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ABSTRACT

In this thesis, we present numerical examples of class invariants constructed by

DeShalit–Goren in [14]. These class invariants are an attempt to generalize the clas-

sical theory of elliptic units. The hope is that a better understanding of these class

invariants would lead to other cases of Stark’s conjectures expressing the value of

derivatives of Artin L-functions at s = 0 in term of a regulator of linear forms in

logarithms of S-units.
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ABRÉGÉ

Dans ce mémoire, nous présentons des exemples numériques d’invariants de classes.

Ces invariants de classes, dont la construction est présentée dans [14], peuvent être

vus comme une généralisation des unités elliptiques. Une meilleure compréhension de

ces invariants pourrait peut-être mener à de nouveaux cas des conjectures de Stark

qui expriment les valeurs des dérivés des fonctions L d’Artin en s = 0 en termes de

régulateurs de formes linéaires en logarithmes de S-unités.
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CHAPTER 1
Introduction

In the XVIIIth century, Leonhard Euler (1707-1783) gave his marvelous proof of

the infinitude of prime numbers using the infinite series

ζ(s) =
∞∑

n=1

1

ns
.

It was perhaps the first time that an analytical tool was used in order to prove a

statement in number theory.

Later on, Gustav Lejeune Dirichlet (1805-1859) managed to prove his celebrated

theorem on primes in arithmetic progressions. His idea was to adapt Euler’s proof

of the infinitude of prime numbers to this case. In order to do so, he introduced the

concept of Dirichlet L-series. This was probably one of his greatest achievements.

Since then more and more general L-series have been introduced in number theory

by Heinrich Weber (1842-1913), Erich Hecke (1887-1947), Emil Artin (1898-1962),

and André Weil (1906-1998) among others. The modern notion of Artin L-function

contains as particular cases all the Dedekind zeta functions and the Dirichlet L-series.

These L-functions seem to encode a lot of arithmetical information. Unfortunately,

it is not easy to extract their secrets. Whenever a new discovery is made about these

L-functions, number theorists are well rewarded.

One of these nice discoveries is the class number formula. If ζK(s) is the Dedekind

zeta function of a number field K, then

lim
s→1

(s− 1)ζK(s) =
2r1+r2πr2Reg(K)

ωK

√
|∆K |

· hK ,

where hK is the class number, r1 the number of real embeddings, r2 the number of

pair of complex conjugate embeddings, Reg(K) the regulator, ∆K the discriminant,
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and ωK the number of roots of unity in K. Using the functional equation of ζK(s),

this statement can be translated into a simpler formula at s = 0:

ζK(s) = −hKReg(K)

ωK

sr1+r2−1 +O(sr1+r2).

In the 70’s, Harold Stark tried to find a similar formula for a general Artin L-function.

Moreover, he gave a more precise conjecture in the case of an L-function of an abelian

extension with a simple zero at s = 0. If these conjectures are true, then it would

give a partial solution to Hilbert’s 12th problem. Hilbert’s 12th problem consists in

finding transcendental functions such that when evaluated at some points, they give

explicit generators of abelian extensions of number field. The prototypical example is

the set of cyclotomic fields which are generated by particular values of the exponential

function. This is why Stark’s conjectures are one of the most important open problems

in number theory.

The rank one abelian conjecture predicts the existence of a unit called Stark’s

unit. Stark was able to prove his conjectures when the base field is either Q or a

quadratic imaginary field. For this, he used respectively the theory of cyclotomic

units and the theory of elliptic units. Indeed, in both of these cases, it is known how

to explicitly construct units in abelian extensions of the base field. In the latter case,

the contruction of elliptic units is possible thanks to the theory of classical modular

function and the theory of complex multiplication.

It became then an outstanding problem to construct units in abelian extension of

number fields. The hope is that this would lead to other cases of Stark’s conjectures.

Note that the two cases which are known are exactly the fields for which explicit

class field theory is known. Goro Shimura and Yukata Taniyama (1927-1958) extended

the theory of complex multiplication to a wider class of number fields called CM -fields.

Let K be a CM -field (i.e. a totally complex field which is a quadratic extension of

a totally real field), and let K∗ be a reflex field of K, which is another CM -field

2



associated to K. The theory of complex multiplication allows one to generate abelian

extensions of the reflex field K∗ using values of Siegel modular functions evaluated at

CM -points associated to K.

In the paper [14], Ehud De Shalit and Eyal Goren gave an attempt to general-

ize the construction of elliptic units to CM -field of degree four. They constructed

class invariants in the Hilbert class field of the reflex field K∗. They proved several

properties of these invariants, but they ask a fundamental question: Are these class

invariants global units? This question is the motivation of this thesis.

Our goal here is fairly modest. It consists of writing a program in order to

have numerical examples of these class invariants. We remark also that the link with

L-series, if any, is still unknown.

In Chapter 2, we recall Dirichlet’s class number formula, and use it as a mo-

tivation for Stark’s conjectures. Chapter 3 is provided to recall the main results of

class field theory in classical language. The classical language is more efficient for

computational purposes. We follow then with Chapter 4 that contains a brief intro-

duction to Stark’s conjectures. Chapter 5 gives an overview of the construction of

elliptic units, while Chapter 6 gives the background needed for the construction of

DeShalit–Goren invariants. Finally, in Chapter 7, we present the construction of the

class invariants, and the algorithm used for their calculation is presented in Chapter

8. The program itself can be found in appendix A and we present some numerical

results in appendix B.
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1.1 Notation

We use the standard notations Z, Q, R, and C for the set of integers, rational

numbers, real numbers and complex numbers, respectively. Whenever R is a ring, R×

means the group of units of this ring. The symbol K will be used to denote a number

field.

One finds below the symbols we use. For each of them, we wrote it in the chapter

of its first appearance.

Chapter 2

• ζ(s): The Riemann zeta function.

• ζK(s): The Dedekind zeta function of the number field K.

• N(a): The norm of the fractional ideal a.

• Re(s): The real part of s.

• Cl(K): The class group of K.

• hK : The class number of K.

• κK : See section 2.2.3.

• [K : Q]: The degree of the field extension K/Q.

• ιn: Number of integral ideals with norm n.

• ι(t): Number of integral ideals with norm ≤ t.

• ιC(t): Number of integral ideals in the ideal class C with norm ≤ t.

• Res(f, s): Residue of f at s.

• r1: Number of real embeddings.

• r2: Number of pair of complex embeddings.

• Reg: Regulator of a set of units.

• ωK : Number of roots of unity in K.

• ∆K : Discriminant of K.

• φ: Euler φ-function.

• ζm: m-th root of unity.
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• Gal(L/K): Galois group of the galois extension L/K.

• e(P|p): Ramification index.

• f(P|p): Inertia index.

• χ1: The trivial character.

Chapter 3

• OK : Maximal order of K.

• I(K): The group of fractional ideals of K.

• P (K): The group of principal ideals of K.

• Cl+(K): The narrow class group of K.

• λÀ 0: A totally positive element.

• m: A modulus.

• Clm(K): The ray class group modulo m.

• Im(K): The fractional ideals relatively prime with m.

• Pm(K): See definition 3.2.4.

• ϕL/K : The Artin map of the abelian extension L/K.

• I(P|p): The inertia group of the prime P lying above p.

• D(P|p): The decomposition group of the prime P lying above p.

• kp: The residue field OK/p.

• Hm: An ideal subgroup modulo m.

• H: An ideal group (equivalence class of ideal subgroups).

• ClH(K): The ideal class group of the ideal group H.

• f(L/K): The conductor of the abelian extension L/K.

• HK : The small Hilbert class field.

• H+
K : The big Hilbert class field.

• f(χ): The Artin conductor of the character χ.

• Gi(P|p): Higher ramification groups.

• W (χ): The Artin root number.

5



Chapter 4

• OK,S: The S-units.

• St(L/K, S): Abelian rank one conjecture.

Chapter 5

• ℘: Weierstrass’ elliptic function.

• CE,Λ: The field of elliptic functions with respect to Λ.

• Im(z): Imaginary part of the complex number z.

• An(k): The affine space of dimension n.

• g2, g3: Weierstrass’ constants.

• SL2(R): The group of matrices with coefficients in R with determinant 1.

• PSL2(R): SL2(R)/Z(SL2(R)), where Z(SL2(R)) is the center of SL2(R).

• GL2(R): The group of matrices with coefficients in R with determinant in R×.

• GL+
2 (R): The group of matrices with determinant > 0.

• h: The upper-half plane.

• h∗: The upper-half plane with the cusps of a discrete group Γ.

• σk(n):
∑

d|n d
k.

• Γ(N): Principal congruence subgroup modulo N .

• J : The elliptic modular function.

• j: 1728 · J .

• ∆: The discriminant modular form.

• γ: The Euler constant.

• η: The Dedekind eta-function.

Chapter 6

• Mm×n(R): The set of m× n matrices with coefficients in R.

• P2(C): The projective plane.

• Diag(d1, . . . , dn): The diagonal matrix with d1, . . . , dn on the diagonal.

• hn: The Siegel space.
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• Spn(R): The symplectic matrices with coefficients in R.

• ρa: The analytic representation.

• ρr: The rational representation.

• K∗: The reflex field of a CM -field K.

• Φ∗: The reflex type of a CM -type Φ.
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CHAPTER 2
L-series and their value at s = 1

The main reference for this section is [42]. In particular, all details of the proof

of Dirichlet’s class number formula can be found there. Another useful reference is

[13]. For some interesting historical facts, see [16].

2.1 The Pell equation

Going back to the dawn of ages, people were interested in solving the following

equation

x2 − dy2 = ±1,

for x, y ∈ Z and d a positive integer. One reason why people were interested in that

equation is that for x and y big enough, it gives a rational approximation of
√
d.

Indeed, we have then d = (∓1 + x2)/y2 ≈ x2/y2 when x and y are big enough.

Then
√
d ≈ |x|/|y|. Nowadays we call this equation the Pell equation following

Leonhard Euler (1707-1783), even though it is often said that it has nothing to do

with the english mathematician John Pell (1611-1685). Mathematicians tried to solve

this equation and Joseph-Louis Lagrange (1736-1813) solved Pell equation using the

theory of continued fractions.

Why is this equation so important? In modern algebraic number theory, so-

lutions of Pell’s equation correspond to units in real quadratic fields Q(
√
d), where

d is a positive square-free integer, and d ≡ 2, 3 (mod 4). Moreover there exists a

unit ε = x + y
√
d (if we ask also that ε > 1 then it is unique) such that all other

units are of the form ± εn = (x + y
√
d)n = xn + yn

√
d, for some n ∈ Z. In other

words, we can find all solutions of Pell’s equation if we know this fundamental unit.
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They are precisely the numbers ±(xn, yn). When n is big, it gives a good approxima-

tion of
√
d. One reason why it is important to know this ε is that thanks to Gustav

Lejeune Dirichlet (1805-1859), we can compute the class number of a real quadratic

field if we know this fundamental unit ε. This is done through the famous Dirichlet

class number formula.

2.2 The Dirichlet class number formula

2.2.1 The Riemann zeta function

Euler has been the first to introduce the zeta function of a real variable. He used

it to give another proof of the infinitude of prime numbers. The proof goes like this.

He defined the zeta function by

ζ(s) =
∞∑

n=1

1

ns
.

This series converges absolutely for s > 1 and has an Euler product

ζ(s) =
∏

p

(
1− 1

ps

)−1

,

for s > 1. Taking the logarithm, we find log ζ(s) = log
∏

p

(
1− 1

ps

)−1

, for s > 1.

A limit argument allows one to interchange the product and the logarithm to ob-

tain log ζ(s) =
∑

p log
(

1 − 1
ps

)−1

, also for s > 1. Now using the series

expansion of the logarithm function log 1
1−x

=
∑∞

n=1
xn

n
which is valid for |x| < 1, we

get log ζ(s) =
∑

p

∑∞
n=1

1
npns =

∑
p

1
ps + g(s), where g(s) =

∑
p

∑∞
n=2

1
npns . Euler then

showed that g(s) is bounded near s = 1. Now let s→ 1 in the equation

log ζ(s) =
∑

p

1

ps
+ g(s).

Suppose there exists only finitely many primes. The right-hand side would be bounded

around s = 1. On the other hand, ζ(s) tends to the harmonic series which diverges

9



so we have a contradiction. We conclude that

∑
p

1

p
= ∞,

and that there are infinitely many primes.

Then, Bernhard Riemann (1826-1866) allowed complex variables and used it to

study the distribution of prime numbers. He proved that it satisfies a functional

equation and that it has a meromorphic continuation to the whole complex plane

with only one pole at s = 1 which is simple and has residue 1. For the purpose of this

present chapter, we just need to know that it has a meromorphic continuation on the

domain Re(s) > 0 with a pole of order 1 at s = 1. After Riemann, it is customary

to work with zeta and L-functions of a complex variable. Euler’s argument works in

exactly the same way if we allow the variable s to be complex.

2.2.2 The Dedekind zeta function

Let K be any number field. Following Richard Dedekind (1831-1916), we define

a generalization of the Riemann zeta function (if K = Q, we get back the Riemann

zeta function), the Dedekind zeta function:

ζK(s) =
∞∑

n=1

ιn
ns
,

where ιn is the number of integral ideals a in K such that N(a) = n. In order to study

the convergence of that function, we recall for convenience the fundamental lemma

on Dirichlet series, that is series of the form
∑∞

n=1
an

ns , where an ∈ C.

Lemma 2.2.1 Let
∑∞

n=1
an

ns be a Dirichlet’s series. Suppose
∑

n≤t an = O(tr), then

the series converges for Re(s) > r, and is a holomorphic function on this half-plane.

Thus, we are led to study ι(t) =
∑

1≤n≤t ιn which is the number of integral ideals a 6= 0

with N(a) ≤ t. In order to do this, we split ι(t) as a finite sum ι(t) =
∑

C∈Cl(K) ιC(t),

where ιC(t) is the number of integral ideals a ∈ C (C is an ideal class) with N(a) ≤ t.

It is not easy to prove, but the following is true. If C ∈ Cl(K) then there exists a

10



constant κ, not depending on C and made explicit below, such that

ιC(t) = κ · t+O
(
t1−

1
[K:Q]

)
. (2.1)

Summing over all ideal classes C ∈ Cl(K), we get

ι(t) = hK · κ · t+O
(
t1−

1
[K:Q]

)
. (2.2)

Coming back to the Dedekind zeta function, we rewrite it as

ζK(s) =
∞∑

n=1

ιn − hK · κ
ns

+ hK · κ · ζ(s), (2.3)

where hK is the class number of K. Using Equation (2.2) and the lemma on Dirichlet

series, we see that the series on the right-hand side of this last equation represents

an analytic function for Re(s) > 1− 1/[K : Q]. Since ζ(s) represents a meromorphic

function on Re(s) > 0 with only one simple pole at s = 1, ζK(s) represents then

a meromorphic function on the half-plane Re(s) > 1 − 1/[K : Q] with only one

pole of order 1 at s = 1 with residue Res(ζK , s = 1) = lims→1(s − 1)ζK(s) = hK · κ.
For Re(s) > 1, the Equation (2.3) can be written as ζK(s)

ζ(s)
= 1

ζ(s)

∑∞
n=1

ιn−hK ·κ
ns +hK ·κ.

Letting s→ 1, we get then

ρ := lim
s→1

ζK(s)

ζ(s)
= hK · κ.

Therefore, if we are able to compute ρ, and if we know κ then we would be

able to compute the class number. When K is abelian, using class field theory (the

Kronecker-Weber theorem), L-series and Euler product, one can do this and it leads

to Dirichlet’s class number formula.

2.2.3 The constant κ

The constant κ which appears above is

κ =
2r1+r2 · πr2 · Reg(K)

ωK ·
√
|∆K |

,

11



where

• r1 is the number of real embeddings.

• r2 is the number of complex embeddings divided by 2.

• ωK is the number of root of unity in K.

• ∆K is the discriminant of K.

• Reg(K) is the regulator of K.

We recall here the definition of the regulator of any r1 +r2−1 units in a number field.

According to Dirichlet unit Theorem (see [42]), we have an isomorphism O×K ' W×F ,

where W is the finite group consisting of roots of unity in K and F is a free abelian

group of rank r1 + r2 − 1. Let (µ1, . . . , µr1+r2−1) be any r1 + r2 − 1 units in O×K .

Let σ1, . . . , σr1 be the real embeddings of K and σr1+1, . . . , σr1+r2 be a set of complex

embeddings such that σi 6= σj for all i, j = r1 + 1, . . . , r1 + r2. Define then

li(µj) =





log |σi(µj)|, if σi is real;

2 log |σi(µj)|, if σi is complex,

and consider then the (r1 + r2)× (r1 + r2 − 1) matrix




l1(µ1) ··· l1(µr1 ) l1(µr1+1) ··· l1(µr1+r2−1)

l2(µ1) ··· l2(µr1 ) l2(µr1+1) ··· l2(µr1+r2−1)

...
...

lr1+r2(µ1) ··· lr1+r2 (µr1 ) lr1+r2 (µr1+1) ··· lr1+r2 (µr1+r2−1)


 .

The regulator Reg(µ1, . . . , µr1+r2−1) of this set of units is the absolute value of the

determinant of any minor of rank r1 + r2− 1 of the matrix above (they are all equal).

In other words, you take the matrix above, you delete any line you want and you take

the absolute value of the determinant.

Theorem 2.2.1 The units {µ1, . . . , µr1+r2−1} are Z-linearly independant if and only

if Reg(µ1, . . . , µr1+r2−1) 6= 0.

The regulator of the field K is obtained as follows. Any basis for F is called a set of

fundamental units for K. Let (ε1, . . . , εr1+r2−1) be a set of fundamental units of K.

12



Then the regulator of the field K is defined as

Reg(K) = Reg(ε1, . . . , εr1+r2−1).

2.2.4 The Euler product for the Dedekind zeta function

The absolute convergence of the Dedekind zeta function for Re(s) > 1 allows one

to write it in this half-plane in the more traditional form

ζK(s) =
∑

a6=0

1

N(a)s
,

where the sum is taken over nonzero integral ideals of K. This function has also an

Euler product for Re(s) > 1

ζK(s) =
∏

p

(
1− 1

N(p)s

)−1

,

where the product is over all nonzero prime ideals of K. Note that if K/Q is Galois

then Hilbert’s theory of Galois extensions tells us that the factorization of p in K will

be of the form p ·OK = (p1 · p2 · · · prp)
ep , where ep := e(p|p) is the ramification index

which does not depend on the prime p lying above p. The same is true for the inertia

index fp := f(p|p). Since N(p) = pfp , we have in that case

ζK(s) =
∏

p

(
1− 1

pfps

)−rp

, (2.4)

where now the product is over all positive prime numbers in Z.

2.2.5 Dirichlet L-series

Dirichlet introduced the notion of L-series in number theory in connection with

his famous Dirichlet theorem on arithmetic progression. This theorem says that in

any arithmetic progression

a, a+m, a+ 2m, . . . , a+ km, . . . ,

where (a,m) = 1, there are infinitely many primes.

13



His idea was to adapt Euler’s proof of the infinitude of prime numbers to this

case and prove that if (a,m) = 1, then

∑

p≡a (mod m)

1

p
= ∞,

where the sum is taken over all positive prime numbers congruent to a modulo m.

He introduced L-series precisely in order to gather those primes together. Let χ

be a character modulo m, that is a group homomorphism χ : (Z/mZ)× → C×.

We extend the definition of χ to all integers by setting χ(n) = 0 if (n,m) 6= 1,

and χ(n) = χ(n+mZ) otherwise. Then we define the L-series

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

This is a Dirichlet series. If χ is not the trivial character, using the orthogonality

relation and the lemma on Dirichlet series, we see that it represents an analytic

function for Re(s) > 0 and converges absolutely for Re(s) > 1. We also have an Euler

product

L(s, χ) =
∏

p-m

(
1− χ(p)

ps

)−1

, (2.5)

where Re(s) > 1. For the trivial character, L(s, χ1) =
∏

p

(
1− 1

ps

)−1

·∏p|m
(
1− 1

ps

)
.

The first product on the right-hand side is the Riemann zeta function so we get

L(s, χ1) = ζ(s)
∏

p|m

(
1− 1

ps

)
. (2.6)

Therefore, when χ = χ1 it represents an analytic function for Re(s) > 1. We shall

now recall the proof of Dirichlet theorem. Starting from the Euler product (2.5) and

taking the logarithm function define by the usual power series − log(1−z) =
∑∞

n=1
zn

n

for |z| < 1, we get logL(s, χ) = log
∏

p-m

(
1− χ(p)

ps

)−1

=
∑

p-m log
(
1− χ(p)

ps

)−1

.
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Again, using the series expansion of the logarithm, we get

logL(s, χ) =
∑

p-m

∞∑
n=1

χ(p)n

npns
=

∑

p-m

χ(p)

ps
+ g(s),

where g(s) =
∑

p-m
∑∞

n=2
χ(p)n

npns (note that this makes sense since |χ(p)| = 1 and there-

fore
∣∣∣χ(p)

ps

∣∣∣ < 1). Taking the inverse of a+mZ in (Z/mZ)×, say b+mZ. Multiplying

the last equation by χ(b), we get χ(b) logL(s, χ) = χ(b)
∑

p-m
χ(p)
ps + χ(b)g(s). Sum-

ming over all characters modulo m leads to
∑

χ χ(b) logL(s, χ) =
∑

χ

∑
p

χ(pb)
ps +h(s),

where h(s) =
∑

χ χ(b)g(s). Changing the order of summation in the sum on the right

hand side, it becomes
∑

p
1
ps

∑
χ χ(pb), then using the orthogonality relations, we see

that this sum is φ(m)
∑

p≡a (mod m)
1
ps , where φ is the Euler φ-function. Finally, we

are led to the equation

χ(b) logL(s, χ1) +
∑

χ 6=χ1

χ(b) logL(s, χ) = φ(m)
∑

p≡a (mod m)

1

ps
+ h(s).

One shows that h(s) is bounded around s = 1. Moreover, we know that L(1, χ) is

finite if χ 6= χ1 and that logL(s, χ1) →∞ when s→ 1 according to the identity (2.6).

If we show that for χ 6= χ1, L(1, χ) 6= 0 then letting s → 1 in the last equation, we

would have

∞ = φ(m)
∑

p≡a (mod m)

1

ps
,

since all other terms would be bounded at 1. This would prove Dirichlet theorem.

We shall indeed show that L(1, χ) 6= 0 for χ 6= χ1 and even more then that, we

will relate L(1, χ) with the class number of some number fields.

2.2.6 The Dirichlet class number formula

From now on suppose that K is a finite abelian field over Q. We shall use class

field theory for Q encompassed by the Kronecker-Weber theorem:
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Theorem 2.2.2 (Kronecker-Weber) Let K/Q be a finite abelian extension. Then

there exists a positive integer m such that K ⊆ Q(ζm). That is, every finite abelian

extension of Q is contained in a cyclotomic field.

Let χ be a character of Gal(K/Q). Using the Kronecker-Weber theorem, we can

view χ as a character modulo m for some integer m. Indeed, let f be the smallest

positive integer m such that K ⊆ Q(ζm) (it exists by Kronecker-Weber). It is known

that p ramifies in K if and only if p|f. Consider χ as a character modulo f through

the following maps

(Z/fZ)×
γ' Gal(Q(ζf)/Q)

res³ Gal(K/Q)
χ→ C×.

Explicitly, we have then χ(n) = χ(res◦γ(n+fZ)) if (n, f) = 1 and otherwise χ(n) = 0.

For brevity, letG = Gal(K/Q) and denote the group of characters ofG by Ĝ. Consider

then for Re(s) > 1 the product
∏

χ∈ bG L(s, χ) =
∏

χ∈ bG
∏

p-f

(
1− χ(p)

ps

)−1

. One shows

then that
∏

χ∈ bG
(
1− χ(p)

ps

)−1

=
(
1− 1

pfps

)−rp

, where fp is the inertia index f(p|p)
of any prime p of K lying above p, and rp is the number of prime ideals of K lying

above p (in proving this, we use the fact that p is ramified in K if and only if p|f).
Changing the order of the product (which is allowed since it converges absolutely), we

get
∏

χ∈ bG L(s, χ) =
∏

p-f

(
1− 1

pfps

)−rp

. Combining this with the Euler product (2.4)

of ζK , we have ζK(s) =
∏

p

(
1− 1

pfps

)−rp

=
∏

p|f
(
1− 1

pfps

)−rp ·∏χ∈ bG L(s, χ) which is

valid for Re(s) > 1. Finally, using the identity (2.6) for the trivial character we get

for Re(s) > 1

ζK(s) = ζ(s)
∏

χ 6=χ1

L(s, χ) ·
∏

p|f

(
1− 1

ps

)(
1− 1

pfps

)−rp

.

So we get another expression for ρ = lims→1 ζK(s)/ζ(s). Indeed,

ρ =
∏

χ 6=χ1

L(1, χ) ·
∏

p|f

(
1− 1

p

)(
1− 1

pfp

)−rp

.
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Now, if K = Q(ζf), then since ρ = hK · κ 6= 0 we get a proof that for χ 6= χ1

L(1, χ) 6= 0,

for any character modulo f and for any positive integer f. We have thus completed

the proof of Dirichlet theorem on arithmetic progressions.

2.3 A particular case of Stark’s conjectures

We have shown that we have hK = ρ/κ where

ρ =
∏

χ6=χ1

L(1, χ) ·
∏

p|f

(
1− 1

p

)(
1− 1

pfp

)−rp

, κ =
2r1+r2 · πr2 · Reg(K)

ωK ·
√
|∆K |

.

In order to compute hK we first have to know the value of ρ, that is the value of L(1, χ)

for non-trivial characters χ. We can do this directly as in [42] for example. It takes

several steps, but they are not that difficult. In the case where K is a quadratic

number field, it would lead to an explicit formula for the class number of quadratic

number fields. Instead of doing this, we use this formula to give a motivation for

Stark’s conjectures.

Specializing this last formula to the case of a quadratic number field K = Q(
√
d),

we get the following. First of all, every ramified prime p, i.e. p|f, will have fp = rp = 1,

and therefore we have

ρ = L(1, χ) = κ · hK ,

where χ is the unique non-trivial character of Gal(K/Q) (it is know that χ is the

Kronecker symbol). The constant κ is the following:

κ =





2 log ε√
f
, if d > 0;

2π
ωK

√
f
, if d < 0,

where ε is the fundamental unit in Q(
√
d), when d > 0. Furthermore, it is known

that in this case f = |∆K |. Putting all this together, we get the following formula

17



for L(1, χ):

L(1, χ) =





2 log ε√
|∆K |

· hK , if d > 0;

2π

ωK

√
|∆K |

· hK , if d < 0.

(2.7)

Note that this value is the quotient of a presumably transcendental value by a

rational number. The general Stark’s conjecture is a similar statement for a general

Artin L-function.
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CHAPTER 3
Class field theory

For a first reading on class field theory, we suggest the article [20]. We used

mainly four references for this section, namely [9], [11], [32] and [48].

3.1 Introduction

Class field theory is the continuation of algebraic number theory ”à la Dedekind”.

It started with Leopold Kronecker (1823-1891), Heinrich Weber (1842-1913), David

Hilbert (1862-1943) and took a definitive form with Teiji Takagi (1875-1960), Emil

Artin (1898-1962) and Helmut Hasse (1898-1979). Later on, Hasse discovered local

class field theory and proved it with the help of global class field theory. Jacques

Herbrand (1908-1931) and Claude Chevalley (1909-1984) proved local class field the-

ory without using anything from the global theory. Then Chevalley introduced the

concept of ideles in order to deduce the global theory from the local theory.

In this chapter, we shall present the classical theory of global class field theory

according to Takagi, Weber and Artin.

3.2 Class field theory

We first fix our notation:

• K is a number field, that is a finite extension of Q.

• K× is the group of non-zero elements of K.

• OK is the ring of integers of K.

• O×K is the group of units in OK .

• I(K) is the group of fractional ideals of K.

• ι : K× → I(K) is the map defined by λ 7→ ι(λ) = λ ·OK .

• P (K) is the subgroup of I(K) consisting of the principal ideals, i.e. P (K) =

ι(K×).
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• Cl(K) = I(K)/P (K) is the class group of K.

In the beginning of the XIXth century, Evariste Galois (1811-1832) stated his famous

theory of the solvability of polynomials. The criterion is that for a polynomial to be

solvable it is necessary and sufficient that its Galois group is solvable. In particular,

every abelian group is solvable so any polynomial with abelian Galois group (which

are called abelian polynomial) can be solved by extraction of roots (these abelian

polynomials have been found by Niels Henrik Abel (1802-1829), hence their name).

Later on in the XIXth century, Kronecker was interested in solving explicitly abelian

polynomials which was possible according to Galois theory. At the same time, he was

working on the theory of elliptic functions.

He started with the study of abelian polynomials with coefficients in Q and he

formulated the following conjecture:

Conjecture 3.2.1 (Kronecker) Every root of an abelian polynomial with rational

coefficients is a rational function of roots of unity (with coefficients in Q).

This has been proven by Weber. Nowadays, it is called the Kronecker-Weber theorem,

and we used it in the previous chapter. Then he got interested in abelian polynomials

with coefficients in an imaginary quadratic number field. Here again, he formulated

a conjecture (see Section 5.3 for the theory of the j-function).

Conjecture 3.2.2 (Kronecker) Every root of an abelian polynomial with coeffi-

cients in a quadratic imaginary field K can be expressed as a rational function (with

coefficients in K) of some values of the modular function j(τ).

This conjecture became to be known as Kronecker’s Jugendtraum. The conjecture is

false, even though Kronecker was not far away from the truth. In order to be true, one

has to add the values of some other functions like the Weber functions. The correct

theorem has been proven by Takagi after he proved the main theorems of class field

theory.
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A little after Kronecker, Weber was interested in the distribution of prime ideals

in ideal classes and wanted to prove that there are infinitely many primes in every

class of Cl(K) for any number field K. He introduced then the concept of ray class

group in connection with his work. Going back in the XVIIIth century, Carl Friedrich

Gauss (1777-1855) gave the impulse to the theory of binary quadratic form and during

his studies, he defined an equivalence relation between forms. Later on, Dedekind

translated this language into his new discovery: The ideal theory. For an imaginary

quadratic field K, both theories are equivalent, that is the study of classes of binary

quadratic forms is equivalent to the study of Cl(K). But for real quadratic fields, it is

not true anymore and one sees that the theory of binary quadratic forms is equivalent

to a slightly bigger class group, namely Cl+(K), the narrow class group. We defined

it right now for any number field, not only for quadratic fields. Let K be a number

field, then λ ∈ K is said to be totally positive, and we write λ À 0, if σ(λ) > 0 for

all real embedding σ of K. Let

P+(K) = {a ∈ I(K)|a = λ ·OK , for some λÀ 0},

and define the narrow class group as Cl+(K) := I(K)/P+(K). Weber was aware of

that and he noticed then the following isomorphism (the notation will become clear

after Definition 3.2.4):

Theorem 3.2.1

Clm∞(Q) := Im(Q)/Pm·∞(Q) ' (Z/mZ)× ,

where

• Im(Q) is the group of fractional ideals generated by the integers relatively prime

with m. In other words, Im(Q) is the group of fractional ideal a
b
· Z where

(a,m) = (b,m) = 1.
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• Pm·∞(Q) is the subgroup consisting of a
b
· Z ∈ Im(Q) such that a

b
À 0 (that is

for Q, a
b
> 0 since there is only one real embedding) and a ≡ b (mod m).

Proof:

We shall use the following notation: a := a + mZ for any integer a. Define the

application f : Im(Q) → (Z/mZ)× by the following rule. Every ideal in Im(Q) has

two generators, one positive and one negative. Take the positive one, say a
b
· Z and

send it to a · (b)−1 in (Z/mZ)×. Then ker(f) = Pm∞(Q) and this map is clearly

surjective. Therefore Clm∞(Q) ' (Z/mZ)×.

2

Dirichlet’s theorem on arithmetic progressions can now be interpreted as follows. In

every class of Clm∞(Q), there exists infinitely many prime numbers. Note also that

if m = 1 then it says that there are infinitely many prime numbers in N as was known

already to Euclid. Weber proceeded then to generalized Clm∞(Q) to other number

fields. We explain this now.

Definition 3.2.1 Let K be a number field and m0 be an integral ideal of K. Let m∞

be a set of distinct real embeddings of K. We define a modulus m to be a formal

product m = m0 ·m∞.

A modulus is just a way to pack together finitely many prime ideals and finitely many

real embeddings (a real or complex embedding is also called an infinite prime). We

proceed now to generalize O×K , K
×, I(K), P (K), and Cl(K). For all these definitions,

fix a modulus m = m0 ·m∞.

Definition 3.2.2 We define a subgroup K×(m0) of K× to be the subgroup generated

by the elements α ∈ OK such that (α · OK ,m0) = 1. We define also O×K(m0) =

O×K ∩K×(m0).

In other words, λ ∈ K×(m0) if and only if there exists α, β ∈ OK(6= 0) such that

λ = α/β and (α ·OK ,m0) = (β ·OK ,m0) = 1. Then we define an equivalence relation

on K×(m0).

22



Definition 3.2.3 Let λ1, λ2 ∈ K×(m0). Then, by definition λi = αi

βi
where αi, βi

are non-zero algebraic integers in K satisfying (αi · OK ,m0) = 1 = (βi · OK ,m0) for

i = 1, 2. Define then

λ1 ≡ λ2 mod ×m ⇔





α1β2 ≡ α2β1 mod m0;

and

σ
(

α1β2

β1α2

)
> 0 for all real embeddings σ ∈ m∞.

Note, that the last condition means that σ(λ1) and σ(λ2) have the same sign for

each σ ∈ m∞. Also, this equivalence relation is well-defined, that is, it does not

depend on the representation of λi as a quotient αi

βi
.

Next, we define a subgroup of K×(m0) which now depends also on the infinite part

of the modulus and use it to generalize the construction of Cl(K) and Cl+(K).

Definition 3.2.4 Define

K×
m = {λ ∈ K×(m0)|λ ≡ 1 mod ×m}, O×K,m = {α ∈ O×K(m0)|α ≡ 1 mod ×m}.

Define also Im(K) to be the subgroup of I(K) generated by all primes relatively prime

with m0, and

Pm(K) = ι(K×
m ) = {a ∈ Im(K)|a = λ ·OK for some λ ∈ K×

m}.

Note that Pm(K) is a subgroup of Im(K) and that Im(K) depends only on the finite

part m0 of m (therefore sometimes, we write Im0(K) instead of Im(K) ). Finally, we

define the ray class group of modulus m by Clm(K) := Im(K)/Pm(K).

These ray class groups are finite groups like the usual class group. Indeed,

if P (m0, K) denotes the group of principal ideals Im0(K)
⋂
P (K), then we have an

isomorphism

Im0(K)/P (m0, K) ' Cl(K).
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The map Im(K) → Im0(K)/P (m0, K) induces a map

ψ : Im(K)/Pm(K) → Im0(K)/P (m0, K),

and kerψ = P (m0, K)/Pm(K). Therefore, we get the isomorphism Cl(K) ' Clm(K)/J ,

where J = P (m0, K)/Pm(K). We shall study a bit further the group J . Consider the

homomorphism

K×(m0) → P (m0, K)/Pm(K), λ 7→ (λ ·OK) · Pm(K).

This map is surjective, and its kernel is easily seen to be O×K ·K×
m . Thus

P (m0, K)/Pm(K) ' K×(m0)/(O
×
K ·K×

m ).

If we show that K×(m0)/(O
×
K · K×

m ) is a finite group, then Clm(K) would also be a

finite group. Consider the map

K×(m0) →
∏

p|m0

(
Op/m

vp(m0)
p

)×
×

∏
σ∈m∞

K×
σ /K

×
σ,+,

where Op is the localization of OK at p, mp is the unique maximal ideal of Op, K
×
σ is the

completion ofK with respect to the place σ, andK×
σ,+ is the subgroup ofK×

σ consisting

of positive elements. Using the approximation theorem, we see that this map is

surjective. Moreover, its kernel is precisely K×
m . We see from all this that Clm(K) is

a finite group. More precisely, we have:

Theorem 3.2.2 The ray class groups Clm(K) are finite groups. Let hm,K denotes its

cardinality. Then we have

hm,K = hK · φ(m0) · 2t

[O×K : O×K,m]
,

where φ is the generalized Euler φ-function and t is the number of real places in m∞.

If K = Q and m = (m) · ∞ then Clm(Q) = Clm∞(Q), the class group of the

Theorem 3.2.1. Note, moreover, that when m = OK · ∞ where ∞ = {σ1, . . . , σr} is
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the set of all real embeddings of K, then Clm(K) = Cl+(K). Also, when m = OK

then, Clm(K) = Cl(K) so ray class groups generalize both the usual class group and

the narrow class group.

We make a small digression here. Remark that for the usual class group, we have

the following exact sequence

1 → O×K → K× ι→ I(K) → Cl(K) → 1.

We see from this sequence that O×K is a measure of the non-injectivity of ι and Cl(K)

is a measure of the non-surjectivity of the same map ι. We have a similar exact

sequence for the ray class groups

1 → O×K,m → K×
m

ι→ Im(K) → Clm(K) → 1.

Recall that Weber was interested in proving that there are infinitely many prime

ideals in every class of Cl(K), and more generally in every class of Clm(K), in order

to generalize Dirichlet’s theorem to any number field. Recall also that in proving

Dirichlet’s theorem, we used the fact that every abelian extension is contained in a

cyclotomic field (the Kronecker-Weber theorem). In order to prove his theorem, Weber

supposed the existence of some fields (the ray class fields) having similar properties

as the ones cyclotomic fields have for Q. He called them class fields. Unfortunately

for him, he was not able to prove the existence of these fields even though he was

convinced of this fact. Actually, he was sure of their existence for Q and pretty sure

for a quadratic imaginary field because of the second conjecture of Kronecker. On the

other hand, assuming their existence, he proved some of their properties and he was

pretty sure that the class fields are finite abelian extension of K.

Hilbert, working on other problems, was led to stipulate the existence of some

fields with similar properties to those of Weber. Hilbert has been the first to see in

that theory a theory of abelian extensions of number fields. Then Takagi proved all the
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main theorems of class field theory. Finally, Artin introduced his famous reciprocity

law which nowadays is in the center of class field theory. We recall here the notion of

the Artin map ϕL/K (also denoted ( , L/K)).

Let L/K be a finite extension of number fields. Let p be a prime of K and P

a prime of L lying above p. Let also lP = OL/P and kp = OK/p. From algebraic

number theory, we have the following exact sequence

1 → I(P|p) → D(P|p) → Gal(lP/kp) → 1, (3.1)

where I(P|p) is the inertia group and D(P|p) the decomposition group. Suppose

now that P is unramified above p, then I(P|p) = 1 and D(P|p) ' Gal(lP/kp). By

Galois theory for finite fields, the Galois group on the right is cyclic generated by the

Frobenius x 7→ xq, where q is the cardinality of kp. Under the exact sequence (3.1),

the Frobenius corresponds to a unique K-automorphism of L in D(P|p). We call

this K-automorphism by the same name, namely the Frobenius. Now, if L/K is an

abelian extension, then the Frobenius does not depend on the prime P lying above.

Suppose from now on that L/K is abelian, and denote this Frobenius by σp. One

can show that σp is uniquely determined by the following condition. It is the unique

automorphism σ ∈ Gal(L/K) such that σ(x) ≡ xq (mod P) for all x ∈ OL, where q

is the cardinality of OK/p. The Artin map is then defined as follows.

Definition 3.2.5 Let m0 be an integral ideal of K such that all ramified primes di-

vide m0. The Artin map is defined as

ϕm0,L/K : Im0(K) → Gal(L/K), a =
t∏

i=1

pαi
i 7→

t∏
i=1

σαi
pi
.

Note that even though the Artin map depends only on the finite part of a modulus m,

we shall also use the notation ϕm,L/K for the Artin map. We are now almost ready to

state the main theorem of class field theory which classifies finite abelian extensions
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of a number field, but in order to get all finite abelian extensions of K we have to

consider also quotients of ray class groups.

Definition 3.2.6 An ideal subgroup modulo m is a group Hm satisfying the two in-

clusions Pm(K) < Hm < Im(K). For each ideal subgroup modulo m, we define also a

class group, namely

Clm,Hm(K) = Im(K)/Hm ' Clm(K)/ (Hm/Pm(K)) .

Recall also that a real embedding σ of K is called ramified in a finite extension L/K

if there exists a complex embedding τ of L such that τ |K = σ. We can now state the

first main theorem of class field theory.

Theorem 3.2.3 Let L/K be an abelian extension and let m be a modulus divisible

by all primes of K, finite or infinite, that ramify in L.

• The Artin map ϕm,L/K is surjective.

• If the exponents of the finite primes in m are sufficiently large, then ker(ϕm,L/K)

is a congruence subgroup modulo m, that is Pm(K) < ker(ϕm,L/K) < Im(K), and

consequently, the Artin map gives us the isomorphism

Im(K)/ker(ϕm,L/K) ' Gal(L/K).

Remark: The condition ”for sufficiently large” seems weird at first. It should be

clear after the definition of the conductor (below) what we mean: The conductor

should divide m. See Theorem 3.2.7.

This last theorem can be satisfied by more than one modulus. In order to have

a bijective correspondence between abelian extensions and some classifying objects,

we shall introduce an equivalence relation between congruence subgroups. The ideal

classes obtained in this way will be the classifying objects for finite abelian extensions.
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Definition 3.2.7 Let m1 and m2 be two moduli, Hm1 an ideal subgroup modulo m1

and Hm2 an ideal subgroup modulo m2. Then

Hm1 ∼ Hm2 ⇔ There exists a modulus m s.t. Hm1 ∩ Im(K) = Hm2 ∩ Im(K).

An equivalence class [Hm] of ideal subgroups is called an ideal group.

Theorem 3.2.4 Let m1 and m2 be two modulus, Hm1 be an ideal subgroup modulo m1

and Hm2 an ideal subgroup modulo m2. If Hm1 ∼ Hm2, then both class groups are

isomorphic: Clm1,Hm1
(K) ' Clm2,Hm2

(K). Thus, if H = [Hm] is an ideal group, we

can talk about the class group of H. More precisely, ClH(K) = Clm,Hm(K).

We define next the conductor of an ideal group, but before that here are some pre-

liminaries. The next definition extend divisibility of integral ideals to modulus.

Definition 3.2.8 Write m1 = m0,1 · m∞,1 and m2 = m0,2 · m∞,2. We say that m1|m2

if m0,1|m0,2, and m∞,1 ⊆ m∞,2. Therefore, it makes sense to talk about the gcd of two

moduli, gcd(m1,m2) = gcd(m0,1,m0,2) · (m∞,1 ∩m∞,2).

Theorem 3.2.5 If H is an ideal group (i.e. an equivalence class of ideal subgroups),

and Hm1, Hm2 ∈ H, where Hmi
is an ideal subgroup modulo mi. Let m = gcd(m1,m2).

Then there exists an ideal subgroup Hm modulo m such that Hm ∈ H.

Definition 3.2.9 Let H be an ideal group. The gcd of all m for which there exists

an ideal subgroup Hm ∈ H is called the conductor of H and is denoted by f = f(H). f

is thus characterized by the two conditions:

• Hf ∈ H.

• Hm ∈ H ⇒ f|m.

Note also that if H is an ideal group and m is a modulus, then there is at most one

ideal subgroup modulo m in H. We denote it by Hm.

We can now precise Theorem 3.2.3.
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Theorem 3.2.6 To any finite abelian extension L/K, there exists a unique ideal

group H such that ClH(K) ' Gal(L/K), and the isomorphism is given by the Artin

map for any modulus m such that there exists a Hm in H.

Definition 3.2.10 Let L be a finite abelian extension of K. Then the conductor

of L/K is the conductor of the ideal group corresponding to it under the last theorem.

It is denoted by f(L/K).

Theorem 3.2.7 Let L/K be a finite abelian extension of K.

• A prime p of K (finite or infinite) is ramified in L if and only if p|f(L/K).

• Let m be a modulus divisible by all primes (finite or infinite) which are ramified

in L. Then ker(ϕm,L/K) is a congruence subgroup modulo m that is Pm(K) <

ker(ϕm,L/K) < Im(K) if and only if f(L/K)|m.

We also have the converse of Theorem 3.2.3, namely

Theorem 3.2.8 Let m be a modulus of K and let Hm be a congruence subgroup

modulo m, that is Pm(K) < Hm < Im(K). There exists then a unique abelian exten-

sion L/K such that its ramified primes (finite or infinite) divide m and such that the

Artin map ϕm,L/K : Im(K) → Gal(L/K) gives us the isomorphism

Clm,Hm(K) = Im(K)/Hm ' Gal(L/K),

i.e. Hm = ker(ϕm,L/K).

We thus have a one-to-one and onto correspondence between the ideal groups and

the finite abelian extension of K. This correspondence is actually order reversing. To

understand this last fact, we have to explain the order relation on the set of ideal

groups.

Definition 3.2.11 Let H1 and H2 be two ideal groups for K. We say that H1 ⊆ H2

if there exists a modulus m, an H1,m ∈ H1 and an H2,m ∈ H2 such that H1,m ⊆ H2,m.

After this definition, we can state:
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Theorem 3.2.9 Let L and M be two finite abelian extensions of K. Let HL and HM

be their corresponding ideal group. Then L ⊆M if and only if HL ⊇ HM .

3.2.1 Ray class fields and the Hilbert class field

Definition 3.2.12 Let K be a number field and m any modulus. The finite abelian

extension of K corresponding to the ideal subgroup Pm(K) is called the ray class field

of modulus m and is denoted Km.

By the theorems above, we have Gal(Km/K) ' Clm(K) and every abelian extension is

contained in a ray class field for some modulus m. We have another characterization

of the conductor, namely:

Theorem 3.2.10 Let L/K be an abelian extension. The conductor f(L/K) is the

g.c.d. of all modulus m such that L ⊆ Km.

It is thus the smallestKm such thatK ⊆ Km. The ray class fields are the generalization

of the cyclotomic fields for the base field Q. Indeed:

Theorem 3.2.11 Let K = Q and let m ∈ Z. The ray class fields corresponding to

the modulus m = mZ·∞ is Q(ζm) and the ones corresponding to the modulus m = mZ

is Q(ζm + ζ−1
m ), that is, the maximal real subfield of Q(ζm).

On the other hand, for a general base field K, we do not know explicit generators for

the ray class fields Km (as the roots of unity for Q). When K is quadratic imaginary,

such generators can be given by the main theorems of complex multiplication.

Among the ray class fields, two are particularly important: The Hilbert class

fields. There are two notions of a Hilbert class field of a number field K. One is the

small Hilbert class field, denoted by HK , and the other is the big Hilbert class field,

denoted by H+
K . They are defined as follows:

• The small Hilbert class field (or Hilbert class field) is the ray class field associated

to the modulus m = OK .
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• The big Hilbert class field (or the narrow Hilbert class field) is the ray class field

associated to the modulus m = OK · ∞ where ∞ = {σ1, . . . , σr} is the set of all

real embeddings of K.

A direct consequence of the theorems above is that Gal(HK/K) ' Cl(K) and also

that Gal(H+
K/K) ' Cl+(K). We also have HK ⊆ H+

K by Theorem 3.2.9. The Hilbert

class fields have the following property

Theorem 3.2.12 The small Hilbert class field is the maximal finite everywhere un-

ramified abelian extension of K. In other words, if L/K is a finite abelian extension

such that all finite and infinite primes are unramified then L ⊆ HK.

Proof:

Let L be a finite unramified abelian extension of K at every prime (including the

infinite ones) and f = f(L/K) its conductor. By Theorem 3.2.7, f = OK since all

primes are unramified. By the second part of the same theorem, ker(ϕOK ,L/K) is a

congruence subgroup that is POK
(K) ⊆ ker(ϕOK ,L/K). Then by Theorem 3.2.9, we

necessarily have L ⊆ HK .

2

Theorem 3.2.13 The big Hilbert class field is the maximal finite unramified abelian

extension of K (excluding the infinite primes). In other words, if L/K is a finite

abelian extension such that all finite primes are unramified then L ⊆ H+
K.

Proof:

Let L be a finite unramified abelian extension of K at the finite primes and f its

conductor. Set also m = OK · ∞. Since all finite primes are unramified in L, m is

divisible by all ramified primes and f|m. By the second part of the Theorem 3.2.7, the

group ker(ϕm,L/K) is a congruence subgroup modulo m, that is Pm(K) ⊆ ker(ϕm,L/K).

Then by Theorem 3.2.9, we necessarily have L ⊆ H+
K .

2

Remark: When K is totally complex, then HK = H+
K .
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3.3 Generalized L-series

In order to prove his theorem on the infinitude of primes in any ideal class, Weber

generalized the notion of Dirichlet series to any number field.

Definition 3.3.1 Let m be a modulus and Clm(K) the ray class group modulo m.

Let χ : Clm(K) → C× be a character. We extend the definition of χ to any integral

ideal of K by setting χ(a) = χ([a]) if (a,m0) = 1, and χ(a) = 0 if (a,m0) 6= 1. The

generalized Dirichlet L-series modulo m is defined to be

L(s, χ) =
∑

a6=0

χ(a)

N(a)s
,

where the sum is taken over all non-zero integral ideal of K.

If χ 6= χ1, then L(s, χ) represents an analytic function for Re(s) > 1− 1
[K:Q]

. For χ1,

it represents an analytic function for Re(s) > 1. They also have an Euler product

L(s, χ) =
∏

p

(
1− χ(p)

N(p)s

)−1

,

valid for Re(s) > 1.

3.4 Artin L-functions

First of all, the main reference for this section is [48]. The class of Artin L-

functions contains all L-series we have seen so far. Moreover, they are defined for any

finite galois extension of number fields not necessarily abelian. When the extension

is abelian, they reduced to the ones above. We introduce Artin L-functions here in

order to explain Stark’s conjectures in Chapter 4.

Let K/k be a finite galois extension of number fields. Let ρ : Gal(K/k) → GL(V)

be a finite dimensional complex representation of G = Gal(K/k) with character χ.

Let p be a prime ideal of k and P be any prime ideal of K above p. Recall from

Equation (3.1) that we have the isomorphism

D(P|p)/I(P|p) ' Gal(KP/kp).
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We will denote the coset corresponding to the Frobenius element of Gal(KP/Kp)

by σP. This coset induces a well-defined automorphism on

V I(P|p) = {v ∈ V |σ · v = v, for all σ ∈ I(P|p)}.

We can now define the Artin L-function:

L(s, ρ,K/k) :=
∏

p

1

det(1− σPN(p)−s|V I(P|p))
.

Remark: The notation det(1 − σPN(p)−s|V I(P|p)) means the determinant of the

operator 1− σPN(p)−s acting on V I(P|p).

Using a standard argument on infinite product, one can show that the Artin

L-function represents an analytic function for Re(s) > 1. The argument goes as

follows. It suffices to prove that the product is absolutely and uniformly convergent

on any half-plane Re(s) ≥ 1 + δ for any δ > 0. This is equivalent to the convergence

(absolutely and uniformly) of the following series:

∑
p

log

(
1

det(1− σPN(p)−s|V I(P|p))

)
,

where the log is given by the principal branch. Note that we can decompose the

determinant as follows:

det(1− σPN(p)−s|V I(P|p)) =

dP∏
i=1

(1− εiN(p)−s),

where the εi are roots of unity, and dP = dim(V I(P|p)). This is true because the

operator 1− σPN(p)−s preserves the hermitian pairing H(x, y) :=
∑

σ∈G < σx, σy >,

where < , > is the usual hermitian product on V (after having chosen a basis). There-

fore, this operator is diagonalizable and moreover the eigenvalues are roots of unity

since Gal(K/k) is a finite group. Thus we are led to consider the series

∑
p

dP∑
i=1

log(1− εiN(p)−s)−1.
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Using the usual series for the logarithm, this last series is equal to

∑
p

dP∑
i=1

∞∑
n=1

εn
i

nN(p)ns
.

But, we have the following chain of inequalities:

∑
p

dP∑
i=1

∞∑
n=1

∣∣∣∣
εn

i

nN(p)ns

∣∣∣∣ ≤ dim(V )
∑

p

∞∑
n=1

1

nN(p)nRe(s)

≤ dim(V ) · [K : k] ·
∑

p

∞∑
n=1

1

npn(1+δ)

≤ dim(V ) · [K : k] · log ζ(1 + δ).

We can conclude with this last inequality.

It is also known (using Brauer’s theorem on induced representations) that the

Artin L-functions can be extended to a meromorphic function on the complex plane.

If ρ′ is an equivalent representation, it is known that the corresponding Artin

L-functions agree. Therefore, we can write L(s, χ,K/k) instead of L(s, ρ,K/k) since

two representations are equivalent if and only if they have the same character.

The Artin L-functions have three fundamental properties that we record in the

next theorem.

Theorem 3.4.1 The Artin L-functions behave as follows under direct sum, induction

and inflation:

• L(s, χ+ χ′, K/k) = L(s, χ,K/k) · L(s, χ′, K/k).

• Suppose we have k ⊆ L ⊆ K and that χ is a character of H = Gal(K/L), then

L(s, IndG
H(χ), K/k) = L(s, χ,K/L).

• Suppose we have k ⊆ L ⊆ K, H = Gal(K/L) is a normal subgroup of G, and χ

is a character of G/H ' Gal(L/k), then L(s, Infl(χ), K/k) = L(s, χ, L/k).
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How do we get back the Dedekind zeta functions from these new ones? Taking the

trivial representation ρ = 1, we get

L(s, 1, K/k) = ζk(s).

When K/k is an abelian extension, then we get back the generalized Dirichlet

L-series up to a finite Euler product. This is the content of the next theorem.

Theorem 3.4.2 Let K/k be an abelian extension, let f be the conductor of K/k and

let χ 6= χ1 be an irreducible character of Gal(K/k). Consider the sequence of maps:

Clf(K) → Clf(K)/Hf ' Gal(K/k)
χ→ C×.

Through this last sequence of maps, we can consider χ as a character on Clf(K). We

shall denote it by χ′ and we consider the generalized Dirichlet L-series L(s, χ′).

We then have the following equality:

L(s, χ,K/k) =
∏
p∈S

(
1− χ(σP)

N(p)s

)−1

· L(s, χ′),

where S = {primes p |χ(I(P|p)) = 1, and p|f}.
3.4.1 Functional equation

While studying the distribution of prime numbers, Riemann was led to prove

a functional equation for the Riemann zeta function. This allowed him to extend

the definition of this function to the whole complex plane and along the way he

stated his famous Riemann hypothesis, which is still unproved. Here, we state the

functional equation for Artin L-functions. We give first the definition of the relevant

mathematical objects.

Let V be a finite complex representation of Gal(K/k) with character χ. The

Artin conductor of χ is defined as follows. Let p be a prime ideal of k and let P be a

prime ideal of K lying above p. Let Gi(P|p) be the higher ramification groups. Note
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that G0(P|p) = I(P|p). Define

f(χ, p) =
∞∑
i=1

|Gi(P|p)|
|I(P|p)| · codim(V Gi(P|p)).

Note first that this sum is a finite sum, and that this number does not depend on

the prime P lying above p. It is also known that this number is actually an integer

though it is not clear from the definition. Define then the Artin conductor of χ to be

the integral ideal of k:

f(χ) =
∏

p

pf(χ,p).

Next, for any infinite real place v of k, let w be a place of K lying above v, and let

n+ = dim(V D(w|v)), n− = codim(V D(w|v)).

These numbers depend only on v. Define then

Lv(s, χ,K/k) =





ΓR(s)
n+ · ΓR(s+ 1)n− , for v real;

(ΓR(s) · ΓR(s+ 1))χ(1), for v complex,

where ΓR(s) = π−s/2Γ(s/2). Let also ∞ denote the set of all infinite primes of k.

We can now define the completed Artin L-function Λ:

Λ(s, χ,K/k) =
(|∆K |χ(1) · N(f(χ))

)s/2 ·

∏

v|∞
Lv(s, χ,K/k)


 · L(s, χ,K/k).

Theorem 3.4.3 The completed Artin L-function satisfies the following functional

equation:

Λ(1− s, χ,K/k) = W (χ) · Λ(s, χ,K/k),

where χ is the character of the dual representation and W (χ) is a complex number of

norm one such that W (1) = 1 (W (χ) is called the Artin root number).
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CHAPTER 4
Stark’s conjectures

The main reference for this chapter is [73]. For another nicely written reference

in english, see [12]. Moreover, the papers by Stark are still interesting, see [68], [69],

[70], and [71].

For the abelian rank one conjecture, see in particular Chapter 4 of [68].

Recall Formula 2.7 of Chapter 2 for a quadratic field K = Q(
√
d):

L(1, χ) =





2 log ε√
|∆K |

· hK , if d > 0;

2π

ωK

√
|∆K |

· hK , if d < 0,

where again χ is the non-trivial character of Gal(K/Q), hK is the class number, ∆K

is the discriminant, ε is the fundamental unit in the case where d > 0, and ωK is the

number of roots of unity in K.

Stark’s conjecture is an attempt to generalize this last formula to any general

Artin L-function. As Stark noticed, it seems to be more natural to look at s = 0

instead of s = 1. Indeed, for instance, we have

ζK(s) =
2r1+r2πr2Reg(K)

ωK

√
|∆K |

· hK · 1

s− 1
+O(s− 1),

but using the functional equation for the Dedekind zeta function (which is a particular

case of the general functional equation of an Artin L-function with χ = χ1, see

Theorem 3.4.3), we get the following formula for the Taylor series at s = 0:

ζK(s) = −hKReg(K)

ωK

sr1+r2−1 +O(sr1+r2).

This last formula is much simpler.
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LetK/k be any finite galois extension of number fields. LetG = Gal(K/k), and V

be a finite dimensional complex representation of G with character χ. Following Tate,

we shall work with any finite set of primes S containing the set of infinite ones S∞.

In that case, we define

LS(s, χ,K/k) =
∏

p/∈S

1

det(1− σPN(p)−s|V I(P|p))
.

This function also represents an analytic function on Re(s) > 1, and can be ex-

tended to a meromorphic function on the complex plane. Write the Taylor expansion

of LS(s, χ,K/k) at s = 0:

LS(s, χ,K/k) = cS(χ)srS(χ) +O(srS(χ)+1).

The order rS(χ) is known explicitly:

Theorem 4.0.4 For any v ∈ S, let w be any place of K lying above v. The or-

der rS(χ) is given by the formula

rS(χ) =
∑
v∈S

dim(V D(w|v))− dim(V G).

We get as an immediate consequence the following corollary:

Corollary 4.0.1 If χ is the character of a one-dimensional representation, then

rS(χ) =





|S| − 1, if χ = χ1;

|{v ∈ S |χ(D(w|v)) = 1}|, if χ 6= χ1.

Stark’s conjecture is an attempt to describe cS(χ). We will not state the general

non-abelian Stark conjecture, see [73]. Instead, we shall present the abelian rank one

conjecture that Stark gave. In that case, it is more precise and predicts the existence

of a unit which is called a Stark unit. First, we recall here the definition of S-units
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in a number field K, where S is a finite set of primes of K containing S∞:

O×K,S := {λ ∈ K
∣∣ |λ|w = 1, for all w /∈ S}.

Note, that when S = S∞, one gets back the usual units of OK .

Suppose now that K/k is an abelian extension of number fields. Let S be a set

of primes of k satisfying:

S1. |S| ≥ 2;

S2. S contains S∞ and all primes which ramify in K;

S3. S contains at least one place which splits completely in K.

Note that v splits completely if and only if D(w|v) = 1. Therefore, the conditions that

we impose on S are precisely the ones that we should ask in order to have rS(χ) ≥ 1

by Corollary 4.0.1.

Let now SK denotes the set of primes of K lying above those in S. Fix a place v

of S which splits completely in K, and fix a w in SK above v. If |S| ≥ 3, define

U v = {u ∈ O×K,SK

∣∣ |u|w′ = 1, for all w′ - v}.

If S = {v1, v2}, and w2 is above v2, then define

U v = {u ∈ O×K,SK

∣∣ |u|σw2 = |u|w2 , for all σ ∈ G}.

Finally, define

Uab
K/k = {u ∈ O×K,SK

|K(u
1

ωK )/k is an abelian extension}.

Conjecture 4.0.1 (Stark) There exists a S-unit ε ∈ Uab
K/k

⋂
U v such that

L′S(0, χ,K/k) = − 1

ωK

∑
σ∈G

χ(σ) log |εσ|w,

for all χ ∈ Ĝ.
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The ε in the conjecture is called a Stark unit, and we shall denote this conjecture by

St(K/k, S, v).

Theorem 4.0.5 The conjecture St(K/k, S, v) is true if S contains another totally

split place v′.

Note that this last theorem is trivial if either |S| = 2 and χ 6= χ1, or |S| ≥ 3. Indeed,

it suffices to take ε = 1. The interesting case is thus when we have simultaneously

|S| = 2 and χ = χ1.

Therefore, the conjecture is independent of the choice of v in S, so from now on,

we shall denote St(K/k, S, v) by St(K/k, S). Some consequences follow from this last

theorem.

Corollary 4.0.2 The conjecture St(k/k, S) is true.

Corollary 4.0.3 If S contains two complex places, then St(K/k, S) is true.

Corollary 4.0.4 If S contains a finite place v which splits completely and k is not

totally real then St(K/k, S) is true.

What happens if we change the set S? It is clear that if S ⊆ S ′, then S ′ satisfies

also properties S1, S2, and S3.

Theorem 4.0.6 If the conjecture St(K/k, S) is true, then St(K/k, S ′) is true for

any S ′ ⊇ S.

It is also clear that if S satisfies the condition S1, S2, and S3 for K/k then S satisfies

them also for any intermediate field k ⊆ L ⊆ K.

Theorem 4.0.7 If k ⊆ L ⊆ K, then St(K/k, S) implies St(L/k, S).

This conjecture is also known to be true for the base fields Q and k = Q(
√
d),

with d < 0. In the latter case, Stark used the theory of elliptic units that has been

introduced by Siegel. We will give an introduction to these units in Chapter 5.
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CHAPTER 5
Classical theory of elliptic units

We used several books for this section. For the theory of elliptic functions, we

used [35] amongs other. See also [36], [41] and [81]. For a historical survey of these

functions which were so important for the development of mathematics in the XIXth

century, see the article of Houzel in either [29] or [16].

The theory of elliptic curves can be found in [35] or in [66].

The theory of classical modular function is often presented only for some partic-

ular groups and this presentation is often ad hoc. For a more general perspective, we

found really useful the following two references: [64] and [61].

For the theory of complex multiplication of elliptic curves, the book [5] is good

for a first reading. Then, we used also [11], the article of Jean-Pierre Serre in [8] and

[15].

5.1 Introduction

Let K be an imaginary quadratic number field and let Km be any ray class field

modulo m, for some modulus m. In [65], Siegel gave a class number formula relating

both class numbers hKm and hK . First he computed the values of L-series at s = 1

using Kronecker’s limit formula, and by the way he constructed some units in Km.

These units are now called elliptic units and they have been studied by Ramachandra

in [51] and Robert in [55].

Stark used this construction in order to prove his rank one abelian conjecture

when the base field is a quadratic imaginary field.

In this chapter, we present the background in order to understand Siegel’s con-

struction and then we give a sketch of the proof of Stark’s conjecture when the base

field is quadratic imaginary.
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5.2 Elliptic functions and elliptic curves

The theory of elliptic functions is a vast subject and it is difficult to get acquainted

with it. One can view the birth of several mathematical disciplines in the development

of this theory (such as Riemann surfaces and some topics in algebraic topology). We

shall first explain how people got interested in these and then state the main results.

In the XVIth and XVIIth centuries, calculus has been mostly invented by Got-

tfried Leibniz (1646-1716) and Issac Newton (1643-1727). It was then natural to try

to compute the arc length of an ellipse. Let

x2

a2
+
y2

b2
= 1,

where a > b > 0, be the equation of an ellipse. Given any curve y = f(x) of class C1,

the arc length between two points is given by the formula

L(λ1, λ2) =

∫ λ2

x=λ1

√
1 + f ′(x) dx.

If we compute the arc lentgh of the ellipse above with λ1 = 0 we get

L(λ) =

∫ λ

x=0

√
a2 − ex2

a2 − x2
dx =

∫ λ

x=0

a2 − ex2

√
(a2 − x2)(a2 − ex2)

dx, (5.1)

where e = 1 − b2

a2 . Other integrals coming from physical problems lead to similar

integrals. An integral of the type

∫
R(x, y) dx,

where R is a rational function in x and y, and y =
√
P (x) for some cubic or quar-

tic polynomial P (x), is called an elliptic integral (because of the particular case of

the ellipse). Mathematicians suspected that these are not integrable by elementary

functions (rational functions, trigonometric function, exp, log, etc). Adrien-Marie

Legendre (1752-1833) wrote a treatise on elliptic integrals and reduced them to three

types:
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• F (k, x) =
∫ x

t=0
1√

(1−t2)(1−k2t2)
dt,

• E(k, x) =
∫ x

t=0
1−k2t2√

(1−t2)(1−k2t2)
dt,

• Π(k, n, x) =
∫ x

t=0
1

(1+nt2)
√

(1−t2)(1−k2t2)
dt,

which are called elliptic integrals of the first, second and third type, respectively. Note

that if in Equation (5.1) we set e = k2 and make the change of variable x = au then

we get an elliptic integral of the second kind.

In order to study these integrals, Abel and Carl Jacobi (1804-1851) had the

idea of inverting these integrals and study instead their inverses. Consider the arcsin

function

u = arcsin(x) =

∫ x

t=0

1√
1− t2

dt,

where −1 ≤ x ≤ 1. It is easier to work with the inverse sin(u) = x. In particular, we

have the addition formula

sin(u+ v) = sin(u)
√

1− sin2(v) +
√

1− sin2(u) sin(v).

Recall that an addition formula for a function f is an algebraic relation of the

form F (f(u + v), f(u), f(v)), where F is a polynomial. Here is an example lead-

ing to the concept of elliptic function. Set u(x) = F (k, x), the elliptic integral of

the first kind. Set also K =
∫ 1

t=0
1√

(1−t2)(1−k2t2)
dt. Define for −K ≤ u ≤ K, the

inverse x = sn(u) which is called a Jacobian elliptic function because he used it ex-

tensively during his research on elliptic functions. This function also has an addition

theorem:

sn(u + v) =
sn(u)

√
1− sn2(v)

√
1− k2sn2(v) + sn(v)

√
1− sn2(u)

√
1− k2sn2(u)

1− k2sn2(u)sn2(v)
.

Using this addition theorem, we can extend sn(u) to all real values of u. Moreover

this function is periodic of period 4K, that is sn(u + 4K) = sn(u). While Augustin

Louis Cauchy (1789-1857) was developping his theory of complex integration, it was

natural to try to extend the definition of an elliptic function to complex variables as
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mathematicians did for the trigonometric functions. There is one big problem now.

Consider the complex integral

L(a, b) =

∫

γ

R(z,
√
P (z)) dz,

where γ is a C1 path going from a to b, R is a rational function, and P (z) is a

polynomial of degree 3 or 4. When the variable is real, we are able to chose a canonical

root using the order relation on R. We do not have such an order relation on C so

this expression is ambigous. Riemann discovered the theory of Riemann surfaces (or

created depending on the point of view!) precisely because he was trying to explain

the meaning of such integrals. One can fully understand this expression only within

this theory. Before Riemann, mathematicians tried to study these integrals in many

ways. One soon noticed that the inverse of such integrals are doubly periodic functions

on the complex plane and that they still satisfy an addition theorem. As we will see,

the addition theorem of elliptic functions is an important property of these functions.

Joseph Liouville (1809-1882) and Gotthold Eisenstein (1823-1852) have been the first

ones to study doubly periodic functions without any references to elliptic integrals.

Liouville’s approach was more function theoretical and Eisenstein’s approach more

constructive.

5.2.1 Liouville’s approach

Starting, as Liouville did, with an arbitrary meromorphic function f : C → C,

we call such a function doubly periodic if there exist two numbers ω1 and ω2 such

that f(z + ω1) = f(z + ω2) = f(z) for all z ∈ C. If ω1/ω2 is rational, then one can

show that f reduces to a function with only one period (singly periodic function) and

if ω1/ω2 is irrational (∈ R − Q) then Jacobi showed that the function reduces to a

constant. So we are led to the following definition:
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Definition 5.2.1 Let ω1 and ω2 be two R-linearly independent periods in C (so the

quotient ω1/ω2 is not real). An elliptic function is a complex-valued meromorphic

function f such that f(z + ω1) = f(z + ω2) = f(z), for all z ∈ C.

It is then clear from the definition that if Λ = Zω1 ⊕ Zω2, then f(z + ω) = f(z)

for all ω ∈ Λ. A discrete free Z-module of rank 2 contained in C is called a lattice.

The Z-module Λ above is such a lattice and every lattice in C is of this form for

some R-linearly independent numbers (ω1, ω2). Given a lattice Λ = Zω1 ⊕ Zω2, the

set P = {z = t1ω1 + t2ω2 ∈ Λ|0 ≤ t1, t2 < 1} is called a fundamental parallelogram

for Λ. C is then the disjoint union C =
∐

ω∈Λ(ω+P ). The set of all elliptic functions

for a fixed lattice Λ is clearly a field and we denote this field by CE,Λ. We state here

Liouville’s theorems. For these theorems, fix a lattice Λ and an elliptic function f for

this lattice.

Theorem 5.2.1 (Liouville) If f is entire (holomorphic on all C) then f is constant.

Theorem 5.2.2 (Liouville) The sum of the residues of f in a fundamental paral-

lelogram P is equal to zero (counting multiplicities).

Theorem 5.2.3 (Liouville) The number of zeros of f in a fundamental parallelo-

gram P is equal to the number of its poles (counting multiplicities).

5.2.2 Eisenstein’s approach

Eisenstein’s approach was to construct directly doubly periodic functions. He

defined for n ≥ 1 the following function. Let Λ = Zω1 ⊕ Zω2 be a lattice in C, then

define

En(z) =
∑
ω∈Λ

1

(z + ω)n
=

∑

m1,m2∈Z

1

(z +m1ω1 +m2ω2)n
.

For n ≥ 3 there is no problem and these series are absolutely convergent. For n = 1, 2

we have to define a summation process, namely Eisenstein summation given by

∑
e

= lim
N→∞

N∑
−N

(
lim

M→∞

M∑
−M

)
.

These functions En(z) are elliptic functions with respect to the lattice Λ.
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For more details, and to see how Kronecker improved Eisenstein’s work, see the

marvelous little book [79] by Weil. We just introduced Eisenstein’s work because now

it is more natural to introduce the Weierstrass ℘-function.

5.2.3 Weierstrass’ theory

Weierstrass’ theory provides the link between elliptic functions and algebraic

geometry, namely the concept of elliptic curves which is more suitable for arithmetical

purpose than the analytic theory of elliptic functions.

Let Λ = Zω1⊕Zω2 be a lattice in C. Weierstrass defined the so-called ℘-function

(actually, he found it by taking the second derivative of the logarithm of the σ-function

which he introduced before in relation with his theory on the development of entire

functions as infinite convergent products)

℘(z,Λ) = ℘(z) =
1

z2
+

∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

When there is no danger of confusion, we simply write ℘(z) instead of ℘(z,Λ). In

contrast to E2(z), this series converges absolutely and uniformly, so it represents a

meromorphic function on C. The periodicity is, on the other hand, less obvious than

for E2(z). Anyway, one can prove that ℘(z) is an elliptic function for Λ. The derivative

is

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
,

and note that the derivative of an elliptic function is still an elliptic function for the

same lattice.

Theorem 5.2.4 We have CE,Λ = C(℘(z,Λ), ℘′(z,Λ)) or in words: The field of ellip-

tic functions for the fixed lattice Λ is generated by ℘(z) and ℘′(z).

The Weierstrass ℘-function satisfies also an addition theorem:
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Theorem 5.2.5 (Addition theorem) The Weierstrass function satisfies the fol-

lowing addition formula

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

,

for all z1, z2 ∈ C.

It is also known that the only functions defined over C with an addition theorem are

the elliptic functions, the trigonometric functions and the rational functions. More-

over, ℘ satisfies a differential equation. Define first

Gk =
∑
ω∈Λ
ω 6=0

1

ωk
.

This series converges absolutely for k ≥ 3. Note also that for odd k, Gk = 0.

Theorem 5.2.6 As is traditional, set g2 = g2(Λ) = 60G4 and g3 = g3(Λ) = 140G6.

Then we have the following differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z) + g3

and g3
2 − 27g2

3 6= 0.

This differential equation provides the link between elliptic functions and algebraic

geometry. Indeed, the equation y2 = 4x3−g2x−g3 defines a curve and Theorem 5.2.6

means that the point (℘(z), ℘′(z)) lies on this curve (the fact that g3
2−27g2

3 6= 0 means

that the curve is non-singular). The converse is also true, namely:

Theorem 5.2.7 Suppose that c2 and c3 are two complex numbers satisfying the con-

dition c32 − 27c23 6= 0. Then the equation y2 = 4x3 − c2x − c3 defines a non-singular

algebraic curve and there exists two R-linearly independent periods ω1 and ω2 such

that g2(ω1, ω2) = c2 and g3(ω1, ω2) = c3.

5.2.4 Elliptic curves

As explained above, the curve with equation y2 = 4x3− g2x− g3 is parametrized

by elliptic functions. Complex algebraic curves which can be parametrized by elliptic
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functions are called elliptic curves. Alfred Clebsch (1833-1872) discovered other curves

that can be parametrized by these, for example the intersection of two quadrics in

the affine space A3(C) admits such a parametrization.

Next, if we introduce some topological notions, we can characterize elliptic curves

through their genus. It is true that every non-singular projective algebraic curve

gives via the implicit function theorem a compact Riemann surface. It is also true

that a Riemann surface is a non-singular projective algebraic curve if and only if it

is compact. The Riemann surface associated with the projectivization of the curve of

equation y2 = 4x3 − g2x − g3 is a torus, namely C/Λ. The field of elliptic functions

for the lattice Λ is isomorphic to the field of meromorphic functions on C/Λ. One can

show that every non-singular algebraic curve of genus 1 defined over C is isomorphic

to the projectivization of a non-singular plane cubic with equation y2 = 4x3−g2x−g3,

where g3
2 − 27g2

3 6= 0. We can reinterpret Theorem 5.2.6 and 5.2.7 as follows:

Theorem 5.2.8 Given any elliptic curve E defined over C in the projective form

y2z = 4x3 − c2xz
2 − c3z

3,

there exists a lattice Λ = Zω1 ⊕ Zω2 such that g2(Λ) = c2, g3(Λ) = c3 and such that

the map C/Λ → E(C) defined by

z + Λ 7→





[℘(z) : ℘′(z) : 1] if z /∈ Λ;

[0 : 1 : 0] if z ∈ Λ,

is a biholomorphic map.

Therefore, over C, we can view an elliptic curve as a torus C/Λ for some lattice Λ.

We can then tranport the structure of the abelian group C/Λ on the curve E. We

get this really nice geometric interpretation called secant-tangent process. Using the

addition theorem for the Weierstrass function, we can describe explicitly this group

law on the coordinates of the points of E and thus define this group law algebraically.
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Kronecker already used this in his research on elliptic functions. This allows one to

extend the definition of the group law to elliptic curves defined over any field. The

modern notion of an elliptic curve is the following:

Definition 5.2.2 Let k be an algebraic closed field. An elliptic curve over k is a

non-singular (irreducible) projective curve E, which is also a group, and such that the

group law

+ : E × E → E

and the inverse map

− : E → E

are morphisms of algebraic varieties.

Remark: One can prove that the group law is necessarily commutative. This is why

we use the additive symbol +. Moreover, one can show that a non-singular projective

curve which has a group law given by an algebraic map is necessarily of genus one.

An alternative definition for an elliptic curve is thus a non-singular curve of genus one

with a distinguished point (the zero element).

We shall now explain the link between the analytic structure of C/Λ and the

algebraic structure of the associated elliptic curve.

Definition 5.2.3 Let E1 and E2 be elliptic curves. A morphism of elliptic curves is

an algebraic morphism φ : E1 → E2 such that φ is also a group homomorphism. The

set of all morphisms of elliptic curves between E1 and E2 is denoted by Hom(E1, E2).

A morphism φ : E1 → E2 is called an isomorphism if there exists another mor-

phism ψ : E2 → E1 such that φ ◦ ψ = idE2 and ψ ◦ φ = idE1. If E1 = E2, then a

morphism is called an endomorphism and we denote the ring of endomorphisms of an

elliptic curve E by End(E).
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Let Ei ' C/Λi be elliptic curves defined over C, (i = 1, 2). If φ ∈ Hom(E1, E2), then

it is given by rational functions and therefore it induces a holomorphic map

φ̄ : C/Λ1 → C/Λ2,

such that φ̄(0) = 0. Actually, this correspondence is a bijection (in fancy language,

we have an equivalence of categories).

Theorem 5.2.9 Let Ei ' C/Λi be elliptic curves defined over C (i = 1, 2) and

let φ ∈ Hom(E1, E2). Then the correspondence φ 7→ φ̄ makes the following diagram

commutative
E1

'−−−→ C/Λ1

φ

y
yφ̄

E2
'−−−→ C/Λ2

,

and this correspondence is a bijection between Hom(E1, E2) and the set of holomorphic

maps φ : C/Λ1 → C/Λ2 such that φ(0) = 0.

Theorem 5.2.10 Let Ei ' C/Λi be elliptic curves (i = 1, 2). Let φ : C/Λ1 → C/Λ2

be a holomorphic map such that φ(0) = 0. There exists a linear map Lφ : C→ C such

that Lφ(Λ1) ⊆ Λ2 and such that the following diagram is commutative

C
Lφ−−−→ Cy

y
C/Λ1

φ−−−→ C/Λ2

.

This gives a bijection between

{C-linear map L : C→ C such that L(Λ1) ⊆ Λ2},

and

{holomorphic maps φ : C/Λ1 → C/Λ2 s.t. φ(0) = 0}.

According to these theorems, we identify Hom(E1, E2) with the set {α ∈ C|αΛ1 ⊆ Λ2}
since every C-linear map L : C → C is of the form L(z) = α · z for some α ∈ C. In
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particular, if E1 = E2 = E ' C/Λ, then we identify End(E) with the set

{α ∈ C|αΛ ⊆ Λ}.

In Section 5.4 of this chapter, we will explain the link between elliptic curves and

number theory.

5.3 Modular functions

The first appearance of modular (or automorphic) functions came through the

theories of binary quadratic forms and elliptic functions. Indeed, let Λ = Zω1⊕Zω2 be

a lattice in C and suppose Im(ω1/ω2) > 0 (this amounts to choosing an orientation).

The group SL2(Z) acts on the upper-half plane by

z 7→ α · z =
az + b

cz + d
, α = ( a b

c d ) .

To verify that, one uses the formula Im
(

az+b
cz+d

)
= (ad−bc)Im(z)

|cz+d|2 , which is valid for any

matrix ( a b
c d ) ∈M2(R).

Set τ = ω1/ω2. If Λ′ is another lattice, we have λ · Λ = Λ′ for some λ ∈ C if and

only if there exists an α ∈ SL2(Z) such that α · τ = τ ′. We can view the Weierstrass’

constants g2 and g3 as functions on the upper-half plane h by setting

gi(τ) := gi(τ, 1),

where τ ∈ h and i = 1, 2. Then a simple calculation shows that gi satisfies the

following transformation formula

gi(γ · τ) = (cτ + d)2igi(τ), for all γ = ( a b
c d ) ∈ SL2(Z).

Furthermore, the discriminant function ∆ = g3
2−27g2

3 (actually it is only the discrim-

inant of the following polynomial up to a constant) of 4x3 − g2x− g3 considered as a

function on h satisfies

∆(γ · τ) = (cz + d)12∆(τ).
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We thus get a SL2(Z)-invariant function by considering the modular function

J =
g3
2

∆
.

This is the classical elliptic modular function (SL2(Z)-automorphic function) and

we shall explain it in more details in this section. The theory of automorphic functions

has been developed initially by two mathematicians at the end of the XIXth century:

Henri Poincaré (1854-1912) in France and Felix Klein (1849-1925) in Germany.

Through the work of Poincaré, automorphic functions can be viewed as an ana-

logue of elliptic functions. This is actually the first application of non-euclidean

geometry to other parts of mathematics. A lattice Λ gives a group of transformations

of the Euclidean plane by setting z 7→ z + ω for all ω ∈ Λ. It is a discrete subgroup

of the isometries of the Euclidean plane (isometries corresponding to the euclidean

metric) and an elliptic function is a meromorphic function invariant under the action

of this group. An automorphic function is the analogue, but in the hyperbolic plane.

Recall that the plane hyperbolic geometry is the geometry where the famous

parallel axiom of Euclid in plane Euclidean geometry is replaced by the following one:

“Through a given point not on a given line there passes more than one line that does

not meet the given line”. There exist several models for this geometry like the unit

disk, the right half-plane (used by Gauss) or the more traditional upper half-plane.

Poincaré noted that the modular transformations of the upper half-plane coming from

the theory of elliptic functions are precisely hyperbolic isometries in this model. More

precisely, this model consists of the upper half-plane

h = {z ∈ C|Im(z) > 0},

where “lines” are taken to be half circles with center on the real line and lines perpen-

dicular to the real axis. Figure 5–1 shows that the hyperbolic axiom above is satisfied

and one can verify that all other axioms are also satisfied. Thus this is a model of
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Figure 5–1: Plane hyperbolic geometry

plane hyperbolic geometry. Given two points z, w ∈ C and a curve γ joining z and w,

we define

||γ|| =
∫

γ

|dz|
Im(z)

,

and the hyperbolic metric d is given by d(z, w) = inf ||γ||, where the infimum is taken

over all curves between z and w. It is true then that the isometries of the hyperbolic

plane are given in this model by the transformations

z 7→ az + b

cz + d
, where ( a b

c d ) ∈ GL+
2 (R).

If we denote the set of scalar matrices by R× · I2, then GL+
2 (R)/(R× · I2) is isomorphic

to the group of biholomorphic automorphisms of the upper-half plane. We also have

the isomorphism

PSL2(R) := SL2(R)/{±I2} ' GL+
2 (R)/(R× · I2).

Therefore, depending on personal taste, one can work either with GL+
2 (R) or SL2(R).

Next, Poincaré asked himself for which subgroups of PSL2(R) are there non-constant

meromorphic functions invariant under the action of the subgroup. He saw that

necessarily, such subgroups must be discrete, and then started the theory of discrete

subgroup of PSL2(R) or, equivalently SL2(R).

Given a discrete subgroup Γ of PSL2(R), he defined the concept of automor-

phic function with respect to Γ by declaring a meromorphic function on h to be

Γ-automorphic if it is invariant under Γ.

Let Γ be a discrete subgroup of PSL2(R). The space of orbits h/Γ is not nec-

essarily compact. In order to compactify it, we have to add points called cusps.
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We explain this here. First, we need to classify the fractional transformation of the

Riemann sphere C ∪ {∞}:

z 7→ az + b

cz + d
, where α = ( a b

c d ) ∈ GL2(C).

Suppose now that α is not a scalar matrix. There are two possibilities for the Jordan

normal form of α:

( λ 1
0 λ ) or

(
λ 0
0 µ

)
,

where λ, µ ∈ C, λ 6= µ. In the first case, α is called parabolic. In the second case,

the transformation is of the form z 7→ cz, where c = λ/µ. If |c| = 1 then α is called

elliptic, if c is real and positive then α is called hyperbolic, and otherwise α is called

loxodromic. If we restrict ourselves to SL2(C) then we have the following theorem:

Theorem 5.3.1 Let α ∈ SL2(C) and suppose that α 6= ±I2. Then

• α parabolic ⇔ Tr(α) = ±2;

• α elliptic ⇔ Tr(α) is real and |Tr(α)| < 2;

• α hyperbolic ⇔ Tr(α) is real and |Tr(α)| > 2;

• α loxodromic ⇔ Tr(α) is not real.

If we specialize further to SL2(R), the group we are interested in, then we first see

from the last theorem that it does not have any loxodromic element. Further:

Theorem 5.3.2 Let α ∈ SL2(R) and suppose that α 6= ±I2. Then

• α parabolic ⇔ α has only one fixed point on R ∪ {∞};
• α elliptic ⇔ α has one fixed point z ∈ h and the other fixed point is z;

• α hyperbolic ⇔ α has two fixed points on R ∪ {∞}.
We can now define the notion of cusp. First note that if α ∈ PSL2(R), it makes sense

to talk about the type of α (parabolic, elliptic or hyperbolic).

Definition 5.3.1 Let Γ be any discrete subgroup of PSL2(R). Then

• z ∈ h is called elliptic if there exists an elliptic element α ∈ Γ such that α ·z = z.
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• s ∈ R ∪ {∞} is called a cusp if there exists a parabolic element α ∈ Γ such that

α · s = s.

Definition 5.3.2 Let Γ be any discrete subgroup of PSL2(R). The completed upper-

half plane h∗ consists of the union of the upper-half plane with all the cusps of Γ.

Note that h∗ depends on Γ. The group Γ acts on h∗ so we can talk about the space

of orbits h∗/Γ. The analogue of a fundamental parallelogram for an elliptic function

is the concept of a fundamental region.

Definition 5.3.3 Let Γ be a discrete subgroup of PSL2(Z). Then a fundamental

region for Γ is a subset F of h∗ such that

• F is a connected open subset of h;

• No two distinct points of F are Γ-equivalent;

• Every z ∈ h is Γ-equivalent to a point of F .

Now, we define a topology on h∗ as follows (see Figure 5–2). If s 6= ∞ is a cusp then

take as a basis of open neighborhoods the sets of the form {s} union with the interior of

a circle in h tangent to the real axis at s. For∞ take the sets {∞}∪{z ∈ h|Im(z) > c}
for some positive number c and, finally, if z ∈ h, take as a basis of open neighborhoods

those in h. This defines a Hausdorff topology on h∗.
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Figure 5–2: Topology on h∗

Theorem 5.3.3 The space of orbits h∗/Γ with the quotient topology is a locally com-

pact Hausdorff space.
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Definition 5.3.4 A discrete subgroup Γ of PSL2(R) is called a Fuchsian group of the

first kind if h∗/Γ is compact.

Next, we shall add a structure of Riemann surface on the space h∗/Γ. For this, we

need a lemma.

Lemma 5.3.1 Let Γ be a Fuchsian group of the first kind. Let z ∈ h∗ and look at its

stabilizer StabΓ(z) = {γ ∈ Γ|γ · z = z}. Then there exists an open neighborhood U

of z in h∗ such that

StabΓ(z) = {γ ∈ Γ|γ(U) ∩ U 6= ∅}.

According to this last lemma, we can identify the set

U/StabΓ(z) = {StabΓ(z) · x|x ∈ U},

with the image of U in h∗/Γ, which is open by definition of the quotient topology.

Lemma 5.3.2 The group StabΓ(z) is a cyclic group, finite if z is not a cusp.

We can now construct the atlas on h∗/Γ. There are three different kind of points to

consider. For each point z ∈ h∗, we take an open neighborhood U of z such that

StabΓ(z) = {γ ∈ Γ|γ(U) ∩ U 6= ∅},

and we identify it with π(U) by the previous discussion, where π : h∗ → h∗/Γ is the

natural projection.

• If z ∈ h∗ is neither a cusp nor an elliptic element, then StabΓ(z) = {id}, therefore

U ' π(U) and we can take the chart π−1 : U/StabΓ(z) → U ⊆ C.

• If z ∈ h∗ is an elliptic element. Let n = #StabΓ(z). Take an isomorphism

λ : h → D, where D is the unit disc, such that λ(z) = 0. Take then the chart

ϕ : U/StabΓ(z) → C defined by ϕ(π(z)) = λ(z)n.

• If s ∈ R ∪ {∞} is a cusp then take a ρ ∈ PSL2(R) such that ρ(s) = ∞. Then

one can show that ρ ·StabΓ(z) ·ρ−1 is generated by a transformation of the form
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z 7→ z+h for some real number h > 0. Take then the chart ϕ : U/StabΓ(z) → C

defined by ϕ(π(z)) = e
2πiρz

h .

This defines for a Fuchsian group of the first type a structure of compact Riemann

surface on h∗/Γ. We are thus led to the generalization of elliptic functions.

Definition 5.3.5 Let Γ be a Fuchsian group of the first kind. A Γ-automorphic func-

tion is a meromorphic function on the Riemann surface h∗/Γ.

The analogue of the Eisenstein series are contained in the next definition.

Definition 5.3.6 Let k be an integer and let Γ be a Fuchsian group of the first kind.

A function f : h → C is called a Γ-automorphic form of weight k if

• f is meromorphic on h.

• f(α · z) = (cz + d)kf(z) for all z 7→ α · z = az+b
cz+d

∈ Γ.

• f is meromorphic at each cusp of Γ.

5.3.1 The case of SL2(Z)

There is a family of discrete subgroup of SL2(R) which are particularly important

for arithmetic purposes. Consider the subgroup SL2(Z) with the reduction map mod-

ulo an integer N , SL2(Z) → SL2(Z/NZ) defined by ( a b
c d ) 7→ (

a+NZ b+NZ
c+NZ d+NZ

)
. The kernel

of this map is called the principal congruence subgroup of level N , and is denoted

by Γ(N). A Γ(N)-modular form of weight k is called a modular form of level N and

weight k.

If we specialize the theory of the last section to the group Γ(1) = SL2(Z) we get

the following. A fundamental region (see Figure 5–3) for this group consist of the set

of z ∈ h such that

• −1/2 < Re(z) < 1/2;

• |z| > 1.

The elliptic points of Γ(1) are those equivalent to i and ζ3. The point ∞ is a cusp.

Indeed, the transformation z 7→ z+1 ∈ Γ(1) is a parabolic element and fixes ∞. One

can show that the cusps of Γ(1) are Q ∪ {∞} and that each cusp is equivalent to ∞.
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Figure 5–3: Fundamental domain for SL2(Z)

A Γ(1)-modular function (or automorphic) is thus a function f : h → C such

that:

• f(γ · z) = f(z) for all γ ∈ Γ(1);

• f(e2πiz) =
∑

n≥−m ane
2πinz, for Im(z) > a for some a > 0.

A Γ(1)-modular form of weight k is a function f : h → C such that:

• f(az+b
cz+d

) = (cz + d)kf(z) for all transformation z 7→ az+b
cz+d

∈ Γ(1);

• f(e2πiz) =
∑

n≥−m ane
2πinz, for Im(z) > a for some a > 0.

From now on, we will use the usual notation q = e2πiz. For example, the function

G2k(τ) =
∑
ω∈Λ
ω 6=0

1

ω2k
,

defined by Eisenstein, is a Γ(1)-modular form of weight 2k and its Fourier expansion

is

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∑
n≥1

σ2k−1(n)qn, σk(n) =
∑

d|n
dk.

The discriminant function

∆(τ) = g2(τ)
3 − 27g3(τ)

2,
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is a Γ(1)-modular form of weight 12 and its Fourier expansion is

∆(τ) = (2π)12
∑
n≥1

τ (n)qn,

where τ (n) ∈ Z is the Ramanujan function. Finally the function

J(τ) =
g2(τ)

3

∆(τ)

is a Γ(1)-modular function and its Fourier expansion at infinity is

J(τ) =
1

1728

(
1

q
+

∑
n≥0

c(n)qn

)
,

where c(n) ∈ Z.

5.4 Application to number theory and complex multiplication

There are several applications arising from the theory of elliptic functions to

number theory. We will focus here on complex multiplication. Recall, that for an

elliptic curve E ' C/Λ, we identified End(E) with the set {α ∈ C|αΛ ⊆ Λ}. The

link with number theory is provided by the following theorem:

Theorem 5.4.1 Let Λ = Zω1 + Zω2 be a lattice and f : C → C an elliptic function

for Λ. For α ∈ C the following are equivalent:

1. f(αz) is a rational function in f(z);

2. αΛ ⊆ Λ.

We see from this last theorem that the elliptic function is not really relevant apart

the fact that it is an elliptic function for the lattice Λ. The core is really the lattice or

what amounts to the same, the elliptic curve C/Λ. From now on, we shall work with

elliptic curves instead of elliptic functions. Note that we always have End(E) ⊇ Z. In

general, End(E) = Z, but note that if αΛ ⊆ Λ and α /∈ Z then, necessarily α ∈ C−R.

Indeed, suppose that α ∈ R − Z, then αω1 = aω1 + bω2 for some a, b ∈ Z. Since, ω1

and ω2 are R-linearly independent, we have b = α − a = 0 and hence α = a ∈ Z,
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contradicting the hypothesis α ∈ R − Z. This is why we are led to the following

definition:

Definition 5.4.1 An elliptic curve E such that End(E) % Z is called an elliptic

curve with complex multiplication.

The family End(E) is not just a set of complex numbers, but more precisely:

Theorem 5.4.2 Let E be an elliptic curve with complex multiplication. Then the

ring End(E) is an order in an imaginary quadratic field.

We shall prove this theorem, but before that we recall the notion of orders in a number

field.

5.4.1 Orders in number field

Definition 5.4.2 Let K be a number field. An order in K is a subset O ⊆ OK such

that

• O is a subring of OK;

• O contains a Q-basis of K.

Theorem 5.4.3 A subset O ⊆ OK is an order if and only if O is a subring of OK

and is a free Z-module of rank [K : Q].

Note that if O 6= OK is a non-maximal order, then O is not integrally closed and

therefore is not a Dedekind domain. In order to define a class group for an order, we

have to introduce the concept of proper ideals. Remark that if a is a fractional ideal

of O (non-zero finitely generated O-module) then

O ⊆ {α ∈ K|α · a ⊆ a},

but that the equality does not always happen.

Definition 5.4.3 Let a be a fractional ideal. The ideal a is called a proper fractional

ideal for the order O if we have the equality O = {α ∈ K|α · a ⊆ a}.
Is a fractional proper ideal invertible? The following theorem answer this question

when K is a quadratic number field:
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Theorem 5.4.4 Let O be an order in a quadratic field K and let a be any proper

fractional ideal for O. Then a is proper if and only if a is invertible.

Note also that given a lattice of rank 2 in K, say Λ, then Λ is a fractional ideal for

some order. Indeed, define the order associated with Λ by

OΛ = {α ∈ K|αΛ ⊆ Λ}.

Then OΛ is an order in K and Λ is a proper fractional ideal for OΛ.

We can now define the class group of an order in a quadratic number field.

Definition 5.4.4 Let K be a quadratic field and O be an order in K. Let I(O) be

the group of fractional proper ideals of O (which is the set of invertible fractional ideal

by the last theorem) and let

P (O) = {a ∈ I(O)|a = λ ·O for some λ ∈ K}.

Define then the class group of the order O by Cl(O) := I(O)/P (O).

Note that if O = OK , then Cl(O) is the usual class group of K. We shall now define

the ring class field associated to an order. For this, we have to relate Cl(O) with

some Clm,Hm(K). Note first that since O and OK are both free Z-module of the same

rank, the quotient OK/O is finite.

Definition 5.4.5 Let O be an order in a quadratic field K. The conductor f of O is

define by f = [OK : O].

See [11] to see why one calls f the conductor.

Theorem 5.4.5 Let K be a quadratic number field and O an order in K of conduc-

tor f . Set m0 = f ·OK and

Hm0 = {α ·OK |α ∈ K×
m0

, α ≡ a mod ×m0 for some a ∈ Z s.t. (a ·OK ,m0) = 1}.

The group Hm0 is a congruence subgroup modulo m0 and then

Cl(O) ' Im0(K)/Hm0 = Clm0,Hm0
(K).
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We can now define the ring class field of a quadratic number field:

Definition 5.4.6 The ring class field of O is the abelian extension L corresponding

to the congruence subgroup Hm0 by class field theory. The Artin map gives us the

isomorphism Gal(L/K) ' Im0(K)/Hm0 ' Cl(O).

Note that if O = OK , then m0 = OK , Im0(K) = I(K) and Hm0 = P (K) so we get the

usual class group and the ring class field is the Hilbert class field of K. We can now

come back to the proof of Theorem 5.4.2.

Proof [Theorem 5.4.2]:

Let E ' C/Λ be an elliptic curve with complex multiplication and let Λ = Zω1⊕Zω2.

Let Ω = {α ∈ C|α · Λ ⊆ Λ}. We show first that Ω ⊂ OK for some quadratic

imaginary field K. Let α ∈ Ω and since E has complex multiplication, we can suppose

that α /∈ Z. We claim that α is quadratic imaginary. We have αω1 = aω1 + bω2,

and αω2 = cω1 + dω2 for some a, b, c, d ∈ Z. This means that det
(

α−a −b
−c α−d

)
= 0.

Therefore, α is a root of a monic quadratic polynomial with coefficients in Z that is

an integral number. Let τ = ω1/ω2 ∈ h, then from the equation αω2 = cω1 + dω2, we

see that K = Q(τ) = Q(α) is a quadratic imaginary field. Doing this last argument

for all multipliers α ∈ Ω shows that Ω ⊆ OK . Moreover, Ω is clearly a ring. Let α be

any complex multiplier in Ω. Then Z⊕ Zα is a free abelian group of rank 2 and the

inclusions Z⊕Zα ⊆ Ω ⊆ OK shows that Ω is a free Z-module of rank 2. We conclude

using Theorem 5.4.3.

2

In order to emphasize the ring of multipliers of an elliptic curve, an elliptic curve

such that End(E) is an order O in some imaginary quadratic field will be called an

elliptic curve with CM by O (CM stands for complex multiplication).

Theorem 5.4.6 Let K ⊂ C be a quadratic imaginary field and let O be an order

in K. There is a bijection between Cl(O) and the set of isomorphism classes of

elliptic curves with CM by O.
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Proof:

Let Isom(O) denotes the set of all isomorphism classes of elliptic curves with complex

multiplication by O. If E is such an elliptic curve, we shall denote its class by [E].

Define then the map

Cl(O) → Isom(O)

by [a] → [C/a]. It is well-defined since the fact that a is an O-ideal implies that C/a

has complex multiplication by O and also for all λ ∈ K, C/a ' C/(λ · a). Since there

is an isomorphism C/Λ1 ' C/Λ2 if and only if λ · Λ1 = Λ2 for some λ ∈ C, this map

is injective. It is also surjective since if C/a is an elliptic curve with CM by O then

a is a proper fractional ideal in O.

2

5.4.2 Main theorems of complex multiplication

First of all, note that if a is a fractional ideal in an imaginary quadratic number

field K, then a = Zω1⊕Zω2 for some R-linearly independent complex numbers ω1, ω2.

Suppose moreover that τ = ω1/ω2 ∈ h (if it is not the case, just interchange ω1 and ω2).

For any modular form h of weight k, we define h(a) by

h(a) := ω−2k
2 h(τ).

In particular, if h is an automorphic function (thus of weight 0), we have h(λ·a) = h(a)

for all λ ∈ K so we can speak about h(C) where C is any ideal class in K.

Theorem 5.4.7 (First Main Theorem) Let K be an imaginary quadratic field,

and O an order in K. Let Cl(O) = {C1, . . . , Ct} be its class group.

• The numbers J(Ci) form a full set of distinct conjugate algebraic numbers.

• The ring class field of O is precisely K(J(Ci)) for any i = 1, . . . , t.

In particular, for the maximal order OK , we get:

Theorem 5.4.8 K(J(Ci)) is the Hilbert class field of K.

63



Theorem 5.4.9 (Explicit reciprocity law) Let K be an imaginary quadratic field

and OK its maximal order. Let [a] be any ideal class in Cl(K). Then by the last

theorem, we have that K(J(a)) is the Hilbert class field of K. We now describe

explicitly the action of the Artin symbol on J(a); if p is a prime of K, then we have

J(a)(p,HK/K) = J(p−1a).

Therefore, for any ideal b of K, we have

J(a)(b,HK/K) = J(b−1a).

Remark: In some books, one find instead the following reciprocity law

J(a)(b,HK/K) = J(ba).

It is exactly the same thing since b ∈ [b−1] and J(a) depends only on the ideal class

[a] of a. Indeed, in an imaginary quadratic field, the complex conjugation is a well-

defined automorphism, and therefore it makes sense to talk about the ideal b. In

order to verify our claim, it suffices to verify that for every prime ideal p of K, we

have that p · p is principal. So let p be a prime ideal and let p be a prime below.

There are three possibilities for the ramification, namely:

• p ·OK = p2 (ramified);

• p ·OK = p (inert);

• p ·OK = p1 · p2 (split totally).

Then, since in a Galois extension the Galois group acts transitively on the primes

lying above a fixed one, in the first case we necessarily have p = p and therefore

p · p = p · OK . In the second case, we have then p · p = p2 · OK and in the last case,

we have p · p = p ·OK . Thus in each case, p ∈ [p−1] and our claim is proved.

In the case of the rational field Q, we have an explicit description of the ray class

fields, see Theorem 3.2.11. Do we have such a description for a quadratic imaginary

64



field? This is the content of the second main theorem of complex multiplication. See

for instance [5].

5.5 Integrality question

We shall now deal with integrality questions. In the classical theory this can be

achieved through the modular equation.

When dealing with integrality questions, we work with

j = 1728 · J = 2633 · J,

instead of J alone. Indeed, while J(τ) is an algebraic number for an imaginary

quadratic number τ , it is not an algebraic integer. On the other side, j(τ) is integral

for an imaginary quadratic number τ . The classical proof of this uses the modular

equation.

Theorem 5.5.1 If τ ∈ h is an imaginary quadratic number then j(τ) is an algebraic

integer.

Proof:

See [5] for the classical proof.

2

5.6 Elliptic units and a special case of Stark’s conjecture

In this section, we will sketch a proof of the abelian rank one Stark conjecture

when the base field is quadratic imaginary following [73].

First of all, we explain the utility of limit formulas such as the Kronecker limit

formulas. This is useful when one wants to compute the value of a L-series at s = 1 (or

at s = 0 by the functional equation). Let K be a number field and let Km be the ray

class field modulo m. By class field theory, we then have an isomorphism Clm(K) '
Gal(Km/K). Let χ be a character of Clm(K) and consider the L-series

L(s, χ) =
∑

a6=0

χ(a)

N(a)s
.
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We can rewrite this last series as follows:

L(s, χ) =
∑

C∈Clm(K)

χ(C)ζK(s, C),

where ζK(s, C) is the partial zeta function:

ζK(s, C) =
∑
a∈C

1

N(a)s
.

Suppose then that we know the Laurent expansion of ζK(s, C) around s = 1:

ζK(s, C) =
a−1

s− 1
+ a0(C) + a1(C)(s− 1) + . . . .

Note that a−1 does not depend on C. This is precisely Dedekind’s discovery. On the

other hand, the other coefficients could depend on C. Plugging this last equation into

the L-series, we get

L(s, χ) =
∑

C

χ(C)

(
a−1

s− 1
+ a0(C) + a1(C)(s− 1) + . . .

)
.

Suppose χ 6= χ1. Letting s→ 1 and using the orthogonality relation, we get

L(1, χ) =
∑

C

χ(C)a0(C),

thus we can compute the value of the L-series at s = 1. In the literature, limit

formulas are usually given around s = 1, but then using the functional equation they

can be translated into a formula for L(0, χ).

When the base field K is quadratic imaginary, such a formula is known since a

long time and it is called Kronecker’s limit formula. Before stating it, we define first

the Siegel-Ramachandra invariant.

Let K be a quadratic imaginary number field and let m0 6= OK be an integral

ideal of K. We shall denote the only infinite place of K by v∞ (thus S∞ = {v∞}).
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Let ζ(z,Λ) and σ(z,Λ) be the classical Weierstrass functions with respect to a lat-

tice Λ. That is, ζ is defined by the equations

dζ(z)

dz
= −℘(z), lim

z→0

(
ζ(z)− 1

z

)
= 0,

and σ by

d log σ(z)

dz
= ζ(z), lim

z→0

σ(z)

z
= 1.

The function ζ(z) is not doubly periodic, but it satisfies the following transformation

rule ζ(z1 + z2,Λ) = ζ(z1,Λ) + η(z2,Λ), where η is some R-linear function, see [81].

Define the function

G(z,Λ) = e−6zη(z,Λ) · σ12(z,Λ) ·∆(Λ).

Note that this function is the same as the function given in [54] up to the con-

stant i. Then, let f be the smallest positive integer in m0

⋂
Z. Consider the ray class

group Clm0(K) and for each ideal class C ∈ Clm0(K), define the Siegel-Ramachandra

invariant

gm0(C) = G(1,m0a
−1)f ,

where a is an integral ideal in the ideal class C.

Theorem 5.6.1 The Siegel–Ramachandra invariants have the following properties:

1. gm0(C) is independent of the choice of a ∈ C.

2. gm0(C) ∈ Km0.

3. The explicit action of the Galois group Gal(Km0/K) is given by

gm0(C) = gm0(1)(C,Km0/K).

4. If m0 has at least 2 different prime divisors, then gm0(C) is a unit. Otherwise,

if m0 is the power of a unique prime ideal p, then gm0(C) is a {v∞, p}-unit.

Moreover, gm0(C)1−σ is a unit for all σ ∈ Gal(Km0/K).

5. The extension K(gm0(C)
1

12f ) of K is abelian.
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Proof:

These facts are consequences of the theory of complex multiplication. See [15].

2

Now, we can state Kronecker’s limit formula at s = 0.

Theorem 5.6.2 Let K be a quadratic imaginary number field and let m0 be an inte-

gral ideal of K. Consider the ray class group Clm0(K) and let C ∈ Clm0(K) be any

ideal class. The derivative of ζK(s, C) at s = 0 is given by

ζ ′K(0, C) = − 1

12fω(m0)
log

∣∣gm0(1)(C,Km0/K)
∣∣ ,

where ω(m0) is the number of roots of unity λ in K satisfying λ ≡ 1 mod m0,

and |z| = z · z is the normalized valuation.

We are now in position to sketch the proof of Stark’s conjectures. LetK be a quadratic

imaginary field and let L/K be a finite abelian extension. Moreover, let S be a set of

primes of K satisfying S1, S2 and S3 of Chapter 4. Note that v∞ is a totally split

place, thus we shall prove St(L/K, S, v∞). We can choose an integral ideal m0 of K

such that

• p |m0 if and only if p ∈ S r {v∞};
• ω(m0) = 1;

• L ⊆ Km0 .

Indeed, it suffices to take m0 =
(∏

p∈Sr{v∞} p
)n

for n big enough. The set S still

satisfies conditions S1, S2, and S3 for Km0 . By Theorem 4.0.7, it suffices to prove

St(Km0/K, S, v∞) in order to prove St(L/K, S, v∞). First, we need a lemma which

can be found in [73].

Lemma 5.6.1 With the notation above, there exists a unit ε ∈ Uab
Km0/K such that

ε12f = gm0(1)ωKm0 · ζ,

with ζωKm0 = 1.
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Fix a place w of Km0 lying above v∞. From Kronecker’s limit formula, we see that

ζ ′K(0, C) = − 1

ωKm0

log
∣∣ε(C,Km0/K)

∣∣
w
.

Moreover, from Property (4) of Theorem 5.6.1, we see that if |S| ≥ 3, then |ε|w′ = 1

for all w′ - v∞, and if S = {v∞, vp}, then |ε|σw′ = |ε|w′ for all σ ∈ Gal(Km0/K) and

some w′ lying above vp.

We conclude that there exists ε ∈ Uab
Km0/K

⋂
U v∞ such that

L′S(0, χ,Km0/K) =
∑

C∈Clm0 (K)

χ(C)ζ ′K(0, C)

= − 1

ωKm0

∑

C∈Clm0 (K)

χ(C) log
∣∣ε(C,Km0/K)

∣∣
w

= − 1

ωKm0

∑
σ∈G

χ(σ) log |εσ|w,

and St(Km0/K, S, v∞) is true. Thus St(L/K, S, v∞) is true when K is an imaginary

quadratic number field.

Siegel also constructed elliptic units in unramified abelian extensions of K in

order to give a class number formula relating the class number of K and the one of its

Hilbert class field. He constructed them using quotients of the ∆ function, see [41].

This is the construction that DeShalit–Goren attempt to generalize in [14].

69



CHAPTER 6
Higher dimensional theory

For the theory of abelian varieties, we used [72], [28] and [4], and for the theory

of complex multiplication of abelian varieties, we used [40] and [62].

6.1 Introduction

We shall explain now the background materials that one needs to construct class

invariants. If we look at the construction of elliptic units, we notice that there are

three main ingredients:

• Elliptic curves over C;

• Modular forms;

• Complex multiplication of elliptic curves.

In order to construct a generalization of elliptic units, we have to explain one possible

generalization of these three concepts, namely:

• Abelian varieties over C;

• Siegel modular forms;

• Complex multiplication of abelian varieties.

We shall first explain these concepts and then explain the construction of DeShalit–

Goren.

6.2 Abelian functions and abelian varieties

Once again, we have three different perspectives on the subject:

• Abelian functions (analysis);

• Function fields (algebra);

• Abelian varieties (algebraic geometry).

The analogues in the one dimensional case were the elliptic functions, the function

field C(℘(z), ℘′(z)) and the elliptic curve. The concept tying up all these different
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points of view was the topological surface C/Λ. It will be the same in the higher

dimensional case, but here there will be one fundamental difference: Cn/Λ is not

always an algebraic variety. We explain this now.

As in the case of elliptic curves, the concept of abelian functions arose in connec-

tion with the computation of some particular integrals. An integral of the type

∫
R(x, y) dx,

where R is a rational function in x and y, y =
√
P (x), and P (x) is a polynomial

of degree > 4, is called an abelian integral (because Abel studied them extensively).

When one allows complex variables, then the same problem as with an elliptic in-

tegral happens, namely one cannot give a precise definition of the square root of a

complex function. Mathematicians tried to invert these integrals, but then they got

complex-valued functions with more than two periods. It was known at the time

that a complex-valued function of one variable cannot have more than two R-linearly

independent periods. It became clear that one should work with functions of several

complex variables.

Let f : Cn → C be a meromorphic function of several complex variables. A

n-tuple ω = (p1, p2, . . . , pn) ∈ Cn is a period for f if f(z + ω) = f(z), for all z ∈ Cn.

The set of periods of a meromorphic function forms an additive abelian group in Cn.

Recall that a lattice (sometimes called a full lattice) in Cn is a discrete free Z-module of

rank 2n. We shall restrict ourselves to meromorphic functions such that their group

of periods, say Λ, is a lattice. In that case, there exist 2n R-linearly independent

periods ω1, . . . , ω2n ∈ Cn such that Λ = ⊕2n
i=1Zωi.

Definition 6.2.1 Let f : Cn → C be a meromorphic function. Let Λ be its set of

periods. We call f an abelian function for Λ if Λ is a lattice in Cn. If Λ = ⊕2n
i=1Zωi,

the matrix

P = (ωt
1, . . . , ω

t
2n) ∈Mn×2n(C)
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is called a period matrix for f (or for Λ).

One can consider the complex manifold Cn/Λ and then, as in the one dimensional

case, the field of meromorphic functions on Cn/Λ is identified with the set of abelian

functions for the lattice Λ.

Here is an example of an abelian function. Let (ω1, ω2) be two R-linearly in-

dependent complex numbers and set Λ = Zω1 ⊕ Zω2. Recall that the Weierstrass’

function for Λ is ℘(z,Λ) = 1
z2 +

∑
ω∈Λ
ω 6=0

(
1

(z−ω)2
− 1

ω2

)
. Let us define the 2n vectors

p1 = (ω1, 0, . . . , 0), p2 = (ω2, 0, . . . , 0), . . . , p2n−1 = (0, . . . , 0, ω1), p2n = (0, . . . , 0, ω2),

and let f(z) = ℘(z1) · ℘(z2) · . . . ℘(zn−1) · ℘(zn). Then f is an abelian function for the

period-matrix

P =




ω1 ω2 . . . 0 0

...
...

. . .
...

...

0 0 . . . ω1 ω2



∈Mn×2n(C).

6.2.1 Abelian varieties

The analogue of elliptic curves in higher dimensional algebraic geometry are the

abelian varieties.

Definition 6.2.2 Let k be an algebraic closed field. An abelian variety over k is a

non-singular projective (connected) variety A, which is also a group and such that the

group law

+ : A× A→ A,

and the inverse map

− : A→ A,

are morphisms of algebraic varieties.

Remark: It is known that the group law is necessarily commutative and this is why

we use the additive symbol + for the group law. If A is defined over the complex
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numbers C, then it becomes a complex Lie group and it is also known that in this

case A ' Cn/Λ is a complex torus for some lattice Λ.

We are led to the following question. Given a lattice Λ = ⊕2n
i=1Zωi, we can ask

whether or not Cn/Λ is an algebraic variety. The answer is contained in the next

theorem.

Theorem 6.2.1 Let Λ be a lattice in Cn, then the following are equivalent:

1. Cn/Λ is an algebraic variety.

2. Cn admits a positive definite Hermitian form H = S+ iE such that E = Im(H)

is integer-valued on Λ (such an H is called a Riemann form).

Remarks: Point (1) means that there exists a projective embbeding. For the

point (2), we recall here the definition of a Hermitian form.

Definition 6.2.3 A Hermitian form on Cn is a map H : Cn × Cn → C such that

• The map z 7→ H(z, w) is C-linear in z for all w ∈ Cn;

• The map w 7→ H(z, w) is anti-linear in w for all z ∈ Cn (i.e. additive and

H(z, λw) = λ̄ ·H(z, w));

• H(z, w) = H(w, z).

Moreover, H is said to be positive if H(z, z) ≥ 0 and positive definite if H is positive

and satisfies also H(z, z) = 0 if and only if z = 0.

Sometimes, it is preferable to work only with the imaginary part of a Hermitian form.

Theorem 6.2.2 A Hermitian form H can be written H(z, w) = S(z, w) + iE(z, w).

We have the following properties:

• S,E : Cn×Cn → R are R-bilinear, where Cn is considered as a R-vector space;

• S is symmetric;

• E is alternating (E(z, w) = −E(w, z));

• S(z, w) = E(iz, w);

• E(iz, iw) = E(z, w);

• If H is positive, then H(z, z) = S(z, z) = E(iz, z) ≥ 0 for all z ∈ Cn;
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• If H is positive definite, the last condition is satisfied and moreover E(iz, z) =

0 ⇔ z = 0;

• If H is a Riemann form for some lattice Λ, then E(z, w) ∈ Z for all z, w ∈ Λ.

We have a converse of this theorem, namely:

Theorem 6.2.3 Consider Cn as a R-vector space. Suppose we are given a lattice Λ

of Cn and an R-alternating form E : Cn × Cn → R satisfying:

• E(iz, iw) = E(z, w) for all z, w ∈ Cn;

• E(iz, z) ≥ 0 for all z ∈ Cn;

• E(iz, z) = 0 ⇔ z = 0 for all z ∈ Cn;

• E(z, w) ∈ Z for all z, w ∈ Λ.

Then H(z, w) = E(iz, w) + iE(z, w) is a Riemann form for Cn/Λ.

In the sequel, we shall work mainly with the imaginary part of a Riemann form and

we also call such an E a Riemann form.

Definition 6.2.4 An abelian manifold is a complex torus with a Riemann form.

Thus, according to Theorem 6.2.1, every abelian manifold is an abelian variety and

vice-versa.

Scholie: When n = 1, we get back the theory of elliptic functions and elliptic curves.

Let Λ = Zω1 ⊕ Zω2 be a lattice in C. The Weierstrass’ function gives us an explicit

projective embedding of C/Λ into P2(C) by Theorem 5.2.8. Therefore, according to

Theorem 6.2.1, there should be a hidden Riemann form somewhere. It is actually

true for every lattice and this is why we did not meet it previously.

Theorem 6.2.4 Let Λ = Zω1 ⊕ Zω2 be a lattice in C. Then C = Rω1 ⊕ Rω2. If

the numbers z, w ∈ C, then ( z
w ) =

( α1 α2
β1 β2

)
( ω1

ω2 ) for some αi, βi ∈ R. Define the

pairing E(z, w) = det
( α1 α2

β1 β2

)
= α1 ·β2−β1 ·α2. Then E is a Riemann form on C/Λ.

Weil introduced the concept of polarization in analogy with the concept of ori-

entability in differential geometry. Over C, it can be defined as follows:
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Definition 6.2.5 Let Cn/Λ be an abelian manifold and let E, E ′ be two Riemann

forms on Cn/Λ. We define an equivalence relation ∼ by

E ∼ E ′ ⇔ there exists λ ∈ C such that E = λ · E ′.

Note that λ is necessarily a positive rational number since E,E ′ are integer valued

on Λ and E(iz, z) ≥ 0.

Definition 6.2.6 Let Cn/Λ be an abelian manifold. A polarization on Cn/Λ is an

equivalence class of Riemann forms.

A class of polarizations which is particularly important is the class of principal ones.

Here is the explication of this concept.

Definition 6.2.7 Let Cn/Λ be an abelian manifold, and E an associated Riemann

form. According to the elementary divisor theorem, there exists a basis of the lattice

Λ, say (ε1, . . . , εn, ζ1, . . . , ζn), such that the matrix of E is given by

(E(εi, ζj)) =




0 −D
D 0


 ,

where D = Diag(d1, . . . , dn) is a diagonal matrix with integers di > 0, (i = 1, . . . , n)

satisfying di|di+1, (i = 1, . . . , n − 1). Moreover, the numbers d1, . . . , dn are uniquely

determined by E and Λ. The vector (d1, . . . , dn) is called the type of E and the

basis (ε1, . . . , εn, ζ1, . . . , ζn) is called a symplectic basis for Λ.

Definition 6.2.8 Let Cn/Λ be an abelian manifold with a polarization P . The polar-

ization is said to be principal if there exists an E ∈ P such that E is of type (1, . . . , 1).

Let us come back to an abelian variety A.

Definition 6.2.9 Let A1 and A2 be two abelian varieties. A homomorphism of

abelian varieties is an algebraic morphism

φ : A1 → A2
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which is also a group homomorphism. The set of homomorphisms between two abelian

varieties is denoted by Hom(A1, A2). An homomorphism φ : A1 → A2 is called an

isomorphism if there exists a homomorphism of abelian varieties ψ : A2 → A1 such

that φ ◦ ψ = idA2 and ψ ◦ φ = idA1. When A1 = A2, we call such a homomorphism

(resp. isomorphism) an endomorphism (resp. automorphism) and denote the ring of

endomorphisms of an abelian variety A by End(A) (resp. Aut(A)).

If Ai are abelian varieties over C, then there exist lattices Λi such that Ai ' Cni/Λi,

for i = 1, 2. Let φ ∈ Hom(A1, A2), then φ is given by rational functions and thus

induces a holomorphic map

φ̄ : Cn1/Λ1 → Cn2/Λ2,

such that φ̄(0) = 0. As in the case of elliptic curves, this correspondence is actually

a bijection.

Theorem 6.2.5 Let Ai ' Cni/Λi be abelian varieties defined over C, (i = 1, 2).

Then the correspondence φ 7→ φ̄ makes the following diagram commutative

A1
'−−−→ Cn1/Λ1

φ

y
yφ̄

A2
'−−−→ Cn2/Λ2

,

and this correspondence is a bijection between Hom(A1, A2) and the set of holomorphic

maps φ : Cn1/Λ1 → Cn2/Λ2 such that φ(0) = 0.

Theorem 6.2.6 Let Ai ' Cni/Λi be abelian varieties defined over C, for i = 1, 2.

Let φ : Cn1/Λ1 → Cn2/Λ2 be a holomorphic map such that φ(0) = 0, then there exists

a C-linear map Lφ : Cn1 → Cn2 such that Lφ(Λ1) ⊆ Λ2 and such that the following

diagram is commutative

Cn1
Lφ−−−→ Cn2

y
y

Cn1/Λ1
φ−−−→ Cn2/Λ2

.
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This correspondence sets a bijection between

{C-linear maps L : Cn1 → Cn2 such that L(Λ1) ⊆ Λ2},

and

{holomorphic maps φ : Cn1/Λ1 → Cn2/Λ2 such that φ(0) = 0}.

Moreover, End(A) depends only on the isomorphism class of A.

If E is an elliptic curve, note that the extension of scalars End(E) ⊗Z Q is a

Q-algebra and that we have End(E)⊗Z Q ' Q or K, where K is a quadratic imagi-

nary field (the latter case being the CM -case). This provided the link with number

theory. Similarly, we shall study the structure of End(A)⊗ZQ for an arbitrary abelian

manifold A in the section on complex multiplication of abelian varieties.

6.3 Siegel modular functions

In this section, we proceed to generalize the theory of classical modular forms.

We mainly use the reference [18] (german). The new mathematical object is called

a Siegel modular form. Siegel discovered these functions while he was working on

the theory of quadratic forms. For a general overview, recall that a domain of Cn is

called homogeneous if the group of biholomorphic automorphisms acts transitively on

it. Moreover, it is called symmetric if for each point of the domain there exists an

involution in the group having only this point as a fixed point. Élie Cartan (1869-

1951) proved that every bounded symmetric domain is automatically homogeneous,

and he classified them. He found four main types plus two exceptional ones which

appear only for dimension 16 and 27. We shall not explain his results, see [63] for

instance. One is relevant for us, namely the generalization of the unit circle. First,

we introduce the Siegel space that generalizes the Poincaré upper half-plane.
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Definition 6.3.1 The Siegel space hn is the set of all complex symmetric matrices

(n-rowed) such that the imaginary part is positive definite:

hn = {Z = X + iY ∈Mn(C)|Zt = Z , Y > 0}.

Note that h1 is merely the upper half-plane. In the classical case, the group of biholo-

morphic automorphisms acts on h1, but also on the Riemann sphere, and we have the

inclusions h1 ⊆ C ⊆ C, where the Riemann sphere is a compact Riemann surface. We

have a similar thing for hn. Define first

Pn = {Z ∈Mn(C)|Zt = Z}.

Clearly, hn embeds in Pn. Next, define Cn to be the set of W =
(

W1
W2

) ∈ M2n×n(C),

where Wi ∈ Mn(C) satisfy both rank(W ) = n, and W t
1 · W2 = W t

2 · W1. Note

that when det(W2) 6= 0, the last condition is equivalent to W1W
−1
2 being symmetric.

The group GLn(C) acts on Cn by right multiplication, namely W · U =
(

W1U
W2U

)
,

whenever U ∈ GLn(C). The analogue of the Riemann sphere is Sn := Cn/GLn(C),

the space of orbits of this action. We also have an embedding of Pn into Sn defined

by Z 7→ (
Z
In

) · GLn(C). This map is clearly injective, and after having identified Pn

with its image, we have the inclusions hn ⊆ Pn ⊆ Sn. When n = 1, then P1 ' C

and S1 ' P1(C) ' C. One can show that Sn is a compact complex manifold.

We shall see next that we also have an action of a group of biholomorphic auto-

morphisms of hn. First, we identify hn with a domain of C
n(n+1)

2 . This identification

is made through the map

Z = (zij) ∈ Pn 7→ (z11, z12, . . . , z1n, z21, . . . , z2n, . . . , znn) ∈ Cn(n+1)
2 .

The group we are interested in is Spn(R) which is defined as follows. From now on,

J stands for the matrix J =
(

0 In
−In 0

)
. We can now define Spn(R).
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Definition 6.3.2 The symplectic group is defined as follows

Spn(R) := {M ∈ GL2n(C)|M tJM = J}.

Note that M tJM = J if and only if M tJ tM = J t. This latter group acts on Cn by

multiplication on the left. Indeed, if M = ( A B
C D ), where A,B,C,D ∈Mn(R) then the

action is defined by M ·( W1
W2

)
:=

(
AW1+BW2
CW1+DW2

)
. This action induces an action on each of

the three spaces hn, Pn and Sn. Using the fact that if Z ∈ hn, then det(CZ +D) 6= 0

we see that the action on hn is given by

Z ∈ hn 7→M · Z := (AZ +B)(CZ +D)−1.

In summary, we have

Theorem 6.3.1 The group Spn(R) acts on hn by M · Z := (AZ + B)(CZ + D)−1,

whenever Z ∈ hn, and M ∈ Spn(R).

The action of Spn(Z) is discontinuous and we can talk about its fundamental region.

The closure of it is contained in the next theorem.

Theorem 6.3.2 Let n be any positive integer. The Siegel’s fundamental domain is

the subset Fn of hn of Z = X + iY such that

1. | det(CZ +D)| ≥ 1, for all M ∈ Spn(Z);

2. Y ∈ Rn, where Rn is the Minkowski’s reduced domain (see below);

3. |xij| ≤ 1/2, for i ≤ j, where X = (xij).

The Minkowski’s reduced domain in the theorem is the set of Y = (yij) ∈ Mn(R)

satisfying

1. gtY g ≥ yii, for all g integral with (gi, . . . , gn) = 1, (1 ≤ i ≤ n);

2. yi,i+1 ≥ 0, (1 ≤ i ≤ n− 1).

Note that when n = 1 we get the closure of the fundamental region of SL2(Z) acting

on the Poincaré upper half-plane, see Section 5.3.1.
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The domain hn is biholomorphically equivalent to the generalized unit circle which

is one the four main bounded symmetric domain of Cartan.

Definition 6.3.3 The unit circle of degree n is defined as

Dn := {Z ∈Mn(C)|Zt = Z , In − ZZ > 0}.

Theorem 6.3.3 The generalized Cayley transformation hn → Dn defined by

Z 7→ (Z − iIn)(Z + iIn)−1

is a biholomorphic map.

Using this fact, it is often more expedient to prove some facts about the action

of Spn(R) on hn. See [26]. Let us come back to the action of Spn(R) on hn.

Theorem 6.3.4 We have an isomorphism Bihol(hn) ' Spn(R)/{±I2n}.
Next, as in the classical case, we are interested in discrete subgroups of Spn(R). In

particular, Spn(Z) is such a discrete subgroup and it acts discontinuously on hn.

Theorem 6.3.5 The matrix M = ( A B
C D ), where A,B,C,D ∈ Mn(Z), is in Spn(Z) if

and only if we have we have the following equalities: AtD − CtB = In, A
tC = CtA

and BtD = DtB.

From this last theorem we see that when n = 1, Sp1(Z) = SL2(Z). In general, we

have the inclusion Spn(Z) ⊆ SL2n(Z), but for n ≥ 2, this is not an equality. This

inclusion is a consequence of the next theorem.

Theorem 6.3.6 The group Spn(Z) is generated by the element J and the matri-

ces
(

In S
0 In

)
, where S = St.

We see that the analogy with the classical case is really strong. We can now define

what a Siegel modular form is.

Definition 6.3.4 A function f : hn → C is called a Siegel modular form of weight k

and level 1 if the following conditions are satisfied:

• f is holomorphic,
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• f(M · Z) = det(CZ +D)kf(Z) for all Z ∈ Spn(Z),

• In every region Y ≥ Y0, (Y0 > 0), f is bounded.

Note that for n > 1, it is known that the last condition is not necessary. This is the

Koecher principle.

It is also true that every Siegel modular form has a Fourier expansion of the form

f(Z) =
∑
T≥0

a(T )e2πiTr(TZ),

where T runs over all half-integral positive symmetric matrices of degree n. Recall

that half-integral means that tii and 2tij, (i 6= j), are integers.

6.4 Complex multiplication of abelian varieties

6.4.1 Structure of End(A)⊗Z Q
We study here the structure of End(A)⊗Z Q and see how number theory comes

into the picture. We follow mainly [4]. Some information can also be found in [40],[60]

and [62]. For the general theory of associative algebras, see [50].

Start with an abelian variety A ' Cn/Λ defined over C. According to Theorems

6.2.5 and 6.2.6, we have a faithful (that is, injective) complex representation

ρa : End(A) ↪→ EndC(Cn),

defined by φ 7→ Lφ̄ (with the notation of Theorems 6.2.5 and 6.2.6), which is called

the analytic representation (hence the subscript a). It can be viewed as the induced

action on the tangent space. Now, if we restrict Lφ̄ to Λ we get a faithful rational

representation

ρr : End(A) ↪→ EndZ(Λ),

which is called the rational representation. Since the representation is faithful, we can

identify End(A) with a subring of EndZ(Λ) 'M2n(Z) ' Z4n2
, and we get:

Theorem 6.4.1 Let A be an abelian variety. Then End(A) is a free Z-module of

finite rank. Therefore, End(A)⊗Z Q is a finite dimensional Q-algebra.
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We conclude that there are embeddings

ρa : End(A)⊗Z Q ↪→Mn(C), ρr : End(A)⊗Z Q ↪→M2n(Q).

We shall now see that the Q-algebra End(A)⊗ZQ has an anti-involution. Recall first

the definition of an involution and an anti-involution of an algebra:

Definition 6.4.1 Let A be a R-algebra (here R stands for a commutative ring with

unity).

• An involution on A is an automorphism of R-algebras ρ : A → A, such that

ρ(ρ(a)) = a for all a ∈ A.

• An anti-involution on A is a automorphism of R-module ρ : A→ A, such that

– ρ(a1 · a2) = ρ(a2) · ρ(a1) for all a1, a2 ∈ A;

– ρ(ρ(a)) = a, for all a ∈ A.

Note that since we extended the representation ρa to a representation of End(A)⊗ZQ,

it makes sense to talk about φ · z, where φ ∈ End(A) ⊗Z Q and z ∈ Cn. Explicitly,

we have φ · z := ρa(φ)(z).

Theorem 6.4.2 (Rosati involution) Let A ' Cn/Λ be an abelian variety and let E

be an associated Riemann form. The adjoint of E defines an anti-involution R

on End(A) ⊗Z Q, called the Rosati involution. That is, for every φ ∈ End(A) ⊗Z Q,

there exists a unique R(φ) ∈ End(A)⊗Z Q such that

E(φ · z, w) = E(z, R(φ) · w),

for all z, w ∈ Cn and the association φ 7→ R(φ) defines an anti-involution on the

Q-algebra End(A)⊗Z Q.

It is clear that the Rosati involution does not depend on the representative of a

polarization.

The rational representation gives us a trace function Tr := End(A) ⊗Z Q → Q

defined by Tr(φ) = Tr(ρr(φ)), where Tr is the usual trace of a linear transformation.
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We can define a bilinear symmetric form, which we call also Tr, on End(A)⊗Z Q by

setting Tr(φ1, φ2) := Trr(φ1 ·R(φ2)).

Definition 6.4.2 Let A be a Q-algebra with a linear form T : A→ Q. Suppose also

that A has an anti-involution ρ. Then ρ is said to be positive (respectively positive

definite) if the associated bilinear form T (a1 · ρ(a2)) is positive (respectively positive

definite).

Theorem 6.4.3 The Rosati involution is positive definite with respect to the rational

trace.

Up to now, we know that End(A)⊗Z Q is a finite dimensional Q-algebra with a

positive definite involution with respect to the rational trace.

In order to go further in the description of the structure of End(A)⊗ZQ, we have

to introduce a subclass of endomorphisms: The isogenies.

Definition 6.4.3 Let A1 and A2 be two abelian varieties defined over C. A homo-

morphism φ : A1 → A2 of abelian varieties is called an isogeny if φ is surjective and

has a finite kernel.

Here is an example of an isogeny. For any abelian variety A and non-zero integer

n ∈ Z, let nA : A → A be defined by a 7→ n · a, then nA is an isogeny. Isogenies are

“almost isomorphisms”. Indeed, if f : A1 → A2 is an isogeny, let e = e(f) be the

exponent of the group ker(f), then we have:

Theorem 6.4.4 Let A1 and A2 be abelian varieties over C and let φ ∈ Hom(A1, A2)

be an isogeny. There exists a unique isogeny ψ : A2 → A1 such that

• φ ◦ ψ = e(φ)A2;

• ψ ◦ φ = e(ψ)A1,

and e(φ) = e(ψ).

Therefore, it makes sense to talk about isogenous abelian varieties.
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Definition 6.4.4 Two abelian varieties A1 and A2 are called isogenous if there exists

an isogeny φ : A1 → A2. This defines an equivalence relation on the set of abelian

varieties.

Note also that because of Theorem 6.4.4, the isogenies of A into itself are precisely

the invertible elements in End(A)⊗Z Q.

Definition 6.4.5 An abelian variety A is simple if the only sub-abelian varieties of

A are {0} and A itself.

Theorem 6.4.5 If A is a simple abelian variety, then End(A) ⊗Z Q is a division

Q-algebra.

If A is not simple, then it can be decomposed up to isogeny as a product of simple

ones.

Theorem 6.4.6 (Poincaré complete reducibility theorem) Suppose that A is

an abelian variety, then there exists an isogeny

A→ An1
1 × . . . Ant

t ,

such that all Ai are simple abelian varieties. Moreover, the pairs (Ai,ni) are uniquely

determined up to isogeny (i = 1, . . . , t).

Corollary 6.4.1 With the same notation as in the last theorem, we have

End(A)⊗Z Q 'Mn1(D1)× · · · ×Mnt(Dt),

where Di = End(Ai)⊗Z Q is a division Q-algebra (i = 1, . . . , t).

This last theorem together with Wedderburn’s theorem tells us that End(A)⊗Z Q is

a semisimple algebra with a positive involution. Because of Corollary 6.4.1 we can

restrict our study to End(A)⊗ZQ, where A is simple. In this particular case we have

established:
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Theorem 6.4.7 Let A be a simple abelian variety. Then End(A) ⊗Z Q is a sim-

ple finite dimensional division Q-algebra with a positive definite involution (Rosati

involution) with respect to the rational trace.

Abraham Adrian Albert (1905-1972) classified the structure of such algebras,

see [1], [2] and [3]. His results are clearly explained in [4]. So let (D, ′ ) be a finite

dimensional divisionQ-algebra with a positive anti-involution x 7→ x′. We shall denote

the center of D by K. The anti-involution induces an involution on K (since K is

commutative). Let K0 be its fixed field.

Theorem 6.4.8 With the notation above, K0 is a totally real number field.

Definition 6.4.6 The pair (D, ′ ) is called of the first type if K = K0 and of the

second type otherwise.

Theorem 6.4.9 Let (D, ′ ) be of the second type. Then its center K is totally imagi-

nary, the restriction of the anti-involution to K is the non-trivial automorphism of K

over K0, and [K : K0] = 2.

We give a special name to the kind of fields which appear in the last theorem.

Definition 6.4.7 A CM-field is a number field which is a totally imaginary quadratic

extension of a totally real field.

Note that quadratic imaginary fields are CM -fields and cyclotomic fields provide

another example of such fields. Here is a characterization of CM -field.

Theorem 6.4.10 Let K be a number field, and fix an embedding of K in C. Then K

is a CM -field if and only if the following two conditions are satisfied:

• Complex conjugation τ induces a non-trivial automorphism of K.

• Complex conjugation commutes with all other embeddings, that is τ ◦ σ = σ ◦ τ
for all σ ∈ HomQ(K,C).

It therefore follows that complex conjugation does not depend on the chosen embedding.
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We shall not pursue the general study of such Q-algebra (D, ′ ). See again [4] for this

theory and to see which ones can be realized as End(A)⊗ZQ for some simple abelian

variety A. We just state the final result.

Theorem 6.4.11 Let (D, ′ ) be as above. Then we have the following possibilities

for D:

Type Structure

First type D = totally real number field

D = totally indefinite quaternion algebra

D = totally definite quaternion algebra

Second type D = division algebra and Z(D) is a CM -field

Table 6–1: The center of a finite dimensional division Q-algebra with a positive anti-
involution

We are now ready to define the generalization of an elliptic curve with complex

multiplication by a quadratic imaginary field.

Definition 6.4.8 Let A ' Cn/Λ be a polarized abelian variety of dimension n defined

over C. Let K be a CM -field and suppose that [K : Q] = 2n. We say that A has

complex multiplication by K if there exists an embedding

ι : K ↪→ End(A)⊗Z Q,

such that the Rosati involution induces complex conjugation on K.

When n = 1, we get back the old notion of complex multiplication of elliptic curves.

6.4.2 Construction of abelian varieties with CM

Now that we have defined the right generalization of complex multiplication to

abelian varieties, we should explain how we can construct such abelian varieties.

Instead of stating directly one big theorem, we shall state several small results that

we collect in one big theorem at the end, see Theorem 6.4.12.
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Definition 6.4.9 Let K be a CM -field and suppose moreover that [K : K0] = 2n.

Let Φ = {ϕ1, . . . , ϕn} be a set of embeddings ϕi : K → C such that none of them is

the complex conjugate of another one, that is

ϕi 6= ϕ̄j,

for all i, j = 1, . . . , n. Then we call (K,Φ) a CM -type.

Lemma 6.4.1 Let K be a CM -field and let K0 be its associated totally real subfield.

Then, there exists ξ ∈ K such that

• K = K0(ξ), (ξ 6= 0);

• −ξ2 is totally positive.

Proof:

By the primitive element theorem, there exists ξ′ ∈ K such that K = K0(ξ
′) and since

the extension is quadratic, ξ′ satifies a quadratic polynomial with coefficients in K0:

a2ξ
′2 + a1ξ

′ + a0 = 0,

for some ai ∈ K0, (i = 0, 1, 2). Then

ξ′ =
−a1 ±

√
a2

1 − 4a2a0

2a2

.

Set ξ =
√
a2

1 − 4a2a0, we have K = K0(ξ), and ξ2 = a2
1 − 4a2a0 ∈ K0. Since

[K : K0] = 2, ξ 6= 0. This proves the first part.

Now, we want to show that −ξ2 is totally positive. Suppose that it is not. Then

there exists a real embedding σ : K0 → R such that σ(−ξ2) < 0. Let σ̃ be any

extension of σ to K. Then we have

0 > σ(−ξ2) = σ̃(−ξ2) = −σ̃(ξ)σ̃(ξ),

and therefore σ̃(ξ)σ̃(ξ) > 0. Write σ̃(ξ) = a + ib for some a, b ∈ R. The product

becomes then (a+ ib)(a+ ib) = (a2 − b2) + 2abi > 0 implies that a or b = 0. If a = 0
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then a2 > b2 > 0 implies that b = 0 but since ξ 6= 0, σ̃(ξ) 6= 0. Thus b = 0, but

then σ̃(ξ) ∈ R which is a contradiction since K is totally imaginary.

2

Lemma 6.4.2 Let (K,Φ) be a CM -type and let K0 be its associated totally real sub-

field. Then by the last lemma, we can choose ξ ∈ K such that K = K0(ξ), the

element −ξ2 is in K0 and −ξ2 totally positive. We claim that we can choose ξ such

that in addition Im(ϕ(ξ)) > 0 for all ϕ ∈ Φ.

Proof:

Suppose that ξ′ satisfies the hypothesis of Lemma 6.4.1. We can choose an α ∈ K0

with any sign distribution, so choose α ∈ K0 such that ϕ(α) · Im(ϕ(ξ′)) > 0, for

all ϕ ∈ Φ, and set ξ = α · ξ′.
2

Lemma 6.4.3 Let (K,Φ = {ϕ1, . . . , ϕn}) be a CM -type and suppose [K : Q] = 2n.

Consider then the map

Φ : K → Cn, λ 7→ Φ(λ) = (ϕ1(λ), . . . , ϕn(λ)).

For any free Z-module a ⊆ K of rank 2n, the image Φ(a) is a lattice in Cn. There-

fore, Cn/Φ(a) is a complex torus.

We can now construct some abelian varieties from a CM -type. According to Theorem

6.2.1, it suffices to find a Riemann form on Cn/Φ(a).

Lemma 6.4.4 Let (K,Φ = {ϕ1, . . . , ϕn}) be a CM -type and let K0 be its associated

totally real subfield. Let ξ be as in Lemma 6.4.2. Define for any z = (z1, . . . , zn),

and w = (w1, . . . , wn) ∈ Cn:

E(z, w) :=
n∑

i=1

ϕi(ξ)(ziwi − ziwi).

Let a ⊆ K be a free Z-module of rank 2n. For α, β ∈ K we have

E(Φ(α),Φ(β)) = TrK/Q(ξ · α · β),
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and for a suitable integer m, m · E is a Riemann form on the torus Cn/Φ(a), which

is thus an abelian variety.

Proof:

We have to check the conditions on Theorem 6.2.3. The facts that E is R-alternating

and that E(iz, iw) = E(z, w) (∀z, w ∈ Cn) are straightforward computations.

Next we check that E(iz, z) ≥ 0. Note first that for any i = 1, . . . , n, ϕi(ξ) is

a pure imaginary number (a complex number z is pure imaginary if z = −z or, in

other words, has no real part). Indeed, the quadratic extension K/K0 is Galois and

the non-trivial Galois automorphism is defined by ξ 7→ −ξ and this is equal to the

complex conjugation. Thus we have

ϕi(ξ) = ϕi(ξ) = ϕi(−ξ) = −ϕi(ξ),

and it is pure imaginary (note that we used the fact that complex conjugation com-

mute with any embedding, see Theorem 6.4.10). So we have

E(iz, z) =
n∑

k=1

ϕk(ξ)(−izkzk − izkzk),

and ϕk(ξ) pure imaginary implies that −iϕk(ξ) = Imϕk(ξ), and therefore

E(iz, z) = 2
n∑

k=1

(Imϕk(ξ))|zk|2 ≥ 0,

since Imϕk(ξ) > 0 for all k = 1, . . . , n.

From this last equation, it is also clear that E(iz, z) = 0 ⇔ z = 0.

The only thing we still have to check in order to have a Riemann form is that E

is integer-valued on Φ(a). But this is not always the case and this is why we have to

multiply by a suitable integer. First let α, β ∈ K then

TrK/Q(ξ · α · β) =
∑

ϕ∈HomQ(K,C)

ϕ(ξ · α · β)

=
∑
ϕ∈Φ

ϕ(ξ · α · β) +
∑
ϕ∈Φ

ϕ ◦ τ(ξ · α · β),
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where τ is the complex conjugation. Further

TrK/Q(ξ · α · β) =
∑
ϕ∈Φ

(
ϕ(ξ)ϕ(α)ϕ(β) + ϕ(ξ)ϕ(α)ϕ(β)

)
,

and since ξ = −ξ, we get

TrK/Q(ξ · α · β) =
∑
ϕ∈Φ

(
ϕ(ξ)ϕ(α)ϕ(β) + ϕ(−ξ)ϕ(α)ϕ(β)

)

=
∑
ϕ∈Φ

ϕ(ξ)
(
ϕ(α)ϕ(β)− ϕ(α)ϕ(β)

)
.

This last sum is exactly E(Φ(α),Φ(β)). According to this equality, E(Φ(α),Φ(β)) ∈ Q
for all α, β ∈ K. Finally, since a is in particular a finitely generated Z-module the

denominators of the reduced fractions that E takes on Φ(a) are bounded. Therefore,

we can find m in Z such that m · E is integer-valued on Φ(a) and this conclude the

proof.

2

Next, we want to see if this abelian variety has complex multiplication by K.

Lemma 6.4.5 Let (K,Φ) be a CM -type and let the notation be as in Lemma 6.4.4.

Then for any free Z-module a ⊆ K of rank 2n, A ' Cn/Φ(a) is an abelian variety.

Moreover, this abelian variety has complex multiplication by K.

Proof:

So we have to check two things: Firstly that K can be embedded in End(A) ⊗Z Q
and then that the Rosati involution induces the complex conjugation on K.

Let O be the order associated to a, that is

O = {λ ∈ K|λ · a = a}.

For any λ ∈ O define Sλ ∈ HomC(Cn,Cn) by

Sλ(z) = (ϕ1(λ)z1, . . . , ϕn(λ)zn),
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for any z ∈ Cn. We claim, that Sλ induces an endomorphism on Cn/Φ(a). We thus

have to check that Sλ(Φ(a)) ⊆ Φ(a). Let α ∈ a, then

Sλ(Φ(α)) = (ϕ1(λ · α), . . . , ϕn(λ · α)).

By definition of O, λ · a = a thus

Sλ(Φ(α)) = Φ(λ · α) ∈ Φ(a).

We thus have an induced map φλ : Cn/Φ(a) → Cn/Φ(a), defined by z + Φ(a) 7→
Sλ(z) + Φ(a). This gives us an embedding

O ↪→ End(A)

Next, since O is an order, Frac(O) = K. Using the universal property of the fraction

field, we get an embedding

K ↪→ End(A)⊗Z Q.

The fact that the Rosati involution induces complex conjugation on K is clear.

2

We summarise our results as follows:

Theorem 6.4.12 Let (K,Φ = {ϕ1, . . . , ϕn}) be a CM -type and K0 its totally real

subfield. Suppose moreover that [K : Q] = 2n. Then

1. There exists ξ ∈ K such that

(a) K = K0(ξ);

(b) −ξ2 À 0;

(c) Imϕ(ξ) > 0 for all ϕ ∈ Φ.

2. For any free Z-module a ⊆ K of rank 2n, Cn/Φ(a) is a complex torus, where

Φ : K → Cn is defined by λ 7→ (ϕ1(λ), . . . , ϕn(λ)).
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3. A suitable integer multiple of the R-bilinear form

E(z, w) =
n∑

i=1

ϕ(ξ)(ziwi − ziwi)

is a Riemann form on Cn/Φ(a) and in this way Cn/Φ(a) becomes an abelian

variety with complex multiplication by K.

We have also the converse, namely:

Theorem 6.4.13 Every abelian variety defined over C with complex multiplication

by a CM -field K can be constructed as in the previous theorem.

Definition 6.4.10 A CM -type (K,Φ) is called primitive if every abelian variety with

complex multiplication by K is simple.

6.4.3 The reflex field

Definition 6.4.11 Let (K,Φ) be a CM -type. We define the type norm (or half-norm)

and the type trace (or half-trace) as follows:

• NΦ(λ) =
∏

ϕ∈Φ ϕ(λ);

• TΦ(λ) =
∑

ϕ∈Φ ϕ(λ),

for all λ ∈ K.

Definition 6.4.12 Let (K,Φ) be a CM -type, we define the reflex field to be

K∗ := Q({TΦ(λ)|λ ∈ K}).

Theorem 6.4.14 Let (K,Φ) be a CM -type, then the reflex field K∗ is also a CM -

field.

Associated to the reflex field, there is also a reflex type. This notion is contained in

the next theorem.

Theorem 6.4.15 Let (K,Φ) be a CM -type, and L/Q a finite Galois extension con-

taining K. Let G = Gal(L/Q) and define

• S = {σ ∈ G|σ induces a ϕ ∈ Φ on K};
• S∗ = {σ−1|σ ∈ S};
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• H∗ = {γ ∈ G|S∗γ = S∗}.
Then K∗ = LH∗

, the fixed field of L by H∗. Moreover, if

Φ∗ = {ψ : K∗ → C|ψ is induced by σ ∈ S∗},

then (K∗,Φ∗) is a primitive CM -type. Finally, all this does not depend on the Galois

extension L containing K.

There is a link between ideals in K and ideals in K∗:

Theorem 6.4.16 Let (K,Φ) be a CM -type and (K∗,Φ∗) its reflex field. Let also L/Q

be a Galois extension containing K. If a is an ideal in K∗, then there exists an ideal

b in K such that

b ·OL =
∏

ϕ∈Φ∗
ϕ(a) ·OL, b · b = N(a) ·OK .

To conclude this chapter, we say a word on explicit class field theory. Using this

theory, Taniyama and Shimura were able to generate abelian extensions of the reflex

field of a CM -field using values of Siegel modular functions evaluated at CM -points.

Yet, it is also known that we do not get (K∗)ab in this case. Note that if K is a

quadratic imaginary field, then K∗ = K, and this is why the reflex field did not

appear in the theory of complex multiplication of elliptic curves.
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CHAPTER 7
DeShalit–Goren invariants

7.1 Stark’s conjectures again

The construction of elliptic units in abelian extensions of a quadratic imaginary

number field used explicit class field theory provided by the theory of complex mul-

tiplication. It is thus natural to try to construct units in abelian extensions of the

reflex field of a CM -field. The hope is that it would lead to other cases of Stark’s

conjectures. Let (K,Φ) be a CM -type of degree four, then there are three possibilities:

1. K is Galois, Gal(K/Q) ' Z/2Z × Z/2Z. In that case Φ is non-primitive, and

K∗ is quadratic imaginary;

2. K is Galois, Gal(K/Q) ' Z/4Z. In that case K = K∗, and Φ is primitive;

3. K is non-Galois. In that case K∗ is another CM -field of degree 4 over Q.

We shall not deal with the case (1). In that case, one can use the theory of elliptic

units in order to construct units in abelian extensions of K∗. Case (2) will be called

the cyclic case and case (3) will be referred to as the non-Galois case.

Let thus K be any CM -field of degree 4 falling in either the cyclic case or the

non-Galois case. Then K∗ is a CM -field of degree 4 over Q. Let L/K∗ be any abelian

extensions and let S be any set of primes of K∗ containing S∞. Moreover, let χ be

any character of Gal(L/K∗). Here S satisfies automatically conditions S1 and S3 of

Chapter 4. Suppose that S satisfies also S2, then from Theorem 4.0.3, we see that

St(L/K∗, S) is true in that case. Actually, from Corollary 4.0.1, we see that if χ 6= χ1,

then rS(χ) ≥ 2 and thus we can take ε = 1 as a Stark unit. If χ = χ1, then the only

way to get a rank one L-function is to take an unramified abelian extension L/K∗

and S = S∞. The rank one abelian conjecture is also known to be true in that case.
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Anyway, except this last case, the L-functions will have a zero of order at least 2

at s = 0. Karl Rubin stated a generalization of Stark’s conjectures for zeros of higher

orders at s = 0, see [56]. This is the case of interest for us and this can be viewed

as a motivation of constructing S-units in abelian extension of CM -fields of degree

greater than two.

7.2 Class invariants

In this section, we explain the construction of DeShalit–Goren. First of all, we let

K be a CM -field of degree four and we fix a CM -type (K,Φ). Moreover, let (K∗,Φ∗)

be its reflex field. The construction of DeShalit–Goren concerns the cyclic and non-

Galois cases, but in this thesis, we deal only with the cyclic case. Therefore, we

suppose K to be Galois with Galois group isomorphic to the cyclic group of order

four.

Let h2 be the Siegel space. For τ ∈ h2 and u ∈ M2×1(C), we define the theta

function with characteristics r, s ∈M2×1(Q) by

θ

[
r

s

]
(u, τ) =

∑

n∈Z2

exp

(
2πi

(
1

2
(n+ r)tτ(n+ r) + (n+ r)t(u+ s)

))
.

Definition 7.2.1 The characteristics are called integral if r, s ∈ 1
2
Z2 and are called

even if they are integral and rt · s ∈ 1
2
Z.

Theta functions with integral characteristics depend only on r, s mod Z2, up to ±1.

We shall work with the square of this function so this sign ambiguity does not matter.

In our case, ten out of the sixteen integral characteristics are even:

[[
0
0

]
[
0
0

]
]
,

[ [
0
0

]
[

0
1/2

]
]
,

[ [
0
0

]
[
1/2
0

]
]
,

[ [
0
0

]
[
1/2
1/2

]
]
,

[[
0

1/2

]
[
0
0

]
]
,

[[
0

1/2

]
[
1/2
0

]
]
,

[[
1/2
0

]
[
0
0

]
]
,

[[
1/2
0

]
[

0
1/2

]
]
,

[[
1/2
1/2

]
[
0
0

]
]
,

[[
1/2
1/2

]
[
1/2
1/2

]
]
.
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Consider then

θev(u, τ) =
∏
even

θ

[
r

s

]
(u, τ),

where the product is over all the even characteristics (this is defined up to a sign) and

set

θev(τ) = θev(0, τ).

Igusa proved in [30] that θ2
ev(τ) is a Siegel modular form of level 1 and weight 10.

Let Λ be a lattice in C2 and let C2/Λ be an abelian surface with a principal

polarization given by a Riemann form E. Let Ω = (ω1, ω2) be a symplectic basis of Λ.

The function

∆(Λ, E) = det(ω2)
−10θ2

ev(ω
−1
2 ω1),

depends only on Λ and E. Next, we shall evaluate this function at some CM -points.

We have seen in the last chapter how to construct abelian surfaces with complex

multiplication by a CM -field. We explain now a condition for that surface to admit

a principal polarization.

Let a be a fractional ideal of K. We have seen in the last chapter that C2/Φ(a) is

an abelian manifold. We have seen also that there exists a δ ∈ K (in Theorem 6.4.12,

take δ = ξ−1) satisfying δ = −δ and Im(ϕ(δ)) > 0 for ϕ ∈ Φ, such that for u, v ∈ a

Eδ(Φ(u),Φ(v)) = TrK/Q(δ−1uv),

is a Riemann form for this abelian manifold. The following lemma is immediate.

Lemma 7.2.1 The polarization induced by the Riemann form Eδ on C2/Φ(a) is prin-

cipal if and only if

DK/Qaa = δ ·OK

where DK/Q is the different of the field K.

We can now define the class invariants in the cyclic case. Let K be a cyclic quartic

CM -field and F its associated totally real subfield. We suppose moreover that hF = 1,
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the fundamental unit of F has norm −1 (these last two conditions imply h+
F = 1),

and that the different DK/Q is generated by a pure imaginary number δ. Since the

norm of the fundamental unit is −1, we can choose δ such that

Imϕ(δ) > 0,

for all ϕ ∈ Φ. For any ideal a of OK , choose a such that

a · a = a ·OK , 0 ¿ a ∈ F.

Then using the fact that the fundamental unit of F has norm −1, we can find a

generator in F which is totally positive.

Consider the lattice Φ(a) with the Riemann form

Eaδ(Φ(u),Φ(v)) = TrK/Q(a−1δ−1uv).

The complex torus C2/Φ(a) becomes a principally polarized abelian manifold. Define

∆(Φ(a)) = ∆(Φ(a), Eaδ),

and set

u(Φ; a) =
∆(Φ(a−1))

∆(Φ(OK))
.

Theorem 7.2.1 The invariants u(Φ; a) have the following properties:

1. u(Φ; a) is well-defined and u(Φ; a) 6= 0, ∞.

2. u(Φ; a) ∈ HK, and
√
u(Φ; a) ∈ Kab.

3. The explicit reciprocity law is given by the following rule: If C is any ideal of K

and c = NΦ∗(C), then

u(Φ; a)(C,HK/K) =
u(Φ; ac)

u(Φ; c)
.

4. If λ ∈ K×, then u(Φ;λ · a) = NΦ(λ)10 · u(Φ, a).
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5. The invariant u(Φ; a, b) = u(Φ; ab)/u(Φ; a)u(Φ; b) depends only on the classes

of a and b. Its norm from HK to K is 1.

6. The invariants behave as follows under a change of CM -type: u(Φσ, σ−1a) =

u(Φ, a) for any σ ∈ Gal(K/Q). The Galois group acts transitively on the four

CM-types of K.

7. Assume (hK , 10) = 1. Then the u(Φ; a) generate HK. In particular, if hK > 1

they are non-trivial.

8. Assume hK is prime and different from 5 and 2. Then the group generated by

the u(Φ; a, b) in H×
K has rank hK − 1.

The invariants we are interested in are the u(Φ; a, b).

Theorem 7.2.2 The following properties are equivalent:

1. The u(Φ; a, b) are units, for all a, b.

2. For every a, (u(Φ; a)) is Gal(HK/K)-invariant.

3. For every a, (u(Φ; a)) = NΦ(a)10.

4. If a is integral, u(Φ; a, b) is integral.

7.3 Some further results

Since the publication of [14], others properties of these invariants have been

discovered. We list them here.

1. A prime p of HK over p appears in the denominator of a class invariant if and

only if there is a smooth genus 2 curve C, defined over an extension H of HK ,

such that Jac(C) has CM by OK and there is a prime P of H over p such that

C is isomorphic modulo P to two supersingular elliptic curves E,E ′ intersecting

transversely at their origins. See [14] and [23].

Note that in [76], the author gives examples of such curves having CM by OK .

2. A prime p as above has the property that p is either ramified or decomposes as

p1p2 in K, see [14].
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In all examples of class number two and four we have studied, we verified this

last fact and it was always true. For example, take the field Q(
√
−41 + 4

√
41)

(B.2.X.). Using MAGMA, we computed, for each invariant u(Φ; a, b), the num-

ber field L = Q(u(Φ; a, b)). If x is a root of the minimal polynomial of u(Φ; a, b),

then we computed the factorization of the ideal x ·OL. We saw that the primes

appearing below were 2, 5, 23, 31, 59 and 359. They all factorize into p1 · p2 in

K except 2 which factorizes as p2
1 · p2

2.

3. Let us write K = Q(
√
d)(
√
r), where r is a totally negative algebraic integer

of Q(
√
d), d a square-free integer. A prime p as above has the property that

p < 16 · d2 · Tr(r)2. This is the main result of [23].

Here again, in all examples of class number two or four we have studied, we

computed also this bound. All primes which appear are smaller than this bound.

In the example above, the bound is 180848704.

4. In fact, if p is unramified in K and p is as above, then if the denominator of

u(Φ; a, b) has valuation n at p then n ≤ 1
2

+ 6 · log(d·Tr(−r)/2)
log(p)

. The proof of this

fact is not yet written in detail and so some caution has to be exercised. For

instance, the exact constants may change, though qualitatively this is the result

one gets. The reference for this is [21].

5. Let K be a quartic primitive CM -field. We say that a rational prime is “evil”

(for K) if for some prime P of Q, there is a principally polarized abelian variety

with complex multiplication by OK whose reduction modulo P is the product

of two supersingular elliptic curves with the product polarization. The result

is: Let p be a rational prime and let L be a real quadratic field of strict class

number one. There is a constant N = N(L, p) such that p is evil for every

primitive CM -field K such that F = L, p = p1 · p2 in K and N(∆K/L) > N .

See [24].

99



7.4 Analysis of the numerical results

We list here some observations we made concerning our numerical results.

• First of all, we find only two global units among all the examples we computed,

namely B.1.II. and the last one in B.2.I.. This shows that in general one should

not expect the DeShalit-Goren invariants to be units and so the focus should

be on studying their factorization, going further than the results of Goren and

Lauter.

• We never reach the theoretical bound for the size of the primes appearing in the

ideal generated by an invariant u(a, b). Recall from Section 7.3, point 3, that

if K is written as Q(
√
d)(
√
r), where r is a totally negative algebraic integer of

Q(
√
d), d a square-free integer, then the primes appearing in the decomposition

of u(a, b) are above rational primes p bounded by 16 · d2 · Tr(r)2. However,

in general, the size of the primes seems to be much smaller. For example, in

B.2.II., the largest prime decomposing in K as p1 · p2 is 5345323 while the

largest prime appearing in the decomposition of the elements u(a, b) is 47.

• Moreover, it seems that only few primes appear. For example, in B.2.IV. the

bound is 50176. There are exactly 5152 primes below this bound and two of

them are ramified, namely 2 and 7. Among the 5150 unramified primes, 2597

decompose as p, 1252 as p1 · p2 and 1301 as p1 · p2 · p3 · p4 in the CM -field K.

Thus there are 1301 primes that could appear, but only three of them actually

occur, namely 17, 31, and 47.

• Among the class number two examples, only unramified primes appear.

• On the other hand, among the class number four examples, there are six of them

where a ramified prime appear.

1. B.2.II. There are two ramified primes: 2 · OK = p2
1 · p2

2 and 17 · OK = p4.

Only 2 appears.
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2. B.2.IV. There are two ramified primes: 2 · OK = p4 and 7 · OK = p2
1 · p2

2.

Only 7 appears.

3. B.2.VI. There are two ramified primes: 2 ·OK = p2
1 · p2

2 and 17 ·OK = p4.

Only 2 appears.

4. B.2.IX. There are two ramified primes: 5 ·OK = p2
1 · p2

2 and 29 ·OK = p4.

Only 5 appears.

5. B.2.X. There are two ramified primes: 2 ·OK = p2
1 · p2

2 and 41 ·OK = p4.

Only 2 appears.

6. B.2.XI. There are two ramified primes: 3 ·OK = p2
1 · p2

2 and 73 ·OK = p4.

Only 3 appears.

Hence, we notice that every ramified prime that appear is of the form p2
1 · p2

2 in

K.

• Recall that Theorem 7.2.1 guarantees that the span of the class invariants is

“big” provided the class number is prime to 10. From example B.2.V., we see

that the condition of the class number is necessary. Indeed, the field spanned

by the invariants is Q(
√

5), while the Hilbert class field has degree 4 over K.

• We note also that for all class number four examples, all prime ideals appearing

in their factorization are raised at a power either two or four.
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CHAPTER 8
Computation

8.1 Algorithm

All computations have been done with the software MAGMA V2.11-13. The com-

puter on which we ran the computations was a Intel(R) Pentium(R) 4 CPU 2.53GHz

with 512MB of RAM. The approximate running time varies from one example to an-

other. For instance, example B.1.I. takes about 41 seconds for a precision of about

300 digits. On the other hand, example B.2.XIII. takes about 10515 seconds for a

precision of about 1800 digits.

We present here the algorithm that we haved used for computing the class in-

variants.

1. Take a CM -field K Galois over Q with Galois group Z/4Z.

In the article [49], the authors determine all non-quadratic imaginary cyclic

number fields of 2-power degree with relative class number smaller or equal

to 20. Thus it gives us all the cyclic quartic CM -fields with small class number

(smaller or equal to 20). For instance, there are exactly eight of them with class

number two. They are listed in the following table:

Q(
√
−5 +

√
5) Q(

√
−6 + 3

√
2)

Q(
√
−65 + 26

√
5) Q(

√
−65 + 10

√
13)

Q(
√
−10 + 5

√
2) Q(

√
−85 + 34

√
5)

Q(
√
−13 + 3

√
13) Q(

√
−119 + 28

√
17)

Table 8–1: Cyclic quartic CM -fields with class number 2
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2. Among the cyclic quartic CM -fields provided by [49], we choose the ones such

that hF = 1 (F is the totally real subfield associated to K) and also such that the

fundamental unit of F has norm -1.

It follows that h+
F = 1. Indeed, let a be any fractional ideal of F . Since hF = 1,

the ideal a = α ·OK for some α ∈ K×. Then, multiplying α by −1 or ±η, we can

get a positive generator, and therefore h+
F = 1. Here are some examples of some

real quadratic number fields with class number one and with a fundamental

unit of norm -1: K = Q(
√
d), where d = 2, 5, 13, 17, 29, 41, 73 (we will use these

ones).

3. Fix a CM -type of K.

In our case, suppose G = Gal(K/Q) = {1, σ, τ, στ}, where σ is a generator of G,

and τ is the complex conjugation. There are four CM -types which are given

abstractly by

Φ1 = {1, σ}, Φ2 = {1, στ}, Φ3 = {σ, τ}, Φ4 = {στ, τ}.

Note also that by property 6 of Theorem 7.2.1, it suffices to compute all the

invariants u(Φ; a, b) (by all, we mean u(Φ; a, b), where [a] and [b] run over all

ideal classes of Cl(K)) for only one CM -type.

4. Find a good generator δ for the different DK/Q.

First, we find a generator of DK/Q and we check whether or not it is pure

imaginary. In all examples we have studied, it is always the case. Then, we

multiply it by ±η, where η is the fundamental unit of F , in order to have

Imϕ(δ) > 0 for all ϕ ∈ Φ.

5. Find a representative for each ideal class in K.

6. For each such representative a, we find a generator a ∈ F of a · a such that aÀ 0.

We multiply a generator by ±1, ±η, where η is the fundamental unit of F , in

order to get a totally positive generator.
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7. We compute the Riemann form which gives a principal polarization on C2/Φ(a).

It is given by Eaδ(Φ(u),Φ(v)) = TrK/Q(a−1δ−1uv).

8. For each a, we find a symplectic basis (e1, e2, ε1, ε2) for a with respect to the

alternating form Eaδ.

Here, we proceeded as follows. We find a Z-basis (α1, α2, α3, α4) of a. Let

A = (Eaδ(αi, αj)) and let [ n1 n2 n3 n4 ]t denotes the coordinate of any vector

x = n1α1 + n2α2 + n3α3 + n4α4 ∈ a. First, we take λ1 = [ 1 0 0 0 ]t and we

find λ2 = [ 0 x y z ]t such that λt
2Aλ1 = −1. For this, we used the command

Solution provided by MAGMA. Then, we set M = [ A·λt
1 A·λt

2 ] ∈ M4×2(Z).

Then the command Solution gives a basis of the nullspace of M . We de-

note this basis by λ3 and λ4. We necessarily have Eaδ(λ3, λ4) = ±1. Thus,

if Eaδ(λ3, λ4) = 1, then we take e1 = λ2, e2 = λ4, ε1 = λ1, and ε2 = λ3. If

Eaδ(λ3, λ4) = −1, we take instead e1 = λ2, e2 = λ3, ε1 = λ1, and ε2 = λ4. We

get in that way a symplectic basis.

9. Find the period matrix (ω1, ω2).

Recall from Chapter 6, that ω1 =
(

ϕ1(e1) ϕ1(e2)
ϕ2(e1) ϕ2(e2)

)
and that ω2 =

(
ϕ1(ε1) ϕ1(ε2)
ϕ2(ε1) ϕ2(ε2)

)
.

10. Find the corresponding point τ = ω−1
2 · ω1 ∈ h2.

11. For the ten even characteristics, compute θ
[
r
s

]
(0, τ) to a high precision.

Say we would like to compute this theta series up to the precision 10−m for some

integer m. Note that we have

∣∣exp
(
πi(n+ r)tτ(n+ r) + 2πi(n+ r)ts

) ∣∣ = exp
(−π(n+ r)tIm(τ)(n+ r)

)
,

and thus, we want to find a constant C such that

∣∣∣∣∣∣∣∣

∑

n∈Z2

(n+r)tIm(τ)(n+r)>C

exp
(
πi(n+ r)tτ(n+ r) + 2πi(n+ r)ts

)
∣∣∣∣∣∣∣∣
≤ 10−m.
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This is done in [80]. We just state the result here. We should take C such that

C > m+ 0.35− 2 log10(min τ),

where min τ = minn∈Z2 nt · Im(τ) · n. Moreover, if C ≥ 75, then we can take

C >
1

2
(m+ 0.35− 2 log10(min τ)).

Next, we have to compute all n ∈ Z2 such that

(n+ r)tIm(τ)(n+ r) ≤ C.

Here again, we used an algorithm presented in [80].

12. Compute ∆(Φ(a), Eaδ) for each representative a.

We see that the bigger is the imaginary part the faster will be the convergence

of the theta series. We used here a trick suggested by Van Wamelen in [76].

In order to increase the imaginary part, we apply a generator of Sp2(Z) to

τ = ω−1
2 ω1 in order to bring it back in the fundamental domain. Thus, if we

have τ ′ = M · τ for some M ∈ SL2(Z) then

θ2
ev(τ) = det(CZ +D)−10 · θ2

ev(τ
′),

where M = ( A B
C D ) ∈ Sp2(Z), since θ2

ev is a Siegel modular form of weight 10.

Van Wamelen implemented a function in MAGMA in order to do this. The

name of this function is To2DUpperHalfSpaceFundamentalDomian.

13. Compute u(Φ; a) for all representatives a.

14. Compute u(Φ; a, b), where a and b run over all representatives of Cl(K).

15. Choose any one of the class invariants, say u(Φ; a, b).

16. Compute the reflex type.

With the same notation as in step 3, we have then:

Φ∗
1 = {1, στ}, Φ∗

2 = {1, σ}, Φ∗
3 = {στ, τ}, Φ∗

4 = {σ, τ}.
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17. Compute the action of the Galois group Gal(HK/K) on u(Φ; a, b).

By Property 3 of Theorem 7.2.1, we know the action of Gal(HK/K) on u(Φ; a).

Let C be an ideal of Cl(K), and let c = NΦ∗(C). The action of (C, HK/K)

on u(Φ; a, b) is thus given by

u(a, b)(C,HK/K) =

(
u(ab)

u(a)u(b)

)(C,HK/K)

=
u(ab)(C,HK/K)

u(a)(C,HK/K)u(b)(C,HK/K)

=
u(abc)u(c)

u(ac)u(bc)
.

18. Compute its minimal polynomial over K. Call this minimal polynomial f(X).

It is given by

f(X) =
∏
C

(
X − u(Φ; a, b)(C,HK/K)

)
,

where C runs through a complete set of representatives of Cl(K).

19. Find g = f(X) · f(X).

The coefficients of g(X) are now in K
⋂
R = F .

20. Try to recognize the coefficients of g(X) as algebraic numbers in F .

Here, we used the command PowerRelation provided by MAGMA. We in-

creased the precision until the polynomial obtained by PowerRelation for a

coefficient of g(X) has roots in F .

21. Once this is done, let σ be the non-trivial automorphism of F . Compute h(X) =

g(X) · gσ(X).

The polynomial h(X) has coefficients in Q and h(u(Φ; a, b)) = 0.

22. Factorize h(X) and find the minimal polynomial of u(Φ; a, b) over Q.

The minimal polynomial of u(Φ; a, b) is a factor of h(X).

23. Repeat steps 15 to 22 for all class invariants u(Φ; c, d).

106



couples

polynomial_a_b_1

multiplication

valeur

norm_partiel

polconj

reflex 

reflex delta_O_K

all_polynomial_a_b_1

periodmatrices

   thetaeven 

 theta

  constante          parimag

min

all_value

invariant

periodmatrices thetaeven

 theta

couples           constante parimag

Figure 8–1: Programming tree

8.2 Description of the program

See figure 8–1 to see the programming tree. We give here a description of the

functions in the program.

• precision(precision)

– Input: Precision.

– Output: No output.

– Effect: Change the precision of the default real field. This will have an

effect on the precision of the period matrices.
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• multiplication(field,ideal1,ideal2)

– Input: Number field, ideal, ideal.

– Output: The multiplication of these two ideals.

• cm_type(field)

– Input: Number field.

– Output: A list of four elements. The first one is the list of the four embed-

dings. The second one is the list of the four CM -types. The third one is

the list of the four embeddings, but abstractly. The last one is the list of

the 4 CM -types, but abstractly.

• reflex(field,automorphismsabstractly,cmtypeabstractly)

– Input: Field, set of automorphisms, CM -type (the abstract one here).

– Output: The reflex type of cmtypeabstractly abstractly.

• idealrep(field)

– Input: Number field.

– Output: A list of representatives for the ideal class group.

• parimag(matrix)

– Input: A two by two complex matrix.

– Output: The imaginary part of that matrix.

• nouvellematrice(A)

– Input: A two by two real matrix.

– Output: New matrix as in [80].

• couples(RealSymmetricMatrix,epsilon,constant)

– Input: A real symmetric matrix, a vector in Z2, a constant.

– Output: The list of couple n = (n1, n2) ∈ Z2 such that (n + epsilon)t ·
RealSymmetricMatrix · (n+ epsilon) ≤ constant.

• periodmatrices(CM-field,Real subfield,cmtype,ideal)

– Input: A CM -field, its real subfield, a CM -type, an ideal.
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– Output: A list of 3 matrices. In order: ω1, ω2, ω
−1
2 ω1.

• min(realsymmetricmatrix)

– Input: A real symmetric matrix.

– Output: The first successive minima of ω−1
2 ω1.

• constante(prec,Realsymmetricmatrix)

– Input: An integer, a real symmetric matrix.

– Output: The constant we need in the function couples in order to have

precision prec for the theta series.

• theta(delta,epsilon,omega,precision)

– Input: The two characteristics delta and epsilon, the period matrix, preci-

sion.

– Output: The value of θ
[
δ
ε

]
(0, omega).

• thetaeven(omega,precision)

– Input: Period matrix, precision.

– Output: The value of θev(0, omega).

• delta_O_K(cmfield,real subfield,cmtype,O_K,precision)

– Input: CM -field, real subfield, CM -types, the representative 1 of OK ,

precision.

– Output: The value of ∆(cmtype(OK)), i.e. the denominator of the invari-

ants u(Φ; a).

• invariant(K,F,cmtype,ideal,denominator,precision)

– Input: Clear (denominator is the value given by delta_O_K).

– Output: The value of u(cmtype; ideal).

• all_value(K,F,cmtype,rep,denom,precision)

– Input: CM -field, real subfield, CM -type, representatives of the ideal class

group, ∆(cmtype(OK)), precision.
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– Output: A list containing the set of values u(cmtype; a) where a runs

through the representatives of the class group.

• u_phi(K,F,cmtype,ideal1,ideal2,denom,precision)

– Input: Clear.

– Output: The value of u(cmtype; ideal1, ideal2).

• pol_conj(f)

– Input: A polynomial with complex coefficients a0 + a1x+ ...anx
n.

– Output: The polynomial with complex conjugates coefficients a0 + a1x +

...+ anx
n.

• valeur(K,rep,ideal)

– Input: CM -field, representatives, ideal.

– Output: Find the ideal rep[l] for which ideal is equivalent to rep[l].

If ideal(rep[l]−1) = α ·OK then it returns two values, namely α and l.

• norm_partiel(alpha,cmtype)

– Input: Number alpha, CM -type.

– Output: The partial norm of alpha.

• polynomial_a_b_1(K,F,cmtype,ideal1,ideal2,denom,precision,...

automorphisme,cmtypeaut,rep,toutevaleur)

– Input: CM -field, real quadratic field, ideal1, ideal2, ∆(OK), precision,

abstract automorphisms, abstractcmtype, representatives, values of

u(cmtype; a) given by the function all_value.

– Output: That function computes f(x) =
∏
C(x − u(a, b)(C,HK/K)), where

C runs over a complete set of representatives of Cl(K). Then f(x) has

coefficients in K. It computes then f · f = g which has now coefficients

in F . Then I use PowerRelation provide by MAGMA to recognize each

coefficient as the root of a polynomial of degree 2 with coefficients in C.
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There are three outputs: Coefficients of f · f ∈ R, a list where each com-

ponent is a list of three integers defining a polynomial of degree 2 for the

corresponding coefficient of f · f , value of u(ideal1, ideal2) in C.

• all_polynomial_a_b_1(K,F,cmtype,precision,automorphisme,...

cmtypeaut,rep)

– Input: Clear.

– Output: 5 things: List of the values of the u(a, b), ∆(OK), a list where

each component is the first output of the function polynomial_a_b_1, a

list where each component is the second output of the function

polynomial_a_b_1, a list where each component is the third output of the

function polynomial_a_b_1.

• pol_over_Q(F,coef,pol,quad)

– Input: Real quadratic field, output (2) of polynomial_a_b_1, output (3)

of polynomial_a_b_1, d, where F = Q(
√
d).

– Output: 3 things: If f is the polynomial given by polynomial_a_b_1 with

coefficients if F , then it ouputs the polynomial with coefficients in Q: f ·fσ,

where σ is the quadratic conjugation in F , the coefficients of f in F , the

coefficients of fσ in F .

8.3 How to run the program

Put the program in a text file under a name (for example invariant). In the same

folder, run magma, and type load "invariant". Then you can use every function.

Here is an example of a computation for the field Q(
√
−5 +

√
5).

[vallieres@scribe computation]$ magma

Magma V2.11-13 Wed Oct 5 2005 19:55:03 [Seed = 2492706851]

Type ? for help. Type <Ctrl>-D to quit.

> load "invariant";

Loading "invariant"
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> F := QuadraticField(5);

> G<y> := PolynomialRing(F);

> L<l> := ext<F|y^2 - (-5 + F.1)>;

> K<k> := AbsoluteField(L);

> precision_def(500);

> a1,a2,a3,a4 := cm_type(K);

> b := idealrep(K);

> u,delta,coef,coefseq,valeur := ...

all_polynomial_a_b_1(K,F,a2[1],300,a3,a4[1],b);

1

0

> polQ := pol_over_Q(F,coef[1],coefseq[1],5);

> Factorization(polQ);

[

<x - 1/14641, 8>

]
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CHAPTER 9
Conclusion

The motivation of this thesis was to see whether or not the DeShalit-Goren

class invariants are global units. Thanks to the numerical results presented in

this thesis, we know now that they are not. On the other hand, we have today much

information on the primes appearing in these class invariants. For example, a bound

is known for these primes even though our numerical results suggest that it might be

a little big. Another observation that is worth to point out is that apparently only

few primes are an obstruction for these class invariants to be global units. At this

point, we do not really understand this phenomena.

While working on this thesis, we asked ourselves several questions related with

these class invariants.

First of all, it would be great to implement a program computing these invariants

also in the non-Galois case.

Then it would be nice to find a link with Stark’s conjectures. For this, a good

understanding of Rubin’s paper [56] is probably indispensable. It seems also that for

a complete solution of these conjectures in the case where the base field is a CM -field

of degre four, one would have to construct units in arbitrary ray class fields of the

reflex field, not only in the Hilbert class field. In the proof of Stark’s conjectures for

the case where the base field is quadratic imaginary, the Kronecker’s limit formulas

were important. Konno found a limit formula for CM -fields in the paper [38]. The

next step would be to connect this limit formula to the class invariants of this thesis.

Another possibility would be to try to generalize this construction to CM -fields

of degree six and compare with the case treated in this master thesis.
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Finally, the Shimura reciprocity law gives us the explicit action of the Galois

group Gal(K/K) on these invariants. It would be nice to generalize the Shimura

reciprocity law to the group Gal(K/Q). If this action were known, then it would have

been possible to compute directly the minimal polynomial of the invariants u(Φ; a, b)

over Q instead of the minimal polynomial over K.
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APPENDIX A
Program

precision_def := procedure(P)

AssertAttribute(FldPr,"Precision",P);

end procedure;

corps1 := function(d,a,b)

F<f> := QuadraticField(d);

G<y> := PolynomialRing(F);

L<l> := ext<F|y^2 - (a + b*f)>;

K<k> := AbsoluteField(L);

return K,F;

end function;

multiplication := function(K,ideal1,ideal2)

return ideal1*ideal2;

end function;

cm_type := function(K)

C<i> := ComplexField();

coef := Coefficients(DefiningPolynomial(K));

rac := [Sqrt((-coef[3]+Sqrt(coef[3]^2 - 4 * coef[1]))/2),-Sqrt((-coef[3]+ ...

... Sqrt(coef[3]^2 - 4 * coef[1]))/2),Sqrt((-coef[3]-Sqrt(coef[3]^2 - 4 * ...

...coef[1]))/2),-Sqrt((-coef[3]-Sqrt(coef[3]^2 - 4 * coef[1]))/2)];

phi_1 := hom<K -> C | rac[1]>;

phi_2 := hom<K -> C | rac[2]>;

phi_3 := hom<K -> C | rac[3]>;

phi_4 := hom<K -> C | rac[4]>;

f := Automorphisms(K);

for l := 1 to 4 do

if f[l](K.1) eq -K.1 then

indiceconj := l;

end if;

end for;

for l := 1 to 4 do

if f[l](K.1) eq K.1 then

indiceid := l;

end if;

end for;

aut_1 := f[indiceid];

aut_2 := f[indiceconj];

indicerestant := [];

j := 1;

for l := 1 to 4 do

if l ne indiceconj and l ne indiceid then

indicerestant[j] := l;

j := j + 1;

end if;

end for;

Cpre<i> := ComplexField(10);

phi3_k := Cpre!phi_3(K.1);

phi4_k := Cpre!phi_4(K.1);

if Imaginary(Cpre!phi_1(f[indicerestant[1]](K.1)))*i eq phi3_k then

aut_3 := f[indicerestant[1]];

aut_4 := f[indicerestant[2]];

end if;

if Imaginary(Cpre!phi_1(f[indicerestant[1]](K.1)))*i eq phi4_k then

aut_4 := f[indicerestant[1]];
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aut_3 := f[indicerestant[2]];

end if;

return [phi_1,phi_2,phi_3,phi_4],[[phi_1,phi_3],[phi_1,phi_4],[phi_2,phi_3],[phi_2,phi_4]],...

...[aut_1,aut_2,aut_3,aut_4],[[aut_1,aut_3],[aut_1,aut_4],[aut_2,aut_3],[aut_2,aut_4]];

end function;

reflex := function(K,automorphismes,cmtype)

bidon := [];

for l:= 1 to 4 do

if (cmtype[1]^(-1))(K.1) eq automorphismes[l](K.1) then

bidon[1] := automorphismes[l];

end if;

end for;

for l:=1 to 4 do

if (cmtype[2]^(-1))(K.1) eq automorphismes[l](K.1) then

bidon[2] := automorphismes[l];

end if;

end for;

return bidon;

end function;

idealrep := function(K)

Cl, homo := ClassGroup(K);

representative := [];

l := 1;

for x in Cl do

representative[l] := homo(x);

l := l + 1;

end for;

return representative;

end function;

parimag := function(A)

return Matrix(RealField(),2,2,[Imaginary(A[i,j]):i,j in [1..2]]);

end function;

nouvellematrice := function(A)

R := RealField();

Q := Matrix(R,2,2,[A[1,1],A[1,2]/A[1,1],0,A[2,2] - ((A[1,2]^2)/A[1,1])]);

return Q;

end function;

couples := function(B,epsilon,constante)

A := nouvellematrice(B);

R := RealField();

liste := [];

T := [];

U := [];

x := [];

OS := [];

l := 1;

i := 2;

T[2] := R!constante;

U[2] := R!0;

while i le 2 do

bool_value := 1;

Z := Sqrt(T[i]/A[i,i]);

OS[i] := Floor(Z - U[i] - epsilon[i]);

x[i] := Ceiling(-Z - U[i] - epsilon[i]) - 1;

while bool_value eq 1 and i le 2 do

x[i] := x[i] + 1;

if x[i] le OS[i] then

if i eq 1 then

liste[l] := x;

l := l + 1;

else

i := i - 1;
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U[i] := A[1,2]*(x[2] + epsilon[2]);

T[i] := constante - A[i+1,i+1]*(x[i+1] + epsilon[i+1] + U[i+1]);

bool_value := 0;

end if;

else

i := i + 1;

end if;

end while;

end while;

return liste;

end function;

periodmatrices := function(K,F,cmtype,ideal)

C<i> := ComplexField();

n := FundamentalUnit(F);

/* Now I choose a good generator for the different */

O := MaximalOrder(K);

D := Different(O);

bool,deltaprime := IsPrincipal(D);

n1 := elt<K|n>;

if Imaginary(cmtype[1](deltaprime))*Imaginary(cmtype[2](deltaprime)) gt 0 then

if Imaginary(cmtype[1](deltaprime)) gt 0 then

delta := deltaprime;

else

delta := -deltaprime;

end if;

else

if Imaginary(cmtype[1](deltaprime)) gt 0 then

if Real(cmtype[1](n1)) gt 0 then

delta := n1*deltaprime;

else

delta := -n1*deltaprime;

end if;

else

if Real(cmtype[1](n1)) gt 0 then

delta := -n1*deltaprime;

else

delta := n1*deltaprime;

end if;

end if;

end if;

/* Find the complex conjugation. It’s the one such that f(k) = -k */

G := Automorphisms(K);

for l := 1 to 4 do /* Since [K:Q] = 4 */

if G[l](K.1) eq -K.1 then

conj := G[l];

end if;

end for;

/* Find representatives of A * conj(A) */

bool, aprime := IsPrincipal(ideal*conj(ideal));

if bool eq false then

return "a*conj(a) is not principal. Check if the class number of the real field is 1";

end if;

/* Now we want to find a representative which is totally positive */

if Real(cmtype[1](aprime))*Real(cmtype[2](aprime)) gt 0 then

if Real(cmtype[1](aprime)) gt 0 then

a := aprime;

else
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a := -aprime;

end if;

else

if Real(cmtype[1](aprime)) gt 0 then

if Real(cmtype[1](n1)) gt 0 then

a := n1*aprime;

else

a := -n1*aprime;

end if;

else

if Real(cmtype[1](n1)) gt 0 then

a := -n1*aprime;

else

a := n1*aprime;

end if;

end if;

end if;

/* Now, we want to define the Riemann form */

K2 := CartesianProduct(K,K);

riemannform := map<K2 -> C | x :-> Trace((a*delta)^(-1)*conj(x[1])*x[2])>;

/* Now I want to find the symplectic basis */

baseprime := BasisMatrix(ideal);

alpha := [];

alpha[1] := RowSequence(baseprime)[1];

alpha[2] := RowSequence(baseprime)[2];

alpha[3] := RowSequence(baseprime)[3];

alpha[4] := RowSequence(baseprime)[4];

E := Matrix(IntegerRing(),4,4,[riemannform(O!alpha[i],O!alpha[j]):i,j in [1..4]]);

eta1 := Matrix(IntegerRing(),1,4,[1,0,0,0]);

V := Vector(1,[-1]);

tampon := Matrix(IntegerRing(),1,3,[(E*Transpose(eta1))[j,1]:j in [2..4]]);

e1prime := Solution(Transpose(tampon),V);

e1 := Matrix(IntegerRing(),1,4,[0,e1prime[1],e1prime[2],e1prime[3]]);

A := HorizontalJoin(E*Transpose(eta1),E*Transpose(e1));

B := Vector(2,[0,0]);

_,noyau := Solution(A,B);

e2prime := Matrix(IntegerRing(),1,4,[Basis(noyau)[1][j]:j in [1..4]]);

eta2prime := Matrix(IntegerRing(),1,4,[Basis(noyau)[2][j]:j in [1..4]]);

passage := Transpose(Matrix(IntegerRing(),4,4,alpha));

coeff_max_order_e2 := passage * Transpose(e2prime);

coeff_max_order_eta2 := passage * Transpose(eta2prime);

e2primesuite := [coeff_max_order_e2[j,1]:j in [1..4]];

eta2primesuite := [coeff_max_order_eta2[j,1]:j in [1..4]];

if riemannform(O!e2primesuite,O!eta2primesuite) eq -1 then

e2 := e2prime;

eta2 := eta2prime;

else

e2 := eta2prime;

eta2 := e2prime;

end if;

nouvellebase := [passage*Transpose(e1),passage*Transpose(e2),passage*Transpose(eta1),...

...passage*Transpose(eta2)];

symplecticbasis := [[nouvellebase[l][m,1]:m in [1..4]]:l in [1..4]];

/* Find the period matrix */

omega1 := Matrix(C,2,2,[cmtype[i](O!symplecticbasis[j]):i,j in [1..2]]);

omega2 := Matrix(C,2,2,[cmtype[i](O!symplecticbasis[j+2]):i,j in [1..2]]);
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bigomega := HorizontalJoin(omega1,omega2);

omega2_inv_omega1 := omega2^(-1) * omega1;

return [omega1,omega2,omega2_inv_omega1],symplecticbasis;

end function;

min := function(A)

R := RealField();

a := [1,0];

b := [0,1];

aval := Matrix(R,2,1,a);

bval := Matrix(R,2,1,b);

e1 := Transpose(aval)*A*aval;

e2 := Transpose(bval)*A*bval;

liste := [e1[1,1],e2[1,1]];

bon, mauvais := Maximum(liste);

bidon := bon;

l := 1;

liste1 := couples(A,[0,0],bon);

while l le #liste1 do

changetype := Matrix(R,2,1,liste1[l]);

formematricielle := Transpose(changetype)*A*changetype;

if formematricielle[1,1] le bidon and liste1[l] ne [0,0] then

bidon := formematricielle[1,1];

end if;

l := l + 1;

end while;

return bidon;

end function;

constante := function(s,A)

C := s + 0.35 - 2 * Log(10,min(A));

if C ge 75 then

C := 1/2*( s + 0.35 - 2 * Log(10,min(A)));

end if;

return C;

end function;

theta := function(del,ep,Omega,precision)

C<i> := ComplexField();

sommation := couples(parimag(Omega),del,constante(precision,parimag(Omega)));

del1 := Matrix(C,2,1,del);

ep1 := Matrix(C,2,1,ep);

bidon := 0;

l := 1;

while l le #sommation do

mat := Matrix(C,2,1,sommation[l]);

partiel := Transpose(mat + del1)*Omega*(mat + del1);

partiel2 := Transpose(mat + del1)*ep1;

bidon1 := Exp(Pi(C)*i*(partiel[1,1] + 2*partiel2[1,1]));

bidon := bidon + bidon1;

l := l + 1;

end while;

return bidon;

end function;

thetaeven := function(Omega,precision)

duo1 := [0,0];

duo2 := [0,1/2];

duo3 := [1/2,0];

duo4 := [1/2,1/2];

thetabidon := [[duo1,duo1],[duo1,duo3],[duo1,duo2],[duo1,duo4],[duo3,duo1],[duo3,duo2],...

...[duo2,duo1],[duo2,duo3],[duo4,duo1],[duo4,duo4]];

l := 1;
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bidon := 1;

while l le 10 do

bidon1 := theta(thetabidon[l][1],thetabidon[l][2],Omega,precision);

bidon := bidon * bidon1;

l := l + 1;

end while;

return bidon;

end function;

/* To be faster we first compute Delta(O_K) and we give it to the function when we call it */

delta_O_K := function(K,F,cmtype,prin,precision)

B := periodmatrices(K,F,cmtype,prin);

l,m := HasAttribute(FldPr,"Precision");

heu := ChangeRing(B[3],ComplexField(m));

heu,heu1 := To2DUpperHalfSpaceFundamentalDomian(heu);

C := Matrix(ComplexField(),2,2,[heu1[3,1],heu1[3,2],heu1[4,1],heu1[4,2]]);

D := Matrix(ComplexField(),2,2,[heu1[3,3],heu1[3,4],heu1[4,3],heu1[4,4]]);

heu := ChangeRing(heu,ComplexField());

facteur := Determinant(C*B[3] + D)^(-10);

return facteur*Determinant(B[2])^(-10)*(thetaeven(heu,precision)^2);

end function;

invariant := function(K,F,cmtype,ideal,denom,precision)

A := periodmatrices(K,F,cmtype,ideal);

l,m := HasAttribute(FldPr,"Precision");

hip := ChangeRing(A[3],ComplexField(m));

hip,hip1:= To2DUpperHalfSpaceFundamentalDomian(hip);

C := Matrix(ComplexField(),2,2,[hip1[3,1],hip1[3,2],hip1[4,1],hip1[4,2]]);

D := Matrix(ComplexField(),2,2,[hip1[3,3],hip1[3,4],hip1[4,3],hip1[4,4]]);

hip := ChangeRing(hip,ComplexField());

facteur := Determinant(C*A[3] + D)^(-10);

numer := facteur*Determinant(A[2])^(-10)*(thetaeven(hip,precision)^2);

return numer/denom;

end function;

all_value := function(K,F,cmtype,rep,denom,precision)

C<i> := ComplexField();

h := ClassNumber(K);

liste := [];

for l:= 1 to h do

print h-l;

liste[l] := invariant(K,F,cmtype,rep[l],denom,precision);

end for;

return liste;

end function;

u_phi := function(K,F,cmtype,ideal1,ideal2,denom,precision)

if ideal1 ne ideal2 then

produit := multiplication(K,ideal1,ideal2);

bidon := (invariant(K,F,cmtype,produit,denom,precision)/...

... (invariant(K,F,cmtype,ideal1,denom, precision)*...

...invariant(K,F,cmtype,ideal2,denom,precision)));

else

produit := multiplication(K,ideal1,ideal2);

bidon := (invariant(K,F,cmtype,produit,denom,precision)/...

... (invariant(K,F,cmtype,ideal1,denom,precision))^2);

end if;

return bidon;

end function;

/* Here is a procedure to compute the polynomial over the real field */

pol_conj := function(f)

C<i> := ComplexField();

Q<x> := PolynomialRing(C);

deg := Degree(f);
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coef := Coefficients(f);

g := 0;

for l:= 1 to deg + 1 do

g := g + ComplexConjugate(coef[l])*x^(l-1);

end for;

return g;

end function;

valeur := function(K,rep,ideal)

h := ClassNumber(K);

bool := false;

l := 1;

while bool eq false do

bool,a := IsPrincipal(ideal*(rep[l]^(-1)));

l := l+1;

end while;

return K!a,l-1;

end function;

norm_partiel := function(alpha,cmtype)

return (cmtype[1](alpha) * cmtype[2](alpha));

end function;

polynomial_a_b_1 := function(K,F,cmtype,ideal1,ideal2,denom,precision,automorphisme,...

...cmtypeaut,rep,toutevaleur)

bool,prec := HasAttribute(FldPr,"Precision");

C<i> := ComplexField();

Q<x> := PolynomialRing(C);

ref := reflex(K,automorphisme,cmtypeaut);

h := ClassNumber(K);

hip := [];

for l := 1 to h do

c := multiplication(K,ref[1](rep[l]),ref[2](rep[l]));

ab := multiplication(K,ideal1,ideal2);

abc := multiplication(K,ab,c);

ac := multiplication(K,ideal1,c);

bc := multiplication(K,ideal2,c);

val_c,num_c := valeur(K,rep,c);

val_abc,num_abc := valeur(K,rep,abc);

val_ac,num_ac := valeur(K,rep,ac);

val_bc,num_bc := valeur(K,rep,bc);

hip[l] := ((norm_partiel(val_abc^(-1),cmtype)^10)*toutevaleur[num_abc] *...

...(norm_partiel(val_c^(-1),cmtype)^10)*toutevaleur[num_c])/...

...((norm_partiel(val_ac^(-1),cmtype)^10)*...

...toutevaleur[num_ac](norm_partiel(val_bc^(-1),cmtype)^10)*toutevaleur[num_bc]);

end for;

g := 1;

for l:=1 to h do

g := g*(x-hip[l]);

end for;

f := pol_conj(g);

liste := Coefficients(f*g);

bidonpol := [];

precision_def(precision);

for l:=1 to 2*h do

bidonpol[l] := Q!PowerRelation(liste[l],2);

end for;

bidonpolcoef := [];

for l:=1 to 2*h do

bidonpolcoef[l] := Coefficients(bidonpol[l]);

end for;

precision_def(prec);

nombre := hip[1];

return Coefficients(f*g),bidonpolcoef,nombre;

end function;
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all_polynomial_a_b_1 := function(K,F,cmtype,precision,automorphisme,cmtypeaut,rep)

bool,prec := HasAttribute(FldPr,"Precision");

C<i> := ComplexField();

Q<x> := PolynomialRing(C);

ref := reflex(K,automorphisme,cmtypeaut);

h := ClassNumber(K);

denom := delta_O_K(K,F,cmtype,rep[1],precision);

liste := all_value(K,F,cmtype,rep,denom,precision);

h := ClassNumber(K);

liste1 := [];

liste2 := [];

liste3 := [];

y := 1;

for l:=2 to h do

z := l;

while z le h do

liste1[y],liste2[y],liste3[y] := polynomial_a_b_1(K,F,cmtype,rep[l],rep[z],denom,...

...precision,automorphisme,cmtypeaut,rep,liste);

y := y + 1;

z := z + 1;

end while;

end for;

return liste,denom,liste1,liste2,liste3;

end function;

signe := function(F,ele,nombre,quad)

d := Sqrt(quad);

elesuite := ElementToSequence(ele);

hip := elesuite[1] + d*elesuite[2];

hip1 := elesuite[1] - d*elesuite[2];

P := 50;

R := RealField(P);

nombreprime := R!Real(nombre);

hipprime := R!hip;

hip1prime := R!hip1;

if hipprime eq nombreprime then

return ele;

else

if hip1prime eq nombreprime then

return (elesuite[1] - elesuite[2]*F.1);

else

return "achtung,achtung!!";

end if;

end if;

end function;

pol_over_Q := function(F,coef,pol,quad)

G<y> := PolynomialRing(F);

longueur := #pol;

Q<x> := PolynomialRing(RationalField());

for l := 1 to longueur do

if IsIrreducible(Q!pol[l]) ne true then

return "achtung pol_over_Q_1! Some polynomial are not irreducible!!",_,_;

end if;

end for;

alpha := [];

for l := 1 to longueur do

field := NumberField(Q!pol[l]);

if #pol[l] ne 2 then

bool,appli := IsIsomorphic(field,F);

if bool eq true then

alpha[l] := signe(F,appli(field.1),coef[l],quad);

else

return "Achtung in function pol_over_Q_2. Increase the precision!",_,_;

end if;

else
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alpha[l] := F![-pol[l][1]/pol[l][2],0];

end if;

end for;

alpha[longueur + 1] := 1;

beta := [];

for l:=1 to longueur do

if #pol[l] ne 2 then

beta[l] := F![ElementToSequence(alpha[l])[1],-ElementToSequence(alpha[l])[2]];

else

beta[l] := alpha[l];

end if;

end for;

beta[longueur+1] := 1;

reponse := Q!(G!alpha * G!beta);

return reponse,alpha,beta;

end function;
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APPENDIX B
Results

B.1 Quartic cyclic CM-fields with class number 2

There are exactly eight quartic cyclic CM -fields with class number two. We

computed the class invariants for all of them.

F

I. Field : K = Q(
√
−5 +

√
5)

Defining polynomial: x4 + 10x2 + 20
Bound: 40000
Integral basis: [1, x, 1

2x2, 1
2x3]

Rep. for Cl(K): • OK

• a = ([[2, 0, 0, 0], [0, 1, 0, 0]])
u(Φ; a−1, a−1) : 0.000068301345536...
Minimal pol. over Q : t− 1

14641

Factorization: 14641−1 = 11−4

II. Field: K = Q(
√
−6 + 3

√
2)

Defining polynomial: x4 + 12x2 + 18
Bound: 9216
Integral basis: [1, x, 1

3x2, 1
3x3]

Rep. for Cl(K): • OK

• ([2, 0, 0, 0], [0, 1, 0, 0])
u(Φ; a−1, a−1) : 0.000866551777220...
Minimal pol. over Q : t2 − 1154 · t + 1

Factorization in Q(
√

2): unit

III. Field: K = Q(
√
−65 + 26

√
5)

Defining polynomial: x4 + 130x2 + 845
Bound: 6760000
Integral basis: [1, 1

2 (x + 1), 1
52 (x2 + 39), 1

104 (x3 + x2 + 39x + 39)]
Rep. for Cl(K): • OK

• ([5, 0, 0, 0], [−1, 2, 0, 0])
u(Φ; a−1, a−1) : 0.000000005610331...
Minimal pol. over Q : t− 14641

2609649624481

Factorization: 14641 · (2609649624481)−1 = 114 · 31−4 · 41−4
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IV. Field: K = Q(
√
−65 + 10

√
13)

Defining polynomial: x4 + 130x2 + 2925
Bound: 45697600
Integral basis: [1, 1

2 (x + 1), 1
20 (x2 + 15), 1

120 (x3 + 3x2 + 55x + 45)]
Rep. for Cl(K): • OK

• ([5, 0, 0, 0], [1, 3, 0, 0])
u(Φ; a−1, a−1) : 0.000000126734986...
Minimal pol. over Q : t− 1

7890481

Factorization: 7890481−1 = 53−4

V. Field: K = Q(
√
−10 + 5

√
2)

Defining polynomial: x4 + 20x2 + 50
Bound: 25600
Integral basis: [1, x, 1

5x2, 1
5x3]

Rep. for Cl(K): • OK

• ([2, 0, 0, 0], [0, 1, 0, 0])
u(Φ; a−1, a−1) : 0.000011973036721...
Minimal pol. over Q : t− 1

83521

Factorization: 83521−1 = 17−4

VI. Field: K = Q(
√
−85 + 34

√
5)

Defining polynomial: x4 + 170x2 + 1445
Bound: 11560000
Integral basis: [1, 1

2 (x + 1), 1
68 (x2 + 51), 1

136 (x3 + x2 + 51x + 51)]
Rep. for Cl(K): • OK

• ([5, 0, 0, 0], [−1, 2, 0, 0])
u(Φ; a−1, a−1) : 4.436167004826079...
Minimal pol. over Q : t− 25411681

572829674183924641

Factorization: 25411681 · 572829674183924641−1 = 714 · 11−4 · 41−4 · 61−4

VII. Field: K = Q(
√
−13 + 3

√
13)

Defining polynomial: x4 + 26x2 + 52
Bound: 1827904
Integral basis: [1, x, 1

6 (x2 + 4), 1
6 (x3 + 4x)]

Rep. for Cl(K): • OK

• ([2, 0, 0, 0], [0, 1, 0, 0])
u(Φ; a−1, a−1) : 0.000000003395586...
Minimal pol. over Q : t− 1

294499921

Factorization: 294499921−1 = 131−4

VIII. Field: K = Q(
√
−119 + 28

√
17)

Defining polynomial: x4 + 238x2 + 833
Bound: 261921856
Integral basis: [1, 1

2 (x + 1), 1
56 (x2 + 35), 1

112 (x3 + x2 + 35x + 35)]
Rep. for Cl(K): • OK

• ([7, 0, 0, 0], [1, 5, 0, 0])
u(Φ; a−1, a−1) : 1.215349828304578...
Minimal pol. over Q : t2 − 7393066413557053988740684097

898516199636091136 · t + 1

Factorization in Q(
√

17): P 8
2,1 · P−8

2,2 · P 4
43,1 · P−4

43,2 · P 4
179,1 · P−4

179,2
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B.2 Quartic cyclic CM-fields with class number 4

There are exactly 13 quartic cyclic CM -fields with the properties we want. We

computed the class invariants for all of them. For each of these class invariants u,

we computed the factorization of u ·OL where L = Q(u). The symbol Pp,n denotes a

prime of L lying above the rational prime p.

F

I. Field: K = Q(
√
−15 + 6

√
5)

Defining polynomial: x4 + 30x2 + 45
Bound: 360000
Integral basis: [1, x, 1

12 (x2 + 9), 1
12 (x3 + 9x)]

Rep. for Cl(K): • OK

• a = ([3, 0, 0, 0], [0, 1, 0, 0])
• b = ([2, 0, 0, 0], [1, 1, 0, 0])
• c = ([6, 0, 0, 0], [30, 34, 33, 1])

u(Φ; a−1, a−1) : 0.000000098473203...

Minimal pol. over Q : t2 − 10155047
923521 · t + 1

923521

Factorization: P−4
31,1

u(Φ; a−1, b−1) : 0.001040582726326...

Minimal pol. over Q : t− 1
961

Factorization: P−4
31,1 · P−4

31,2

u(Φ; a−1, c−1) : 0.000094632748485...

Minimal pol. over Q : t2 − 10155047
961 · t + 1

Factorization: P−2
31,1 · P 2

31,2

u(Φ; b−1, b−1) : 0.000000048054000...

Minimal pol. over Q : t2 − 20809922
923521 · t + 1

923521

Factorization: P−4
31,2

u(Φ; b−1, c−1) : 0.000046179894477...

Minimal pol. over Q : t2 − 20809922
961 · t + 1

Factorization: P 2
31,1 · P−2

31,2

u(Φ; c−1, c−1) : 0.000000004370130...

Minimal pol. over Q : t2 − 228826127 · t + 1
Factorization: unit
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II. Field: K = Q(
√
−17 + 4

√
17)

Defining polynomial: x4 + 34x2 + 17
Bound: 5345344
Integral basis: [1, x, 1

8 (x2 − 3), 1
8 (x3 + x2 − 3x− 3)]

Rep. for Cl(K): • OK

• a = ([2, 0, 0, 0], [1, 1, 1, 0])
• b = ([2, 0, 0, 0], [0, 1, 1, 0])
• c = ([2, 0, 0, 0], [3, 3, 2, 2])

u(Φ; a−1, a−1) : 0.000066349314922...
Minimal pol. over Q : t4 − 18023839694417

9759362 t3 + 205985001591681
78074896 x2 − 148798913105

9759362 x + 1
Factorization: P 2

2,1 · P−2
2,2 · P−4

47,1 · P 4
47,2

u(Φ; a−1, b−1) : 11.069576293863622...
Minimal pol. over Q : t2 − 98609

8836 t + 1
Factorization: P−2

2,1 · P 2
2,2 · P−2

47,1 · P 2
47,2

u(Φ; a−1, c−1) : 0.000005993844132...
Minimal pol. over Q : t4 − 368579716

2209 t3 + 12873474384774
4879681 t2 − 368579716

2209 t + 1
Factorization: P−2

47,1 · P 2
47,2 · P 2

47,3 · P−2
47,4

u(Φ; b−1, b−1) : 0.702860141688946...
Minimal pol. over Q : t4 − 148798913105

9759362 t3 + 205985001591681
78074896 t2 − 18023839694417

9759362 t + 1
Factorization: P 2

2,1 · P−2
2,2 · P 4

47,1 · P−4
47,2

u(Φ; b−1, c−1) : 0.063494764662182...
Minimal pol. over Q : t4 − 368579716

2209 t3 + 12873474384774
4879681 t2 − 368579716

2209 t + 1
Factorization: P 2

47,1 · P−2
47,2 · P 2

47,3 · P−2
47,4

u(Φ; c−1, c−1) : 0.000000380577722...
Minimal pol. over Q : t4 − 12873464625412

4879681 t3 + 135825260107630470
4879681 t2 − 12873464625412

4879681 t + 1
Factorization: P 4

47,1 · P−4
47,2
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III. Field: K = Q(
√
−105 + 42

√
5)

Defining polynomial: x4 + 210x2 + 2205
Bound: 17640000
Integral basis: [1, 1

2 (x + 1), 1
84 (x2 + 63), 1

168 (x3 + x2 + 63x + 63)]
Rep. for Cl(K): • OK

• a = ([3, 0, 0, 0], [1, 1, 0, 0])
• b = ([5, 0, 0, 0], [−1, 2, 0, 0])
• c = ([15, 0, 0, 0], [220, 1, 224, 224])

u(Φ; a−1, a−1) : 1.857285586735647...

Minimal pol. over Q : t2 − 53842015850642
5498121804761041 t + 1

5498121804761041

Factorization: P−4
79 · P−4

109

u(Φ; a−1, b−1) : 0.000001377164651...

Minimal pol. over Q : t2 − 53842015850642
74149321 t + 1

Factorization: P−2
79,1 · P 2

79,2 · P−2
109,1 · P 2

109,2

u(Φ; a−1, c−1) : 0.000000013486300...

Minimal pol. over Q : t− 1
74149321

Factorization: 74149321−1 = 79−2 · 109−2

u(Φ; b−1, b−1) : 5.954938537669610...

Minimal pol. over Q : t2 − 24586315891229282
14641 t + 1

Factorization: P 4
11,1 · P−4

11,2

u(Φ; b−1, c−1) : 0.000000432405706...

Minimal pol. over Q : t2 − 2510651901956609522
1085620208761 t + 1

Factorization: P−4
11,1 · P 4

11,2 · P 2
79,1 · P−2

79,2 · P−2
109,1 · P 2

109,2

u(Φ; c−1, c−1) : 5.831553147050240...

Minimal pol. over Q : t2 − 2510651901956609522
80498001343506401281 t + 1

5498121804761041

Factorization: P−4
11,1 · P 2

11,4 · P−4
79 · P−4

109

128



IV. Field: K = Q(
√
−14 + 7

√
2)

Defining polynomial: x4 + 28x2 + 98
Bound: 50176
Integral basis: [1, x, 1

7x2, 1
7x3]

Rep. for Cl(K): • OK

• a = ([7, 0, 0, 0], [2, 1, 6, 0])
• b = ([2, 0, 0, 0], [0, 1, 0, 0])
• c = ([14, 0, 0, 0], [24, 1, 2, 194])

u(Φ; a−1, a−1) : 0.000000000927464...
Minimal pol. over Q : t4 − 10925265690538649217383771716

18442932323956519729 t3 +
1028404704063672221077851309923450541173479878

4072529695597996115767741417439521 t2 −
19885336741405849536945104452

18442932323956519729 t + 1
Factorization: P 2

7,1·P−2
7,2 ·P−4

17,3·P 4
17,4·P−4

31,1·P−4
31,2·P 4

31,3·P 4
31,4·P−4

47,1·P 4
47,2·P−4

47,3·P 4
47,4

u(Φ; a−1, b−1) : 0.000466063228750...
Minimal pol. over Q : t4 − 56516

17 t3 + 211254318726
83521 t2 − 56516

17 t + 1
Factorization: P−2

17,1 · P 2
17,2 · P−2

17,3 · P 2
17,4

u(Φ; a−1, c−1) : 0.000001989996339...
Minimal pol. over Q : t2 − 32068589042920171231394

63816374823378961 t + 1
Factorization: P−2

7,1 · P 2
7,2 · P 2

17,1 · P−2
17,2 · P−4

31,1 · P 4
31,2 · P−4

47,1 · P 4
47,2

u(Φ; b−1, b−1) : 0.000000395358280...
Minimal pol. over Q : t4 − 211254151684

83521 t3 + 500574365574
83521 t2 − 211254151684

83521 t + 1
Factorization: P 4

17,2 · P−4
17,3

u(Φ; b−1, c−1) : 0.000848293228291...
Minimal pol. over Q : t4 − 56516

17 t3 + 211254318726
83521 t2 − 56516

17 t + 1
Factorization: P−2

17,1 · P 2
17,2 · P 2

17,3 · P−2
17,4

u(Φ; c−1, c−1) : 0.000000001688100...
Minimal pol. over Q : t4 − 19885336741405849536945104452

18442932323956519729 t3 +
1028404704063672221077851309923450541173479878

4072529695597996115767741417439521 t2 −
10925265690538649217383771716

18442932323956519729 t + 1
Factorization: P 2

7,1·P−2
7,2 ·P 4

17,1·P−4
17,2·P 4

31,1·P 4
31,2·P−4

31,3·P−4
31,4·P 4

47,1·P 4
47,2·P−4

47,3·P−4
47,4

129



V. Field: K = Q(
√
−15 + 3

√
5)

Defining polynomial: x4 + 30x2 + 180
Bound: 360000
Integral basis: [1, x, 1

6x2, 1
6x3]

Rep. for Cl(K): • OK

• a = ([3, 0, 0, 0], [0, 1, 0, 0])
• b = ([2, 0, 0, 0], [0, 1, 0, 0])
• c = ([6, 0, 0, 0], [12, 1, 24, 35])

u(Φ; a−1, a−1) : 2.448552006301927...

Minimal pol. over Q : t2 − 377170261290387352127
44928340772666930881 t + 1

48648964964161

Factorization: P−4
19,1 · P 4

31,1 · P−4
31,2 · P−4

139,1

u(Φ; a−1, b−1) : 0.000000143371621...

Minimal pol. over Q : t− 1
6974881

Factorization: P−2
19,1 · P−2

19,2 · P−2
139,1 · P−2

139,2

u(Φ; a−1, c−1) : 0.000000017078358...

Minimal pol. over Q : t2 − 377170261290387352127
6441449076001 t + 1

Factorization: P−2
19,1 · P 2

19,2 · P 4
31,1 · P−4

31,2 · P−2
139,1 · P 2

139,2

u(Φ; b−1, b−1) : 5.741619808076916...

Minimal pol. over Q : t2 − 25499772694177442
712269496040281201 t + 1

48648964964161

Factorization: P 4
11,1 · P−4

11,2 · P−4
19,2 · P−4

139,2

u(Φ; b−1, c−1) : 0.000004004711490...

Minimal pol. over Q : t2 − 25499772694177442
102119232721 t + 1

Factorization: P 4
11,1 · P−4

11,2 · P 2
19,1 · P−2

19,2 · P 2
139,1 · P−2

139,2

u(Φ; c−1, c−1) : 6.839389999673570...

Minimal pol. over Q : t2 − 197697030899617385838047
13521270961 t + 1

Factorization: P 4
11,1 · P−4

11,2 · P 4
31,1 · P−4

31,2

130



VI. Field: K = Q(
√
−17 +

√
17)

Defining polynomial: x4 + 34x2 + 272
Bound: 5345344
Integral basis: [1, x, 1

2x2, 1
4 (x3 − 2x)]

Rep. for Cl(K): • OK

• a = ([2, 0, 0, 0], [1, 1, 1, 0])
• b = ([2, 0, 0, 0], [0, 0, 1, 1])
• c = ([2, 0, 0, 0], [0, 2, 0, 1])

u(Φ; a−1, a−1) : 0.000000069824614...
Minimal pol. over Q : t4 − 258498290272310006082837702793313

3583949899882919778744002 t3 +
21792184045580079707504734790667393

28671599199063358229952016 t2 −
51328076662060002344898304359521

3583949899882919778744002 t + 1
Factorization: P−2

2,1 · P 2
2,2 · P 4

47,1 · P−4
47,2 · P−4

103,1 · P 4
103,2 · P 4

239,1 · P−4
239,2

u(Φ; a−1, b−1) : 2.244151203918937...
Minimal pol. over Q : t2 − 14402520990641

5354586744004 t + 1
Factorization: P 2

2,1 · P−2
2,2 · P 2

47,1 · P−2
47,2 · P−2

103,1 · P 2
103,2 · P−2

239,1 · P 2
239,2

u(Φ; a−1, c−1) : 0.000000031114041...
Minimal pol. over Q : t4 − 43023907708338058948

1338646686001 t3 + 1362011497052116601118972231305286
1791974949941459889372001 t2 −

43023907708338058948
1338646686001 t + 1

Factorization: P−2
47,1 ·P 2

47,2 ·P−2
47,3 ·P 2

47,4 ·P−2
103,1 ·P 2

103,2 ·P−2
103,3 ·P 2

103,4 ·P−2
239,1 ·P 2

239,2 ·
P−2

239,3 · P 2
239,4

u(Φ; b−1, b−1) : 0.095066059419262...
Minimal pol. over Q : t4 − 51328076662060002344898304359521

3583949899882919778744002 t3 +
21792184045580079707504734790667393

28671599199063358229952016 t2 −
258498290272310006082837702793313

3583949899882919778744002 t + 1
Factorization: P−2

2,1 · P 2
2,2 · P−4

47,1 · P 4
47,2 · P 4

103,1 · P−4
103,2 · P−4

239,1 · P 4
239,2

u(Φ; b−1, c−1) : 0.042361699716690...
Minimal pol. over Q : t4 − 43023907708338058948

1338646686001 t3 + 1362011497052116601118972231305286
1791974949941459889372001 t2 −

43023907708338058948
1338646686001 t + 1

Factorization: P−2
47,1 ·P−2

47,2 ·P 2
47,3 ·P 2

47,4 ·P 2
103,1 ·P 2

103,2 ·P−2
103,3 ·P−2

103,4 ·P−2
239,1 ·P 2

239,2 ·
P−2

239,3 · P 2
239,4

u(Φ; c−1, c−1) : 0.000000001318043...
Minimal pol. over Q : t4 − 1362011493468166701236052452561284

1791974949941459889372001 t3 +
1851053910472600526938043071195639000134

1791974949941459889372001 t2 −
1362011493468166701236052452561284

1791974949941459889372001 t + 1
Factorization: P 4

47,1 · P−4
47,2 · P 4

103,1 · P−4
103,2 · P−4

239,1 · P 4
239,2

131



VII. Field: K = Q(
√
−35 + 14

√
5)

Defining polynomial: x4 + 70x2 + 245
Bound: 1960000
Integral basis: [1, x, 1

28 (x2 + 21), 1
28 (x3 + 21x)]

Rep. for Cl(K): • OK

• a = ([5, 0, 0, 0], [0, 1, 0, 0])
• b = ([2, 0, 0, 0], [1, 1, 0, 0])
• c = ([10, 0, 0, 0], [29, 99, 3, 1])

u(Φ; a−1, a−1) : 1.492212566211723...

Minimal pol. over Q : t2 − 176345927319082601618081634809207
7164798655339572655174421281 t + 25411681

691896698282364961

Factorization: P 4
11,1 · P−4

11,2 · P 4
29,1 · P−4

29,2 · P 4
71,1 · P−4

151,2 · P−4
191,1

u(Φ; a−1, b−1) : 0.000006060327141...

Minimal pol. over Q : t− 5041
831803281

Factorization: P 2
71,1 · P 2

71,2 · P−2
151,1 · P−2

151,2 · P−2
191,1 · P−2

191,2

u(Φ; a−1, c−1) : 0.000000000246226...

Minimal pol. over Q : t2 − 176345927319082601618081634809207
43421023752329711903041 t + 1

Factorization: P 4
11,1 ·P−4

11,2 ·P 4
29,1 ·P−4

29,2 ·P 2
71,1 ·P−2

71,2 ·P 2
151,1 ·P−2

151,2 ·P−2
191,1 ·P 2

191,2

u(Φ; b−1, b−1) : 1.061841908253816...

Minimal pol. over Q : t2 − 2393169906223529711042
691896698282364961 t + 25411681

691896698282364961

Factorization: P 4
71,1 · P−4

151,1 · P−4
191,2

u(Φ; b−1, c−1) : 0.000000001752119...

Minimal pol. over Q : t2 − 2393169906223529711042
4193120339521 t + 1

Factorization: P 2
71,1 · P−2

71,2 · P−2
151,1 · P 2

151,2 · P 2
191,1 · P−2

191,2

u(Φ; c−1, c−1) : 4.314181558995886...

Minimal pol. over Q : t2 − 609954878225015621009233946970578927
263145608745794401 t + 1

Factorization: P 4
11,1 · P−4

11,2 · P 4
29,1 · P−4

29,2 · P 4
71,1 · P−4

71,2

132



VIII. Field: K = Q(
√
−145 + 58

√
5)

Defining polynomial: x4 + 290x2 + 4205
Bound: 33640000
Integral basis: [1, 1

2 (x + 1), 1
116 (x2 + 87), 1

232 (x3 + x2 + 87x + 87)]
Rep. for Cl(K): • OK

• a = ([5, 0, 0, 0], [−1, 2, 0, 0])
• b = ([19, 0, 0, 0], [14, 2, 0, 0])
• c = ([95, 0, 0, 0], [116, 2, 9023, 2])

u(Φ; a−1, a−1) : 3.114124375091707...

Minimal pol. over Q : t2 − 61021713470609035149120674697122
19002920532868561 t + 1

Factorization: P 4
59,1 · P−4

59,2 · P−4
199,1 · P 4

199,2

u(Φ; a−1, b−1) : 1.640090008311705...

Minimal pol. over Q : t4 − 7104141440632480751377535928004
1165042506264695562001 t3 +

4358605752117545822445090074402436026245210250310838104006
1357324041403523197831510569555025235124001 t2 −

7104141440632480751377535928004
1165042506264695562001 t + 1

Factorization: P 2
109,1 · P−2

109,2 · P 2
149,1 · P−2

149,2 · P−2
149,3 · P 2

149,4 · P 2
179,1 · P−2

179,2 · P−2
179,3 ·

P 2
179,4 · P 2

199,1 · P 2
199,2 · P−2

199,3 · P−2
199,4

u(Φ; a−1, c−1) : 0.000001898752116...

Minimal pol. over Q : t4 − 7104141440632480751377535928004
1165042506264695562001 t3 +

4358605752117545822445090074402436026245210250310838104006
1357324041403523197831510569555025235124001 t2 −

7104141440632480751377535928004
1165042506264695562001 t + 1

Factorization: P 2
109,1 · P−2

109,2 · P 2
149,1 · P−2

149,2 · P−2
149,3 · P 2

149,4 · P 2
179,1 · P−2

179,2 · P−2
179,3 ·

P 2
179,4 · P 2

199,1 · P 2
199,2 · P−2

199,3 · P−2
199,4

u(Φ; b−1, b−1) : 1.827155559290797...

Minimal pol. over Q : t4 − 7104141440632480751377535928004
1045764584228840304367208753281 t3 +

4358605752117545822445090074402436026245210250310838104006
1093623565627319227450382775135003941807412343334186328264961 t2 −

134999435250597407730264152883732109361291082244
16011742624349580809101054210751592712002324118755822032127294001 t +

361110988778517554345143302210721
234427923763102212626048534699614068896426027422703990372375711468641

Factorization: P−4
11,1 ·P−4

11,2 ·P 4
59,1 ·P 4

59,2 ·P−4
109,1 ·P−4

109,2 ·P−4
149,1 ·P−4

149,2 ·P−4
179,1 ·P−4

179,2 ·
P 4

199,1 · P 4
199,2

u(Φ; b−1, c−1) : 0.000000001114058...

Minimal pol. over Q : t− 137851081
123737784357464761

Factorization: 137851081 · 123737784357464761−1 = 592 · 1992 · 11−4 · 109−2 ·
149−2 · 179−2

u(Φ; c−1, c−1) : 2.115320176587490...

Minimal pol. over Q : t4 − 7104141440632480751377535928004
1045764584228840304367208753281 t3 +

4358605752117545822445090074402436026245210250310838104006
1093623565627319227450382775135003941807412343334186328264961 t2 −

134999435250597407730264152883732109361291082244
16011742624349580809101054210751592712002324118755822032127294001 t +

361110988778517554345143302210721
234427923763102212626048534699614068896426027422703990372375711468641

Factorization: P−4
11,1 ·P−4

11,2 ·P 4
59,1 ·P 4

59,2 ·P−4
109,1 ·P−4

109,2 ·P−4
149,1 ·P−4

149,2 ·P−4
179,1 ·P−4

179,2 ·
P 4

199,1 · P 4
199,2

133



IX. Field: K = Q(
√
−145 + 10

√
29)

Def. pol.: x4 + 290x2 + 18125
Bound: 1131649600
Integral basis: [1, 1

2 (x + 1), 1
20 (x2 + 15), 1

200 (x3 + 5x2 + 15x + 75)]
Rep. for Cl(K): • OK

• a = ([5, 0, 0, 0], [1, 3, 3, 0])
• b = ([5, 0, 0, 0], [1, 0, 3, 3])
• c = ([5, 0, 0, 0], [0, 0, 8, 24])

u(Φ; a−1, a−1) : 1.465872679682312...

Min. pol. /Q : t4− 18963107339334195400804
3448231591506025 t3+ 3822353294706004747840865962333160447526

11890301108660174062927611300625 t2−
368775443316577932615403161735011910244
83184843813714294248593141849455015625 t +

378185593412741934969271018840321
581963246941840545420513835207333525687890625

Factorization: P−4
5,1 · P−4

5,2 · P 4
7,1 · P 4

7,2 · P−4
23,1 · P−4

23,2 · P−4
149,1 · P−4

149,2 · P 4
241,1 · P 4

241,2

u(Φ; a−1, b−1) : 0.000897847040873...

Min. pol. /Q : t− 139452481
155318751025

Factorization: 139452481 · 155318751025−1 = 74 · 2412 · 5−2 · 23−4 · 149−2

u(Φ; a−1, c−1) : 1.632653016549247...

Min. pol. /Q : t4 − 7898003889768511204
1289456281 t3 + 663050345485647249200946565602726

1662697500610350961 t2 −
7898003889768511204

1289456281 t + 1
Factorization: P 2

149,1 · P 2
149,2 · P−2

149,3 · P−2
149,4 · P 2

241,1 · P−2
241,2 · P−2

241,3 · P 2
241,4

u(Φ; b−1, b−1) : 0.000000013790347...

Min. pol. /Q : t4− 18963107339334195400804
3448231591506025 t3+ 3822353294706004747840865962333160447526

11890301108660174062927611300625 t2−
368775443316577932615403161735011910244
83184843813714294248593141849455015625 t +

378185593412741934969271018840321
581963246941840545420513835207333525687890625

Factorization: P−4
5,1 · P−4

5,2 · P 4
7,1 · P 4

7,2 · P−4
23,1 · P−4

23,2 · P−4
149,1 · P−4

149,2 · P 4
241,1 · P 4

241,2

u(Φ; b−1, c−1) : 0.000015359350223...

Min. pol. /Q : t4 − 7898003889768511204
1289456281 t3 + 663050345485647249200946565602726

1662697500610350961 t2 −
7898003889768511204

1289456281 t + 1
Factorization: P 2

149,1 · P 2
149,2 · P−2

149,3 · P−2
149,4 · P 2

241,1 · P−2
241,2 · P−2

241,3 · P 2
241,4

u(Φ; c−1, c−1) : 2.507648947509065...

Min. pol. /Q : t2 − 1345245140613050068886402
3373402561 t + 1

Factorization: P−4
241,1 · P 4

241,2

134



X. Field: K = Q(
√
−41 + 4

√
41)

Defining polynomial: x4 + 82x2 + 1025
Bound: 180848704
Integral basis: [1, x, 1

8 (x2 + 5), 1
40 (x3 + 37x)]

Rep. for Cl(K): • OK

• a = ([2, 0, 0, 0], [1, 1, 1, 0])
• b = ([2, 0, 0, 0], [0, 1, 1, 0])
• c = ([2, 0, 0, 0], [3, 3, 2, 2])

u(Φ; a−1, a−1) : 0.006234747377822...
Minimal pol. over Q : t4 − 14015693453321549225256920721151184559817877153

65021049225307824597982133101250 t3 +
5404569038315670866205769667935559403576129081323065761

3939417630309126233892146891689479006250000 t2 −
11343651412011596540401604850109854293153

65021049225307824597982133101250 t + 1
Factorization: P−2

2,1 ·P 2
2,2 ·P 4

5,1 ·P−4
5,2 ·P−4

23,1 ·P 4
23,2 ·P 4

31,1 ·P−4
31,2 ·P−4

59,1 ·P 4
59,2 ·P 4

59,3 ·
P−4

59,4 · P 4
359,1 · P−4

359,2

u(Φ; a−1, b−1) : 1159283.725388456395615...

Minimal pol. over Q : t2 − 2300942421977382355150271681
1984796621900875322500 t + 1

Factorization: P−2
2,1 ·P 2

2,2·P−4
5,1 ·P 4

5,2·P−2
23,1·P 2

23,2·P 2
31,1·P−2

31,2·P−4
59,1·P 4

59,2·P−2
359,1·P 2

359,2

u(Φ; a−1, c−1) : 0.000000005378103...
Minimal pol. over Q : t4 − 12182577593513317252

65519105089 t3 + 120120063251018746330303055603718
4292753131663425697921 t2 −

12182577593513317252
65519105089 t + 1

Factorization: P−2
23,1 · P−2

23,2 · P 2
23,3 · P 2

23,4 · P−2
31,1 · P 2

31,2 · P 2
31,3 · P−2

31,4 · P−2
359,1 · P 2

359,2 ·
P−2

359,3 · P 2
359,4

u(Φ; b−1, b−1) : 174453353.410440115446805...

Minimal pol. over Q : t4 − 11343651412011596540401604850109854293153
65021049225307824597982133101250 t3 +

5404569038315670866205769667935559403576129081323065761
3939417630309126233892146891689479006250000 t2 −

14015693453321549225256920721151184559817877153
65021049225307824597982133101250 t + 1

Factorization: P−2
2,1 ·P 2

2,2 ·P 4
5,1 ·P−4

5,2 ·P 4
23,1 ·P−4

23,2 ·P 4
31,1 ·P−4

31,2 ·P−4
59,1 ·P 4

59,2 ·P−4
59,3 ·

P 4
59,4 · P−4

359,1 · P 4
359,2

u(Φ; b−1, c−1) : 150.483742322858662...
Minimal pol. over Q : t4 − 12182577593513317252

65519105089 t3 + 120120063251018746330303055603718
4292753131663425697921 t2 −

12182577593513317252
65519105089 t + 1

Factorization: P 2
23,1 · P−2

23,2 · P−2
23,3 · P 2

23,4 · P 2
31,1 · P−2

31,2 · P−2
31,3 · P 2

31,4 · P−2
359,1 · P 2

359,2 ·
P 2

359,3 · P−2
359,4

u(Φ; c−1, c−1) : 0.000000809317078...
Minimal pol. over Q : t4 − 120120063242433240066976204207876

4292753131663425697921 t3 +
148414956581846234701908166193941019910

4292753131663425697921 t2 −
120120063242433240066976204207876

4292753131663425697921 t + 1
Factorization: P 4

23,1 · P−4
23,2 · P 4

31,1 · P−4
31,2 · P 4

359,1 · P−4
359,2

135



XI. Field: K = Q(
√
−219 + 24

√
73)

Def. pol.: x4 + 438x2 + 5913
Bound: 4089346704
Integral basis: [1, 1

2 (x + 1), 1
48 (x2 + 3), 1

288 (x3 + 3x2 + 51x + 153)]
Rep. for Cl(K): • OK

• a = ([3, 0, 0, 0], [0, 0, 2, 1])
• b = ([3, 0, 0, 0], [0, 0, 0, 1])
• c = ([3, 0, 0, 0], [8, 0, 8, 2])

u(Φ; a−1, a−1) : 0.002061212756340...

Min. pol. /Q : t4 − 3306582865449998214347040939328545663817217
4768082070218968246634304144 t3 +

257085696176799108972543462392789519802432664601
2796215505628527723913331176576008 t2 −

889546658240533101566293060870992834785
4768082070218968246634304144 t + 1

Factorization: P 4
2,1 · P−4

2,2 · P−2
3,1 · P 2

3,2 · P−4
19,1 · P 4

19,2 · P−4
251,1 · P 4

251,2 · P 4
503,1 · P−4

503,2

u(Φ; a−1, b−1) : 0.016401918901501...

Min. pol. /Q : t2 − 4560605187435538321
74782558202144004 t + 1

Factorization: P−2
2,1 · P 2

2,2 · P−2
3,1 · P 2

3,2 · P 4
19,1 · P−4

19,2 · P 2
251,1 · P−2

251,2 · P 2
503,1 · P−2

503,2

u(Φ; a−1, c−1) : 0.125669000604070...

Min. pol. /Q : t4− 362613323909326899482081
31879640018 t3+ 373761086042290740022813811191296225

4065245790709068161296 t2−
362613323909326899482081

31879640018 t + 1
Factorization: P 2

2,1 ·P−2
2,2 ·P−2

2,3 ·P 2
2,4 ·P−2

251,1 ·P 2
251,2 ·P 2

251,3 ·P−2
251,4 ·P−2

503,1 ·P 2
503,2 ·

P 2
503,3 · P−2

503,4

u(Φ; b−1, b−1) : 1.441996848178209...

Min. pol. /Q : t4 − 889546658240533101566293060870992834785
4768082070218968246634304144 t3 +

257085696176799108972543462392789519802432664601
2796215505628527723913331176576008 t2 −

3306582865449998214347040939328545663817217
4768082070218968246634304144 t + 1

Factorization: P 4
2,1 · P−4

2,2 · P−2
3,1 · P 2

3,2 · P−4
19,1 · P 4

19,2 · P−4
251,1 · P 4

251,2 · P 4
503,1 · P−4

503,2

u(Φ; b−1, c−1) : 8.791635032692373...

Min. pol. /Q : t4− 362613323909326899482081
31879640018 t3+ 373761086042290740022813811191296225

4065245790709068161296 t2−
362613323909326899482081

31879640018 t + 1
Factorization: P 2

2,1 ·P−2
2,2 ·P−2

2,3 ·P 2
2,4 ·P−2

251,1 ·P 2
251,2 ·P 2

251,3 ·P−2
251,4 ·P−2

503,1 ·P 2
503,2 ·

P 2
503,3 · P−2

503,4

u(Φ; c−1, c−1) : 1.104835988234184...

Min. pol. /Q : t4 − 373761086042282609531232393054973633
4065245790709068161296 t3 +

262976845352767093425646015029264262549957046193
2032622895354534080648 t2 −

373761086042282609531232393054973633
4065245790709068161296 t + 1

Factorization: P−4
2,1 · P 4

2,2 · P 4
251,2 · P−4

251,2 · P 4
503,1 · P−4

503,2

136



XII. Field: K = Q(
√
−221 + 34

√
13)

Def. pol.: x4 + 442x2 + 33813
Bound: 132066064
Integral basis: [1, 1

2 (x + 1), 1
68 (x2 + 51), 1

408 (x3 + 3x2 + 187x + 153)]
Rep. for Cl(K): • OK

• a = ([13, 0, 0, 0], [−1, 2, 0, 0])
• b = ([17, 0, 0, 0], [5, 15, 15, 0])
• c = ([221, 0, 0, 0], [692, 0, 2, 1])

u(Φ; a−1, a−1) : 7.901417107596603...

Min. pol. /Q : t2 − 2307797132797468266337874614980162444962
18234867745948307281 t + 1

Factorization: P 4
101,1 · P−4

101,2 · P−4
647,1 · P 4

647,2

u(Φ; a−1, b−1) : 1.005700406975535...

Min. pol. /Q : t4 − 922827909931040405330226086788804160932
40704458701931741827228574569 t3 +

209690608109313734481007639830856039001214531770967727963296457190876930213478
1656852958217266700854707724494525992640103841459593535761 t2−

922827909931040405330226086788804160932
40704458701931741827228574569 t + 1

Factorization: P−2
43,1 · P 2

43,2 · P−2
43,3 · P 2

43,4 · P−2
101,1 · P 2

101,2 · P 2
101,3 · P−2

101,4 · P−2
257,1 · P 2

257,2 ·
P−2

257,3 ·P 2
257,4 ·P 2

491,1 ·P−2
491,2 ·P 2

491,3 ·P−2
491,4 ·P−2

569,1 ·P 2
569,2 ·P−2

569,3 ·P 2
569,4 ·

P 2
647,1 · P 2

647,2 · P−2
647,3 · P−2

647,4

u(Φ; a−1, c−1) : 7.856631112797008...

Min. pol. /Q : t4 − 922827909931040405330226086788804160932
40704458701931741827228574569 t3 +

209690608109313734481007639830856039001214531770967727963296457190876930213478
1656852958217266700854707724494525992640103841459593535761 t2−

922827909931040405330226086788804160932
40704458701931741827228574569 t + 1

Factorization: P−2
43,1 · P 2

43,2 · P−2
43,3 · P 2

43,4 · P−2
101,1 · P 2

101,2 · P 2
101,3 · P−2

101,4 · P−2
257,1 · P 2

257,2 ·
P−2

257,3 ·P 2
257,4 ·P 2

491,1 ·P−2
491,2 ·P 2

491,3 ·P−2
491,4 ·P−2

569,1 ·P 2
569,2 ·P−2

569,3 ·P 2
569,4 ·

P 2
647,1 · P 2

647,2 · P−2
647,3 · P−2

647,4

u(Φ; b−1, b−1) : 4.505357520544783...

Min. pol. /Q : t4 − 922827909931040405330226086788804160932
90861802854885569757809787299412166081 t3 +

209690608109313734481007639830856039001214531770967727963296457190876930213478
8255867218040091474811939074657669894415435582136678873750114691316326898561 t2−

16827644889862418287545483567822580228778676833434911345892
8255867218040091474811939074657669894415435582136678873750114691316326898561 t+

332510401712225900727210389389197612961
8255867218040091474811939074657669894415435582136678873750114691316326898561

Factorization: P−4
43,1 ·P−4

43,2 ·P 4
101,1 ·P 4

101,2 ·P−4
257,1 ·P−4

257,2 ·P−4
491,1 ·P−4

491,2 ·P−4
569,1 ·P−4

569,2 ·
P 4

647,1 · P 4
647,2

u(Φ; b−1, c−1) : 0.000000000447982...

Min. pol. /Q : t− 4270230409
9532145763409494241

Factorization: 4270230409·9532145763409494241−1 = (101·647)2 ·(43·257·491·569)−2

u(Φ; c−1, c−1) : 3.519629884274990...

Min. pol. /Q : t4 − 922827909931040405330226086788804160932
90861802854885569757809787299412166081 t3 +

209690608109313734481007639830856039001214531770967727963296457190876930213478
8255867218040091474811939074657669894415435582136678873750114691316326898561 t2−

16827644889862418287545483567822580228778676833434911345892
8255867218040091474811939074657669894415435582136678873750114691316326898561 t+

332510401712225900727210389389197612961
8255867218040091474811939074657669894415435582136678873750114691316326898561

Factorization: P−4
43,1 ·P−4

43,2 ·P 4
101,1 ·P 4

101,2 ·P−4
257,1 ·P−4

257,2 ·P−4
491,1 ·P−4

491,2 ·P−4
569,1 ·P−4

569,2 ·
P 4

647,1 · P 4
647,2

137



XIII. Field: K = Q(
√
−255 + 60

√
17)

Defining polynomial: x4 + 510x2 + 3825
Bound: 300675600
Integral basis: [1, 1

2 (x + 1), 1
120 (x2 + 75), 1

240 (x3 + x2 + 75x + 75)]
Rep. for Cl(K): • OK

• a = ([3, 0, 0, 0], [1, 1, 0, 0])
• b = ([5, 0, 0, 0], [1, 3, 0, 0])
• c = ([15, 0, 0, 0], [217, 1, 16, 223])

u(Φ; a−1, a−1) : 4.107898863385631...

Minimal pol. over Q : t2 − 1928579186176040753046043381994824514
79224082468417441 t + 1

Factorization: P−4
19,1 · P 4

19,2 · P−4
883,1 · P 4

883,2

u(Φ; a−1, b−1) : 1.890754071253506...

Minimal pol. over Q : t2 − 77112001867007270398807874
14579983147255201 t + 1

Factorization: P−2
13,1 · P 2

13,2 · P−2
67,1 · P 2

67,2 · P 2
157,1 · P−2

157,2 · P 2
883,1 · P−2

883,2

u(Φ; a−1, c−1) : 2.172624629422181...

Minimal pol. over Q : t2 − 8745541949594755427364837030242
1900077983733445049521 t + 1

Factorization: P−2
13,1·P 2

13,2·P−4
19,1·P 4

19,2·P 2
67,1·P−2

67,2·P−2
157,1·P 2

157,2·P−2
883,1·P 2

883,2

u(Φ; b−1, b−1) : 2.657837652996455...

Minimal pol. over Q : t2 − 1233792029872116326380925984
16595242354792272935045400001 t +

155626223800576
787582338746527577270996742820858321

Factorization: P 4
2,1 · P 4

2,2 · P−4
13 · P−4

67 · P−4
83,1 · P−4

83,2 · P−4
157 · P 4

883

u(Φ; b−1, c−1) : 1.405702461999406...

Minimal pol. over Q : t− 12475024
887458358880306889

Factorization: 12475024 · 887458358880306889−1 = 24 · 8832 · 13−2 · 67−2 ·
83−4 · 157−2

u(Φ; c−1, c−1) : 3.054063790579308...

Minimal pol. over Q : t2 − 139928671193516086837837392483872
2162708578918883801168051573530321 t +

155626223800576
787582338746527577270996742820858321

Factorization: P 4
2,1 · P 4

2,2 · P−4
13 · P−4

19,1 · P 4
19,2 · P−4

67 · P−4
83,1 · P−4

83,2 · P−4
157 · P 4

883

138



B.3 One example of quartic cyclic CM-field with class number 5
Field: K = Q(

p
−101 + 10

√
101)

Def. pol.: x4 + 202x2 + 101

Bound: 6659865664

Integral basis: [1, 1
2
(x + 1), 1

20
(x2 + 11), 1

40
(x3 + x2 + 11x + 11)]

Rep. for Cl(K): • OK

• a = ([5, 0, 0, 0], [2, 2, 4, 3])

• b = ([25, 0, 0, 0], [12, 2, 4, 18])

• c = ([125, 0, 0, 0], [32, 72, 119, 63])

• d = ([625, 0, 0, 0], [77, 467, 384, 33])

u(Φ; a−1, a−1) : 36032.758844207454189... + i · 22689.622629195781996...

Min. pol. : t10 − 10901061080330960047009091066681578
92085105098381079407240401

t9 +
47637332581475305725441707328453042184249383332141507594329323597

8479666580979889064136976957987951291390102206640801
t8 −

85439575521292263050257021928222263048857151018280691043728900396483384
1433063652185601251839149105899963768244927272922295369

t7 −
321183826179643974073375250236499778495172232859489994426366646001648350681550

242187757219366611560816198897093876833392709123867917361
t6−

1415860572475338526990478800888401286516014326680489701845737578957365839882856700
14246338659962741856518599935123169225493688771992230433

t5+
36371441556645334154144865444383141630905465616387773517333182289130819239711202

1433063652185601251839149105899963768244927272922295369
t4+

347764613246161442722578693202902215023053843087764635377909384
149338156802227124024363811449400288199681

t3 +
853295190713305364811321959242970511902785221

15562382761626402419823627769
t2+ 699304341596393910948182

1621740634847281
t+1

u(Φ; a−1, b−1) : −1.821825785942248...− i · 0.771604398148303...

Min. pol. : t10− 751227636512298217649770
1621740634847281

t9+ 132680440236343537173615648252905295014085
15562382761626402419823627769

t8−
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t7 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t6 −
20792001467826476906976852934267318818035693760430961351879903115036

50175541899289284403177378449632847878047942051129
t5 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t4 −
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t3 +

132680440236343537173615648252905295014085
15562382761626402419823627769

t2 − 751227636512298217649770
1621740634847281

t + 1

u(Φ; a−1, c−1) : 0.000077790150867... + i · 0.000048984014104...

Min. pol. : t10− 751227636512298217649770
1621740634847281

t9+ 132680440236343537173615648252905295014085
15562382761626402419823627769

t8−
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t7 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t6 −
20792001467826476906976852934267318818035693760430961351879903115036

50175541899289284403177378449632847878047942051129
t5 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t4 −
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t3 +

132680440236343537173615648252905295014085
15562382761626402419823627769

t2 − 751227636512298217649770
1621740634847281

t + 1

u(Φ; a−1, d−1) : 3.914422541565896...

Min. pol. : t10+ 699304341596393910948182
1621740634847281

t9+ 853295190713305364811321959242970511902785221
15562382761626402419823627769

t8+
347764613246161442722578693202902215023053843087764635377909384

149338156802227124024363811449400288199681
t7 +

36371441556645334154144865444383141630905465616387773517333182289130819239711202
1433063652185601251839149105899963768244927272922295369

t6−
1415860572475338526990478800888401286516014326680489701845737578957365839882856700

14246338659962741856518599935123169225493688771992230433
t5−

321183826179643974073375250236499778495172232859489994426366646001648350681550
242187757219366611560816198897093876833392709123867917361

t4−
85439575521292263050257021928222263048857151018280691043728900396483384

1433063652185601251839149105899963768244927272922295369
t3 +

47637332581475305725441707328453042184249383332141507594329323597
8479666580979889064136976957987951291390102206640801

t2 −
10901061080330960047009091066681578

92085105098381079407240401
t + 1

139



u(Φ; b−1, b−1) : −0.000000003933090...− i · 0.000000001665795...

Min. pol. : t10 − 10901061080330960047009091066681578
92085105098381079407240401

t9 +
47637332581475305725441707328453042184249383332141507594329323597

8479666580979889064136976957987951291390102206640801
t8 −

85439575521292263050257021928222263048857151018280691043728900396483384
1433063652185601251839149105899963768244927272922295369

t7 −
321183826179643974073375250236499778495172232859489994426366646001648350681550

242187757219366611560816198897093876833392709123867917361
t6−

1415860572475338526990478800888401286516014326680489701845737578957365839882856700
14246338659962741856518599935123169225493688771992230433

t5+
36371441556645334154144865444383141630905465616387773517333182289130819239711202

1433063652185601251839149105899963768244927272922295369
t4+

347764613246161442722578693202902215023053843087764635377909384
149338156802227124024363811449400288199681

t3 +
853295190713305364811321959242970511902785221

15562382761626402419823627769
t2+ 699304341596393910948182

1621740634847281
t+1

u(Φ; b−1, c−1) : 0.000000008450741...

Min. pol. : t10+ 699304341596393910948182
1621740634847281

t9+ 853295190713305364811321959242970511902785221
15562382761626402419823627769

t8+
347764613246161442722578693202902215023053843087764635377909384

149338156802227124024363811449400288199681
t7 +

36371441556645334154144865444383141630905465616387773517333182289130819239711202
1433063652185601251839149105899963768244927272922295369

t6−
1415860572475338526990478800888401286516014326680489701845737578957365839882856700

14246338659962741856518599935123169225493688771992230433
t5−

321183826179643974073375250236499778495172232859489994426366646001648350681550
242187757219366611560816198897093876833392709123867917361

t4−
85439575521292263050257021928222263048857151018280691043728900396483384

1433063652185601251839149105899963768244927272922295369
t3 +

47637332581475305725441707328453042184249383332141507594329323597
8479666580979889064136976957987951291390102206640801

t2 −
10901061080330960047009091066681578

92085105098381079407240401
t + 1

u(Φ; b−1, d−1) : 0.000077790150867...− i · 0.000048984014104...

Min. pol. : t10− 751227636512298217649770
1621740634847281

t9+ 132680440236343537173615648252905295014085
15562382761626402419823627769

t8−
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t7 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t6 −
20792001467826476906976852934267318818035693760430961351879903115036

50175541899289284403177378449632847878047942051129
t5 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t4 −
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t3 +

132680440236343537173615648252905295014085
15562382761626402419823627769

t2 − 751227636512298217649770
1621740634847281

t + 1

u(Φ; c−1, c−1) : −0.000000003933090... + i · 0.000000001665795...

Min. pol. : t10 − 10901061080330960047009091066681578
92085105098381079407240401

t9 +
47637332581475305725441707328453042184249383332141507594329323597

8479666580979889064136976957987951291390102206640801
t8 −

85439575521292263050257021928222263048857151018280691043728900396483384
1433063652185601251839149105899963768244927272922295369

t7 −
321183826179643974073375250236499778495172232859489994426366646001648350681550

242187757219366611560816198897093876833392709123867917361
t6−

1415860572475338526990478800888401286516014326680489701845737578957365839882856700
14246338659962741856518599935123169225493688771992230433

t5+
36371441556645334154144865444383141630905465616387773517333182289130819239711202

1433063652185601251839149105899963768244927272922295369
t4+

347764613246161442722578693202902215023053843087764635377909384
149338156802227124024363811449400288199681

t3 +
853295190713305364811321959242970511902785221

15562382761626402419823627769
t2+ 699304341596393910948182

1621740634847281
t+1

u(Φ; c−1, d−1) : −1.821825785942248... + i · 0.771604398148303...

Min. pol. : t10− 751227636512298217649770
1621740634847281

t9+ 132680440236343537173615648252905295014085
15562382761626402419823627769

t8−
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t7 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t6 −
20792001467826476906976852934267318818035693760430961351879903115036

50175541899289284403177378449632847878047942051129
t5 −

2125553507157062430463915088102483032895476619063726744427903341079534
8479666580979889064136976957987951291390102206640801

t4 −
8179744207229770081662080681535622279916935050536672583288

149338156802227124024363811449400288199681
t3 +

132680440236343537173615648252905295014085
15562382761626402419823627769

t2 − 751227636512298217649770
1621740634847281

t + 1
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u(Φ; d−1, d−1) : 36032.758844207454189...− i · 22689.622629195781996...

Min. pol. : t10 − 10901061080330960047009091066681578
92085105098381079407240401

t9 +
47637332581475305725441707328453042184249383332141507594329323597

8479666580979889064136976957987951291390102206640801
t8 −

85439575521292263050257021928222263048857151018280691043728900396483384
1433063652185601251839149105899963768244927272922295369

t7 −
321183826179643974073375250236499778495172232859489994426366646001648350681550

242187757219366611560816198897093876833392709123867917361
t6−

1415860572475338526990478800888401286516014326680489701845737578957365839882856700
14246338659962741856518599935123169225493688771992230433

t5+
36371441556645334154144865444383141630905465616387773517333182289130819239711202

1433063652185601251839149105899963768244927272922295369
t4+

347764613246161442722578693202902215023053843087764635377909384
149338156802227124024363811449400288199681

t3 +
853295190713305364811321959242970511902785221

15562382761626402419823627769
t2+ 699304341596393910948182

1621740634847281
t+1
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