 2.

(3.3)

3.2 Non-abelian Cohomology

This section mainly follows [24], §5.
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When A is not abelian, we do not say A is a G-module any more, but a G-group if

we have a continuous map G×A → A, (g, a) 7→ g · a such that (the operation on A

is written multiplicatively because A may be not abelian):

• 1 · a = a,

• (gh) · a = g · (h · a),

• g · (ab) = (g · a)(g · b),
for any g, h ∈ G and any a, b ∈ A. Here A is also endowed with the discrete topology.

Similarly, when A is just a set, we give A the discrete topology and call A a G-set if

we have a continuous map G× A → A, (g, a) 7→ g · a such that:

• 1 · a = a,

• (gh) · a = g · (h · a),

for any g, h ∈ G and any a ∈ A.

Definition 3.2.1. Define

H0(G,A) = AG = {a ∈ A | g · a = a, ∀g ∈ G}.

Let

Z1(G,A) = {f : G −→ A
∣∣ f is continuous, f(gh) = f(g)(g · f(h)),∀g, h ∈ G}.

Elements in Z1(G,A) are called 1-cocycles. Two cocycles f1 and f2 in Z1(G,A) are

called to be cohomologous if for some b ∈ A, we have

f2(g) = b−1f1(g)(g · b), ∀g ∈ G.

It is easy to check this is an equivalence relation on Z1(G,A), denoted by ∼.
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Define H1(G,A) = Z1(G,A)/∼. We have the unit cocyle

f : G → A, f(g) = 1, ∀g ∈ G.

The equivalence class of the unit cocycle is called the neutral element of H1(G,A)

and is denoted by 0 or 1. H1(G,A) is a pointed set with respect to its neutral element.

Similarly, the identity element of A is in H0(G,A). Define the neutral element

of H0(G,A) to be the identity of A. H0(G,A) is then a pointed set with respect to

its neutral element.

Consequently we can define exact sequences, similar to the abelian case, although

now H1 is just a pointed set, and in general we do not have H2 cohomology sets.

Definition 3.2.2. Let A,B and C be pointed sets whose neutral elements are a0, b0

and c0 respectively. Given the following sequence,

A
α−→ B

β−→ C, (3.4)

where α(a0) = b0 and β(b0) = c0, we say (3.4) is exact if α(A) = ker(β), where

ker(β) = {b ∈ B
∣∣ β(b) = c0}. The set ker(β) is called the kernel of β.

Similar to cohomology groups in abelian case, let

U = {U ⊂ G
∣∣ U is open in G and U C G},

then

H1(G,A) = lim−→H1(G/U,AU), (3.5)
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where U runs over U ([24], p.45).

Let B be a G-group and let A be a subgroup of B closed under the action of G

(i.e. g · a ∈ A for any g ∈ G and any a ∈ A). Let the map γ : A ↪→ B be

just the inclusion map. Denote by B/A the set of cosets of A in B. Clearly B/A

is a well-defined G-set. It is obvious that 1, the coset that 1 ∈ B belongs to, is

in H0(G,B/A)1 . We call 1 the neutral element of H0(G,B/A). Define a map

δ : H0(G,B/A) −→ H1(G,A) as follows:

For any c ∈ (B/A)G, let c ∈ B represent c. Define the map δ(c) : G → A by

δ(c)(g) = c−1g(c), ∀g ∈ G.

First, δ(c) is a cocycle. Indeed, for any g1, g2 ∈ G,

δ(c)(g1)g1(δ(c)(g2)) = c−1g1(c)g1(c
−1g2(c))

= c−1g1(c)g1(c
−1)g1(g2(c))

= c−1g1(g2(c))

= δ(c)(g1g2).

Suppose c1 ∈ B also represents c, then c1 = cb1 for some b1 ∈ B. Hence

δ(c1)(g) = c−1
1 g(c1)

= (cb1)
−1g(cb1)

= b−1
1 c−1g(c)g(b1).

1 Given a G-set S, define H0(G,S) = {s ∈ S
∣∣ g · s = s for any g ∈ G}, which is

also denoted by SG.
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Hence δ(c1) and δ(c) are cohomologous. Finally,

δ(1)(g) = 1−1g(1) = 1,

hence δ maps the neutral element in H0(G,B/A) to the neutral element in H1(G,A).

So δ is well-defined and consequently the following proposition holds.

Proposition 3.2.3. The following sequence is exact as pointed sets:

1 → H0(G,A) → H0(G,B) → H0(G,B/A)
δ−→ H1(G,A) → H1(G,B).

If A is not only a subgroup of B but also normal in B, it is easy to see B/A is a

G-group and we have a stronger result:

Proposition 3.2.4. If A is a normal subgroup of B, the following sequence is exact

as pointed sets:

1 → H0(G,A) → H0(G,B) → H0(G,B/A)
δ−→ H1(G,A) → H1(G,B) → H1(G,B/A).

If one further assumes A is a subgroup of the center of B, we have the following

result: ([24], p.55)

Proposition 3.2.5. Suppose that as G-groups, the sequence

1 → A → B → C → 1
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is exact and A is a subgroup of the center of B, then the following sequence is exact:

1 → H0(G,A) → H0(G,B) → H0(G,C)

δ−→ H1(G,A) → H1(G,B) → H1(G,C) → H2(G,A).

Example 3.2.6. Let k be any finite field, G = Gal(k/k). Then we have ([23], p.151)

H1(G, GLn(k)) = 1. In particular, when n = 1, H1(G, GLn(k)) = H1(G, k
×
) = 1,

and we recover the famous Hilbert’s Theorem 90. We also have the exact sequence

1 → SLn(k) → GLn(k)
det−→ k

× → 1,

which gives the exact sequence

H0(G, GLn(k)) → H0(G, k
×
)

α−→ H1(G, SLn(k))
β−→ H1(G, GLn(k)) = 1,

i.e.

GLn(k)
det−→ k×

α−→ H1(G, SLn(k))
β−→ 1.

Since GLn(k)
det−→ k× is surjective, ker(α) = k×, and therefore the image of α con-

tains only one element 1, which is the neutral element of H1(G, SLn(k)). Hence

H1(G, SLn(k)) = ker(β) = α(k×) = 1.

The following lemma is used in the example bellow:

Lemma 3.2.7. Let A and B be G-groups and let ϕ : B → Aut(A) be a group

homomorphism such that

(ϕ(g · b))(g · a) = g · ((ϕ(b))(a)), (3.6)
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for any g ∈ G, any a ∈ A and any b ∈ B, then the semi-product Aoϕ B with respect

to ϕ is a G-group, the action of G on which is defined as g · (a, b) = (g · a, g · b) for

any g ∈ G and any (a, b) ∈ Aoϕ B.

Proof. First for the identity element 1 of G, 1 · (a, b) = (1 · a, 1 · b) = (a, b) for any

(a, b) ∈ Aoϕ B.

For any g1, g2 ∈ G, (g1g2) · (a, b) = ((g1g2) · a, (g1g2) · b), and g1 · (g2 · (a, b)) =

g1 · (g2 · a, g2 · b) = (g1 · (g2 · a), g1 · (g2 · b)) = ((g1g2) · a, (g1g2) · b). Therefore,

(g1g2) · (a, b) = g1 · (g2 · (a, b)).

Finally, for any g ∈ G, and any (a1, b1) and (a2, b2) ∈ Aoϕ B,

g · ((a1, b1)(a2, b2)) = g ·
(

a1

((
ϕ(b1)

)(
a2

))
, b1b2

)

=

(
g ·

(
a1

((
ϕ(b1)

)
(a2)

))
, g · (b1b2)

)

=

((
g · a1

)(
g ·

((
ϕ(b1)

)(
a2

)))
, (g · b1)(g · b2)

)

(3.6)
=

((
g · a1

)((
ϕ(g · b1)

)(
g · a2

))
, (g · b1)(g · b2)

)

= (g · a1, g · b1)(g · a2, g · b2)

=
(
g · (a1, b1)

)(
g · (a2, b2)

)
.

Hence Aoϕ B is a G-group.

Example 3.2.8. Let k = Fp for some odd prime p > 3. Then the absolute Galois

group Gk = Gal(k/k) ∼= Ẑ. For any positive integer m, let µm be the group of m-th
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roots of the unity in k. Since p > 3, µ3 and µ2 are cyclic groups with order 3 and 2

respectively, and consequently we can let µ2 = {±1} and µ3 = {1, α, α2}, where α is

any non-trivial third root of the unity in k. Clearly Gk acts trivially on µ2. For any

g ∈ Gk, any a ∈ µ3 and any b ∈ µ2, define

g · (a, b) = (g · a, g · b) = (g · a, b). (3.7)

Now we will verify that µ3 o µ2 becomes a Gk-group under the action (3.7) using

Lemma 3.2.7. Here µ2 acts on µ3 by the unique non-trivial way. It is enough to

show

(g · b) · (g · a) = g · (b · a), (3.8)

i.e.

b · (g · a) = g · (b · a). (3.9)

When b = 1, b · (g · a) = g · a and g · (b · a) = g · b, so (3.9) holds. When b = −1,

b · (g · a) = (g · a)2 = g · (a2) = g · (b · a), hence (3.9) is also true. Therefore Lemma

3.2.7 shows µ3 o µ2 is a G-group under the action (3.7).

So as Gk-groups, we have the following exact sequence:

1 → µ3 → µ3 o µ2 → µ2 → 1.

Consequently, the following sequence is exact:

H0(Gk, µ2) → H1(Gk, µ3) → H1(Gk, µ3 o µ2) → H1(Gk, µ2).

Since µ2 ⊂ Fp, H0(Gk, µ2) ∼= µ2. (3.1) gives

H1(Gk, µ3) ∼= k×/(k×)3,



3.2 Non-abelian Cohomology 27

and

H1(Gk, µ2) ∼= k×/(k×)2.

Hence we have the exact sequence:

µ2 → k×/(k×)3 → H1(Gk, µ3 o µ2) → k×/(k×)2.

When p ≡ 2(mod 3), (3.2) gives k×/(k×)3 = 1. Hence the following sequence is

exact:

1 → H1(Gk, µ3 o µ2) → k×/(k×)2. (3.10)

When p ≡ 1(mod 3), similarly, the following sequence is exact:

µ2 → µ3 → H1(Gk, µ3 o µ2) → k×/(k×)2.

Since the homomorphism µ2 → µ3 is trivial, we have the exact sequence:

1 → µ3 → H1(Gk, µ3 o µ2) → k×/(k×)2. (3.11)

Now I will determine the structure of H1(Gk, µ3oµ2) with the help of (3.5). In this

case, we have

H1(Gk, µ3 o µ2) = lim−→
n

H1(Z/nZ, (µ3 o µ2)
Gal(k/kn)), (3.12)

where kn = Fpn. If µ3 ⊂ Fp, since x3 − 1 = (x − 1)(x2 + x + 1), −3 is a quadratic

residue of p, which is equivalent to say p ≡ 1(mod 3). Therefore when p ≡ 1(mod 3),

µ3 ⊂ Fp and consequently both Gal(kn/k) ∼= Z/nZ and Gal(k/kn) act on µ3 o µ2
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trivially. So when 6|n,

H1(Z/nZ, (µ3 o µ2)
Gal(k/kn)) = H1(Z/nZ, µ3 o µ2)

= Hom(Z/nZ, µ3 o µ2)

∼= µ3 o µ2.

Hence (3.12) gives

H1(Gk, µ3 o µ2) ∼= µ3 o µ2. (3.13)

If p 6≡ 1(mod 3), µ3 6⊂ Fp. But now µ3 ⊂ Fp[x]/(x2 + x + 1) ∼= Fp2, so

(µ3 o µ2)
Gal(k/kn) ∼=





µ3 o µ2 n ≡ 0(mod 2),

µ2 n ≡ 1(mod 2).

Hence,

H1(Z/nZ, (µ3 o µ2)
Gal(k/kn)) = H1(Z/nZ, µ2) ∼= µ2, n ≡ 1(mod 2). (3.14)

When n ≡ 0(mod 2),

H1(Z/nZ, (µ3 o µ2)
Gal(k/kn)) = H1(Z/nZ, µ3 o µ2).

Clearly an element f ∈ Z1(Z/nZ, µ3 o µ2) is fully determined by f(1). We have the

following cases:

1. f(1) = (α, 1). In this case one can easily show that

f(m) =





(α, 1), m ≡ 1(mod 2),

(1, 1), m ≡ 0(mod 2),
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for 0 ≤ m < n. Hence such f is an element in Z1(Z/nZ, µ3oµ2). Now we calculate

(α, 1)−1f(m) (m(α, 1)) = (α2, 1)f(m) (αpm
, 1):

(α2, 1)f(m) (αpm

, 1) =





(α2, 1)(α, 1)(α2, 1) = (α2, 1), when m ≡ 1(mod 2),

(α2, 1)(1, 1)(α, 1) = (1, 1), when m ≡ 0(mod 2).

Also

(α2, 1)−1f(m) (m(α2, 1)) = (α, 1)f(m) (αpm

αpm

, 1)

=





(α, 1)(α, 1)(α2α2, 1) = (α6, 1) = (1, 1), when m ≡ 1(mod 2),

(α, 1)(1, 1)(α2, 1) = (α3, 1) = (1, 1), when m ≡ 0(mod 2).

Hence we have f ∼ g in Z1(Z/nZ, µ3 o µ2), where g(1) = (1, 1) or (α2, 1).

2. f(1) = (α,−1). Similarly we have

f(2) = f(1 + 1) = f(1) 1f(1) = (α2, 1),

f(3) = f(1 + 2) = f(1) 1f(2) = (1,−1),

f(4) = f(1 + 3) = f(1) 1f(3) = (α,−1) = f(1).

This implies f(m) 6= (1, 1) for any m > 0. But that is impossible (because in Z/nZ,

m = 0 when m = n, and we must have f(0) = (1, 1)).

3. f(1) = (1,−1). We have f(2) = f(1 + 1) = f(1) 1f(1) = (1,−1) 1(1,−1) =

(1,−1)(1,−1) = (1, 1). So f ∈ Z1(Z/nZ, µ3 o µ2).

Hence there are at most two equivalence classes [γ1] and [γ2] in H1(Z/nZ, µ3 o µ2)

whose representatives γ1 and γ2 can be chosen to be the unit cocycle and γ2(1) =

(1,−1) respectively. Since for any element (a, b) ∈ µ3 o µ2 and any g ∈ Z/nZ,

the second component in ((a, b)−1)(1, 1) g(a, b) is b−1b = 1, so γ1 and γ2 can not be
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cohomologous in Z1(Z/nZ, µ3 o µ2). So we conclude that

H1(Z/nZ, µ3 o µ2) ∼= µ2, n ≡ 0(mod 2). (3.15)

(3.14) and (3.15) give:

H1(Gk, µ3 o µ2) ∼= µ2. (3.16)

The proof given above shows that H1(Gk, µ3 o µ2) can be regarded to have some

intrinsic group structure, and (3.13) and (3.16) hold as groups.



CHAPTER 4
Galois Descent and Forms

In this chapter, we will introduce Galois descent in a general setting using the lan-

guage of categories. The objective is to prove Theorem 4.3.3 and obtain a relation

between the action of the relative Frobenius map (or equivalently, geometric Frobe-

nius map) on the étale cohomology of a given smooth projective variety over a finite

field and the action on the forms of the variety. From such a relation, we can get

a relation between the Hasse-Weil zeta function of a smooth projective variety and

those of its forms. I mainly follow [3] in this chapter.

4.1 Galois Descent

The concept of Galois descent can be explained in the following example coming

from classical Galois theory.

Example 4.1.1. Let F be a field and L/F a Galois extension. Then F can be viewed

as a subset of L. Galois descent here means that x ∈ L is in F if and only if x is

fixed by Gal(L/F ). But this is a basic result in classical Galois theory.

The formal definition of Galois descent is given below in terms of coefficient exten-

sion.

31
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Definition 4.1.2. Let C1 and C2 be two categories and K/k be a Galois field exten-

sion with Galois group G. A coefficient extension from k to K consists of a covariant

functor F from C1 to C2 and for any objects X and Y in C1, a (left) G-action on

Iso(F (X), F (Y )), the set of isomorphisms from F (X) to F (Y ) in C2, such that the

following conditions hold:

1. For any objects X, Y and Z in C1, any isomorphism f : F (X) → F (Y ) and

g : F (Y ) → F (Z) and any element s ∈ G,

s(g ◦ f) = ( sg) ◦ ( sf).

2. For any objects X and Y in C1,

F (Iso(X,Y )) = Iso(F (X), F (Y ))G,

where

Iso(F (X), F (Y ))G = {α ∈ Iso(F (X), F (Y ))
∣∣ sα = α, ∀s ∈ G}.

Example 4.1.3. Let k be a field and K/k be a Galois extension with Galois group

G = Gal(K/k). Let C1 be the category of finite dimensional vector spaces over k with

linear maps of vector spaces over k. Let C2 be the category of vector spaces over K

with linear maps of vector spaces. Define the functor F : C1 → C2 by F (V ) = V ⊗kK

for any object V in C1 and F (f) = f⊗1 for any linear map f : V1 → V2 in C1. Since

for any positive integer n, GLn(K)G = GLn(k), where g ∈ G acts on any element

M ∈ GLn(K) in the usual way. Therefore for vector spaces V1 and V2 in C1, we

have

F (Iso(V1, V2)) = Iso(F (V1), F (V2))
G,
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after adopting the convention that ∅G = ∅ (Iso(V1, V2) 6= ∅ if and only if V1 and V2

have the same dimension over k).

From now on, the categories C1 and C2 will be denoted by Ck and CK respectively.

It is easy to prove the following proposition.

Proposition 4.1.4. Let k, K, G, Ck and CK be as above and suppose there are a

covariant functor F from Ck to CK and a left G-action on Hom(F (X), F (Y )) for

any two objects X and Y in Ck, such that

1. For any objects X, Y and Z in Ck, morphisms f : F (X) → F (Y ) and

g : F (Y ) → F (Z), and any element s ∈ G,

s(g ◦ f) = ( sg) ◦ ( sf).

2. For any objects X and Y in Ck,

F (Hom(X,Y )) = Hom(F (X), F (Y ))G.

Then we have a coefficient extension after restricting the G-action to isomorphisms.

For any field L, denote by VarL the category of (quasi-projective) varieties over L

with morphisms of varieties over L, and denote by VarL,Iso the category of (quasi-

projective) varieties over L with isomorphisms of varieties over L (VarL,Iso is a cate-

gory since for any variety V over L, the identity map idV : V → V is an isomorphism

over L).
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Theorem 4.1.5. ([3], p.18-24) Let k, K and G be as in Definition 4.1.2. Let the

functor F : Vark → VarK be defined as:

F (X) = XK := X ×k K,

and

F (X
f−→ Y ) = (XK

f×1Spec K−−−−−−→ YK).

For any g ∈ G and f ∈ Hom(XK , YK), where objects X and Y are in Vark, define

the action gf of g on f to be the morphism which makes the following diagram

commutative:

XK
f−−−→ YK

1Xk
× g∗

x
x1Yk

× g∗

XK −−−→
gf

YK

where g∗ is the endomorphism on SpecK induced by g, so

gf = (1Yk
× g∗)−1 ◦ f ◦ (1Xk

× g∗).

Then we have a coefficient extension after restricting the G-action to isomorphisms,

denoted by F : Vark,Iso → VarK,Iso.

Example 4.1.6. Let X = Y = Spec k[x] for some field k. Let K/k be a Galois

extension with Galois group G. Let ϕ be an endomorphism of X defined over K

which corresponds to a ring endomorphism

ϕ# : K[x] → K[x], x 7→ f(x),
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for some polynomial f(x) ∈ K[x]. By abuse of notation, denote ϕ# by f . Any

element g ∈ G induces an isomorphism of K[x], denoted by g̃:

g̃ : K[x] → K[x], x 7→ x, a 7→ g(a), ∀a ∈ K.

Clearly g̃−1 = g̃−1. Consequently, gϕ corresponds to the endomorphism fg of K[x]

which makes the following diagram commutative:

K[x]
f−−−→ K[x]

eg
y

yeg
K[x] −−−→

fg

K[x]

So

fg = g̃ ◦ f ◦ g̃−1.

Suppose

f =
n∑

i=1

aix
i, (4.1)

for some positive integer n and some ai ∈ K, i = 1, 2, . . . , n, then for any polynomial

h =
∑m

i=1 bix
i ∈ K[x],

fg

(
m∑

i=1

bix
i

)
= g̃ ◦ f ◦ g̃−1

(
m∑

i=1

bix
i

)

= g̃ ◦ f

(
m∑

i=1

g−1(bi)x
i

)

= g̃




m∑
i=1

g−1(bi)

(
n∑

j=1

ajx
j

)i



=
m∑

i=1

bi

(
n∑

j=1

g(aj)x
j

)i

=
m∑

i=1

bi(g̃(f))i.
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Hence we have

fg

(
m∑

i=1

g(bi)x
i

)
=

m∑
i=1

g(bi)(g̃(f))i,

i.e.

fg(g̃(h)) = g̃(f(h)),

for any h ∈ K[x]. This is equivalent to say that for any K-point a ∈ A1,

gϕ( ga) = g(ϕ(a)).

For any field L and any group H, denote by RepH
L the category with objects of

the form (V, φ) where V is a finite dimensional vector space over L and φ is an H-

action defined on V , and morphisms being linear mappings of L-vector spaces that

are H-equivariant.

Denote the absolute Galois groups of k and K by Gk and GK respectively. Clearly

we can regard GK as a normal subgroup of Gk and G = Gk/GK . Consequently, for

the categories RepGk
L and RepGK

L , we have a natural functor F from RepGk
L to RepGK

L

given by sending (V, φ) to (V, φ
∣∣GK) and being the identity mapping on morphisms

in RepGk
L . For any s ∈ G, let s be a representative in Gk (because G = Gk/GK). For

any two objects (X1, φ1) and (X2, φ2) and any isomorphism

f : F ((X1, φ1)) = (X1, φ1

∣∣GK)
∼=−→ F ((X2, φ2)) = (X2, φ2

∣∣GK),

define the action of s on f by

sf = φ2(s) ◦ f ◦ φ1(s)
−1. (4.2)
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Theorem 4.1.7. (4.2) defines an action of G on the set of isomorphisms of any two

objects in RepGK
L and RepGk

L

F−→ RepGK
L is a coefficient extension with respect to such

action.

Definition 4.1.8. Suppose Ck
F−→ CK and C′k

F ′−→ C′K are two coefficient extensions

from k to K. A morphism from F to F ′ is a triple (fk, fK , h), where fk : Ck → C′k

and fK : CK → C′K are covariant functors and h : fK◦F
∼=−→ F ′◦fk is an isomorphism

of functors,

CK

fK

!!B
BB

BB
BB

B

Ck

F
>>}}}}}}}}

fk ÃÃA
AA

AA
AA

A

fK◦F
))

F ′◦fk

55h o‖ C′K

C′k

F ′

>>||||||||

and for any two objects X and Y in Ck, the following diagram is G-equivariant:

Iso(F (X), F (Y ))
fK //

h◦fK **VVVVVVVVV
Iso(fK ◦ F (X), fK ◦ F (Y ))

h
²²

Iso(F ′ ◦ fk(X), F ′ ◦ fk(Y ))

Under such definition of a morphism of coefficient extensions, we have ([3], p.91):

Theorem 4.1.9. Let F1 : Vark,Iso → VarK,Iso and F2 : RepGk
Q`
→ RepGK

Q`
be those as

defined in Theorem 4.1.5 and Theorem 4.1.7 respectively, where ` is a prime number

not equal to the characteristic of k. Fix a non-negative integer i. Define functor

fk : Vark,Iso → RepGk
Q`

as follows: for any quasi-projective variety X/k, Fk(X) =

H i(X ét,Q`) and for any isomorphism f : X1 → X2 in Vark,Iso, Fk(f) = (f ∗)−1,

where f ∗ is the induced group isomorphism H i((X2)ét,Q`) → H i((X1)ét,Q`). The
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functor fK : VarK,Iso → RepGK
Q`

is defined similarly. Let XK = X ×k K. The

canonical isomorphism h : X ×k k → XK ×K K induces the canonical isomorphism:

h∗ : fK ◦ F1(X) = H i((XK)ét,Q`) → H i(X ét,Q`) = F2 ◦ fk(X),

and further (fk, fK , h∗) is a morphism from F1 to F2:

VarK,Iso

fK

%%KKKKKKKKKK

Vark,Iso

F1

99ssssssssss

fk %%JJJJJJJJJJ

fK◦F1

++

F2◦fk

33h∗ o‖ RepGK
Q`

.

RepGk
Q`

F2

::ttttttttt

In the above theorem, h = 1 if we identify X ×k k with XK ×K K.

4.2 Forms under Coefficient Extension

Let Cat be any category, define the relation ∼ as follows: for any two objects A and

B in Cat, A ∼ B if and only if there is an isomorphism f in Cat between A and B.

It is trivial to show the relation ∼ is an equivalence relation.

Definition 4.2.1. Let F : Ck → CK be a coefficient extension and ∼ be the equiv-

alence relation on Ck described above. For any object X in Ck, define the collection

of CK/Ck-forms of X to be:

E(CK/Ck, X) = {Y ∈ Obj(Ck)
∣∣ F (Y ) ∼= F (X)}/ ∼ .
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Theorem 4.2.2. Let Y be a CK/Ck-form of X and f : F (Y ) → F (X) be an

isomorphism over K. Define the map τ = τY by

τ : G → Aut(F (X)), s 7→ f ◦ s(f−1), ∀s ∈ G.

Then τ ∈ Z1(G, Aut(F (X))), and the map

γ : E(CK/Ck, X) → H1(G, Aut(F (X))), [Y ] 7→ [τ ], ∀ [Y ] ∈ E(CK/Ck, X)

is injective. If we regard E(CK/Ck, X) as a pointed set with the neutral element [X],

then γ maps [X] to the neutral element of H1(G, Aut(F (X))), i.e. γ is an injective

map of pointed sets.

Proof. First, we prove γ is well-defined. For any s and t in G,

τ(st) = f ◦ st(f−1)

= f ◦ s1FY ◦ st(f−1)

= f ◦ s(f−1 ◦ f) ◦ st(f−1)

= f ◦ (s(f−1) ◦ sf) ◦ s( t(f−1))

= (f ◦ s(f−1)) ◦ ( s(f ◦ t(f−1)))

= τ(s) ◦ sτ(t).

Hence τ is a 1-cocyle.

Now we show that τ , in cohomology, does not depend on the choice of f . Sup-

pose there is another isomorphism f ′ : F (Y )
∼=−→ F (X). Correspondingly, we have
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the map:

τ ′ : G → Aut(F (X)), s 7→ f ′ ◦ s(f ′−1), ∀s ∈ G.

So

τ ′(s) = f ′ ◦ s(f ′−1)

= (f ′ ◦ f−1 ◦ f) ◦ s((f ′−1 ◦ f−1 ◦ f)−1)

= (f ◦ f ′−1
)−1 ◦ (f ◦ sf−1) ◦ s(f ◦ f ′−1

).

Let h = f ◦ f ′−1. The map h is clearly an element of Aut(F (X)) and

τ ′(s) = h−1 ◦ τ(s) ◦ sh ∼ τ(s).

We also check that τ = τY , in cohomology, depends only on the class of Y . Suppose

there is another object Y ′ in Ck such that [Y ] = [Y ′], then there is an isomorphism

α : Y ′ ∼=−→ Y over k. So F (α) is an isomorphism from F (Y ) to F (Y ′). Hence f ◦F (α)

is an isomorphism from F (Y ′) to F (X). Therefore with respect to Y ′, we have the

map:

τ1 : G → Aut(F (X)), s 7→ (f ◦ F (α)) ◦ s((f ◦ F (α))−1), ∀s ∈ G.

So we have,

τ1(s) = (f ◦ F (α)) ◦ s((f ◦ F (α))−1)

= f ◦ F (α) ◦ s(F (α)−1) ◦ s(f−1).
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But F is a coefficient extension, so s(F (α)−1) = F (α)−1. Hence

τ1(s) = f ◦ F (α) ◦ F (α)−1 ◦ s(f−1)

= f ◦ s(f−1)

= τ(s).

This implies τ is independent of the choice of Y up to isomorphism. If we choose

Y = X and f : F (Y ) = F (X) → F (X) to be the identity map, then clearly f ◦ s(f−1)

is the identity map on F (X). So far we have established that there is a well-defined

map of pointed sets γ : E(CK/Ck, X) → H1(G, Aut(F (X))).

Suppose γ([Y ]) = γ([Y1]) for some object Y1 in Ck which is also a CK/Ck-form of X.

So F (Y1) and F (Y ) are isomorphic with some isomorphism q from F (Y1) to F (Y ).

Let f be an isomorphism from F (Y ) to F (X) and so γ([Y ]) is represented by τ with

τ(s) = f ◦ sf for any s ∈ G. Hence we have an isomorphism f ◦q from F (Y1) to F (X).

Therefore γ([Y1]) is represented by τ1 with τ1(s) = (f ◦q)◦ s((f ◦q)−1) for any s ∈ G.

On the other hand, γ([Y ]) = γ([Y1]) implies τ(s) and τ1(s) are cohomologous. So

there exists b ∈ Aut(F (X)), such that τ1(s) = b−1 ◦ τ(s) ◦ sb, i.e.

(f ◦ q) ◦ s((f ◦ q)−1) = b−1 ◦ f ◦ s(f−1) ◦ sb.

So

(f ◦ q) ◦ s(q−1) ◦ s(f−1) = b−1 ◦ f ◦ s(f−1) ◦ sb,

hence

s(q−1) ◦ s(f−1) ◦ s(b−1) ◦ sf = q−1 ◦ f−1 ◦ b−1 ◦ f,
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i.e.

s(q−1 ◦ f−1 ◦ b−1 ◦ f) = q−1 ◦ f−1 ◦ b−1 ◦ f.

Let q′ = q−1 ◦ f−1 ◦ b−1 ◦ f , then we have an isomorphism from F (Y ) to F (Y1)

and sq′ = q′ for any s in G. Since F is a coefficient extension, q′ = F (w) for some

isomorphism w : Y
∼=−→ Y1. Hence [Y ] = [Y1].

Proposition 4.2.3. Let L be a field and F : RepGk
L → RepGK

L be the coefficient

extension defined in Theorem 4.1.7. Denote the image of any element s ∈ Gk in the

canonical map Gk → G ∼= Gk/GK = Gal(K/k) by s. Then for any object X = (V, φ)

in RepGk
L and [σ] ∈ H1(G, Aut(F (X))), the map

φσ : Gk → Aut(V ), s 7→ σ(s) ◦ φ(s)

is a group homomorphism. So (V, φσ) is an object in RepGk
L , denoted by Xσ, and the

equivalence class of Xσ, [Xσ] is a RepGK
L /RepGk

L -form of X. Furthermore the map

ν : H1(G, Aut(F (X))) → E(RepGK
L /RepGk

L , X),

defined by

[σ] 7→ [Xσ],∀[σ] ∈ H1(G, Aut(F (X)))

is a bijection whose inverse is γ defined in Theorem 4.2.2.
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Proof. For any s, t in Gk,

φσ(st) = σ(s t) ◦ φ(st)

= σ(s) ◦ sσ(t) ◦ φ(s) ◦ φ(t)

= σ(s) ◦ (φ(s) ◦ σ(t) ◦ φ(s)−1) ◦ (φ(s) ◦ φ(t))

= (σ(s) ◦ φ(s)) ◦ (σ(t) ◦ φ(t))

= φσ(s) ◦ φσ(t).

This proves φσ is a group homomorphism.

Suppose s ∈ GK , then s = 1, the unity in G. So when s is in GK ,

φσ(s) = σ(1) ◦ φ(s) = 1Aut(F (X)) ◦ φ(s) = φ(s).

Hence (V, φσ|GK) = (V, φ|GK) and so [Xσ] is a RepGK
L /RepGk

L -form of X and 1V can

be taken as an isomorphism in RepGK
L from Xσ to X. Consequently, it follows from

Theorem 4.2.2 that for any s ∈ Gk,

γ(Xσ)(s) = 1V ◦ s(1−1
V )

= 1V ◦ φσ(s) ◦ 1V ◦ φ(s)−1

= σ(s) ◦ φ(s) ◦ φ(s)−1

= σ(s).

So γ(Xσ) = [σ].
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Theorem 4.2.4. Let F : Ck → CK and F ′ : C′k → C′K be two coefficient extensions

and (fk, fK , h) be a morphism from F to F ′.

CK

fK

!!B
BB

BB
BB

B

Ck

F
>>}}}}}}}}

fk ÃÃA
AA

AA
AA

A

fK◦F
))

F ′◦fk

55h o‖ C′K

C′k

F ′

>>||||||||

Then we have the following commutative diagram:

E(CK/Ck, X)
ϕ: [Y ] 7→[fk(Y )] //

_Ä

γ

²²

E(C′K/C′k, fk(X))
_Ä

γ

²²
H1(G, Aut(F (X)))

ψ: [σ] 7→[h◦fK◦σ]
// H1(G, Aut(F ′ ◦ fk(X))).

Proof. ϕ is well-defined. Let Y be a CK/Ck-form of X, so there is an isomorphism

ω : F (Y )
∼=−→ F (X) in CK . Hence fK(ω) is an isomorphism from fK(F (Y )) to

fK(F (x)) in C′K . Since h is an isomorphism between fK ◦ F and F ′ ◦ fk, h induces

an isomorphism from fK(F (U)) to F ′(fk(U)) for any object U in Ck, denoted by hU .

Then the sequence

F ′(fk(Y ))
h−1

Y−−→ fK(F (Y ))
fK◦ω−−−→ fK(F (X))

hX−→ F ′(fk(X))

gives an isomorphism from F ′(fk(Y )) to F ′(fk(X)) in C′K . So [fk(Y )] is a C′K/C′k-

form of fk(X).

Suppose Y1 is another object in Ck isomorphic to Y in Ck with an isomorphism

µ : Y1 → Y . Then fk(µ) : fk(Y1) → fk(Y ) is an isomorphism in C′k.

Take Y = X, then ϕ([X]) = [fk(X)], i.e. ϕ is a well-defined map of pointed sets.
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Next we prove ψ is also well-defined. For any s and t in G,

h ◦ fK ◦ σ(st) = h ◦ fK ◦ (σ(s) ◦ sσ(t))

= (h ◦ fK ◦ σ(s)) ◦ (h ◦ fK ◦ sσ(t))

G-equivariant
= (h ◦ fK ◦ σ(s)) ◦ s(h ◦ fK ◦ σ(t)).

So h ◦ fK ◦ σ satisfies cocycle condition.

Let σ′ be another cocycle with σ ∼ σ′. This implies for any s ∈ G, σ′(s) =

b−1 ◦ σ(s) ◦ sb. Hence

h ◦ fK ◦ σ′(s) = h ◦ fK ◦ (b−1 ◦ σ(s) ◦ sb)

= (h ◦ fK ◦ b−1) ◦ (h ◦ fK ◦ σ(s)) ◦ (h ◦ fK ◦ sb)

G-equivariant
= (h ◦ fK ◦ b)−1 ◦ (h ◦ fK ◦ σ(s)) ◦ s(h ◦ fK ◦ b).

So (h ◦ fK ◦ σ′) is cohomologous to (h ◦ fK ◦ σ). Suppose σ is the trivial co-

cycle in Z1(G, Aut(F (X)), then clearly (h ◦ fK ◦ σ) is also the trivial cocycle in

Z1(G, Aut(F ′(fk(X)))).

Finally,

γ ◦ ϕ([Y ])(s) = γ([fk(Y )])(s)

= (hX ◦ fK ◦ ω ◦ h−1
Y ) ◦ s((hX ◦ fK ◦ ω ◦ h−1

Y )−1)

= hX ◦ fK ◦ ω ◦ h−1
Y ◦ hY ◦ s(ω−1)

= hX ◦ fK ◦ ω ◦ s(ω−1),

and

ψ ◦ γ([Y ])(s) = hX ◦ fK ◦ ω ◦ s(ω−1)

imply γ ◦ ϕ = ψ ◦ γ.
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In particular, we have:

Corollary 4.2.5. Let F1 : Vark,Iso → VarK,Iso and F2 : RepGk
Q`
→ RepGK

Q`
be two

coefficient extensions as defined in Theorem 4.1.5 and Theorem 4.1.7 respectively and

(fk, fK , h∗) be the morphism from F1 to F2 defined in Theorem 4.1.9:

VarK,Iso

fK

%%JJJJJJJJJ

Vark,Iso

F1

99ssssssssss

fk $$JJJJJJJJJJ

fK◦F1

++

F2◦fk

33h∗ o‖ RepGK
Q`

RepGk
Q`

F2

::uuuuuuuuu

Then we have the following commutative diagram:

E(VarK,Iso/Vark,Iso, X)
η: [Y ] 7→[Hi(Y ét,Q`)] //

_Ä

γ

²²

E(RepGK
Q`

/RepGk
Q`

, H i(X ét,Q`))
_Ä

γ=ν−1

²²
H1(G, AutK(XK))

ϕ: [σ] 7→[h∗◦fK◦σ]
// H1(G, AutGK

(H i(X ét,Q`)))

ν

XX

where XK = X ×k K, AutGK
(H i(X ét,Q`)) is the set of all linear transformations of

H i(X ét,Q`) as Q`-vector space which are compatible with GK action. For any g ∈ G,

h∗ ◦ fK ◦ σ(g) = h∗ ◦ (σ(g)∗)−1 = h∗ ◦ (σ(g)−1)∗ = (σ(g)−1 ◦ h)∗, here we identify

σ(g) : XK → XK

with

σ(g)×K 1K : XK = XK ×K K → XK ×K K = XK .
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For any smooth projective variety X, suppose we have a Gk-action νX on H i(X ét,Q`):

νX : Gk → AutQ`
(H i(X ét,Q`)).

For any VarK/Vark-form Y of X, we have γ([Y ]) ∈ H1(G, AutK(XK)), denote γ([Y ])

by [cY ] for some cY ∈ Z1(G, AutK(XK)). Since XK is isomorphic to YK over K,

H i(X,Q`) ∼= H i(Y ,Q`) as Q`-vector space. By Proposition 4.2.3, the Gk action on

H i(Y ét,Q`), νY which is induced by Y and νX is:

νY : Gk → AutQ`
(H i(Y ét,Q`)), νY = ν

γ◦η(Y )
X .

But from Corollary 4.2.5, ϕ ◦ γ = γ ◦ η, hence

νY =ν
ϕ◦γ(Y )
X

=ν
ϕ(cY )
X .

For any g ∈ Gk, let g be the image of g in G in the canonical map Gk → Gk/GK = G,

then

νY (g) =ν
ϕ(cY )
X (g)

=((ϕ(cY ))(g)) ◦ νX(g)

=h∗ ◦ fK ◦ cY (g) ◦ νX(g).

Since h = 1, we have

νY (g) =fK ◦ cY (g) ◦ νX(g)

=(cY (g)−1)∗ ◦ νX(g)

In particular, Suppose k = Fq with Frobenius map

f : k → k, a 7→ aq
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in Gk, then Fr∗rY
= (cY (f

−1
)−1)∗ ◦ Fr∗rX

. But cY (f
−1

) ◦ f
−1

cY (f) = cY (f
−1 ◦ f) =

cY (1G) = 1XK
. So we have proved the following main result:

Theorem 4.2.6. Using notations above, we have

Fr∗rY
= ( f

−1

cY (f))∗ ◦ Fr∗rX
. (4.3)

4.3 Forms of Quasi-projective Varieties

Let X be an object in Vark, where k is a field. Let K/k be a Galois field extension.

Then a VarK/Vark-form of X, which is also called a K/k-form for short, is just

an object Y in Vark, such that Y ×k K ∼= X ×k K as K-varieties. The set of all

equivalence classes of K/k-forms of X is denoted by E(K/k,X). This section will

build a bijection between E(K/k, X) and H1(Gal(K/k), Aut(X ×k K)). But we will

begin by giving some concrete examples.

Example 4.3.1. Consider the projective variety V = ProjR[x, y, z]/(x2 + y2 + z2),

it has no point defined over R and therefore V 6∼= P1 over R (denoted by P1
R). But

when base field R is extended to C, clearly we have

V ⊗R C ∼= ProjC[x, y, z]/(x2 + y2 + z2) ∼= P1
C = P1

R ⊗R C.

This implies V is a form of P1
R over R.
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Similarly, it is easy to verify that the affine scheme SpecQ[x]/(x2 + 1) over Q is

a form of any affine scheme SpecQ[x]/(x2 + bx + c) for some b, c ∈ Q such that

b2 − 4c 6= 0.

Example 4.3.2. Given the elliptic curve

E : y2 = x3 + 1 (4.4)

defined over F5, the elliptic curve

E ′ : 2y2 = x3 + 1 (4.5)

is isomorphic to E over F5(
√

2) ∼= F52. On the other hand, E ′ is equivalent to

y2 = 1
2
x3 + 1

2
, which in turn is equivalent to y2 = 3x3 + 3 because 2−1 = 3 in F5.

Since 23 = 3 in F5, E ′ is isomorphic to the elliptic curve

E ′′ : y2 = x3 + 3. (4.6)

The j-invariants j(E) = j(E ′) = j(E ′′) = 0, so according to the result in [12], p.71,

E ∼= E ′′ over F5 if and only if F5 contains a sixth root of 3. Since there is no element

in F5 whose square is 3, there is no element in F5 whose sixth power is 3. Hence E

and E ′′ (or E ′) are not isomorphic over F5.

The following theorem gives the classification of K/k-forms of a quasi-projective va-

riety, where K/k is a Galois extension.

Theorem 4.3.3. Let K/k be a Galois extension with Galois group G = Gal(K/k).

Let Vark be the category of quasi-projective varieties defined over k with morphisms

over k and VarK be the category of quasi-projective varieties defined over K with
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morphisms over K. Let the functor F : Vark → VarK be defined as follows:

F (X) = XK := X ×k K,

and

F (X
f−→ Y ) = (XK

f×1Spec K−−−−−→ YK).

Then for any object X in Vark, there is a natural bijection between the set of isomor-

phism equivalence classes of K/k-forms (i.e. VarK/Vark-forms) and H1(G, Aut(XK)),

i.e.

E(K/k,X) ∼= H1(G, Aut(XK)).

Proof. From Theorem 4.1.5, F is a coefficient extension from k to K. So from

Theorem 4.2.2, one has the injective map:

γ : E(K/k, X) → H1(G, Aut(XK)), [Y ] 7→ [τY ], ∀[Y ] ∈ E(K/k,X),

where τY is defined by

τY : G → Aut(XK), s 7→ fY ◦ s(f−1
Y ), ∀s ∈ G,

where fY is an isomorphism F (Y ) = YK → XK = F (X) in VarK . Now it is enough

to show γ is surjective.

Suppose [c] is an element of H1(G, Aut(XK)) with a representative c ∈ Z1(G, Aut(XK)).

For any g ∈ G, g induces an isomorphism on SpecK, which in turn induces an iso-

morphism on XK = X ×k K, which is denoted by g∗. Hence we obtain an action of

G = Gal(K/k) on XK = X ×k K by c(g−1) ◦ g∗:

c(1) ◦ 1∗ = 1XK
◦ 1XK

= 1XK
,
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and for any g1, g2 ∈ G,

c((g1g2)
−1) ◦ (g1g2)

∗ = c(g−1
2 g−1

1 ) ◦ g∗2 ◦ g∗1

= c(g−1
2 ) ◦ g−1

2 c(g−1
1 ) ◦ g∗2 ◦ g∗1

= c(g−1
2 ) ◦ g∗2 ◦ c(g−1

1 ) ◦ (g∗2)
−1 ◦ g∗2 ◦ g∗1

= (c(g−1
2 ) ◦ g∗2) ◦ (c(g−1

1 ) ◦ g∗1).

Based on this action of G on XK , since XK is a quasi-projective variety, the quo-

tient XK/G is also a quasi-projective variety defined over k and XK/G is a K/k-

form of X by Weil’s descent theorem ([28], Proposition 1). Suppose we prove that

γ(XK/G) = [c], then if [c] = [c′] for some c′ ∈ Z1(G, Aut(XK)), then under c′, we

have another G-action on XK , and denote by Y the quotient variety of XK under

this G-action. Then we have γ(Y ) = [c′] = [c] and so the injectivity of γ implies

Y = XK/G. Hence XK/G is independent to the choice of representative of [c], which

implies that XK/G is well-defined. Now we start to prove γ(XK/G) = [c].

Denote XK/G by X . From the definition of γ, γ([X ]) = [τX ], where [τX ] is de-

fined by

τX : G → Aut(XK), s 7→ f ◦ s(f−1), ∀s ∈ G,

where f is an isomorphism X ×k K → X ×k K, where XK = X ×k K. Hence for any

element s ∈ G,

τX (s) = f ◦ s(f−1)

= f ◦ (s−1 ◦ f−1 ◦ s∗).

The left s is the action on XK defined near the beginning of the proof, hence

τX (s) = f ◦ c(s) ◦ (s∗)−1 ◦ f−1 ◦ s∗ = f ◦ c(s) ◦ s(f−1),
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so

τX ∼ c.



CHAPTER 5
Forms and Zeta Functions — Some General Results and Examples

In this section, k = Fq be a finite field with q elements, and K/k be a finite Galois

extension of degree r, i.e. K = Fqr .

5.1 General Results

From the formula (4.3), we have the following theorem regarding the connection of

the zeta function of a smooth projective variety and those of its forms.

Theorem 5.1.1. Let X be a smooth projective variety of dimension d defined over a

finite field k and let Y be a k-form of X, i.e. Y is isomorphic to X over some finite

separable field extension K of k. Let Y correspond to [cY ] in H1(G, AutK(X)). Let

the zeta function of X be

Z(X/k, T ) =
d∏

i=0

Pi(X,T )(−1)i+1

,

where Pi(X,T ) = det(1− (Frj
r)
∗T

∣∣H i(X,Q`)), i = 1, 2, . . . , 2d. Then

Z(Y/k, T ) =
d∏

i=0

P ′
i (X,T )(−1)i+1

,

where P ′
i (X,T ) = det(1− (( f

−1

cY (f))∗ ◦ Fr∗r)
iT

∣∣H i(X,Q`)), i = 0, 1, 2, . . . , 2d. Here

f ∈ Gk is the Frobenius map a 7→ aq, ∀a ∈ k and f is the image of f in the canonical

map Gk → G = Gk/GK.

53
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5.2 Elliptic Curves

In the case of elliptic curves, the first étale cohomology H1(E ét,Q`) of E/k corre-

sponds to V ∗
` (E), which is the dual of V`(E) = T`(E)⊗Z Q, where T`(E) is the Tate

module of E/k and ` is any prime number not equal to p. Since for any positive

integer m prime to p, the m-torsion subgroup of E, E[m] ∼= Z/mZ × Z/mZ, V`(E)

(and V ∗
` (E)) is a Q`-vector space of dimension 2. The zeta function of E/k has the

following expression:

Z(E, T ) =
det(1− TFr∗r

∣∣V ∗
` (E))

(1− T )(1− qT )

=
1− Tr(Fr∗r)T + qT 2

(1− T )(1− qT )
,

(5.1)

where Frr is the relative Frobenius map on E. For Autk(E), we have the following

result:

Theorem 5.2.1. ([12], p.70-75) Suppose E/k is an elliptic curve, then

Autk(E) ∼=





µ2 j(E) 6= 0, 1728 and char(k) 6= 2,

µ4 j(E) = 1728 and char(k) 6= 2, 3,

µ6 j(E) = 0 and char(k) 6= 2, 3,

µ2 j(E) 6= 0 and char(k) = 2,

Z/3Z o µ4 j(E) = 0 and char(k) = 3,

Q8 o µ3
∼= SL2(F3) j(E) = 0 and char(k) = 2.

where Q8 is the quaternion group of order 8 and µn is the subgroup of n-th root

of unity in k
×
. Further, in the case where Autk(E) ∼= µ2l, (l = 1, 2 or 3) and
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char(k) 6= 2, an automorphism ρ ∈ Autk(E) is defined over k if and only if ρ ∈ k

when ρ is considered as an element in µ2l.

In order to determine the Galois action on Autk(E) when j(E) = 0 and char(k) = 2

or 3, or j(E) 6= 0 and char(k) = 2, we need to explicitly write elements in Autk(E).

When j(E) = 0 and char(k) = 3, the Weierstrass form of E can be written as:

y2 = x3 + a4x + a6,

for some a4 and a6 ∈ k with a4 6= 0, then([12], p.73)

Autk(E) = {(0,±1), (±α,±1), (β,±i), (β ± α,±i)},

where α is a solution of the equation r2 + a4 = 0 and β is a solution of the

equation r3 + a4r + 2a6 = 0 (from chark = 3, (β ± α)3 + a4(β ± α) + 2a6 =

β3 ± α3 + a4(β ± α) + 2a6 = (β3 + a4β + 2a6)± α(α2 + a4) = 0).

When j(E) = 0 and char(k) = 2, the Weierstrass form of E can be written as:

y2 + a3y = x3 + a4x + a6,

for some a3, a4 and a6 ∈ k with a3 6= 0, then([12], p.75),

Autk(E) = {(β, γ)
∣∣γ3 = 1, β2 + a3β + δ6 + δ2a4 = 0 where δ4 + a3δ + a4 + γa4 = 0}.

When j(E) 6= 0 and char(k) = 2, the Weierstrass form of E can be written as:

y2 + xy = x3 + a2x
2 + a6,
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for some a2, a6 ∈ k with a6 6= 0. Then Autk(E) is the roots of the equation s2 +s = 0

([12], p.75).

Theorem 5.2.2. ([25], p.329) Suppose the elliptic curves E/k and E1/k satisfy

j(E) = j(E1), then E and E1 are isomorphic over a Galois extension K/k of degree

dividing 24 and if j(E) 6= 0, 1728, the extension K/k can be chosen to have degree 2.

Now suppose char(k) 6= 2, 3. When j(E) 6= 0, 1728, Autk(E) = µ2 and any k/k-form

E1 is isomorphic with E over K = Fq2 and can be described by H1(µ2, µ2). But since

µ2 = {1,−1} ⊂ k, which implies G acts on µ2 trivially, H1(µ2, µ2) = Hom(µ2, µ2) =

{1µ2 , c}, where 1µ2 is the identity map on µ2 and c maps every element in µ2 to 1.

Since G acts on µ2 trivially, (4.3) becomes

Fr∗rE1
= (cE1(f))∗ ◦ Fr∗rE

(5.2)

Clearly, cE1(f) = 1 or −1, whose actions on V ∗
` (E) correspond to

(
1 0
0 1

)
and

( −1 0
0 −1

)

respectively for any Q`-basis of V ∗
` (E).

From Weil’s conjecture, we can choose a Q`-basis of V ∗
` (E) such that the action

of Fr∗rE
on V ∗

` (E) is
(

α 0
0 α

)
, for some algebraic number α such that

1− Tr(Fr∗rE
)T + qT 2 = (1− αT )(1− αT ).

So from(5.2), the matrix for Fr∗rE1
is

(
α 0
0 α

)
or

( −α 0
0 −α

)
. Consequently, the zeta

function of E1/k is

Z(E1, T ) =
1± Tr(Fr∗rE

)T + qT 2

(1− T )(1− qT )
.
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Hence when E1 � E,

Z(E1, T ) =
1 + Tr(Fr∗rE

)T + qT 2

(1− T )(1− qT )
.

When j(E) = 1728, Autk(E) ∼= µ4. The Weierstrass equation of E/k can be written

as ([12], p.71):

y2 = x3 + a4x,

for some a4 ∈ k×. Then E/k is supersingular if and only if the coefficient of xp−1 in

(x3 + a4x)
p−1
2 is 0 ([25], p.140). On the other hand,

(x3 + a4x)
p−1
2 = x

p−1
2 (x2 + a4)

p−1
2 ,

so when p 6≡ 1(mod 4), the coefficient of xp−1 in (x3 + a4x)
p−1
2 is 0, and when

p ≡ 1(mod 4), the coefficient of xp−1 in (x3 + a4x)
p−1
2 is

( p−1
2

p−1
4

)
a4 which is not zero

because a4 6= 0 and p -
( p−1

2
p−1
4

)
. Hence E/k is supersingular if and only if p 6≡ 1(mod 4).

Suppose p ≡ 1(mod 4), then

(−1)
p−1
2 ≡ 1(mod p).

So from Euler’s criteria for quadratic residues, there exists x ∈ Fp ⊂ k, such that

x2 + 1 = 0, so µ4 ⊂ k. Therefore if µ4 6⊂ k, p 6≡ 1(mod 4) and consequently E/k is

supersingular.

For any c ∈ H1(Gal(k/k), µ4), suppose c(f) = i ∈ µ4, where i2 = −1 (the case

c(f) = ±1 is trivial). When µ4 ⊂ k, f−1
c(f) = i. Clearly we can choose the prime

number ` in Q` such that 4|`−1, then µ4 ⊂ Z`. So when i is considered as an element

in Autk(E), the characteristic polynomial of i is x2 + 1 over V ∗
` (E), and then there

exists a basis e1, e2 of V ∗
` (E), such that action of i on V ∗

` (E) is the matrix
(

i 0
0 −i

)
.
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Since f ∗ is Z`-linear and i ∈ Z`, when i is defined over k, for any v ∈ V ∗
` (E),

( if ∗)(v) = f ∗(iv) = i(f ∗(v)).

So

i ◦ f ∗ = f ∗ ◦ i.

The following lemma is easy to prove:

Lemma 5.2.3. Let V be a vector space over a field of finite dimension n. Let α

and β be two linear transformations on V such that α ◦ β = β ◦ α. Suppose that α

can be represented by a diagonal matrix in some basis, and β can be represented by

a diagonal matrix in some (maybe different) basis, then there exists a basis such that

in that basis, both α and β can also be represented by diagonal matrices.

From this lemma, we have that f ∗ can also be represented by a diagonal matrix
(

α 0
0 α

)
for some α ∈ C. Consequently

Fr∗rE1
=




αi 0

0 −αi


 .

Similarly we can deal with the case where c(f) = −i and hence we have the following

result:

Theorem 5.2.4. Let k be a finite field Fq with char(k) 6= 2, 3 and G = Gal(k/k).

Let E be an elliptic curve defined over k and j(E) = 1728 which implies Autk(E) ∼=
µ4 = {±i,±1} where i2 = −1. When µ4 6⊂ k, E is supersingular. When µ4 ⊂ k, let
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a form E1 of E correspond to c ∈ H1(G,µ4) with c(f) = β ∈ µ4, we have

Z(E1, T ) =
1− (αβ + αβ)T + qT 2

(1− T )(1− qT )
.

We can deal with the case j(E) = 0 using the same technique. Now Autk(E) ∼= µ6 =

{1,−1, ρ, ρ, %, %}, where ρ and ρ are the roots of x2− x + 1 = 0 in k and % and % are

the roots of x2 + x + 1 = 0 in k. The Weierstrass equation of E/k is

y2 = x3 + a6,

for some a6 ∈ k×. Then from ([25], p.140, Theorem 4.1), E/k is supersingular if and

only if the coefficient of xp−1 in (x3 + a6)
p−1
2 is 0. Hence when p 6≡ 1(mod 6), the

coefficient of xp−1 in (x3 +a6)
p−1
2 is 0, and when p ≡ 1(mod 6), the coefficient of xp−1

in (x3 + a6)
p−1
2 is

( p−1
2

p−1
3

)
a6 which is not zero because a6 6= 0 and p -

( p−1
2

p−1
3

)
. So E/k

is supersingular if and only if p 6≡ 1(mod 6). But p ≡ 1(mod 6) means there exists

a ∈ Fp ⊂ k, such that a2 ≡ −3(mod p). This means each of equations x2−x+1 = 0

and x2 + x − 1 = 0 has two distinct roots in Fp, i.e. µ6 ⊂ k. Hence if µ6 6⊂ k,

p 6≡ 1(mod 6) and consequently E/k is supersingular.

Choose prime number ` such that 6|` − 1 and so µ6 ⊂ Z`. Since x2 − x + 1 is

also the characteristic polynomial of ρ and ρ over V ∗
` (E), there exists a basis e1, e2

such that the action of ρ on V ∗
` (E) is

(
ρ 0
0 ρ

)
. When ρ (so is ρ) is defined over k,

ρ ◦ f ∗ = f ∗ ◦ ρ, hence f ∗ =
(

α 0
0 α

)
for some α ∈ C and

Fr∗rE1
=




ρα 0

0 ρα


 .
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Consequently we have the following theorem:

Theorem 5.2.5. Let k be a finite field Fq with char(k) 6= 2, 3 and G = Gal(k/k).

Let E be an elliptic curve defined over k and j(E) = 0 which implies Autk(E) ∼=
µ6 = {±1, ρ, ρ, %, %}. When µ6 6⊂ k, E is supersingular. When µ6 ⊂ k, let a form E1

of E correspond to c ∈ H1(G,µ6) with c(f) = β ∈ µ6, we have

Z(E1, T ) =
1− (αβ + αβ)T + qT 2

(1− T )(1− qT )
.

When char(k) 6= 2, 3, we can assume E/k has the Weierstrass equation: y2 = x3 +

Ax + B for some A,B ∈ k. Then the twisted form E1 has one of the following

expressions ([25], p.306-309):

E1 :





dy2 = x3 + Ax + B for each d(mod k×2
) when j(E) 6= 0, 1728 (AB 6= 0),

y2 = x3 + dAx for each d(mod k×4
) when j(E) = 1728 (B = 0),

y2 = x3 + dB for each d(mod k×6
) when j(E) = 0 (A = 0).

(5.3)

For other cases, we have the following result([12], p.72-76): when char(k) = 3 and

j(E) 6= 0, the Weierstrass form of E can be written as

y2 = x3 + a2x
2 + a6,

for some a2, a6 ∈ k×, then E1 has the form

y2 = x3 + da2x
2 + d3a6,



5.2 Elliptic Curves 61

for each d(mod (k×)2). When char(k) = 3 and j(E) = 0, the Weierstrass form of E

can be written as

E : y2 = x3 + a4x + a6,

for some a4, a6 ∈ k with a4 6= 0, then if E1 � E over k, E1 has the form

E1 : y2 = x3 + da4x + a′6,

for each d ∈ k× and each a′6 ∈ k such that not all the following conditions are

satisfied:

• d is a forth power u4 for some u ∈ k×.

• u6a′6 − a6 = r3 + a4r has a solution for r in k.

E ∼= E1 over k if and only if both conditions above are satisfied.

When char(k) = 2 and j(E) 6= 0, the Weierstrass form of E can be written as:

E : y2 + xy = x3 + a2x
2 + a6,

for some a2, a6 ∈ k with a6 6= 0, then if E1 � E1 over k, E1 has the form

E1 : y2 + xy = x3 + (a2 + d)x2 + a6,

for each d ∈ k such that d 6= r2 + r for any r ∈ k and E ∼= E1 over k if and only if

d = r2 + r for some r ∈ k.

When char(k) = 2 and j(E) = 0, the Weierstrass form of E can be written as:

E1 : y2 + a3y = x3 + a4x + a6,

for some a3, a4 and a6 ∈ k with a3 6= 0, then if E1 � E over k, E1 has the form

E1 : y2 + da3y = x3 + a′4x + a′6,
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for all d and a′4, a
′
6 ∈ k such that not all the following conditions are satisfied:

• d is a cube u3 for some u ∈ k

• s4 + a3s + a4 + u4a′4 = 0 has a solution for s in k,

• t2 + a3t + (s6 + s2a4 + a6 + u6a′6) = 0 has a solution for t in k.

E ∼= E1 over k if and only if all conitions above are satisfied.

Let char(k) > 3. When j(E) = 1728, the Weierstrass equation of E can be written

as

y2 = x3 + a4x, (5.4)

for some a4 ∈ k×. We already know E/k is supersingular if and only if the coefficient

of xp−1 in (x3 + a4x)
p−1
2 is 0. From the equality (x3 + a4x)

p−1
2 = x

p−1
2 (x2 − 4)

p−1
2 , we

know since a4 6= 0, whether the coefficient of xp−1 is zero or not does not depend on

the choice of a4 but only p. Since from (5.3), any form of (5.4) can be written as

y2 = x3 +da4x for some d(mod (k×)4) and d 6= 0. So when (5.4) is supersingular, any

form of it is also supersingular. Similarly, when j(E) = 0 and E is supersingular,

any form of E is also supersingular. Hence we have the following result:

Proposition 5.2.6. Let k = Fq with char(k) > 3. Let E/Fp be a supersingular

elliptic curve. Then when j(E) = 0 or 1728, any form E1 of E is also supersingular

and if q = p for some prime number p > 3, Z(E1, T ) = Z(E, T ).



5.3 Brauer-Severi Varieties 63

5.3 Brauer-Severi Varieties

Suppose X is a variety over a field k. X is called a Brauer-Severi variety if X/K is

isomorphic to PN
K for some finite, separable field extension K/k and some positive

integer N . K is called a splitting field for X and we say X splits over K. It is easy

to prove X is projective and regular ([13], p.23).

Let K/k be a Galois extension and B
K/k
n−1 be the set of all non-isomorphic Brauer-

Severi varieties defined over k of dimension n− 1 that split over K. Then there is a

natural bijection:

B
K/k
n−1

∼=−→ H1(Gal(K/k), PGLn(K)).

Now let k be a finite field Fq and X be a Brauer-Severi variety defined over k. The

following sequence is exact:

1 → K× → GLn(K) → PGLn(K) → 1.

Since K× is the center of GLn(K) (identify element α ∈ K× with αIn where In is

the n × n unitary matrix in GLn(K)), so from proposition 3.2.5, we have the exact

sequence:

H1(G, GLn(K)) → H1(G, PGLn(K)) → H2(G,K×),

where G = Gal(K/k). Since K/k is a Galois extension, we have ([23], p.162)

H2(G,K×) = 1.

It is also well-known that H1(G, GLn(K)) = 1 ([24], p.122). Therefore, we have the

exact sequence:

1 → H1(G, PGLn(K)) → 1.
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So

H1(G, PGLn(K)) = 1. (5.5)

This implies any Brauer-Severi variety X defined over finite field k = Fq with dimen-

sion n must be isomorphic to Pn over k. Hence

Z(X/k, T ) = Z(Pn(k)) =
n∏

i=0

1

1− qiT
.

For a general field L (not necessarily finite), we have the following theorem whose

proof can be found in [13], p.26:

Theorem 5.3.1. Let X be a Brauer-Severi variety of dimenstion n over a field L,

then X(L) 6= ∅ if and only if X ∼= Pn
L.

5.4 Tori

The multiplicative group Gm defined over a field L is SpecL[x, y]/(xy− 1), which is

an algebraic group of dimension 1. An n-dimensional torus T over L ([9], p.11) is an

algebraic group isomorphic over L to Gn
m = Gm ×Gm × . . .×Gm︸ ︷︷ ︸

n copies

.

Let L be a finite field Fq, then Autk(Gn
m) ∼= GLn(Z) ([9], p.14). Therefore all k-

forms of Gn
m is classified by H1(Gk, GLn(Z)), where Gk = Gal(k/k). Since Gk acts

trivially on GLn(Z), H1(Gk, GLn(Z)) is the set of conjugacy classes of homomor-

phisms of Gk to GLn(Z).
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One important case is when k = Fp for some prime number p. In this case,

Gk = lim←−
m

Z/mZ = Ẑ,

and hence

H1(Gk, GLn(Z)) = lim−→
m

H1(Z/mZ, GLn(Z)).

Since the image of any homomorphsim from Z/mZ to GLn(Z) is a finite cyclic sub-

group of GLn(Z), it is enough to consider finite order elements in GLn(Z). It follows

from Jordan-Zassenhaus theorem ([5], p.110), that the number of orders of finite

order elements in GLn(Z) is finite, say, n1, n2, . . . , ns and the number of conjugacy

classes of finite subgroups of GLn(Z) is finite, which implies the set Θn of conjugacy

classes of finite order elements in GLn(Z) is finite. I use the notation [A] to represent

a class in Θn with representative A of GLn(Z).

Since any group homomorphism γ from Z/mZ to GLn(Z) is determined by γ(1),

H1(Z/mZ, GLn(Z)) can be canonically identified with Am which is defined to be

Am = { [A] ∈ Θn

∣∣ o(A)|m},

where o(A) is the order of the cyclic subgroup of GLn(Z) generated by A. So

H1(Gk, GLn(Z)) = lim−→
ni|m

for some
i=1,2,...,s

Am.

It is easy to see that

lim−→
ni|m

for some
i=1,2,...,s

Am = Θn,

and so

H1(Gk, GLn(Z)) = Θn.
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When n = 1, GL1(Z) = {±1} whose elements are not conjugate with each other. So

we have

H1(Z/mZ, GL1(Z)) =





1, m is odd;

{±1}, m is even.

Hence one has the following proposition:

Proposition 5.4.1. Let K/Fp be a finite Galois extension with Gal(K/Fp) ∼= Z/mZ

for some odd positive integer m. If there is some affine group scheme G over Fp

isomorphic to Gm in K, then G is isomorphic to Gm in Fp.

If m is even, then H1(Z/mZ, GL1(Z)) = {±1}. Let p > 2. The element −1 cor-

responds to a quadratic extension K = Fp(
√

d) for some d ∈ F×p which is not a

square in Fp. We have a natural isomorphism f over K : Fp[s, t]/(st − 1)
∼=−→

Fp(
√

d)[x, y]/(x2 − dy2 − 1), s 7→ x +
√

dy, t 7→ x −
√

dy. Since p > 2, f has

the inverse f−1 over K : Fp(
√

d)[x, y]/(x2 − dy2 − 1)
∼=−→ Fp[s, t]/(st − 1), x 7→

1
2
(s + t), y 7→ 1

2
√

d
(s − t). Take the element 1 in Z/mZ, then 1 ·

√
d = −

√
d. So

f−1◦1f(s) = f−1(x−
√

dy) = 1
2
(s+t)− 1

2
(s−t) = t and f−1◦1f(t) = f−1(x+

√
dy) = s.

Hence f corresponds to the element −1 in H1(Z/mZ, GL1(Z)). Hence we have the

following result:

Proposition 5.4.2. Suppose Gm = SpecFp[x, y]/(xy − 1) for some prime number

p 6= 2, then any non-trivial form of Gm over Fp is SpecFp[x, y]/(x2 − dy2 − 1) for

some d ∈ F×p with d 6≡ 1(mod (F×p )2).
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5.5 Grassmann Varieties

Fix a field k. Let V be a vector space of finite dimension n over k. The Grassmannian

G(d, n) is defined as

G(d, n) = {W
∣∣W is a subspace of V, dim V = d}.

Given a basis e1, e2, . . . , en for V ,
∧d V has the following canonical basis:

{ei1 ∧ ei2 ∧ . . . ∧ eid

∣∣1 ≤ i1 < i2 < . . . < id ≤ n}. (5.6)

For any d-dimensional subspace W of V , let a basis of W be w1, w2, . . . , wd, then

w1 ∧ w2 ∧ . . . ∧ wd can be uniquely expressed as a linear combination of the basis

(5.6), i.e.

w1 ∧ w2 ∧ . . . ∧ wd =
∑

1≤i1<i2<...<id≤n

ai1i2...idei1 ∧ ei2 ∧ . . . ∧ eid .

So we can map W to the coordinates (ai1i2...id)1≤i1<i2<...<id≤n, this map is called

Plücker map. One can prove such map is well-defined up to a constant ([15]) and

consequently G(d, n) can be embedded in the projective space P(
∧d V ) using Plücker

map. After such an embedding, G(d, n) can be regarded as a projective algebraic

variety and dim (G(d, n)) = d(n− d).

For the number of points |G(d, n)(Fq)| of G(d, n) over the finite field k = Fq, we

have the following result ([15], p.17):

|G(d, n)(Fq)| = |GLn(Fq)|
qd(n−d)|GLd(Fq)||GLn−d(Fq)| .

Since for any positive integer u,

|GLu(Fq)| =
u∏

i=1

(qu − qi−1),



5.5 Grassmann Varieties 68

we have

|G(d, n)(Fq)| =

n∏
i=1

(qn − qi−1)

qd(n−d)
d∏

i=1

(qd − qi−1)
n−d∏
i=1

(qn−d − qi−1)

.

Now it is easy to calculate zeta functions of Grassmannian varieties.

Example 5.5.1. For G(3, 5) defined over Fq, we have

|G(3, 5)(Fq)| = (q5 − 1)(q5 − q)(q5 − q2)(q5 − q3)(q5 − q4)

q6(q3 − 1)(q3 − q)(q3 − q2)(q2 − 1)(q2 − q)

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6,

hence

|G(3, 5)(Fqr)| = 1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r

for any positive integer r. So

Z(G(3, 5), T ) = exp(
∞∑
i=1

(1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r)
T r

r
)

=
1

(1− T )(1− qT )(1− q2T )2(1− q3T )2(1− q4T )2(1− q5T )(1− q6T )
.

For the automorphism group of G(d, n) over a algebraically closed field L, we have the

following result ([10], p.122, [29])1 : When n 6= 2d or 2d = n = 2, AutL(G(d, n)) =

PGLn(L). When n = 2d and n 6= 2, [AutL(G(d, n)) : PGLn(L)] = 2 and so PGLn(L)

is a normal subgroup of AutL(G(d, n)) with index 2. In our case, from (5.5) we

conclude that for n 6= 2d or 2d = n = 2, there are no non-trivial forms of G(d, n).

1 In the proof ([10], p.122), the author ignors the special case n = 2d = 2, in which
G(d− 1, n) = G(0, 2) = {0} .
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When n = 2d and n 6= 2, we have the following exact sequence:

1 → PGLn(k) → Autk(G(d, n)) → Autk(G(d, n))/PGLn(k) ∼= Z/2Z→ 0.

Let Gk = Gal(k/k), then the sequence,

1 = H1(Gk, PGLn(k)) → H1(Gk, Autk(G(d, n))) → H1(Gk,Z/2Z),

is exact. Since H1(Gk,Z/2Z) ∼= Z/2Z, G(d, n) has at most one non-trivial form.

5.6 Fermat Hypersurfaces

A Fermat hypersurface Fr
n over a field k is a smooth projective variety defined by

Xr
1 + Xr

2 + . . . + Xr
n = 0,

for some positive integers n, r ≥ 2. Clearly smoothness requires char(k) - r. It is

obvious that

µr o Sn ≤ Autk(F
r
n),

where µr o Sn is the wreath product of the group µr of r-th roots of unity in k and

symmetry group Sn ([3]). So all forms of Fr
n over k is classified by H1(Gk, µr o Sn),

where Gk = Gal(k/k).

Brünjes proves the following two results (for the definition of étale algebra, see the

Appendix):
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Proposition 5.6.1 ([3], p.116). H1(Gk, µr o Sn) can be identified by the following

set:

{(L, x)
∣∣ L is an étale algebra of degree n over k, x ∈ L×}/ ∼,

where ∼ is an equivalence relation defined as follows: (L, x) ∼ (L′, x′) if and only if

there is a k-isomorphism φ : L
∼=−→ L, an element y ∈ L× and an element ϕ ∈ Autk(L)

such that

x′ = φ(ϕ(xyr)).

Proposition 5.6.2 ([3], p.123). Let c ∈ H1(Gk, µr o Sn) which by proposition 5.6.1

corresponds to a pair (L, x) for some étale algebra of degree n over k and some

element x ∈ L×. Let L =
m∏

i=1

Li for some finite field extension Li of k in k with

degree ni, i = 1, 2, . . . , m. Also let x = (x1, x2, . . . , xm) with xi ∈ L×i , i = 1, 2, . . . , m.

For each Li (i = 1, 2, . . . , m), choose a k-basis e1,i, e2,i, . . . , eni,i of Li, then the Fr
n(c),

the Fermat equation Fr
n twisted by c is given by

Fr
n(b) =

m∑
i=1

TrLi/k(
1

xi

(

ni∑
j=1

ej,iXj,i)
r),

where TrLi/k : Li[X1,i, X2,i, . . . , Xni,i] → Li[X1,i, X2,i, . . . , Xni,i] is the k-linear map

sending constants in Li to their traces in k.

As an example, we give the forms of F3
2 over k = Fq. Let ν be any generator of F×q2 .

Let ι = ν
q+1
2 and δ = ι2. Define

Lδ =





Fq × Fq δ ∈ (k×)2,

Fq(
√

δ) δ /∈ (k×)2.

Then there are two possibilities (char(k) 6= 3 because of smoothness):
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1. k has has the third root of unity, i.e. q ≡ 1(mod 3), then Fq/Fq-forms are

exactly the following twisted equations:

• F3
2((Fq × Fq, (1, 1))) = X3

1 + X3
2 ,

• F3
2((Fq × Fq, (1, δ))) = X3

1 + δX3
2 ,

• F3
2((Fq × Fq, (1, δ

2))) = X3
1 + δ2X3

2 ,

• F3
2((Fq × Fq, (δ, δ))) = δX3

1 + δX3
2 ,

• F3
2((Fq × Fq, (δ, δ

2))) = δX3
1 + δ2X3

2 ,

• F3
2((Fq × Fq, (δ

2, δ2))) = δ2X3
1 + δ2X3

2 ,

• F3
2((Lδ, 1)) = 2X3

1 + 6δX1X
2
2 ,

• F3
2((Lδ, ν)) = TrFq2/Fq(ν)X3

1 + 3TrFq2/Fq(νι)X2
1X2 + 3δTrFq2/Fq(ν)X1X

2
2 +

δTrFq2/Fq(νι)X3
2 ,

• F3
2((Lδ, ν

2)) = TrFq2/Fq(ν
2)X3

1+3TrFq2/Fq(ν
2ι)X2

1X2+3δTrFq2/Fq(ν
2)X1X

2
2+

δTrFq2/Fq(ν
2ι)X3

2 .

2. k does not contain the third root of unity, i.e. q ≡ 2(mod 3), then Fq/Fq-forms

are exactly the following twisted equations:

• F3
2((Fq × Fq, (1, 1))) = X3

1 + X3
2 ,

• F3
2((Lδ, 1)) = 2X3

1 + 6δX1X
2
2 ,

• F3
2((Lδ, ν)) = TrFq2/Fq(ν)X3

1 + 3TrFq2/Fq(νι)X2
1X2 + 3δTrFq2/Fq(ν)X1X

2
2 +

δTrFq2/Fq(νι)X3
2 .

[3] also gives some examples on how to calculate the zeta functions of twisted Fermat

equations in the case of Fq contains the r-th root of unity. The calculation is based

on the fact that for hypersurfaces, only middle cohomology is non-trivial.
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Lemma 5.6.3 (Hard Lefschetz theorem (Deligne) 2 )). Let X be a smooth projective

hypersurface X of dimension n−2 over a finite field k, then for any d ∈ {0, 1, . . . n−
3, n− 1, n, . . . , 2(n− 2)},

Hd
ét(X,Q`) =





0 d ≡ 1(mod 2),

Q`(−d
2
) d ≡ 0(mod 2).

So we have

det(1− Fr∗rT
∣∣Hd

ét(X,Q`)) =





1 d ≡ 1(mod 2),

1− q
d
2 T d ≡ 0(mod 2),

for any d ∈ {0, 1, . . . n− 3, n− 1, n, . . . , 2(n− 2)}. Hence

Z(X,T ) = Q(T )((−1)n+1)
∏

d∈{0,1,...,n−2}
d6=n−2

2

1

1− qdT
,

where Q(T ) = det(1− Fr∗rT
∣∣Hn−2

ét (X,Q`)).

2 Deligne proved it in general case.



CHAPTER 6
Schemes

6.1 Zeta Functions

According to D. Eisenbud and J. Harris ([7], p.81), an arithmetic scheme X is a

scheme isomorphic to SpecA for some commutative ring A that is finitely generated

(as a ring) over Z. When X is an arithmetic scheme, the zeta function attached to X

is defined as (2.4) and converges absolutely when the real part of s in (2.4) satisfies:

Re(s) > dim X.

We have the following result ([22], p.84):

Theorem 6.1.1. ζ(X, s) can be analytically continued in Re(s) > dim X − 1
2

as a

meromorphic function. Suppose further X to be irreducible with a generic point x

and let κ(x) be the residue field of x. Then

• If char(κ(x)) = 0, the only pole of ζ(X, s) in Re(s) > dim X− 1
2

is at s = dim X

and it is a simple pole.

• Suppose char(κ(x)) = p for some prime number p. Let q be the highest power

of p such that Fq ⊂ κ(x), then all poles of ζ(X, s) in Re(s) > dim X − 1
2

are

the points

dim X +
2nπi

log q
, n ∈ Z,

73
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and all such poles are simple.

The following result is important([22], p.85):

Theorem 6.1.2. Suppose X and Y are schemes of finite type over Z and f : X → Y

is a morphism. Denote the set of closed points in Y by Ỹ and the fibre X ×Y κ(y)

of f over y ∈ Y by Xy. Then

ζ(X, s) =
∏

y∈eY
ζ(Xy, s).

In particular, if X is a smooth scheme of finite type over the ring of integers O of a

number field, O is a Dedekind domain and so every non-zero prime ideal p in O is a

closed point in Spec O, hence

ζ(X, s) =
∏

p∈Spec O, p6=0

ζ(Xp, s).

[6] shows that if X is proper and flat over SpecZ and its generic fibre X ×Z Q
is smooth, then X has good reduction at all but a finite number of prime numbers,

and the factor for the primes of the good reduction in the zeta function attached to

X is
2d∏
i=0

∏

good
reduction

at p

det(1− p−sFr∗p|H i
ét(X ×Z Qp,Q`))

(−1)i+1

,

where d is the dimension of X.

Example 6.1.3. Let k be a number field, and E/k be an elliptic curve. For any

finite place v at which E has good reduction, the reduction of E at v, Ev can be
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considered defined over kv, the residue field of k at v, which is finite. Hence the zeta

function of Ev/kv is

Z(Ev, T ) = exp(
∞∑

n=1

#Ev(kv,n)
T n

n
),

where kv,n is the field extension of kv with degree n in a fixed algebraic closure of kv.

This zeta function is a rational function:

Z(Ev, T ) =
1− avT + qvT

2

(1− T )(1− qvT )
,

where qv is the order of kv, and av = qv + 1−#Ev(kv).

Let Lv(T ) = 1 − avT + qvT
2. Extend Lv(T ) to the case of bad reduction by ([25],

p.360)

Lv(T ) =





1− T E has split multiplicative reductive reduction at v

1 + T E has non-split multiplicative reduction at v

1 E has additive reduction at v.

Then for any kind of finite place v, define the Hasse-Weil zeta function at v of Ev

is

Z(Ev, T ) =
Lv(T )

(1− T )(1− qvT )
.

Define the L-series of E/K to be

LE/k(s) =
∏

finite place v

Lv(q
−s
v )−1.

Define the global zeta function ζ(E/k, s) to be

ζ(E/k, s) =
∏

finite place v

Z(Ev, q
−s
v )
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Then it is easy to see ζ(E/k, s) can be expressed by Dedekind’s zeta function of k

and L-series of E/k:

ζ(E/k, s) =
LE/k(s)

ζk(s)ζk(1− s)
,

where ζk(s) is the Dedekind’s zeta function of k given by

ζk(s) =
∏

finite place v

(1− q−s
v )−1.

6.2 Forms

Based on the definition of an étale form of an X-scheme Y , where X is a fixed

scheme, the main results in this section are the Theorem 6.2.4 and Theorem 6.2.5,

which assert that when both X and Y are affine, there exists an injective map from

the set of equivalence classes of affine étale forms of Y into the Čech cohomology

H1(Xét, Aut(Y ×X −)), and when X = Spec k for some perfect field k, and Y is any

(not necessarily affine) scheme, H1(Gk, Aut(Y ×k k)) ∼= Ȟ1(Xét, Aut(Y ×k −)).

6.2.1 Étale Forms

This section uses concepts like flatness, faithful flatness, and étale morphism. See

the Appendix for their definitions and general references.

In the language of schemes, a variety V defined over k implies V is a Spec k-scheme.
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A variety V ′ defined over k is a K/k-form of V means V ′ ×k K ∼= V ×k K as K-

schemes for some finite separable field extension K/k, i.e. V and V ′ are isomorphic

over some base extension. Such point of view leads to the concept of forms of a

scheme.

As an example, consider the two affine SpecZ-schemes SpecZ[x, y]/(y2 − x2) and

SpecZ[x, y]/(y2 + x2). As Z-algebras, Z[x, y]/(y2 + x2) � Z[x, y]/(y2 − x2) because

y2 − x2 is reducible in Z[x, y] while y2 + x2 is irreducible in Z[x, y]. But clearly

(Z[i])[x, y]/(x2 − y2) ∼= (Z[i])[x, y]/(x2 + y2) over Z[i]. On the other hand, as Z[i]-

algebras,

(Z[i])[x, y]/(x2 − y2) ∼= Z[x, y]/(x2 − y2)⊗ Z[i],

and

(Z[i])[x, y]/(x2 + y2) ∼= Z[x, y]/(x2 + y2)⊗ Z[i].

Hence as SpecZ[i]-schemes,

SpecZ[x, y]/(y2 − x2)× SpecZ[i] ∼= SpecZ[x, y]/(y2 + x2)× SpecZ[i].

Since Z[i] is a free Z-module, Z[i] is a flat Z-module. Hence for any prime ideal p

in Z[i], Z[i]p is a flat Zp∩Z-module. Here p ∩ Z = j−1(p), where j is the canonical

inclusion map j : Z ↪→ Z[i]. So the induced map j∗ : SpecZ[i] → SpecZ is a flat

morphism (Theorem 3 in the Appendix). Clearly j∗ is surjective.

It is a well-known fact in algebraic number theory that for any number field K,

there exists at least one prime number p, such that (p) in Z is ramified in the ring

of integers OK of K. So j∗ is not an unramified morphism because Z[i] is the ring

of integers of Q(i). Finally it is natural that a form of a scheme should be defined

locally as usually happened in schemes. For a variety V defined over a field L, a
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form of V looks like to be defined globally, but this is because SpecL contains only

one point as a topological space. The discussion above provides a motivation to the

following definition:

Definition 6.2.1. ([7], p.204) Let S be s scheme and let X be a scheme over S.

A scheme Y over S is a form of X if for any point s ∈ S, we can find an open

neighborhood Us of s in S, a scheme Ts and a flat surjective morphism fs : Ts → Us

such that as Ts-schemes,

X ×S Ts
∼= Y ×S Ts,

where the morphism from Ts to S is the composition of fs and the canonical open

embedding of Us into S.

From the definition, to prove an X-scheme Y ′ is a form of an X-scheme Y , we first

have to find an open covering {Ui

∣∣ i ∈ I, Ui is an open set of X} of X, where I is an

index set and for each i ∈ I, a scheme Ti and a flat surjective morphism fi : Ti → Ui.

Compared to the definition of a manifold M of dimension n, in which M locally

looks like Rn, it is natural to require Ti be “similar” to Ui in some sense. One way

to see the similarity is to look at a morphism f : X → Y , where X and Y are two

smooth varieties defined over a algebraically closed field F . For the similarity of the

two varieties, we at least should require f induce an isomorphism on tangent spaces

for any closed point of X. This is equivalent to f being an étale morphism ([19],

p.32). Another point is that in the definition 6.2.1, fs maps Ts (which itself is open)

onto an open subset Us of S, and an étale morphism automatically satisfies this

condition because any étale morphism is an open map ([19], p.14). Such requirement

of similarity leads us to a special case of a Grothendieck topology, the étale site Xét

over X. That is, we add an extra condition of unramification on each fi, i.e. that
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each fi besides being flat must also be unramified and locally of finite type, then to

prove Y ′ is a form of Y over X, it is enough to find a covering

C = {Ti → X
∣∣ i ∈ I} (6.1)

in Xét, such that Y ×X Ti
∼= Y ′ ×X Ti as Ti-schemes for each i ∈ I.

Based on the discussion above, I give a restricted definition of a form of X-scheme

Y , which I call an étale form.

Definition 6.2.2. Let X be a scheme and Xét be the étale site in the sense of

Grothendieck. Let Y be an X-scheme. Then an X-scheme Y ′ is an étale form of Y

if there exists a covering {Ti
δi−→ X

∣∣ i ∈ I} in Xét, where I is some index set, such

that for each i ∈ I,

Y ×X Ti
∼= Y ′ ×X Ti

as Ti-schemes. If Y ′ is affine, Y ′ is also called an affine étale form of Y (over X).

6.2.2 Forms and Čech cohomology

From now on, forms and affine forms mean étale forms and affine étale forms respec-

tively. Our aim is to relate forms with Čech cohomology. The following standard

result is needed in the sequel and its proof can be found in e.g. [27], p.104.
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Theorem 6.2.3. If ϕ : A → B is a faithfully flat ring homomorphism and M is an

A-module, then the following sequence is exact:

0 → M
α−→ M ⊗A B

β−→ M ⊗A B ⊗A B,

where α(m) = m⊗ 1 for any m ∈ M and β(m⊗ b) = m⊗ b⊗ 1−m⊗ 1⊗ b for any

m ∈ M and b ∈ B.

Similar to the definition of non-abelian Galois cohomology, Milne defines the first

Čech cohomology for sheaves of (not necessarily commutative) groups on Xét([19],

p.122). I will extend Milne’s idea to define directly the Čech cohomology Ȟ1(Xét, F )

for any contravariant functor F from Xét to the category of groups G. This is done

as follows:

First, for any open set U
ϑ−→ X in Xét, denote F (U

ϑ−→ X) by just F (U) for conve-

nience. Let

C = {Uj
ϑj−→ X

∣∣ j ∈ J}

be an étale covering of X, where J is some index set. Define Uij = Ui ×X Uj for any

i, j ∈ J . Under this fixed C , a cocycle (cij) is defined as cij ∈ F (Uij) such that

cijcjk = cik

on Uijk for any i, j, k ∈ J via the built-in maps F (Uij) → F (Uijk), F (Ujk) →
F (Uijk) and F (Uik) → F (Uijk).

Let Z(C /X,F ) be the set of all cocycles defined above. Define a relation “∼”

in Z(C /X,F ) as follows: for any (cij) and (dij) in Z(C /X,F ), (cij) ∼ (dij) if and

only if there exists ωi ∈ F (Ui), such that dij = ωicijω
−1
j on Uij. Clearly (cij) ∼ (cij)
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and (cij) ∼ (dij) implies (dij) ∼ (cij). Suppose (cij) ∼ (dij) and (dij) ∼ (eij) in

Z(C /X,F ), then there exist ωi, ψi ∈ F (Ui) such that

dij = ωicijω
−1
j

and

eij = ψi ◦ dijψ
−1
j .

So

eij = ψiωicijω
−1
j ψ−1

j = (ψiωi)cij(ψjωj)
−1,

i.e. (cij) ∼ (eij). Hence “∼” is an equivalence relation. Consequently, we can define

the first Čech cohomology Ȟ1(C /Xét, F ) with respect to a given étale covering C

to be

Ȟ1(C /Xét, F ) = Z(C /Xét, F )/ ∼ .

Let C ′ = {U ′
j

ϑ′j−→ X
∣∣ j ∈ J}, where J is an index set, be another covering in Xét.

Define C < C ′ if there is a map σ : J → I and a map νj : U ′
j → Uσ(j) for each j ∈ J ,

such that ϑ′j = ϑσ(j) ◦ νj, i.e. the following diagram is commutative:

U ′
j

ϑ′j //

νj

²²

X

Uσ(j)

ϑσ(j)

==||||||||

The partial order < defined above is directed. This is because according to the prop-

erties of Xét, C ×X C ′ def
= {S ×X T

∣∣ S ∈ C , T ∈ C ′} is also a covering and clearly

C < C ×X C ′ and C ′ < C ×X C ′.

With respect to this partial order, the first Čech cohomology Ȟ1(Xét, F ) is defined
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to be

Ȟ1(Xét, F ) = lim−→
C ,<

Ȟ1(C /Xét, F ),

where C runs through all coverings in Xét.

Let Y be an X-scheme. Define a contravariant group functor Aut(Y ×X −) from Xét

to the category of groups as follows: for any open set U
α−→ X in Xét, Aut(Y ×X −)

maps U to Aut(Y ×X U), the automorphism group of Y ×X U as U -schemes, and for

any morphism U
h−→ V in Xét, Aut(Y ×X−) maps h to Aut(Y ×X h) : Aut(Y ×X V ) →

Aut(Y ×X U) induced by the composition U
h−→ V → X: for any ν ∈ Aut(Y ×X V ),

we have an automorphism ν# induced by ν:

ν# : Y ×X V ×V U → Y ×X V ×V U, ν# = ν × 1U ,

where 1U is the identity map on U , and note that V ×V U ∼= U . In particular,

suppose h is an isomorphism h : U
∼=−→ V over X, then for any ν ∈ Aut(Y ×X V ),

ν# : Y ×X U
1×h−−→∼= Y ×X V

ν−→∼= Y ×X V
(1×h)−1

−−−−−→∼=
Y ×X U,

and hence

ν# = (1× h)−1 ◦ ν ◦ (1× h),

i.e.

ν# = hν. (6.2)

(6.2) will be used to prove Theorem 6.2.5.

Define an equivalence relation ∼ as follows: let X be a scheme and Y be an X-

scheme. Let X-schemes Y1 and Y2 be forms of Y , then define Y1 ∼ Y2 if there is an

isomorphism f : Y1

∼=−→ Y2 as X-schemes. It is obvious ∼ is an equivalence relation.
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Now we will prove the two main results of this section:

Theorem 6.2.4. Let X be an affine scheme and let Y be an affine scheme over X.

Let Y be the equivalence classes of affine X-forms of Y with respect to the equivalence

relation ∼ defined above, then there is an injective map

η : Y ↪→ Ȟ1(Xét, Aut(Y ×X −)), (6.3)

where Ȟ1(Xét, Aut(Y ×X−)) is induced by taking the direct limit of (6.4) with respect

to all étale coverings C .

Proof. Suppose we are given an affine X-form Y ′ of Y relative to a cover

C = {Ti
ϑi−→ X

∣∣ i ∈ I},

where I is an index set. Then for each i, we have an isomorphism ψi over Ti:

ψi : Y ×X Ti

∼=−→ Y ′ ×X Ti.

Hence for any i, j ∈ I, ψ−1
i ◦ ψj is an isomorphism of Y ×X Tij over Tij, where

Tij = Ti ×X Tj. Denote ψ−1
i ◦ ψj by cij.

For any i, j, k ∈ I, let Tijk = Ti ×X Tj ×X Tk. Then via canonical projection maps

pij : Tijk → Tij, pik : Tijk → Tik and pjk : Tijk → Tjk, clearly cjk ◦ cij = cik in Tijk.

Hence (cij) is a cocycle in Ȟ1(C /Xét, Aut(Y ×X −)).

Suppose there is another isomorphism ψ′i : Y ×X Ti

∼=−→ Y ′×X Ti for each i ∈ I, then

let λi = ψ′i
−1 ◦ ψi, which is an automorphism of Y ×X Ti, i.e. λi ∈ Aut(Y ×X Ti),
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and ψi = ψ′i ◦ λi. Let c′ij = ψ′i
−1 ◦ ψ′j. We have

cij = ψ−1
i ◦ ψj

= (ψ′i ◦ λi)
−1 ◦ (ψ′j ◦ λj)

= λ−1
i ◦ ψ′i

−1 ◦ ψ′j ◦ λj

= λ−1
i ◦ c′ij ◦ λj.

Hence [(cij)] = [(c′ij)] which implies (cij) does not depend on the choice of ψi.

A similar argument shows that [cij] is also independent of the choice of Y ′ up to

isomorphism. Let Υ/C be the set of equivalence classes of affine forms of Y over Xét

with respect to the fixed cover C in Xét, then we have a well-defined map:

ηC : Υ/C → Ȟ1(C /Xét, Aut(Y ×X −)), Y ′ 7→ [(cij)]. (6.4)

Let Y1 and Y2 be two affine forms of Y with respect to the same given cover C such

that Y1 and Y2 give the same class of cocycles. This means we have isomorphisms as

Ti-schemes ϕi : Y ×X Ti

∼=−→ Y1 ×X Ti and φi : Y ×X Ti

∼=−→ Y2 ×X Ti for each i ∈ I

such that [(ϕ−1
i ◦ϕj)] = [(φ−1

i ◦φj)]. Then there exists hi ∈ Aut(Y ×X Ti) such that

ϕ−1
i ◦ ϕj = h−1

i ◦ φ−1
i ◦ φj ◦ hj,

hence

φi ◦ hi ◦ ϕ−1
i = φj ◦ hj ◦ ϕ−1

j . (6.5)

Each φi ◦ hi ◦ ϕ−1
i , denoted by βi, gives an isomorphism as Ti-schemes:

βi : Y1 ×X Ti

∼=−→ Y2 ×X Ti. (6.6)

(6.5) shows

βi

∣∣
Y1×XTij

= βj

∣∣
Y1×XTij

, (6.7)
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which is true even if i = j. Hence we have a set of isomorphisms

{Y1 ×X Ti
βi−→ Y2 ×X Ti

∣∣i ∈ I},

such that (6.7) holds for any i, j ∈ I.

Since each scheme can be covered by open affine subscheme in the usual sense, any

open immersion is étale and the composition of any two étale morphisms is étale, as

a result, we can assume each Ti is affine, i.e. Ti = SpecBi for some ring Bi.

Since Y1, Y2 and X are all affine, we can let Y1 = SpecA1, Y2 = SpecA2 and

X = SpecB for some rings A1, A2 and B respectively. So Y1×X Ti = Spec (A1⊗B Bi)

and Y2×X Ti = Spec (A2⊗B Bi) for each i ∈ I. Also, since X is an affine scheme, and

any affine scheme is quasi-compact and any étale homomorphism is an open map,

we can assume I is a finite set.

Since the morphism βi : Y1 ×X Ti → Y2 ×X Ti is an isomorphism as Ti-schemes,

we have the following commutative diagram:

Spec (A1 ⊗B Bi)
βi

∼=
//

((QQQQQQQQQQQQ
Spec (A2 ⊗B Bi)

vvmmmmmmmmmmmm

Spec (Bi)

which is equivalent to the following commutative diagram:

A1 ⊗B Bi A2 ⊗B Bi

β#
ioo

Bi

bi 7→1⊗bi

ddJJJJJJJJJJ bi 7→1⊗bi

::tttttttttt

(6.8)

where β#
i is the corresponding ring homomorphism which induces the scheme mor-

phism βi : Y1 ×X Ti → Y2 ×X Ti.
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Let the ring homomorphism δ#
i : B → Bi correspond to the morphism δi : SpecBi →

SpecB. Because of (6.8), we have for any b ∈ B,

β#
i (1⊗ δ#

i (bi)) = 1⊗ δ#
i (bi).

This implies β#
i is a B-algebra isomorphism if A1 ⊗B Bi and A2 ⊗B Bi are regarded

as B-algebras and consequently, we have a B-algebra isomorphism

(β#
i )i∈I : A2 ⊗B (

∏
i∈I

Bi)
∼=−→ A1 ⊗B (

∏
i∈I

Bi),

where B-algebra structure of
∏

i∈I Bi is defined by

(δ#
i )i∈I : B →

∏
i∈I

Bi.

Both A1 ⊗B Bi and A2 ⊗B Bi are also Bi-algebras and (6.8) gives for any bi ∈ Bi,

β#
i (1⊗ bi) = 1⊗ bi.

Hence β#
i is also a Bi-algebra homomorphism.

Since the set {SpecBi
δi−→ SpecB

∣∣ i ∈ I} is an étale covering of X = SpecB, as

sets, we have

∪
i∈I

SpecBi = SpecB.

This implies the map Spec (
∏

i∈I Bi) → SpecB = X induced by (δi)i∈I is surjective,

hence the corresponding ring homomorphism (δ#
i )i∈I : B → ∏

i∈I Bi is faithfully flat.

Consequently, by base extension, we have the faithfully flat ring homomorphism:

1⊗ (δ#
i )i∈I : A2 ⊗B B → A2 ⊗B (

∏
i∈I

Bi).
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This implies 1⊗ (δ#
i )i∈I is injective. Hence it can be regarded that

A2 ⊗B B ⊂ A2 ⊗B (
∏
i∈I

Bi).

1◦. Assume #I = 1. Then (6.7) gives

β1

∣∣
Spec (A1⊗BB1⊗BB1)

= β1

∣∣
Spec (A1⊗BB1⊗BB1)

, (6.9)

where the β1 at the left hand side arises from the base change A1 ⊗B B1 to A1 ⊗B

B1 ⊗B B1 via a⊗ b 7→ a⊗ b⊗ 1, while the β1 at the right hand side arises from the

base change A1 ⊗B B1 to A1 ⊗B B1 ⊗B B1 via a⊗ b 7→ a⊗ 1⊗ b.

(6.9) implies for any a2 ∈ A2, let β#
1 (a2⊗1) =

∑n
l=1 a1l⊗b1l for some a11, a12, . . . , a1n

in A1 and some b11, b12, . . . , b1l in B1, then

n∑

l=1

a1l ⊗ b1l ⊗ 1 =
n∑

l=1

a1l ⊗ 1⊗ b1l,

i.e.
n∑

l=1

(a1l ⊗ b1l ⊗ 1− a1l ⊗ 1⊗ b1l) = 0.

We have already shown the ring homomorphism δ#
1 : B → B1 is faithfully flat, hence

from Theorem 6.2.3,
n∑

l=1

a1l ⊗ b1l ∈ A1 ⊗B 1,

where A1 ⊗B 1 is defined to be the set {a⊗ 1
∣∣ a ∈ A1}. So

β#
1 (A2 ⊗B 1) ⊂ A1 ⊗B 1.



6.2 Forms 88

2◦. Let #I = 2. Then we have isomophism:

β#
1 × β#

2 :A2 ⊗B (B1 ×B2) ∼= (A2 ⊗B B1)× (A2 ⊗B B2)
∼=−→

(A1 ⊗B B1)× (A1 ⊗B B2) ∼= A1 ⊗B (B1 ×B2).

Similarly, (6.7) gives

β1 × β2

∣∣
Spec (A1⊗B(B1×B2)⊗B(B1×B2))

= β1 × β2

∣∣
Spec (A1⊗B(B1×B1)⊗B(B1×B1))

, (6.10)

where β1 × β2 on the two sides has the similar interpretation as that given to β1 in

(6.9). (6.10) implies for any a2 ∈ A2, let β#
1 × β#

2 (a2 ⊗ (1, 1)) =
∑n

l=1 a1l ⊗ (b1l, b2l)

for some a11, a12, . . . , a1n in A1 and some (b11, b21), (b12, b22), . . . , (b1n, b2n) in B1×B2,

then (6.7) gives

n∑

l=1

a1l ⊗ (b1l, b2l)⊗ (1, 1) =
n∑

l=1

a1l ⊗ (1, 1)⊗ (b1l, b2l),

i.e.
n∑

l=1

(a1l ⊗ (b1l, b2l)⊗ (1, 1)− a1l ⊗ (1, 1)⊗ (b1l, b2l)) = 0.

Since (δ#
1 , δ#

2 ) : B → B1 ×B2 is faithfully flat, from Theorem 6.2.3,

n∑

l=1

a1l ⊗ (b1l, b2l) ∈ A1 ⊗B (1, 1) = {a⊗ (1, 1)
∣∣ a ∈ A1},

i.e.

(β#
1 × β#

2 )(A2 ⊗B (1, 1)) ⊂ A1 ⊗B (1, 1).

3◦. For any finite set I with #I = m, since the ring homomorphism

(δ#)i∈I : B →
∏
i∈I

Bi
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is faithfully flat and

(
βi

)
i∈I

∣∣
Spec (A1⊗B(

Q
i∈I Bi)⊗B(

Q
i∈I Bi))

=
(
βi

)
i∈I

∣∣
Spec (A1⊗B(

Q
i∈I Bi)⊗B(

Q
i∈I Bi))

,

with the similar interpretation as that given to (6.9) and (6.10). Similar to 1◦ and

2◦, we can prove the isomorphism

(β#
i )i∈I : A2 ⊗B

∏
i∈I

Bi

∼=−→ A1 ⊗B

∏
i∈I

Bi

satisfies
(
β#

i

)
i∈I

(
A2 ⊗B (1, 1, . . . 1︸ ︷︷ ︸

#I=m

)
) ⊂ A1 ⊗B (1, 1, . . . 1︸ ︷︷ ︸

#I=m

).

Since (β#
i )i∈I is also a B-algebra isomorphism, we have

(β#
i )i∈I(A2 ⊗B B) ⊂ A1 ⊗B B.

Hence we have an injective ring homomorphism

(β#
i )i∈I : A2 ↪→ A1.

By symmetry, we also have an injective ring homomorphism

(β#
i )−1

i∈I : A1 ↪→ A2.

Hence

A1
∼= A2.

So the ηC in (6.4) is injective. Let C ′ = {T ′
j

ϑ′j−→ X
∣∣ j ∈ J}, where J is an index set,

be another covering in Xét such that C < C ′. Hence there is a map σ : J → I and

a map νj : T ′
j → Tσ(j) for each j ∈ J , such that

ϑ′j = ϑσ(j) ◦ νj. (6.11)
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Suppose we are given an X-form Y of Y with respect to C , i.e. Y ×X Ti
∼= Y ×X Ti

as Ti-schemes for each i ∈ I. Because of (6.11), we have for any j ∈ J ,

Y ×X T ′
j
∼= Y ×X T ′

j ×Tσ(j)
Tσ(j)

∼= Y ×X T ′
j ×Tσ(j)

Tσ(j)
∼= Y ×X T ′

j

as T ′
j schemes. So Y is also an X-form of Y with respect to C ′. So we have

Y = lim−→
C ,<

Υ/C . (6.12)

Since for each covering C in Xét, ηC : Υ/C → Ȟ1(C /Xét, Aut(Y ×X −)) is injective,

we have an injective map η induced by ηC :

η : Y = lim−→
C ,<

Υ/C → lim−→
C ,<

Ȟ1(C /Xét, Aut(Y ×X−)) = Ȟ1(Xét, Aut(Y ×X−)). (6.13)

We can obtain more results if X in Theorem 6.2.4 is Spec k, where k is a perfect

field (e.g. a number field or a finite field) and E be a scheme (not necessarily affine,

e.g. an elliptic curve) over k. Note that Spec k has only one point as a topological

space, and hence E ′ is a form of E over Xét if and only if we have an étale covering

{T γ−→ Spec k} such that E ×k T ∼= E ′ ×k T . From Theorem 8 in the Appendix, we

can assume that T = SpecK ′, where K ′ is a finite separable field extension of k. So

if E ′ is a form of E over Spec k, there is a finite separable field extension K ′/k, such

that E ′ ×k K ′ ∼= E ×k K ′ as K ′-schemes. But since k is perfect and K ′/k is a finite

separable extension, there exists a field K such that K ⊃ K ′ ⊃ k and K/k is a finite

Galois extension. Clearly the following diagram is commutative:

K ′ Â Ä h // K

k
?Â

h

OO

±.
h

>>||||||||

(6.14)
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where h is the canonical inclusion map. This in turn gives the following commutative

diagram:

SpecK h#
//

h#

²²

SpecK ′

h#yyrrrrrrrrrr

Spec k

(6.15)

where each h# is induced by the corresponding h in (6.14). Clearly each h# is

étale because all field extensions K ′/k, K/k and K/K ′ are finite and separable.

Because of (6.15), we have E ′ ×k K ∼= E ×k K as K-schemes. Conversely, sup-

pose we have a k-scheme E ′ and a finite Galois field extension K/k such that

E ′ ×k K ∼= E ×k K as K-schemes, then since K/k is a finite Galois field exten-

sion, the morphism SpecK → Spec k induced by the inclusion map from k to K is

étale. Hence E ′ is a form of E over Spec k. So E ′ is a form of E over Spec k if and

only if there exists a finite Galois field extension K/k such that E ′ ×k K ∼= E ×k K

as K-schemes.

Now let E be a scheme (e.g. a quasi-projective variety) over k and K/k be a fi-

nite Galois field extension with Galois group G = Gal(K/k). By abuse of notation,

write Ȟ1(K/Xét, Aut(E×k−) to denote Ȟ1(SpecK/Xét, Aut(E×k−)). Recall that

here X = Spec k for some perfect field k. We have ([2]):

K ⊗k K ∼=
∏
g∈G

Kg (6.16)

as K-algebras, where Kg is an isomorphic copy of K for each g ∈ G. Hence there

exists an isomorphism σ:

σ :
∐
g∈G

SpecKg

∼=−→ SpecK ×Spec k SpecK.

Since K/k is a finite Galois extension, SpecK is an étale covering of X = Spec k.

Let [(c)] be an element in Ȟ1(K/Xét, Aut(E ×k −)) with a representative (c) ∈
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Z(K/Xét, Aut(E ×k −)), then c ∈ Aut(E ×k K ×k K). From (6.16),

E ×k K ×k K ∼= E ×k Spec (
∏
g∈G

Kg)

∼= E ×k(
∐
g∈G

SpecKg)

∼=
∐
g∈G

E ×k Kg, (6.17)

where
∐

means disjoint union. So

Aut(E ×k K ×k K) ∼=
∏
g∈G

Aut(E ×k Kg). (6.18)

Hence c can canonically be identified with the map c# : G → Aut(E ×k K) defined

by c#(g) = c
∣∣
Aut(E×kKg)

, ∀g ∈ G. By definition, the element c also satisfies the

condition

c ◦ c = c, (6.19)

on E×kK×kK×kK, where the second c on the left hand side acts on E×kK×kK×kK

via the projection from E ×k K ×k K ×k K to the first, third and forth component;

the second c on the left hand side acts via the projection from E×k K×k K×k K to

the first, second and third component; and the c on the right hand side acts via the

projection from E ×k K ×k K ×k K to the first, second and forth component. From

(6.16), as K-algebras,

K ⊗k K ⊗k K ∼= K ⊗k (
∏
g∈G

Kg) ∼=
∏

g,h∈G

K(g,h),

where K(g,h) = K. Hence by abuse of notation, there also exists an isomorphism σ:

σ :
∐

g,h∈G

SpecK(g,h)

∼=−→ SpecK ×Spec k SpecK ×Spec k SpecK,
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and similarly we have:

E ×k K ×k K ×k K ∼=
∐

g,h∈G

E ×k K(g,h). (6.20)

Consider the following diagram:

∐
g,h∈G SpecK(g,h)

d0 //
d1 //
d2 //

σ∼=

²²

∐
g∈G SpecKg

σ∼=

²²
SpecK ×Spec k SpecK ×Spec k SpecK

p0 //
p1 //
p2 //

SpecK ×Spec k SpecK

(6.21)

where pl (l = 0, 1, 2) is defined as follows: let K1, K2 . . . , Kn be some field extensions

of field k, then pi (i = 0, 1, . . . , n− 1) is defined to be the standard projection map:

pi : SpecK1 ×Spec k SpecK2 ×Spec k . . .×Spec k SpecKi+1 ×Spec k . . .×Spec k SpecKn →

SpecK1 ×Spec k SpecK2 ×Spec k . . .×Spec k
̂SpecKi+1 ×Spec k . . .×Spec k SpecKn,

where ̂SpecKi+1 means to omit SpecKi+1; d0, d1 and d2 are defined as follows: for

each (g, h) ∈ G×G,

d0 = g∗ : SpecK(g,h) → SpecKh,

where g∗ is the isomorphism SpecK → SpecK induced by the ring isomorphism

g : K → K, d1 is the identity map from SpecK(g,h) to SpecKgh, and d2 is the iden-

tity map from SpecK(g,h) to SpecKg.

It is shown in [19], p.100, that the diagram in (6.21) is commutative for each pair

(di, pi), i = 0, 1, 2. Apply Aut(E ×k −) to (6.21). Consider the pair (p0, d0). As we

have discussed, any element f ∈ Aut(E×k

∐
g∈G SpecKg) ∼=

∏
g∈G Aut(E×kSpecKg)

can be identified with the (continuous) map f# : G → Aut(E ×k SpecK) by

f#(g) = f
∣∣
Aut(E×kKg)

. Fix any g ∈ G, then for any h ∈ G, since d0 is an isomorphism
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from SpecK(g,h) to SpecKh, from (6.2) we see that for each f#(h), d0 induces an

element d∗0f
#(g, h) in Aut(E ×k K(g,h)) by d∗0f

#(g, h) = g∗f#(h), which is, by our

convention, denoted by gf#(h). Similarly, we have that d∗1f
#(g, h) = f#(gh) and

d∗2f
#(g, h) = f#(g).

Hence the first c on the left hand side of (6.19) acts on
∐

g,h∈G E ×k K(g,h) by

(c#(g))g,h∈G, the second c on the left hand side of (6.19) acts on
∐

g,h∈G E ×k K(g,h)

by gc#(h), and the c on the right hand side of (6.19) acts on
∐

g,h∈G E ×k K(g,h) by

(c#(gh))g,h∈G. Hence (6.19) gives

c#(gh) = c#(g) ◦ gc#(h). (6.22)

So c# ∈ Z1(G, Aut(E ×k K)). Suppose we have [(c)] has another representative (c′)

in Z1(SpecK/Xét, Aut(E ×k −)), then c ∼ c′, i.e. there is ω ∈ Aut(E ×k K), such

that on E ×k K ×k K,

c′ = ω−1 ◦ c ◦ ω, (6.23)

where the second ω on the right hand side acts on E×k K×k K via the projection of

E×k K×k K to the first and third component, and the first ω acts via the projection

of E ×k K ×k K to the first and second component. As expected, the following

diagram is commutative ([19], p.100):

∐
g∈G SpecKg

d0 //

d1 //

σ∼=

²²

SpecK

σ∼=

²²
SpecK ×Spec k SpecK

p0 //

p1 //
SpecK

(6.24)

for each pair (d0, p0), where for each g ∈ G,

d0 = g∗ : SpecKg → SpecK,
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and d1 is the identity map from SpecKg to SpecK. Using similar argument as above

one can easily see that the first ω on the right hand side of (6.23) is (ω)g∈G and the

second ω in (6.23) is ( gω)g∈G. So (6.23) implies

c′#(g) = ω−1 ◦ c#(g) ◦ gω,

which is equivalent to say c′# ∼ c#. Clearly the above argument can be reversed be-

cause c′ and c′# can be canonically identified. Hence we have a well-defined injective

map f:

f : Ȟ1(K/Xét, Aut(E ×k −)) → H1(G, Aut(E ×k K)), [(c)] 7→ [c#].

Now we prove the surjectivity of f. Let [f ] is an element in G1(G, Aut(E×k K)) with

representative f ∈ Z1(G, Aut(E ×k K)), then f can be identified with (f(g))g∈G.

Since (6.18) is an isomorphism, f canonically corresponds to a unique element f̃ in

Aut(E ×k K ×k K). If we can prove f̃ ∈ Z(SpecK/Xét, Aut(E ×k −)), then clearly

f(f̃) = f . But since (6.17) and (6.20) are isomorphisms and diagrams in (6.21) and

(6.24) are commutative, reversing the argument used to prove (6.22) gives

f̃ ◦ f̃ = f̃ ,

on E×kK×kK×kK, hence f̃ ∈ Z(SpecK/Xét, Aut(E×k−)). From the isomorphism

in (6.18), which maps the identity map on E ×k K ×k K to identity map on each

E ×k Kg, it is obvious that f maps the neutral element in Ȟ1(K/Xét, Aut(E ×k −))

to the neutral element H1(G, Aut(E ×k −)). Hence

Ȟ1(K/Xét, Aut(E ×k −))
f∼= G1(G, Aut(E ×k K))

as pointed sets.



6.2 Forms 96

For any finite separable field extension F/k, since k is a perfect field, there always

exists a finite Galois extension K/k such that k ⊂ F ⊂ K, therefore we have

Ȟ1(Xét, Aut(E ×k K)) = lim−→
F/k finite
separable

Ȟ1(F/Xét, Aut(E ×k −))

= lim−→
K/k finite

Galois

Ȟ1(K/Xét, Aut(E ×k −))

∼= lim−→
K/k finite

Galois

H1(Gal(K/k), Aut(E ×k K))

= lim−→
K/k finite

Galois

H1(Gal(K/k), Aut(E ×k k)Gal(k/K))

= H1(Gk, Aut(E ×k k)),

where Gk = Gal(k/k). In particular, if E is a quasi-projective variety over k

which is perfect, the set of equivalence classes of k/k-forms of E is classified by

H1(Gk, Aut(E ×k k)), so we have a bijection between the set of equivalence classes

of k/k-forms of E and Ȟ1(Xét, Aut(E×k−)). The conclusion of the above argument

is the following result:

Theorem 6.2.5. Let E be a scheme over a perfect field k and let X = Spec k. Then

we have that E ′ is a form of E over Xét if and only if there exists a finite Galois

extension K of k such that

E ×k K ∼= E ′ ×k K,

and

H1(Gk, Aut(E ×k k)) ∼= Ȟ1(Xét, Aut(E ×k −)).

If E is a quasi-projective variety over k, there exists a bijection between the set of

equivalence classes of forms of E over Xét and Ȟ1(Xét, Aut(E ×k −)).
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Hence for a variety E over a perfect field k, the definition of forms of E based on

étale site coincides that given in the previous chapters.

Example 6.2.6. Let X = SpecA for some ring A and Gn
a be the additive group

scheme over X. Let GLn be the covariant functor S 7→ GLn(Γ(S,OS)) for any

scheme S. Then Aut(Gn
a ×X −) = GLn.

When A is a local ring, Ȟ1(Xét, GLn) = 0 ([19], p.124). This implies there are

no non-trivial affine forms of Gn
a over X.

Another special case is n = 1, then GL1 = Gm, which is the multiplicative group

scheme. A version of Hilbert’s Theorem 90 ([19], p.124) gives:

Ȟ1(Xét,Gm) = Pic(X),

where Pic(X) is the Picard group of X. For the general discussion of Picard group,

see e.g. [11], II.6. If A is a unique factorization domain, PicX = 0 ([16], p.273), and

consequently there are no non-trivial affine forms of Ga over X.

Example 6.2.7. Given a scheme S, the set of isomorphic classes of S-forms of the

projective space Pn
S for ALL positive integers n is characterized by the Brauer group

of S, denoted by Br(S) ([7], p.205). Br(S) is the generalization of the Brauer group

of a field L. When S = SpecL, Br(S) = Br(L) ∼= H2(Gal(Ls/L), (Ls)×), where Ls

is the separable closure of L. For the details of Brauer group of a scheme, see [19],

chapter IV.
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Let S be SpecL for some field L. We have shown that if L is a finite field, then

Br(L) is trivial. It can also be shown the following cases: ([23], p.162-163)

• Br(Qab) is trivial.

• The Brauer group of any field extension of transcendence degree 1 over any

algebraically closed field is trivial.

• L = R, the field of real numbers, we have Br(R) ∼= Z/2Z, where the non-zero

element in Z/2Z corresponds to variety

X2 + Y 2 + Z2 = 0

• L is a local field (complete with finite residue field), then Br(L) ∼= Q/Z.



Appendix A

1. Flatness and faithful flatness

The reference is [17], p.17-26.

Definition 1. Let B be an A-module. B is called a flat A-module if for any injective

A-module homomorphism f : M → N , the induced B-module homomorphism

f ⊗ idB : M ⊗A B → N ⊗A B,

is also injective, where idB is the identity map on B.

Theorem 2. Let A and B be rings with ring homomorphism f : A → B, then B is

flat over A if and only if Bp is flat over Af−1(p) for any p ∈ SpecB.

Theorem 3. Let ϕ : A → B be a flat ring homomorphism, then the followings are

equivalent:

a) M
m7→m⊗1−−−−−→ M ⊗A B is injective for any A-module M .

b) If N ⊗A B = 0 for some A-module N , then N = 0.

c) Let f : M → N be a map of A-modules. Then if f ⊗ idB : M ⊗A B → N ⊗A B

is injective, f is also injective.
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Definition 4. Let ϕ : A → B be a flat ring homomorphism. We say ϕ is faithfully

flat if ϕ satisfies the equivalent conditions of Theorem 3.

2. Étale morphisms

The reference is ([19], chapter I). Let S be a scheme. Denote by OS,s the stalk

at point s ∈ S and denote by ms the maximal ideal of OS,s.

Definition 5. Let X and Y be schemes and let f : Y → X be a morphism which

is locally of finite-type. Let y ∈ Y and x = f(y). f is said to be unramified at y if

mx · OY,y = my and OY,y/my is a finite separable field extension of OX,x/mx. f is

said to be unramified if it is unramified at all points in Y . Here mx · OY,y is defined

by the map OX,x → OY,y induced by f .

Definition 6. Let X and Y be schemes and f : Y → X be a morphism. f is said

to be flat if for any point y ∈ Y , the induced map OX,f(y) → OY,y is flat.

Definition 7. Let X and Y be schemes and f : Y → X be a morphism which is

locally of finite-type. f is called to be étale if it is flat and unramified.

Theorem 8 ([1], p.115). Let k be a field and X be a scheme. Then a morphism

f : X → Spec k is an étale morphism if and only if X =
∐n

i=1 Spec ki for some finite

separable field extensions k1, k2, . . . kn of k. Here
∐

means disjoint union.
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Definition 9. Let F be a field. An étale F -algebra L is an F -algebra and is isomor-

phic to a finite product F1 × F2 × . . .× Fm as F -algebras, where Fi (i = 1, 2, . . . , m)

is a finite separable field extension of k. The degree of L is its dimension dimF L as

an F -vector space, i.e.

dimF L = [F1 : F ] + [F2 : F ] + . . . + [Fm : F ].

It is clear the definition of étale algebra is consistent with that of étale morphism.

3. Étale Site

A good introduction to site is [26], Chapter I, II. A site is a generalization of the

notion of a topological space.

Definition 10 (Grothendieck). A Site T is a category T and a set C each element

of which is called a covering and is a set of morphisms in T :

{Ui
ϕi−→ U

∣∣ i ∈ I},

where I is some index set, such that for any morphism ϕ : V → U in T , the fiber

product Ui×UV exists in T for any i ∈ I. C must also satisfy the following conditions:

• For any isomorphism X
λ−→ Y in T , {X λ−→ Y } ∈ C.

• For any element {Ui
ϕi−→ U

∣∣ i ∈ I} ∈ C and any morphism ϕ : V → U in T ,

{Ui ×U V → V
∣∣ i ∈ I} ∈ C.
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• Let {Ui
ϕi−→ U

∣∣ i ∈ I} be an element in C. For each i ∈ I, let {Vij
φij−→ Ui

∣∣j ∈ Ii}
be a covering. Then {Vij

ϕi◦φij−−−→ U
∣∣ i ∈ I, j ∈ Ii} ∈ C.

Definition 11 ([26], p.86). Let X be a scheme. Denote by Ét/X the category of

X-schemes in which an object (also called an open set) is an étale morphism Y → X

for some scheme Y , and a morphism between two objects Y1 → X and Y2 → X is a

morphism ϕ : Y1 → Y2 such that the following diagram is commutative:

Y1
ϕ //

ÃÃA
AA

AA
AA

Y2

~~}}
}}

}}
}

X

Define a site Xét, called the étale site of X, as follows:

• The underlying category T of Xét is Ét/X.

• A covering is a set of morphisms {Yi
ϕi−→ Y

∣∣ i ∈ I} over X in T such that

Y = ∪i∈Iϕi(Yi).

Definition 12. Let T be a site with underlying category T . Let Ab be the category

of abelian groups. A presheaf on T with values in Ab is a contravariant functor

F : T → Ab.

Definition 13. Using notations in Definition 12, F is called a sheaf if F is a

presheaf and for every covering {Ui
ϕi−→ U

∣∣ i ∈ I} in T, the following sequence is

exact:

F (U) →
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj).
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