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especially for supporting my journey to the Park City Summer School in Arithmetic

Geometry in July 1999, and for organizing the Québec-Vermont Number Theory Sem-
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Résumé :

Nous tentons de généraliser la description du lieu supersingulier de l’espace de modu-

les des surfaces abéliennes polarisées à multiplications réelles parOL ([1]) dans le cas où p

est inerte dans OL. Nous présentons des faits probants pour étayer une formule de masse

conjecturale pour les points superspéciaux, ainsi (par conséquent) qu’une formule pour

le nombre de ces points, généralisant directement un résultat classique de Deuring pour

le cas des courbes elliptiques supersingulières. Ce résultat fournirait une interprétation

géométrique d’un cas particulier de la correspondance de Jacquet-Langlands. Le reste

de la thèse constitue un travail préparatoire aux applications arithmétiques du lieu su-

persingulier des surfaces modulaires de Hilbert modulo p (p inerte) : formes modulaires

de Hilbert, formes modulaires mod p, etc.
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Abstract :

We try generalizing the description of the supersingular locus of the moduli space of

polarized abelian surfaces with real multiplication by OL (see [1]) in the case where p is

inert in OL. We present evidence to support a conjectural mass formula for superspecial

points and a counting formula for such points, generalizing a classical result of Deuring

on supersingular elliptic curves. This result would provide a geometric interpretation

of a special case of the Jacquet-Langlands correspondence. The remaining portion

of the thesis is preliminary work with a view toward arithmetical applications of the

supersingular locus of Hilbert modular surfaces mod p: Hilbert modular forms, modular

forms mod p, etc.
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Introduction

The purpose of this thesis is to review what is known about the supersingular locus

of modular curves and Hilbert modular surfaces, with an eye to arithmetical applica-

tions. The first chapter covers supersingular elliptic curves, the arithmetic of quaternion

algebras and the application to modular forms of weight two for Γ0(p). Chapter two

studies the moduli spaces of polarized abelian surfaces with real multiplication and level

structure, analyzes the supersingular locus of the moduli space mod p and gives a geo-

metric view on Hecke operators, introducing higher-dimensional analogues of Brandt

matrices. Chapter three explores evidence towards a class number formula for the num-

ber of superspecial points on Hilbert modular varieties mod p and proves various results

on components of moduli spaces. Chapter four introduces a technical device (tensor

construction) with the goal of systematizing the geometric applications of class number

formulae of orders in quaternion algebras over (totally real) number fields to the moduli

spaces of abelian varieties with additional structure. We use the conclusion, which is

really an intröıt to greater endeavours, to draw an esquisse of various possible direc-

tions for further research; this thesis should therefore be considered as a step in work

in progress.
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CHAPTER 1

Supersingular Elliptic Curves

The purpose of this chapter is to review succinctly supersingularity of elliptic curves

and its connection to the arithmetic of quaternion algebras.

1. Elliptic curves

Our main reference in this section will be [39]. The symbol E will always denote

an elliptic curve, and we will use the letter p to denote a prime (i.e. a finite place).

1.1. Basic properties. Let us begin with a

Definition 1.1. Let S be scheme. An elliptic curve E over S is a proper, smooth,

commutative group scheme of relative dimension one

E
f−→ S,

with geometrically connected fibers all of genus one. Let s : S −→ E denote the identity

section.

Locally in the Zariski topology, we obtain a generalized Weierstrass equation :

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.(1.1)

See [39, Section 2.2].

Let us consider the ring of endomorphisms End(E) = Hom(E, E) of an elliptic curve

defined over an algebraically closed field. It is equipped a positive quadratic degree map

and the Rosati involution :

End(E) −→ End(E),

f 7→ f∗ := λ−1f∨λ,

where λ : P 7→ [P ] − [0] is the canonical principal polarization on E. In characteristic

zero, End(E) is either Z or an order in an imaginary quadratic field ([71, Theorem

9



10 1. SUPERSINGULAR ELLIPTIC CURVES

9.3, p.100]). We say that the curve E has complex multiplication if End(E) 6= Z. In

characteristic p, we have the following

Theorem 1.2. (Deuring) [17] An elliptic curve E over a field of characteristic p

has complex multiplication if and only if it is defined over a finite field Fpn .

In this case, there are two possibilities for the endomorphism ring: either End(E) is

an order of conductor prime to p in an imaginary quadratic extension of Q; or End(E)

is a maximal order in the rational definite quaternion algebra Bp,∞ ramified at p ([17]).

1.2. Supersingularity. Let E be defined over an algebraically closed field k of

characteristic p.

Definition 1.3. An elliptic curve E is called ordinary if E(k) has non-trivial points

of order p, supersingular if not.

The curve E is supersingular precisely when the endomorphism ring End(E) is a

maximal order in a quaternion algebra ([17]).

Example 1.4. The supersingular elliptic curve over F2 ([29, p. 145]) .

The elliptic curve E over F2 with equation

Y 2 + Y = X3,(1.2)

is the unique supersingular curve over F2. Its endomorphism ring has Z-basis

{
i, j, k,

1 + i + j + k

2

}
,

which is a maximal order in the quaternion algebra B2,∞, that is, the Hamilton quater-

nion algebra : Q+Qi +Qj +Qk, with

i2 = −1, j2 = −1, ij = k = −ji.

The group Aut(E) has order 24 and is given by
{
±1,±i,±j ± k, ±1±i±j±k

2

}
.

In the following, we will restrict our study to curves defined over finite fields. Recall that

supersingular elliptic curves have models defined over Fp2 , hence there is only a finite

number of isomorphism classes of supersingular elliptic curves for each p; we shall give
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a precise number later on in the moduli context. It is well-known that the supersingular

elliptic curves form a unique isogeny class (this follows from Honda-Tate theorem).

Definition 1.5. An abelian scheme A over a scheme S is a group scheme

π : A −→ S

such that π is smooth and proper, and the geometric fibers are connected.

Let A be an abelian variety over a field k of characteristic p. We denote the

Frobenius map by Fr : A −→ A(p). The dual morphism is the Verschiebung denoted

Ver : A(p) −→ A. See [39, Chapter 12] . Those homomorphisms are “p-elementary”

isogenies, that is :

Ver ◦ Fr = [p]A, Fr ◦Ver = [p]A(p) ,(1.3)

and their kernels are group schemes of order pdim(A).

There exists a canonical modular form in characteristic p of weight p−1 called the Hasse

invariant. The vanishing of the Hasse invariant is a criterion for supersingularity. See

[39, Section 12.4].

Theorem 1.6. (Igusa) [39, Theorem 12.4.3, p.355] The Hasse invariant has simple

zeroes.

Let us now scrutinize the p-torsion group scheme of elliptic curves. Let k be algebraically

closed (of characteristic p).

The multiplication-by-n map [n] : E −→ E is a proper, flat morphism and its kernel

E[n] is an affine group scheme of order n2. The Weil pairing

E[n]× E[n] −→ µn,

shows that E[n] is a self-dual group scheme; in particular, the largest étale quotient of

E[p] is of order ≤ p. The only simple finite group schemes of order p that can occur in

a decomposition series are :

• αp = Spec
(
k[T ]/(T p)

)
; αp is the kernel of the Frobenius map Fr : Ga −→ Ga.

It is a connected self-dual (local-local) group scheme.



12 1. SUPERSINGULAR ELLIPTIC CURVES

• µp = Spec
(
k[T ]/(T p−1)

)
; µp is the kernel of the Frobenius map Fr : Gm −→ Gm.

It is a local-étale group scheme.

• Z/pZ = Spec
(
k[T ]/(T p − T )

)
; Z/pZ is the constant (étale-local) group scheme

dual to µp.

Since k = k, there are only two possibilities for E[p] :

• Suppose the étale part is of order p: this is the ordinary case. By self-duality

E[p] ∼= µp ⊕ Z/pZ.(1.4)

Frobenius acts as zero on µp, and identity on Z/pZ; the Verschiebung acts as

zero on Z/pZ, and identity on µp. Hence, the kernel of Frobenius is µp, and the

kernel of Verschiebung is Z/pZ.

• Suppose now the étale part is trivial : this is the supersingular case. Since the

kernel of Frobenius and Verschiebung is of order p and both act as 0 on αp, the

exact sequence :

0 −→ αp −→ E[p] −→ αp −→ 0.(1.5)

is non-split.

It follows that the p-divisible group of an ordinary elliptic curve over an algebraically

closed field is

µp∞ ×Qp/Zp.(1.6)

In the case of a supersingular elliptic curve, this p-divisible group is isomorphic to

the unique 1-parameter formal Lie group of height 2. See [39, Theorem 2.9.3, p.93] and

[65].

1.3. Moduli spaces. In this subsection, we consider the moduli spaces constructed

when considering elliptic curves with level structure. The level structures are thrown

in to rigidify the problem (i.e. eliminate automorphisms of the curves); in this thesis,

we work with schemes rather than algebraic stacks and spaces, under the usual minor

technical restriction on the level structure (i.e. N ≥ 3).
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We consider two kinds of level structures for elliptic curves E over a ring R : Γ0(N)

and Γ1(N). In the latter case, we shall always assume that N is invertible in R. The

general case is treated in [39].

Definition 1.7. • A Γ0(N)-level structure is a choice of subgroup scheme

H ⊂ E[N ] of order and exponent N defined over R.

• A Γ1(N)-level structure is a choice of a point P ∈ E[N ] of exact order N defined

over R.

The moduli problem consists in parametrizing elliptic curves with Γ0(N)-level struc-

ture (resp. Γ1(N)-level structure). One may prove that there exist coarse moduli

schemes for these moduli problems, which are flat, regular curves over Z (resp. Z[ 1
N ]) :

Y0(N) (resp. Y1(N)). The terminology stems from the fact that Y0(N)(C) ∼= Γ0(N)\H,

(resp. Y1(N)(C) ∼= Γ1(N)\H). If N ≥ 4, Y1(N) is a fine moduli scheme. We obtain

proper morphisms over Z (resp. Z[ 1
N ]) by adding the cusps, and to keep the moduli the-

oretic framework, we use the device of generalized elliptic curves (which are essentially

cycles of projective lines with adjusted level structure). We then get a regular integral

scheme X0(N) (resp. X1(N)) that is flat and proper over Z (resp. Z[ 1
N ]), and this

construction is still a “continuation” of the complex case (i.e. X0(N)(C) ∼= Γ0(N)\H∗,
resp. X1(N)(C) ∼= Γ1(N)\H∗). See [14] for details, such as a discussion of generalized

elliptic curves (“N -gons”).

Having good models over Z (resp. Spec(Z[ 1
N ])) allows us to consider the reduction

mod p of the moduli schemes for any p (resp. p prime to N). The geometric picture is as

follows : the reduction of X0(p) consists of two rational projective curves that intersect

precisely at the supersingular points; the number of supersingular elliptic curves h is

simply the genus of the intersection graph plus one:

h = g + 1.(1.7)

We have the following formula for the genus of X0(p) : if p = 2, g = 0 (since there

is a unique supersingular elliptic curve in characteristic two), and otherwise

g =
p + 1
12

−
1 + (−1

p )

4
−

1 + (−3
p )

3
.(1.8)
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See [32].

Theorem 1.8. ([39, Corollary 12.4.6, p. 358]) We have the formula :

p− 1
24

=
∑

[E]

1
|Aut(E)| .(1.9)

where summation is over isomorphism classes of supersingular elliptic curves.

Example 1.9. Supersingular elliptic curves over F11.

There are two supersingular elliptic curves over F11, and representatives are given

by :

E1 : y2 = x3 + 1, E2 : y2 = x3 + x.(1.10)

We check that

Z[i] ⊂ End(E2), Z[ω] ⊂ End(E1),

where ω is a primitive cube root of unity: ω2 + ω + 1 = 0. The automorphism group of

E2 : y2 = x3 + x thus contains Z[i]× = {±1,±i}; likewise, Z[ω]× =
{±1,±ω,±ω2

} ⊂
Aut(E1). The mass formula indicates we don’t have to look any further, since 5

12 = 1
4+ 1

6 .

N.B. We find in [57] algorithms to compute the orders of endomorphisms associated

to supersingular elliptic curves, representatives of the left ideal classes, associated norm

forms, etc.

In fact, this is a feature of this connection between supersingular elliptic curves

and quaternion algebras: the computational aspect of the latter is sometimes more

manageable. Note though, that in [44], supersingular curves are used to compute ideal

classes in quaternion algebras.

For example, the maximal order O associated to E2 is given by the Z-basis :

{
1
2
(1 + j),

1
2
(i + k), j, k

}
,

in the quaternion algebra B11,∞ over Q given by the relations :

i2 = −1, j2 = −11, ij = k = −ji.

One checks that the only units in this order are ±1 and ±i, as expected.
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2. Theta series and modular forms of weight two

2.1. Quaternion algebras. We recall the main ingredients of the theory of quater-

nion algebras and their orders, that we apply soon after to Eichler’s theorem on the space

of weight two modular forms, and later on (in Chapter III) to totally ramified quaternion

algebras.

Definition 2.1. A quaternion algebra H is a central simple algebra of dimension

four over a field K. If char K 6= 2, we can pick (a, b) ∈ K2 nonzero such that H is

isomorphic to

K ⊕Ki⊕Kj ⊕Kij,

with relations

i2 = a, j2 = b, ij = −ji.

We usually denote ij by k.

A quaternion algebra is equipped with a conjugation x 7→ x, a (reduced) trace Tr

and a (reduced) Norm with the usual properties :

For char k 6= 2, an element u in a quaternion algebra H can be expressed as

u = x + yi + zj + wk.

Then

• u = x− yi− zj − wk, x, y, z, w ∈ K;

• Tr(u) = 2x;

• Norm(u) = x2 − ay2 − bz2 + abw2.

Note that the (reduced) norm is a quadratic form on H viewed as a K-vector space.

Example 2.2. If u is an element of the maximal order corresponding to the ring

of endomorphisms of the supersingular elliptic curve, note that its norm is equal to its

degree as an endomorphism, because the norm coincides with the degree map.

• p = 2. Let u = x + yi + zj + wk be an element. Then its norm is

Norm(u) = x2 + y2 + z2 + w2,
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and we check that the elements in Example 1.4 are automorphisms of the super-

singular elliptic curve over F2.

• p = 11. The norm is :

Norm(u) = x2 + y2 + 11z2 + 11w2;

and the elements ±1,±i are the units in the order O of Example 1.9.

A place v of a global field K is said to be ramified if

Hv = H ⊗Kv,

is a division algebra. Let S be the set of ramified places. For v 6∈ S, we have

H ⊗Kv
∼= M2(Kv),

by Wedderburn’s theorem.

We have the following classification:

Theorem 2.3. (Classification) [76, Théorème 3.1]

• The number of ramified places of a quaternion algebra H over K is finite and

even.

• For every finite set S of places of K of even order, there exists a quaternion

algebra H over K, unique up to isomorphism, such that H is ramified at precisely

the places in S.

Example 2.4. Take S = {p,∞}. The corresponding quaternion algebra ramified

at p and ∞ will be denoted Bp,∞. Explicitly, Bp,∞⊗Qp and Bp,∞⊗R ∼= H are (central)

division algebras, and

Bp,∞ ⊗Qq
∼= M2(Qq), ∀q 6= p,∞.

Theorem 2.5. ([76, Chapitre III, Théorème 3.8])

A quadratic extension L of K can be embedded in a quaternion algebra H over K

if and only if Lp := L ⊗ Kp is a field for all p ramified in H (i.e. there is no prime

ramified in H that is split in L).
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Theorem 2.6. Let H be a quaternion algebra over Q, let ∞ 6= p be a rational

prime, and let ep be the ramification index of p in H (ep = 1 if p is split, and ep = 2 if

p is ramified).

1. If Hp is a division algebra over Qp, there there is a unique maximal order

Op = {α ∈ Hp : Norm(α) ∈ Zp} .

2. If Hp is isomorphic to M2(Qp), then all maximal orders are conjugate to M2(Zp)

under this isomorphism.

3. A maximal order Op of Hp has a unique maximal two-sided ideal B. Every

two-sided ideal of Op is of the form Bm for an integer m, and Bep = (p).

See [62, Theorem 12.8] for item 1, and [62, Theorem 17.3] for items 2 and 3.

We will use the following classical theorem a few times. Recall that the inner automor-

phisms of a quaternion algebra H are given by :

k 7→ hkh−1, k ∈ H,

and h ∈ H×.

Theorem 2.7. (Skolem-Noether) [33] Let H/K be a quaternion algebra. Let L,L′

be two (commutative) K-algebras contained in H. All K-isomorphisms from L to L′

can be continued to an inner automorphism of H, and all K-automorphisms of H are

inner.

2.2. Lattices and orders. Let K be the quotient field of a Dedekind domain

R. Let H be a quaternion algebra over K. A lattice is a finitely generated R-module

contained in H. We can define the localization of a lattice L of K at a place v as

Lv := L⊗R Rv.

An ideal I of H is a complete lattice, i.e. K ⊗R I ∼= H. An ideal O is called an order

if it is a ring (with identity). By a standard application of Zorn’s lemma, there exist

maximal orders.

Let O be a fixed maximal order of a quaternion algebra H. A left ideal of O is

a lattice in H which is stable under left multiplication by O. To any ideal I we can
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associate its left order

Ol := {h ∈ H : hI ⊂ I} ;

similarly for a right order Or. We define the inverse I−1 of an ideal I to be :

I−1 = {h ∈ H : IhI ⊂ I} .

It is a right ideal for O whose left order is the right order of I.

Recall that the norm of an ideal is the fractional ideal of R generated by the (re-

duced) norms of its elements. As in the algebraic theory of Dedekind domains, the

different of an order O is the ideal inverse of the dual lattice of O with respect to the

bilinear form induced by the (reduced) trace.

Definition 2.8. The (reduced) discriminant d(O) of O is the norm of the different.

We have a practical criterion to check maximality of orders :

Proposition 2.9. • Let O and O′ be two orders such that O ⊆ O′. Then

d(O′) divides d(O) and d(O) = d(O′) ⇐⇒ O = O′.
• An order is maximal iff d(O) is equal to the product of the finite, ramified places

of K.

• If O =
∑4

i=1 Rxi, then

d(O)2 = R · det(Tr(xixj))1≤i,j≤4.

See [57, Proposition 1.1], [76, Corollaire 5.4] and [76, Lemme 4.7, p. 24].

Example 2.10. One can easily calculate the discriminants of the maximal orders

associated to the supersingular elliptic curves when p = 2 and p = 11, to obtain that

d(O2) = 2 and d(O11) = 11.

We collect a few facts about projective left ideals of maximal orders.

Proposition 2.11. ([62, Theorem 17.3]) Let O be a maximal order. Then every

left ideal of Ov is principal at all finite places v. A left ideal I of O is projective if and

only if it is locally free at all finite places v.
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Proposition 2.12. ([42, Proposition 40]) Let I be a projective left ideal for a max-

imal order O. Then the right order O′ of I is also maximal. Moreover, the left order of

I (as an ideal of O′) is O.

Definition 2.13. An Eichler order is the intersection of two maximal orders.

Fix a prime number p. Let M and r to be integers, with (M,p) = 1, and put

N := p2r+1M . Let L̃ be the unique unramified quadratic field extension of Qp, and OL̃

be the ring of integers of L̃. We denote the conjugation of L̃/Qp by σ.

An order O of Bp,∞ is said to be of level N if, for every q prime, we have

Oq := O ⊗Z Zq = is conjugate to





(
Zq Zq

NZq Zq

)
if q 6= p;

{(
α prβ

pr+1βσ ασ

)
|α, β ∈ OL̃

}
if q = p.

The maximal orders form a tree : Let O1, O2 be two maximal orders. Define

the distance dist(O1,O2) to be the level of the Eichler order O1 ∩ O2. If we put the

Eichler orders as vertices, and we connect with an edge vertices O1, O2 such that

dist(O1,O2) = 1, we obtain a tree. See [76, Corollaire 2.6].

We will need the following proposition in Chapter III.

Proposition 2.14. (Hijikata) Let K be a local field with uniformizer π and ring of

integers R. Let O be an order of M2(K). The following are equivalent :

• The order O is Eichler;

• There exists a unique pair of maximal orders O1, O2 such that O = O1 ∩ O2;

• There exists an unique integer n ∈ N such that O is conjugate to
(

R R
πn R

)
;

• The order O contains a subring conjugate to
(

R 0
0 R

)
.

We will now introduce the class and type numbers.

Two left O-ideals I and J are in the same class if there exists an element h ∈ H×

such that I = Jh.
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Proposition 2.15. The number of classes of H is finite. For any maximal order

O, the number of classes of left ideals is equal to the number of classes of right ideals

and is independent of the maximal order of H.

Proposition 2.16. ([76]) The class number formula for Bp,∞

h =
p− 1
12

+
1
3

(
1− (

−3
p

)
)

+
1
4

(
1− (

−1
p

)
)

when p > 2,(2.1)

where (a
b ) is the Legendre symbol, and is 1 for p = 2.

One will immediately note the equality between this class number and the number

of supersingular elliptic curves in characteristic p ! We will come back to this and give

an explicit bijection in section 2.3.

There exist a class number formula generalizing Equation (2.1) for any order of

level p2r+1N , (N, p) = 1; in particular, it depends only on the level, and not the specific

order. See [57, Theorem 1.12, p. 346].

The formula is as follows :

H(p2r+1N) =
p2r+1N

12
(1− 1

p
)
∏

`|N
(1 +

1
`
)

+
{ 1

4 (1− (−4
p ))

∏
`|N (1 + (−4

` )) if 4 6 |N
0 otherwise

+
{ 1

3 (1− (−3
p ))

∏
`|N (1 + (−3

` )) if 9 6 |N
0 otherwise

Moreover, (see [59]) there are similar formulae for orders of level p2N :

H(p2N) =
p2N

12
(1− 1

p2
)
∏

`|N
(1 +

1
`
) +

{
0 if p ≥ 5

4
3

∏
`|N (1 + (−3

` )) if p = 3

See [4], [5] for recent developments.

Let {I1, . . . Ih} be a set of left ideals representing the distinct ideal classes, with I1 = O;

and let {O1, . . .Oh} be the set of right orders of the Ii’s. Then each conjugacy class of

maximal orders in H is represented (at least once, maybe twice) in this set. We call
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the number of distinct conjugacy classes the type number t. See [42, Proposition 38,

Corollary 39].

Corollary 2.17. The type number t is finite.

For a more precise statement, see [42, Theorem 44].

The following proposition is useful to reduce calculations to local considerations. For

example, the following properties can be checked locally : being an order, an Eichler

order, a maximal order, an ideal, etc.

Proposition 2.18. Let X be a lattice in H. Let S be the set of infinite places.

There is a bijection between the H-lattices Y and the set of lattices

{(Yp), Yp a lattice in Hp, Yp = Xp almost everywhere } ,

given by the invertible maps :

Y 7→ (Yp)p 6∈S ,

(Yp)p 6∈S 7→ Y = {x ∈ H, x ∈ Yp, ∀p 6∈ S} .

See [76, Proposition 5.1, p. 83] .

2.3. Geometric interlude. Warning: in this subsection, we use R to denote any

ring.

We explain in detail the construction of a bijection between the set of supersingular

elliptic curves {E1, . . . , Eh} and the class group of O = End(E1), a maximal order in

the quaternion algebra Bp,∞. Let E = E1.

The original idea we will use to prove this is due to Serre ([66]), with refinements

due to Waterhouse ([79]).

We give the original results, due to Deuring ([17]) and Eichler ([19]) (see also [24]):

• Let A be a left ideal of O ⊂ Bp,∞, and consider the finite group scheme

H(A) := ∩ ker(a) ⊂ E,

where a runs through A. The quotient E(A) = E/H(A) is a supersingular elliptic

curve and B 7→ E(B) defines a bijection between the set of left ideal classes of

O and the set S of isomorphism classes of supersingular elliptic curves over Fp.
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• The right order Or(B) is isomorphic to End(E(B)).

• The orders Or(B) and Or(B′) are isomorphic iff E(B) and E(B′) denote classes

in S that are conjugate under the Galois group Gal(Fp/Fp).

• As a corollary of Skolem-Noether theorem, isomorphic orders are conjugate in

Bp,∞. Moreover, elements of S are defined over Fp2 , hence the types of Bp,∞

correspond to orbits in S under the Galois action of Gal(Fp2/Fp).

Theorem 2.19. Let S be the category of supersingular elliptic curves over Fp (with

isogenies) and let E be an object in S. Let T be the category of locally free rank one left

modules over O = End(E)( with O-homomorphisms). Then the functor:

F : A 7→ E/H(A),

from the category of locally free rank one left modules over O = End(E) (with O-

homomorphisms) is an (anti-)equivalence of categories. More precisely, it yields:

HomO(A,B) ∼= HomS(E/H(B), E/H(A)) = A−1B.

Definition 2.20. Let J be a set of isogenies of E. We define H[J ] to be the (scheme

theoretic) intersection of the kernels of all α in J . A left O-ideal A is called a kernel

ideal if A = {α ∈ O|α(H[A]) = 0}.

Theorem 2.21. Every left O-ideal is a kernel ideal, and every finite subgroup of E

is of the form H[A] for some left O-ideal A.

Proof. See [79, Theorem 3.15, p. 35].

Lemma 2.22. ([42, Lemma 47, p. 68]) Let φ : E −→ E′ and ψ : E −→ E′′ be

isogenies and suppose that ψ ker(φ) = OE′′ . Then there exists an isogeny λ : E′′ −→ E′

such that ψ = λφ.

Lemma 2.23. ([42, Proposition 48]) Let I ⊂ Hom(E′, E) be a left module over

O = End(E). Then there exists an elliptic curve E′′ and an isogeny ρ : E′′ −→ E such

that I = Hom(E′′, E)ρ.
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Proof. Taking an isogeny φ : E −→ E′, we embed I and Hom(E′, E) in O as

integral ideals such that :

Iφ ⊂ Hom(E′, E)φ ⊂ O.

Let E′′ = E/H[Iφ] for some φ and let ψ : E −→ E′′ be the isogeny with kernel H[Iρ].

By Theorem 2.21 and Lemma 2.22, Iφ = {α ∈ O : α(H[Iφ]) = OE} = Hom(E′′, Eψ),

so I = Hom(E′′, E)ρ.

We now proceed : we need to demontrate that F is full, faithfull and generically

surjective.

Proof. • Faithful. First, let us quote a lemma:

Lemma 2.24. ([79, Theorem 3.11]) Let A and B be kernel ideals. Then

E/H(A) ∼= E/H(B) ⇐⇒ [A] = [B],

i.e. A = νB for some invertible ν ∈ O.

Since every left O-ideal is a kernel ideal, it follows from the lemma that F

is faithful.

• Generically surjective. Since we know that both sides have the same cardi-

nality of isomorphism classes, and that the functor F is faithful, it follows at

once that F is generically surjective.

• Full. We know that any supersingular elliptic curve can be written in the form

E/H(A) for some representative A of a left ideal class. In Lemma 2.23, take I :=

HomS(E/H(A), E), E′ := E/H(A). From the proof of the lemma, we see that

E′′ = E/H[Iφ], and thus I ∼= Hom(E/H[I], E), and by faithfulness, letting A

vary yields all left ideal classes. Similarly, we show that J−1 ∼= Hom(E,E/H[J ]).

It follows that

HomO(A, B) ∼= (HomS(E/H(B), E/H(A)) ∼= A−1B.

Let us compute explicitly the left and right orders of the left O-ideal

Ai
∼= HomS(E/H(Ai), E),

for {Ai} a set of representatives of left ideal classes of O.
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We have

Ol(Ai) = {x ∈ Bp,∞| xAi ⊆ Ai}

= {x ∈ Bp,∞| x ◦ φ ∈ Ai, ∀φ ∈ Ai}
∼= {x ∈ Iso(E, E)| x : E −→ E, x homomorphism}

= End(E)

= O

Similarly, we show that Or(Ai) ∼= End(E/H(A)).

In his Ph.D. thesis ([42]), Kohel gives a version of the above correspondence valid

over finite fields.

Let Fq be a finite field of q elements in characteristic p, and let O ∼= End(E0)

be a maximal order in Bp,∞ containing an element of reduced norm q, for E0 a fixed

supersingular elliptic curve defined over Fq.

• Let SFq be the category of supersingular elliptic curves over Fq. The objects of

SFq are defined to be pairs (E, π), where E is a supersingular elliptic curve over

Fq and π is the Frobenius endomorphism relative to Fq. A morphism of objects

(E1, π1) to (E2, π2) is defined to be a homomorphism ψ : E1 −→ E2 such that

ψ ◦ π1 = π2 ◦ ψ.

Definition 2.25. Reduced norm

Let φ : I −→ J be a homomorphism of right modules, I, J projective over O
of rank one.

Since I, J are locally free, for each prime ` there exists x` ∈ I` and y` ∈ J`

such that I` = x`O` and J` = y`O`. The image of x` under φ ⊗ 1Z`
is y`α` for

some α` ∈ O`. We define the reduced norm of φ to be the product :

N(φ) =
∏

`

|Z`/Norm(α`)Z`|.

• Let MO,q be the category of projective right modules of rank one over O. The

objects of MO,q are defined to be pairs (I, φ) such that I is a projective right
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module of rank one over O and φ is an endomorphism of I of reduced norm q.

A morphism of objects (I1, φ1) and (I2, φ2) is defined to be a homomorphism

ψ : I1 −→ I2 such that ψ ◦ φ1 = φ2 ◦ ψ.

• The functor I : SFq −→MO,q is defined as follows :

I :SFq
−→MO,q

(E, π) 7→ (I(E), I(π))

where I(E) = Hom(E0, E) and I(π) = τπ is the homomorphism of Hom(E0, E)

to itself given by left composition by π. For any morphism ψ of objects (E1, π1) to

(E2, π2) there is a well-defined morphism I(ψ) = τψ which is the right O-module

homomorphism :

τψ : Hom(E0, E1) −→ Hom(E0, E2)

given by left composition by ψ, which satisfies the condition that

τψ ◦ τπ1 = τπ1 ◦ τψ.

Theorem 2.26. ([42, Theorem 45, p.67]) The functor I is an equivalence of cate-

gories.

2.4. Brandt matrices. The Brandt matrices give a representation of the Hecke

algebra in a space of theta series coming from a quaternion algebra; in fact, Brandt

matrices and Hecke operators generate isomorphic semi-simple rings with the same

traces. The comparison of the corresponding trace formulae is the main tool to solve

the basis problem, that is finding an arithmetically significant generating set for the

space of all modular forms of weight k with respect to the group Γ0(N) for some N .

We will define Brandt matrices only for N = p a prime number, and apply this to the

weight 2 case.

Let E1, . . . Eh be representatives for the isomorphism classes of supersingular elliptic

curves in characteristic p. Thus End(Ei) ∼= Ri is a maximal order in Bp,∞.

Definition 2.27. Let O = R1 and let I1, . . . , Ih be representatives of classes of

left ideals, so that the right order of Ii is Ri (and End(Ei) ∼= Ri); put ei = |R×i |. The
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product I−1
j Ii is a left ideal of Rj . Consider its norm Norm(I−1

j Ii); there exists a unique

positive rational number c such that (c) = Norm(I−1
j Ii) as fractional ideals. Note that

this number is such that Norm(b)
c , where b ∈ I−1

j Ii, are all integers with no common

factor. We define the (i, j)-entry of the Brandt matrix B(m) to be :

Bij(m) =

∣∣∣∣
{

b ∈ I−1
j Ii| Norm(b)

Norm(I−1
j Ii)

= m

}∣∣∣∣
ej

.

Let Mp be the free abelian group on the set S = {E1, . . . Eh} of supersingular points

of X0(1) in characteristic p, denoted Z[S].

Definition 2.28. Hecke operators. Let m ∈ N such that (m, p) = 1.

The Hecke operator Tm is the linear map Tm : Mp −→ Mp determined uniquely by

E 7→ Tm(E) =
∑

C

E/C,

where C ranges over all subgroups E of order m.

For m =
∏

i pα
i , we have the decomposition :

Tm =
∏

i

Tpα
i
.

Proposition 2.29. For ` relatively prime to the characteristic of k, the following

relation holds :

T`2 + ` = T 2
` .

Proof. Recall that for ` 6= p, E[`] ∼=k (Z/`Z)2. Consider first the modified Hecke

operator

T cyc
`2 :=

∑

C

E/C, |C| = `2, C cyclic .

Under these conditions, C ∼= Z/`2Z, and this fits uniquely into the exact sequence :

0 −→ Z/`Z ×`−→ Z/`2Z −→ Z/`Z −→ 0.
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Thus, abusing a bit the terminology, the support of T cyc
`2 is the same as the support

of (T 2
` )cyc. What about non-cyclic subgroups ? Let

Tnc
`2 :=

∑

C

E/C, |C| = `2, C non cyclic ;

of course, Tnc
`2 = id. For H1 < E of order l, we want to calculate how many H2 < E/H1

there are such that :

E −→ E/H1 −→ (E/H1)/H2
∼= E/E[l].

By cardinality, there is only one such H2, that is : H2 = E[l]/H1. Let us calculate the

number of embeddings : Z/`Z ↪→ Z/`Z⊕ Z/`Z.

This is geometrically the number of points in P1
F`

, that is : (`2 + 1)/(`− 1) = ` + 1.

Thus, there is only one element in the support of Tnc
`2 , and it appears with multiplicity

` + 1; this implies that :

T 2
` − T cyc

`2 = ` + 1.

Trivially,

T cyc
`2 + Tnc

`2 = T`2 ,

hence

T cyc
`2 + id = T`2 .

Gathering all formulae, we obtain :

T 2
` = T`2 + `.

More generally, we have :

Proposition 2.30. For ` 6= p, we have :

T` ◦ T`r = T`r+1 + ` · T`r−1 .

Proposition 2.31. The entry Bij(m) is equal to the number of subgroup schemes

C of order m in Ei such that Ei/C ∼= Ej.
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Proof. We have an isomorphism

I−1
j Ii

∼= Hom(Ei, Ej)

as a left Ri and right Rj-module. The degree of an isogeny φb corresponding to a

non-zero element b ∈ I−1
j Ii is given by deg φb = Norm(b) · Norm(Ii)

Norm(Ij)
. So Bij(m) is the

number of equivalence classes of isogenies φ : Ei −→ Ej of order m, identifying isogenies

differing by an an automorphism ψ ∈ Aut(Ej) = R×j , so that two isogenies with the

same kernel are identified, hence the result.

Corollary 2.32. The curves Ei and Ej are conjugate by an automorphism of Fp

iff i = j or Bij(p) = 1.

Consider the order O of (reduced) discriminant d and rank 2 over Z. Let h(d) be the

order of the class group, and u(d) the order of the finite group O∗/ {±1}. If d > 0, let

h(d) be the class number of binary quadratic forms of discriminant d, and let u(d) = 1

unless d = −3,−4 when u(d) = 3, 2 (respectively). For D > 0, we define, following

Hurwitz and Gross :

H(D) =
∑

df2=−D

h(d)
u(d)

.

We modify Hurwitz’ class number H(D) as follows :

Hp(D) =





0 if p splits in O;
H(D) if p is inert in O;
1
2H(D) if p is ramified in O, but does not divide the conductor of O;
Hp( D

p2 ) if p divides the conductor of O.

Furthermore, we define Hp(0) = p−1
24 .

Remark 2.33. • The trace of B(0) is by definition
∑

i
1
ei

.

• The trace of B(1) is simply the class number of Bp,∞.

Theorem 2.34. (Eichler’s trace formula [29, Proposition 1.9, p.120] )

For all m ≥ 0,

TrB(m) =
∑

s∈Z,s2≤4m

Hp(4m− s2).
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Corollary 2.35. • Put m = 0. Then

TrB(0) =
p− 1
24

,

the mass formula.

• Put m = 1 : we get the class number formula for Bp,∞ or, as we recall, the

number of supersingular elliptic curves in chararacteristic p :

TrB(1) =
p− 1
12

+
1
3
(1− (

−3
p

)) +
1
4
(1− (

−1
p

)).

We go ahead and list further properties of the Brandt matrices .

Proposition 2.36. [29, Proposition 3.2, p.127] Let m ≥ 1.

• The row sums
∑

j Bij(m) are independent of i and equal to

σ(m)p :=
∑

d|m,(d,p)=1

d.

• If (m,m′) = 1, then B(m)B(m′) = B(mm′).

• B(p) is a permutation matrix of order dividing 2 and for k ≥ 1,

B(pk) = B(p)k.

• If q 6= p is prime and k ≥ 2,

B(qk) = B(qk−1)B(q)− qB(qk−2).

• Hecke-Petersson. The matrices B(m) for m ≥ 1 generate a commutative subring

T of Mn(Z), which can be identified with the Hecke ring generated by Hecke

operators.

• Recall that ej = |R×j |. Then

ejBij(m) = eiBji(m).

• The commutative algebra T⊗Q is semi-simple, and isomorphic to the product of

totally real number fields.

Furthermore, we have a divisibility result, due to the fact that the action of Aut(Ei)/ {±1}
on the set of subgroups H of Ei of order ` such that Ei/H ∼= Ej is free, for i 6= j:
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Proposition 2.37. [63, Remark 3.13, p. 450] For a prime ` 6= p the entries of the

i-th row of the Brandt matrix for a prime `, B(`)ij are divisible by ei/2 unless i = j.

We will only consider elliptic modular forms with respect to the group Γ0(N).

Definition 2.38. A modular form f of weight k (k ∈ Z, k ≥ 0) on Γ0(N) is a

complex-valued function on the complex upper-half plane such that :

• f is holomorphic everywhere;

• f is holomorphic at every cusp of Γ0(N), i.e. on Q and at infinity;

•

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

for all
(

a b
c d

)
∈ Γ0(N).

The complex vector space of all modular forms of weight k on Γ0(N) is denoted by

Mk(N). Note that the map f 7→ df identifies the modular forms of weight 2 on Γ0(N)

with meromorphic differentials on X0(N) with at most simple poles at the cusps. Hence

dim(S2(Γ0(N))) = genus(X0(N)).

Example 2.39. We list here the characteristic polynomials of some Hecke operators

Tp acting on S2(Γ0(11)) :

p 2 3 5 7 11 13 17 19 23 29 31
PTp x + 2 x + 1 x− 1 x + 2 x− 1 x− 4 x + 2 x x + 1 x x− 7

We can now state another property of our Brandt matrices, pertaining to their

eigenvalues :

Let us now introduce theta series : let r ∈ 2N, and let A = (aij) be a r-by-r symmetric,

positive definite matrix of integers (aij ∈ Z) whose diagonal elements aii are even:

Q(X) =
1
2

txAx =
1
2

r∑

i,j=1

aijxixj

is a positive definite integral quadratic form, for x ∈ Rn. The least positive integer n

such that nA−1 is an integral matrix with diagonal entries is called the level or Stufe of
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the quadratic form. The quadratic form Q∗(x) = 1
2xtNA−1x is the adjoint form. The

discriminant of Q is (−1)r/2 · det(A).

Definition 2.40. The theta series associated to Q is defined as :

θQ(τ) =
∑

v∈Zr

e2πi·Q(v)τ

=
∞∑

n=0

aQ(n)qn, q = e2πiτ ,

and aQ(n) is the number of integral solutions of Q(x) = n.

See [53, Chapter VI] for details.

Theorem 2.41. The theta series θQ(τ) are modular forms for Γ0(N) of weight r/2

and trivial character.

See [57, Theorem 2.14].

Define the theta series θij by :

θij(τ) =
∑

m≥0

Bij(m)qm, q = e2πiτ .

Corollary 2.42. The θij are modular forms of weight 2 on Γ0(p).

Proof. The entries of the Brandt matrices are theta series by construction, and it

follows from [53, Theorem 20, p. VI-22] that they are modular forms of weight 2. We

only ought to show that the level is p and the character is trivial.

deg : Hom(E1, E2) −→ Z

is a positive definite integral quadratic form in four variables of level p and discriminant

p2 (an alternative description is given in [57, Proposition 2.11];

Let O be a maximal order of level p. Consider the left O-ideal I−1J , for I, J left

O-ideals, and Or(I) = O.

Then the quadratic form :

x 7→ Norm(x)
Norm(I−1J)

, x ∈ I−1J,
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is a positive definite quadratic form of Stufe p and discriminant p2 (note that it coincides

with the degree map :

deg : I−1J ∼= Hom(EJ , EI) −→ Z. )

For completeness, we reproduce the argument in [57, Proposition 2.11]. The qua-

dratic form Q(x) = Norm(x)
Norm(I−1J) is positive definite since the quaternion algebra is def-

inite, hence Bp,∞ ⊗ R is H, and the norm form there is positive definite. Since by

definition Norm(I−1J)|Norm(x), x ∈ I−1J , Q is integral. We first show that the level

is p. Since the level is a positive integer, we need only determine the level locally at

all prime of q < ∞. First consider the case q 6= p. Then (I−1J)q = Oqβ for some

β ∈ B∗
p,∞q

= GL2(Qq). It follows from the definition of the level that :

Oq = α

(
Zq Zq

pZq Zq

)
α−1,

for some α ∈ GL2(Qq).

Let e1 =
(

1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
p 0

)
, e4 =

(
0 0
0 1

)
.

Then αeiα
−1β, i = 1, . . . , 4 gives a Zq-basis for Oqβ. Further Norm(I−1J) =

Norm(β) mod Uq. Then the matrix A is of the form A = U tBU where U ∈ GL2(Zq)

and :

B =
1

Norm(β)
Tr

(
(αEiα

−1
i β)(αejα

−1
i β)

)

=
1

Norm(β)
Tr(ββα−1α−1αeiejα

−1αα)

= Tr(eiej)

=




0 0 0 1
0 0 −p 0
0 −p 0 0
1 0 0 0




,

which has level p in Zq. Since the Stufe of A is equal to the Stufe of U tAU for any matrix

U ∈ GLr(Z), A has level p mod Uq in Zq. For the case q = p, we have (I−1J)p = Opβ

for some β ∈ B×
p,∞p

. Since O has level p, it follows from the definition that Op is
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conjugate to :
{(

α prβ
pr+1βσ ασ

)
, α, β ∈ R

}
.

Thus, using the fact that R = Zp ⊕ Zpu
1
2 , where u ∈ Z, u a quadratic nonresidue

mod p if p 6= 2, and R = Z2 ⊕ Z2( 1+5
1
2

2 ) if p = 2, a similar calculation to what we did

above shows that A has level p mod Up in Zp also. Thus the level must be p. The

discriminant can be calculated in the same local way as the level, and it is p2. It follows

from this discussion that the level of θij is p, since the level of Q is p. The character ε

associated to θij is trivial since the discriminant of Q is p2 and

ε = ε(p2) = (sgn(p2))2(p2/p2) = 1.

More importantly,

Theorem 2.43. The theta series θij of weight 2 on Γ0(p) span the space of modular

forms M2(Γ0(p)).

See [29, Section 5].

Example 2.44. Take p = 2. Let O = Z + Zi + Zj + Zω, ω = 1+i+j+k
2 . The order

O is a right principal ideal ring, thus any right ideal I is isomorphic to O, and the ring

of EndO(I) ∼= O, acting by left multiplication. The norm form is

N(x + iy + jz + ω · w) = x2 + y2 + z2 + (x + y + z + w)w,

and its matrix form is :

N(x, y, z, w) =
1
2
XMXt =

1
2
X




2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2


 Xt,

with X = (x, y, z, w). The theta series

∑

φ∈O
qN(φ) =

∑
x,y,z,w

qN(x,y,z,w)
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generates M2(Γ0(2)) and is given by the following q-expansion :

F1 =
1
24

+ q + q2 + 4q3 + q4 + 6q5 + 4q6 + 8q7 + q8 + 13q9 + · · · ,

The Brandt matrices are 1-by-1 arrays, and the list begins as follows :

B(0) =
1
24

, B(1) = 1, B(2) = 1, B(3) = 4, . . .

Example 2.45. Take p = 11. In this case, the class number is 2. The curve X0(11)

is an elliptic curve with equation:

Y 2 + Y = X3 −X2 − 10X − 20,

and since the genus of X0(p) is equal to the dimension of the space of cusp forms

S2(Γ0(p)), we have a unique normalized cusp form :

F1 = q
∏

m≥1

(1− qm)(1− q11m)2

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 − 2q12 + 4q13 + . . .

and the Eisenstein series :

F2 =
5
12

+
∑

m≥1

σ11(m)qm

=
5
12

+ q + 3q2 + 4q3 + 7q4 + 6q5 + . . . ,

i.e. the dimension of M2(Γ0(11)) is two. There are four theta series f11, f12, f21 and

f22; by Theorem 2.43, they generate the space M2(Γ0(11)).

The precise linear relations between them are as follows :

F1 = f11 + f12 = f21 + f22 = 3f11 − 2f22;

and

F2 = f11 − f21 = f22 − f12 = 3f22 − 2f11.

So we can easily compute all the Brandt matrices B(m) for m arbitrary high, using a

symbolic calculator :

B(0) =
(

1/4 1/6
1/4 1/6

)
;B(1) =

(
1 0
0 1

)
;B(2) =

(
1 2
3 0

)
;
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B(3) =
(

2 2
3 1

)
;B(4) =

(
5 2
3 4

)
;B(5) =

(
4 2
3 3

)
, . . .

Remark 2.46. Let D(p) be the Hecke module spanned by supersingular j-invariants

in characteristic p. The subspace of elements of degree 0 is isomorphic to the space of

cusp forms of weight 2 for Γ0(p).
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CHAPTER 2

Hilbert Modular Surfaces

1. Abelian Schemes

Recall that an abelian scheme A over a scheme S is a group scheme

π : A −→ S,

such that π is smooth and proper, and the geometric fibers are connected. The abelian

scheme X is a commutative group scheme ([49, Corollary 6.5]). If A is projective over

S, there exists a dual abelian scheme At := Pic0
S(A) ⊂ PicS(A), where PicS(A) classifies

invertible sheaves trivialized along the section e. At is a projective abelian scheme ([49,

Corollary 6.8]). Put NS(A) = Pic(A)/Pic0(A).

Theorem 1.1. ([50, Theorem 1, Section 15, Chapter III, p. 143])

Let

0 −−−−→ H −−−−→ A
f−−−−→ B −−−−→ 0

be an exact sequence with A,B are abelian schemes, f an isogeny and H a finite, flat

group scheme. Then the dual sequence is exact

0 −−−−→ H∨ −−−−→ Bt ft

−−−−→ At −−−−→ 0

i.e. Ker(f t) := Ht = H∨, the Cartier dual of H.

Definition 1.2. [49, Definition 6.3] A polarization of A −→ S is a homomorphism

λ : A −→ At such that for each geometric point s of S, λs = λ(Ls) for some ample

invertible sheaf Ls of As.

A polarization is finite and faithfully flat, i.e. it is an isogeny. The polarization is called

principal if it is an isomorphism.

37



38 2. HILBERT MODULAR SURFACES

Example 1.3. [50, Chapter 3, p. 91] Let L be an invertible sheaf on A. It defines

a group homomorphism:

λL : A −→ At,

a 7→ T ∗a (L)⊗ L−1 ⊗ a∗(L)−1 ⊗ e∗L,

where T ∗a is translation-by-a.

Fact 1.4. (1) If f is a polarization, then f = f t (under (At)t ∼= A). Hence, the

kernel of a polarization is self-dual group scheme. (2) The group scheme A[n] is dual to

At[n] and one obtains the Weil pairing:

A[n]×A[n]∨ −→ Gm.

Let A be defined over a field k of characteristic p. If λ is a polarization, we get a

bilinear, antisymmetric, Galois invariant pairing (under Gal(k/k)):

〈 , 〉λ : A[n]×A[n] −→ Gm,

〈x, y〉λ = 〈x, λ(y)〉 .

It is perfect iff (deg λ, n) = 1. One can prove that A[n] is an affine group scheme of

order n2g (where g = dim A). If char(k) = 0, then (char(k), n) = 1, and A[n] is étale,

i.e. A[n]⊗k ksep ∼= (Z/nZ)2g. If char(k) = p and n = p, then |A[p](k)| ≤ pg.

Definition 1.5. An abelian variety A over k is ordinary if

A[p](k) ∼= (Z/pZ)g.

For an abelian variety A defined over a field k of characteristic p, we can define the

a-number as :

a(A) := dimHomk(αp, A).

1.1. Abelian schemes with real multiplication.

Definition 1.6. An abelian scheme A/S with real multiplication (abbreviated RM)

by OL is an abelian scheme of relative dimension g over S together with a given homo-

morphism of the ring of integers of a totally real field L

ι : OL −→ End(A),
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such that tA is a locally (on S) free OL ⊗OS-module of rank 1.

Note that we can define Lie(A/S) as the S-dual of ω(A/S), the sheaf of invariant

1-forms on A (itself defined as e∗(ΩA/S), e : S −→ A being the identity section).

Example 1.7. 1. For any elliptic curve E, consider:

E ⊗Z OL
∼= Eg with a canonical OL-action (multiplication),

the isomorphism being obtained by choosing a Z-basis to OL. We get an abelian

variety over C by taking

(E ⊗Z OL)(C) = E(C)⊗Z OL.

We shall discuss this example explicitly in the case g = 2 in Chapter III.

2. If an abelian scheme A/S has RM by OL, so does the dual abelian scheme At,

under ιt(m) := ι(m)t.

A homomorphism between abelian schemes with real multiplication is a usual ho-

momorphism respecting the OL-action.

Definition 1.8. An isogeny of abelian schemes with real multiplication is a finite

homomorphism.

Remark 1.9. For a separable isogeny f commuting with OL-action Kerf is a finite

OL-module, and we define :

degOL
f = F(Kerf),

the Fitting ideal in OL.

According to Deninger ([16]),

degOL
f = det

L⊗Q`

(f∗|H1(A,`))), for any `,

where H1(A, `) is the first `-adic (resp. crystalline) cohomology group of A with coeffi-

cients in Q` = Q` if ` 6= char(k) (resp. Q` = W (k) ⊗ Q if ` = chark), hence the ideal

degOL
is always principal .
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Theorem 1.10. ([22, Proposition 1.2.4]) If f : A −→ B is an isogeny of abelian

schemes with RM, then f is faithfully flat, and induces an exact sequence:

0 −→ ker f −→ A −→ B −→ 0.

Definition 1.11. Let (A, ι) be an abelian scheme with RM by OL. Let

MA :=
{
λ : A −→ At : λ = λt, λ a OL-linear homomorphism

}
,

(a polarization is OL-linear if it(r) ◦ λ = λ ◦ ι(r), ∀r ∈ OL)

M+
A := {λ ∈MA : λ is a polarization } .

Of course, M+
A ⊆MA.

Remark 1.12. The set M+
A is a positive cone.

Fact 1.13. ( [61, Proposition 1.17]) MA is an OL-module, projective of rank 1 (i.e.

isomorphic to an ideal) i.e.

l ∈ OL, λ ∈MA =⇒ λ ◦ l ∈MA.

Definition 1.14. A projective rank 1 OL-module with a notion of positivity is a

projective rank 1 OL-module M such that for all σi an order <i is chosen on

M⊗OL R (∼= R non canonically),

where the OL-module structure of R is given by the embedding σi.

Definition 1.15. Let B be a semi-simple algebra with center containing Q. An

anti-involution x 7→ x∗ on B is positive definite iff TrQ(xx∗) > 0 ∀x 6= 0.

Definition 1.16. Let λ be a polarization on an abelian scheme A, and put End0(A) =

End(A)⊗Q. The Rosati involution associated to λ is the map

End0(A) −→ End0(A)

f 7→ λ−1f tλ = f∗

Fact 1.17. The Rosati involution is positive definite on End0(A) ([50, Chapter IV,

Section 21]).
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Define a map

NS0(A) ↪→ End0(A),

φλ : L(H,χ) 7→ λ−1φL.

The set φλ(NS0(A)) is composed of the symmetric elements of End0(A) (under the

Rosati involution). In particular, (MA,M+
A) is naturally an OL-module with a notion

of positivity, since M+
A maps to totally positive symmetric elements in End0(A))

2. Abelian varieties over a finite field

Let A be an abelian variety of dimension g defined over a perfect field k of charac-

teristic p.

Consider the multiplication-by-` map [`m] : A −→ A. Put A[`m] := Ker([`m]). It is

a finite group scheme of order (`m)2g.

If ` = p, then A[pm] is not étale, hence cannot be described by the points in A(k).

Let A(p) be the Barsotti-Tate group (or p-divisible group, see [65]) of height 2g associ-

ated to the direct system {A[pm]}. Since k is assumed to be perfect and characteristic p,

we can use covariant Dieudonné module theory which allows a classification of Barsotti-

Tate groups (see [?] for a generalization).

We denote by σ the isomorphism σ : W (k) −→ W (k) on the ring of (infinite) Witt

vectors, induced by the Frobenius map x 7→ xp on k. We denote by W (k)[F, V ] the

(non-commutative) ring with variables F , and V , coefficients in W (k) and relations:

FV = p = V F, Fa = aσF and aV = V aσ, for a ∈ W (k).

Note that W (k)[F, V ] is commutative iff k = Fp.

Theorem 2.1. There is an equivalence of categories between, on one side, exten-

sions of Barsotti-Tate groups G by finite commutative groups with p-power order over k,

and on the other side, left W (k)[F, V ]-modules M of finite type. Under this equivalence,

Barsotti-Tate groups correspond to free modules,

dim M/FM = dim G, dim M/V M = dim(Gt), dim M/pM = height(G),

M(Gt) ∼= M(G)∨ := HomW (k)(M(G),W (k)).
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By Dieudonné theorem, we associate to the p-divisible group A(p) the Dieudonné

module D(A(p)). We denote by D(A(p)) the contravariant Dieudonné module of A(p)

and by D(A(p)) the covariant Dieudonné module.One can check easily that it is the in-

verse limit of the Dieudonné modules corresponding to A[pm]. We can recover A[pm] by

taking the finite group scheme corresponding to the Dieudonné moduleD(A(p))/pmD(A(p)).

Theorem 2.2. (Tate)

If k is a finite field, then

Homk(A,B)⊗ Zp
∼= Hom(D(B(p)),D(A(p))),

where the r.h.s. denote homomorphisms of W (k)[F, V ]-modules.

If ` 6= p, then A`m is étale (i.e. becomes a constant group scheme after base change),

hence it is determined by A`m(k) and the action of the Galois group Gal(k/k) on it.

Taking the inverse limit of all A`m(k), we obtain the Tate module T`(A), which is a free

Z`-module of rank 2g on which Gal(k/k) acts by Z`-linear maps. Again, A`m(k) can be

recovered from the module since it is isomorphic to T`(A)/`mT`(A) as Galois modules.

Theorem 2.3. (Tate) If k is a finite field, then

Hom(A,B)⊗ Z`
∼= HomZ`[Gal(k/k)](T`A, T`B).

Going back to Barsotti-Tate groups of abelian varieties, we have the classification

up to isogeny :

Theorem 2.4. (Dieudonné) The category of Barsotti-Tate groups up to isogeny

over an algebraically closed field of characteristic p is semi-simple. The simple objects

are precisely the p-divisible groups Gm,n for m, n ∈ N, (m,n) = 1 or (m, n) = (1, 0).

The group Gm,n has dimension m and is determined by its W (k)[F, V ]-module Cm,n =

Cp(Gm,n), where

Cm,n = W (k)[F, V ]/(Fm − V n).

We complete the picture by putting G0,1 := Qp/Zp.
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Definition 2.5. We say that Gm,n has slope n
m+n of length m + n, which is the

height of Cm,n. By convention, we give slope 1 and height 1 to G0,1.

Granted the Dieudonné-Manin classification, any p-divisible group G over k of dimension

d and height h can be decomposed, up to isogeny :

G ∼ ⊕Gmi,ni
,

with
∑

mi = d,
∑

(mi + ni) = h.

We associate to each Gmi,ni a segment of slope mi

mi+ni
of length mi + ni. The

Newton polygon is the unique lower convex polygon starting at (0, 0) and ending at

(heigth(G), dim(G)) having increasing slopes and constructed from the building blocks

associated to Gmi,ni
. All such Newton polygons are symmetric. Note that all the

breaking points have integer coordinates.

Example 2.6. g = 1 An elliptic curve is either ordinary or supersingular. Hence

the group G1,0 is isomorphic to the formal group of an ordinary elliptic curve over k,

and G1,1 is isomorphic to the formal group of a supersingular elliptic curve over k.

The Newton polygon corresponding to an ordinary elliptic curve is a broken line : a

segment of slope 0 and a segment of slope 1, and the Newton polygon corresponding to

a supersingular elliptic curve is a line of slope 1/2.

2.1. Serre-Tate theorem. Let k be a field of characteristic p. Let Λ = Wp(k) (the

infinite Witt vectors). Let Ck be the category of local artinian rings Λ-algebras (R, mR)

together with a given isomorphism R/mR
∼= k. Morphisms are local isomorphisms of

rings inducing the identity on k.

Let A be an abelian variety over k.

Theorem 2.7. Serre-Tate

For every ring in Ck, the functor :

A 7→ A(p)

induces an equivalence of categories between the category A of A over R with morphisms

of abelian schemes over R, to the category of deformations of A(p) into p-divisible groups
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over R with the morphisms being morphisms of p-divisible groups whose restriction to

A(p) comes from an endomorphism of A/k.

3. Supersingular and superspecial points

Let k be an algebraically closed field of characteristic p. We present in this section a

number of finiteness results. We begin by Deligne’s theorem, which forbids cancellation

for products of elliptic curves.

Theorem 3.1. (Deligne [70, p. 580]) Let g ≥ 2. Let E1, . . . , Eg, Eg+1, . . . , E2g be

arbitrary supersingular elliptic curves. Then

E1 × · · · × Eg
∼= Eg+1 × · · · × E2g.

An abelian variety is supersingular if it is isogenous to a product of supersingular elliptic

curves. If it is isomorphic to a product of supersingular elliptic curves, we say it is

superspecial. Deligne’s theorem allows us to restrict ourselves to Eg, for E a fixed

supersingular elliptic curve. Furthermore, we may pick a supersingular elliptic curve

defined over Fp such that its (relative) Frobenius F : E −→ E satisfies F 2 + p = 0 (see

[79, Theorem 4.1.5]).

Theorem 3.2. (Oort, [55, Theorem 2]) Let A be defined over an algebraically

closed field, then

A ∼= E1 × · · · × Eg ⇐⇒ a(A) = g.

Note that if this is the case, A can be defined over a finite field (see [54, Lemma

4.5]). It is known ([31]) that superspecial abelian surfaces with RM are in fact defined

over Fp2 .

In all the moduli varieties under consideration in this thesis, the number of super-

special points is finite. The crucial ingredients to show that are Deligne’s theorem and

the following finiteness result about polarizations :

Theorem 3.3. ([51]) Let d be a positive integer. An abelian variety A defined over

an algebraically closed field k has only finitely many possible polarizations of degree d2,

up to isomorphism.



3. SUPERSINGULAR AND SUPERSPECIAL POINTS 45

We will use the following :

Corollary 3.4. [55, Corollary 7] Let A be a supersingular abelian surface over k,

with a(A) = 1; then A is an αp-covering of a product of two elliptic curves, i.e. A/αp

is isomorphic with a product of two elliptic curves.

Corollary 3.5. ([36]) Let E be a supersingular elliptic curve. Any supersingular

abelian surface A is isomorphic to (E × E)/ι(αp), for a suitable immersion ι : αp ↪→
E × E.

Proof. We show that the two last corollaries are indeed equivalent. If a(A) = 2,

we can take Fr : E −→ E(p) and

E × (E/αp) ∼= E × E(p) ∼= A.

Consider a supersingular abelian variety with a-number 1. Suppose Corollary 3.4 is

true. Consider the composition :

A −→ A/αp −→ A/Ker[Fr].

We have

αp ⊆ Ker[Fr] ⊂ A,

H := KerFr/αp ⊂ E1 × E2
∼= A/αp,

and H ∼= αp, since it is local-local of rank p, and

(E1 × E2)/H ∼= A(p).

But

(A(p))(
1
p ) ∼= A,

k being algebraically closed, hence perfect, hence

(E1 × E2/H)1/p ∼= (E1)1/p × (E2)1/p/αp
∼= A.

Hence the result follows.

Now, suppose Corollary 3.5 is true. Then

A = E × E/αp.
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Since H := αp
∼= (E × E)[Fr]/αp, we have

X/H ∼= (E × E)(p) = E(p) × E(p).

Corollary 3.6. ([36, Lemma 1.4]) Let A = E1 × E2 be an abelian surface with

supersingular elliptic curves E1 and E2. Let ι : αp ↪→ A be an immersion such that

B = A/ι(αp) is not isomorphic to a product of two elliptic curves. Then, the subgroup

scheme which is isomorphic to αp is unique in B.

Proof. Clear.

3.1. Siegel modular varieties. LetAg,n the coarse moduli space of triples (A, λ, η),

where A is an abelian variety with a principal polarization λ and full level n-structure

α. For n ≥ 3, it a fine moduli scheme, quasi-projective over Spec(Z), and smooth over

Spec(Z[ 1
n ]) (see [49, Theorem 7.9, p.139]).

We denote by Ag −→ Spec(Z) the coarse moduli space of principally polarized

abelian varieties of dimension g. We have :

Ag(C) ∼= Sp2g(Z)\Hg;

where Hg is the Siegel upper half plane and where the symplectic group acts on Hg by:

(
A B
C D

)
Z = (AZ + B)(CZ + D)−1.

Fix a prime p. Since there are only finitely many possibilities for the level n struc-

ture, and similarly for polarizations (Theorem 3.3), there are only finitely many super-

special points in the supersingular locus.

Proposition 3.7. ([43, Section 4.9,p.26]) The dimension of the supersingular locus

Sg in Ag × Fp is:
[

g2

4

]
, where [·] denotes the integral part.

Let B = Bp,∞ be the definite quaternion algebra ramified at ∞, and x 7→ x its

canonical involution. Let Bn be a left B-module of dimension n. The (non-degenerate)

definite quaternion hermitian form <,> on Bn is unique up to change of basis over B
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([68, Lemma 4.4, p.53]) and may be written in the form
∑n

i=1 xiyi for x, y ∈ Bn. Let

O be a maximal order of B.

Definition 3.8. A Z-module M in Bn is called a left O-lattice if M is a left O-

module and a lattice in Bn.

Two O-lattices M1 and M2 are said to be equivalent globally (resp. locally at a rational

prime q) if M1 · g = M2 (resp. (M1 ⊗ Zq) · gp = M2 ⊗ Zq)) = for g (resp. gq) in the

corresponding group of similitudes of <, > (see [30, Section 2.1, p.139]).

Definition 3.9. A genus of O-lattices is a set consisting of all (global) O-lattices

in Bn which are equivalent locally for every prime q.

The set containing On is called the principal genus. The set of left O-lattices in Bn

which are locally equivalent to On
q except for q = p (there is a unique other possibility)

is called the non-principal genus. We denote by Hg(p, 1) (resp. Hg(1, p)) the number of

global equivalence classes in the corresponding genera.

Proposition 3.10. ([68, Section 4.4, p.53]) The class numbers Hg(p, 1) and Hg(1, p)

are finite.

We covered the case h = H1(p, 1) in the first chapter. The cases n ≥ 2 contrast by

their uniformity and simplicity :

Theorem 3.11. ([20]) The class number of Mn(B) is equal to one for n ≥ 2.

Theorem 3.12. ([30, Theorem 2.10, p.144]) Let g ≥ 2. The number of superspecial

points in Ag is equal to the class number Hg(p, 1) of the principal genus of the quaternion

hermitian space Bn.

Theorem 3.13. ([43, Section 4.9, p.26]) The number of irreducible components of

Sg is given by : Hg(p, 1), if g odd, and by Hg(1, p), if g even. Moreover, for each

irreducible component of Sg,1, the a-number of the generic point is one.
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Example 3.14. A general formula has been given in [?] and [?], since it is a bit

lenghty, we just quote some values of H2(p, 1) and H2(1, p) for g = 2 :

p 2 3 5 7 11 13 17 19 23 29 31 37
H2(p, 1) 1 1 2 2 5 4 8 10 16 24 26 37
H2(1, p) 1 1 1 1 1 2 2 2 2 3 3 5

We now concentrate on the case g = 2. As follows from Theorem 3.7, the super-

singular locus S2 has dimension 1. Moreover, all irreducible components are given by

rational lines. We shall only sketch briefly the construction of those components, since

we will come back to this in chapter 3.

Consider a superspecial abelian variety A ∼= E1 × E2. Let tA be the tangent space

at the origin, and put P1 = P(tA) be the projective line. Set

KP1 = αp × αp × P1; AP1 = A× P1.

Let H be the subgroup scheme H of KP1 defined by the equation Y α − Xβ = 0,

where (X, Y ) ∈ P1. Put X = AP1/H.

We have the exact sequence :

0 −→ H −→ AP1
π−→ X −→ 0,

with canonical projections π1 : AP1 −→ A, π2 : AP1 −→ P1, and the induced map q :

X −→ P1.

The crucial point is the existence of a symmetric invertible sheaf L on A ([47, p. 139-

140]) such that:

K(L) ∼= αp × αp,(3.1)

where K(L) is the kernel of the polarization φL : A −→ At defined by L.

Every subgroup of order p of K(L) is isotropic, hence H is fiber-by-fiber isotropic,

hence an isotropic subgroup of KP1 . By Mumford’s theory, the polarization defined by

L on AP1 descends to a principal polarization on the abelian scheme

q : X −→ P1.
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Consider the subscheme X [n] = Ker[n]X over P1. Since (n, p) = 1, X [n] −→ P1 is

étale, and this allows us to put level n-structure on q : X −→ P1, and we get morphisms

P1 −→ A2,n ⊗ Fp, P1 −→ A2,1 ⊗ Fp,

whereA2,n −→ Spec(Z[ 1
n ]) is the moduli scheme of principally polarized abelian surfaces

with full level n structure. Since q : X −→ P1 is non isotrivial ([47, p.131]), the image

of this morphism is a component of S2,n (resp. S2,1). Conversely, one knows that any

component of S2,n, n ≥ 2, (n, p) = 1 is a Moret-Bailly family, induced by a divisor

satisfying condition 3.1.

We will present formulae for the number of components and the number of super-

special points that occur when we fix the level structure.

For the following, assume p ≥ 3.

The Galois covering :

A2,n −→ A2,

for (n, p) = 1 has Galois group isomorphic to PSp(4,Z/nZ) = Sp(4, Z/nZ)/(±1).

Proposition 3.15. Number of irreducible components in S2,q Let q 6= p, q odd.

The number of irreducible components in S2,q is :

|PSp(4,Z/qZ)|(p2 − 1)
2880

,

where |PSp(4,Z/qZ)| = q4(q4−1)(q2−1)
2 , |PSp(4,Z/2Z)| = 720.

Proposition 3.16. Number of supersingular points in S2,q. Let q 6= p, q odd. The

number of supersingular points in S2,q is :

|S2,q| = |PSp(4,Z/qZ)|(p− 1)(p2 + 1)
2880

, |S2,2| = (p− 1)(p2 + 5p− 4).

We have a mass formula :

Proposition 3.17.

Hg(p,1)∑

i=1

1
Aut(A, λi)

=
(p− 1)(p2 + 1)

2880
,
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where the sum runs over superspecial points on Ag.

3.2. Hilbert modular surfaces. We give a description of the works of [72], [13],

[1].

Let L be a fixed totally real field of degree 2 = [L : Q]. Let p > 2 be an inert prime

in L, and let (n, p) = 1. Denote by DL the different ideal of L over Q, and let dL denote

the discriminant of L.

Let Mn be the moduli space parameterizing abelian surfaces (A, ι, (MA, M+
A), α) in

characteristic p, where (MA, M+
A) is a polarization module, together with a symplectic

level n ≥ 3 structure α and an embedding of rings ι : OL −→ End(A).

A few explanations are in order. Let Cl(L) (resp. (Cl(L)+)) denote the (resp. narrow)

class group of L, and let hL (resp. h+
L) denote its order. The group Cl(L)+ consists of

classes of projective, rank one OL-module M, endowed with a notion of positivity. Let

M+ be the positive cone.

Definition 3.18. Polarization module. Let (A, ι) be an abelian variety with RM

by OL. Let MA denote the module of OL-linear, symmetric homomorphisms from A to

At, and let M+
A denote its natural positive cone, a submodule consisting of polarizations.

The positive cone M+
A is not empty, and λ ∈ M+

A yields an embedding:

MA ↪→ CentEnd(A)⊗Q(L)λ.

This embedding identifies MA with a fractional ideal A of L, and identifies M+
A with

A+. By a symplectic level n structure, we mean an isomorphism : (OL/nOL)2 ∼= A[n]

with the standard symplectic pairing on the left hand side corresponding to the Weil

pairing on A[n] coming from an OL-linear polarization of degree prime to p.

TheMn are fine moduli schemes over Spec(Z[ζn, 1
n ]) . They are regular 2-dimensional

varieties. The coarse moduli space for abelian surfaces with RM is a scheme M over

Spec(Z); it can be decomposed in a disjoint union of components :

M = tCl(L)+M(A).

Over C, we have M(A) ∼= PGL2(OL ⊕ A)+\Hg.
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Definition 3.19. 1. The group GL(A⊕B)+ consists of matrices :

{(
a b
c d

)
: a, d ∈ OL, b ∈ A−1B, c ∈ AB−1, ad− bc ∈ (O×L )+

}
.

2. The group SL(A ⊕ B) is the subgroup of GL(A ⊕ B) composed of matrices of

determinant one.

Theorem 3.20. 1. The isomorphism classes of (A, ι)/C) such that there exists

an isomorphism :

(M+
A,M+

A) ∼−→ (C,C+), C = (DLAB)−1,

are parameterized by GL(A⊕B)+\Hg.

2. The isomorphism classes of (A, ι)/C together with a given isomorphism :

m : (MA,M+
A) ∼−→ (C,C+), C = (DLAB)−1,

are parameterized by

SL(A⊕B)\Hg.

Consider a triple (A, ι, (MA,M+
A) ∼= (A,A+)). We can change the isomorphism

giving the polarization module by an automorphism of the module with a notion of

positivity : AutOL
(A, A+) = O×+

L . It is also true that for every µ ∈ (O×+
L )2, (A, ι, λ :

(MA,M+
A) ∼= (A,A+)) ∼= (A, ι, λ · µ). Summing up, the map :

(A, ι, λ) −→ (A, ι, (MA,M+
A))

has degree

[(O×L )+ : (O×L )2] = [PGL(A⊕B)+ : PSL(A⊕B)].

We define S = Sn to be the supersingular locus on Mn ⊗ Fp. We can embed the ring

of integers OL only in finitely many ways in the endomorphism algebra End(A) of a

superspecial abelian variety, up to conjugation by End(A)×, hence there are only finitely

many superspecial points.

Definition 3.21. ([72]) A Γ0(p)-level structure on ML(A) is a pair of abelian

schemes (A, ι, (MA, M+
A)), (A′, ι′, (M′

A,M′+
A)) on ML(A) , and an S-isogeny

f : (A, ι, (MA, M+
A)) −→ (A′, ι′, (M′

A,M′+
A))
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such that the following diagram commutes :

(M′
A,M+

A′)
m′

//

f∗

²²

(A, A+)

×p

²²
(MA, M+

A) m // (A, A+)

This definition can be equivalently put in (familiar) terms of the kernel group

scheme. We have three possibilities for such a subgroup scheme (see [72]) :

• µg
p;

• (Z/pZ)g;

• A unipotent group of order pg.

We explain the equivalence : For an isogeny f , Ker(f) is an OL-invariant, isotropic

subgroup of A[p] of order pg . In fact, it is totally isotropic : for we may find an OL-

linear polarization λ of degree prime to p on A (see [61]). By assumption p ·λ descends

to A/Ker(f). Hence Ker(f) is an isotropic subgroup with respect to the Mumford

pairing induced by p ·λ on Ker(p ·λ). Since λ is of degree prime to p, it induces a perfect

pairing on A[p], and Ker(f) is thus isotropic with respect to everyOL-linear polarization.

Conversely, let H be an OL-invariant isotropic subgroup of order pg of A[p] with respect

to every OL-linear polarization. There exists a unique OL-structure ι′ on A′ = A/H

such that π : (A, ι) −→ (A′, ι′) is OL-equivariant. Suppose that f∗(MA′) = pMA.

Then the isomorphism (MA′ ,M+
A′) −→ (A,A+) makes f into a Γ0(p)-level structure.

We denote by Mn
0 (p) the corresponding moduli space.

Definition 3.22. (Deligne-Pappas) Let S be a scheme. An abelian scheme with

real multiplication by OL (with RM) is an abelian scheme A over S together with an

embedding of rings

ι : OL ↪→ EndS(A),

such that the following condition holds :

A⊗OL
MA

∼= A∨, (DP),

where MA = {λ : A −→ A∨ : λ ◦ ι(r) = ι(r)∨ ◦ λ,∀r ∈ OL}.
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Recall that the module MA is a projective OL-module of rank one endowed with a

natural notion of positivity determined by the cone of polarizations in MA.

t∗A/k is a free OL ⊗Z OS-module of rank 1, (R)

and MA is a projective OL-module of rank 1,

One can show that under the assumption “p is unramified”, the conditions (DP) and

(R) are equivalent.

3.3. Components of the supersingular locus. Recall that we assume p is inert.

In this case, the non-ordinary locus V is the supersingular locus S. The components of

S are projective lines, coming from Moret-Bailly families, that is, we consider an abelian

surface X with real multiplication such that Rapoport’s condition (R) fails; using the

embedded group αp⊕αp ↪→ X as a pivot to map a family of αp parameterized by P1, we

construct a non (iso)-trivial abelian scheme X over P1 such that Rapoport’s condition

holds.

The method used to count the number of components is based on [36]. The basic

idea is the similar, with the extra twist of taking account of the endomorphism structure.

The number of components is equal to the number of isomorphism classes of abelian

schemes over P1, with relative polarization, endomorphism and level structure.

Theorem 3.23. ([1]) Let SdL,n be the supersingular locus on the component corre-

sponding to the polarization module D−1
L . The number of components of SdL,n, n ≥ 3

is

[MdL,n : MdL,1]ζL(−1).

We have a corresponding mass formula (see [1, p.493]).

3.4. Local structure. We describe briefly the type stratification as presented in

[26]. Let A be a point on a Hilbert modular surface Mn. Let F be a finite field obtained

from Fp2 to which we adjoin a primitive n-root of unity (n is the level of the symplectic

structure). We denote the embeddings of OL/p into F by {σ1, σ2}, ordered such that
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σ ◦ σi = σi+1. The kernel of Verschiebung :

ker(V : H0(Ω1
X) −→ H0(Ω1

X)),

is a k-vector space and an OL-module on which OL acts by a set of characters t, each

with multiplicity one.

Definition 3.24. The set of characters t(A) is the type of A.

The stratification follows from the type : for every t ⊆ {σ1, σ2} of characters, there

exists a closed subscheme Wt of Mn, which is universal with respect to the property:

t ⊆ t(A). We quote, for p inert :

Theorem 3.25. ([1, Theorem 6.1]) (See [26] for the case g > 2) The set of singular

points of S is exactly the set of superspecial points. Every singularity is ordinary with

two branches and corresponds to the intersection of different components. The singular

points are precisely the superspecial points. To every component one can assign its type

in {1, 2} such that the intersection graph of S is bipartite. Each component has exactly

p2 + 1 intersection points with other components.

Corollary 3.26. ([1, Corollary 6.4]) Let n ≥ 3, p inert in L. The number of

superspecial points of SdL,n is

p2 + 1
2

[MdL,n : MdL
]ζL(−1).

4. Geometric view on Hecke operators and Brandt matrices

We shall introduce the Hecke operators from a geometric point of view, using Hecke

correspondences.

Let A1, . . . , Ah+ be ideal representatives in the narrow class group. Let M be the

moduli space of triples : A := (A, ι, (MA,M+
A)), where (MA,M+

A) ∼= (Ai,A
+
i ) for some

i.

We decompose M according to the narrow ideal classes :

M = ti=1,...,h+Mi.
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Remark 4.1. (See [75]) Over C, these components correspond to the groups GL2(OL⊕
Ai)+ :

M(C) ∼= ti=1,...,nGL2(OL ⊕ Ai)+\Hg.

Let Γ be a finite OL-module of cardinality not divisible by p. Consider the coarse

moduli spaceM(Γ) of pairs (A,H), where H is a OL-invariant, constant, finite subgroup

scheme of A isomorphic to Γ as an OL-module.

Consider the diagram :

M(Γ)
p2

""FFFFFFFF
p1

||xxxxxxxx

M M

(A,H)
p2

&&LLLLLLLLLL
p1

{{xxxxxxxx

(A) (A/H, π∗ι)

(4.1)

where π : A −→ A/H is the natural projection, and the projections p1, p2 are finite flat.

The quotient of an abelian scheme with real multiplication by a finite OL-subgroup

is again an abelian scheme with real multiplication : First, it is an abelian scheme with

OL-action by standard facts (see [50, Section 12, Quotient by finite group schemes]).

Second, the tangent space t∗ is locally free, because any isogeny of degree prime to p

induces an isomorphism of tangent spaces.

Note that a Γ0(N)-level structure for an abelian surface (A, ι) with real multiplica-

tion by OL, is a point in M(Γ), for Γ = OL/(N).

The Hecke correspondence associated to Γ is p2∗ ◦ p∗1, that is an element of M (on

the left) is sent to the images in M (on the right) of its preimages in M(Γ).

We now restrict to L real quadratic.

Recall that

A[m] ∼=k (OL/mOL)2, for any m ∈ N.

We define Hecke operators as devices reflecting the combinatorics of embeddings of finite

OL-modules into an abelian variety with RM.

Let

M = ⊕iOL/Gi

be a finite OL-module that can be embedded into (OL/mOL)2 for some m.
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We can rewrite M in the form :

M ∼= ⊕iOL/pαi
i ,

for suitable prime ideal pi.

By the Chinese remainder theorem, we may write M using two summands only :

M ∼= OL/A⊕OL/B,

with valpi
(A) ≥ valpi

(B).

To eliminate redundancy, we will assume henceforth that all finite OL-modules

under consideration are given in this canonical form.

Definition 4.2. (Hecke operators TA,B) For ideals A, B ⊆ OL, relatively prime to

p, we define the Hecke operator TA,B by the formula :

TA,B(A) :=
∑

H

(A/H), H ∼= OL/A⊕OL/B,

that is, TA,B is the operator defined by diagram (4.1) for Γ = OL/A⊕OL/B.

We put T1 = 1.

By abuse of notation, we will denote TA,1 simply by TA.

We will call a Hecke operator TA,B primitive if OL/A ⊕ OL/B ↪→ A[`], where ` is

a prime.

Proposition 4.3. The Hecke algebra is generated by primitive OL-modules:

T = Z[TA,B] = Z[TA,B : TA,B primitive]

Remark 4.4. We can be more precise and give a minimal set of generators, com-

prised of the following :

• For l inert, Tl,1.

• For p · p = l split, Tp,1, Tp,p, Tp,1, Tp,p.

• For p2 = l ramified, Tp,1, Tp,p.

Before proving Proposition 4.3, we give some preliminary lemmas.
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Lemma 4.5. We have the following identities :

Tp,p ◦ Tpn,pm = Tpn+1,pm+1 = Tpn,pm ◦ Tp,p,

and

Tm,m = id for any m such that (m, p) = 1.

Proof. The first identity follows from the unicity of the presentation in the fol-

lowing (non-split) exact sequence :

0 −→ OL/pn ⊕OL/pm −→ OL/pn+1 ⊕OL/pm+1 −→ OL/p⊕OL/p −→ 0,

or

0 −→ OL/p⊕OL/p −→ OL/pn+1 ⊕OL/pm+1 −→ OL/pn ⊕OL/pm −→ 0,

respectively.

For the second, we need to prove that A and A/A[m] are isomorphic as abelian

schemes with RM. Let (m, p) = 1. The map [m] : A −→ A, is an étale, surjective mor-

phism, hence A ∼= A/A[m] as abelian schemes. The natural projection π : A −→ A/A[m]

induces a map between abelian schemes with RM :

(A, ι) π−→ (A/A[m], j), j = π∗i,

such that for r ∈ OL,

j(r)(y) = πι(r)π−1(y) = r(y) + A[m].

The isomorphism is given as follows :

φ : (A/A[m], π∗i) ∼= (A, ι), φ(y + A[m]) = m · y.

The OL-actions are clearly conjugate, since for x ∈ A,

ι(r)(x) = φj(r)φ−1(x)∀r ∈ OL.

As we mentioned earlier, since (m, p) = 1, there is an induced isomorphism :

t∗A ∼= t∗A/A[m],

and we are done.
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Lemma 4.6. Let A =
∏

pαi
i , B =

∏
pβi

i . Then

TA,B =
∏

i

T
p

αi
i ,p

βi
i

.

Proof. Put A = A′pα1
1 , B = B′pβ1

1 . Again, this sits uniquely in an exact sequence:

0 −→ OL/A′ ⊕OL/B′ −→ OL/A⊕OL/B −→ OL/pα1
1 ⊕OL/pβ1

1 −→ 0,

hence

T
p

α1
1 ,p

β1
1
◦ TA′,B′ = TA,B,

and we get the lemma by induction.

Lemma 4.7. For a prime p, we have :

Tp ◦ Tpα = Tpα+1 + (Norm(p) + 1) · Tp,p ◦ Tpα−1 ,

Proof. The two summands on the right correspond to the decomposition of Tp◦Tpα

in “cyclic” and non-cyclic parts. By unicity of the exact sequence :

0 −→ OL/pα −→ OL/pα+1 −→ OL/p −→ 0,

the multiplicity of Tpα+1 is one. Consider Tp ◦ Tpα − Tpα+1 ; there is only one non-cyclic

possibility is Tpα,p, and it appears with a certain multiplicity we thus calculate . Since

Tpα,p = Tp,p ◦ Tpα−1 , this amounts to calculate the number of embeddings:

OL/p ↪→ OL/p⊕OL/p.

This is the number of points in P1
OL/p, that is :

Norm(p)2 + 1
Norm(p)− 1

= Norm(p) + 1.

We now give the proof of Proposition 4.3 :

Proof. We see immediately from Lemmas 4.6 and 4.7 that Tp and Tp,p generate

the primitive Hecke operators.

We will simply show that any Hecke operator TA,B can be written as a polynomial

in those terms :
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According to Lemma 4.7, we may reduce to Hecke operators of the form Tpα,pβ .

Using Lemma 4.6, we get a product of the form :

Tpα,pβ = Tα−β
p,p Tpα−β .

An easy induction shows that Tpα−β is generated by primitive elements, and we are

done.

Corollary 4.8. For a prime p, we have :

Tpα1 ,pβ1 ◦ Tpα2 ,pβ2 =
inf(α1−β1,α2−β2)∑

i=0

(Norm(p) + 1)i · T i+β1+β2
p,p Tpα1+α2−β1−β2−2i .

Proof. The composition is :

Tpα1 ,pβ1 ◦ Tpα2 ,pβ2 = T β1
p,p ◦ T β2

p,p ◦ Tpα1−β1 ◦ Tpα2−β2

= T β1+β2
p,p ◦ Tpα1−β1 ◦ Tpα2−β2 ,

and since

Tpα ◦ Tpβ = Tpα+β + (Norm(p) + 1) · Tp,p(Tpα−1 ◦ Tpβ−1), α, β ∈ N,

(same proof as Lemma 4.7), an easy induction yields

Tpα1−β1 ◦ Tpα2−β2 =
inf(α1−β1,α2−β2)∑

i=0

(Norm(p) + 1)i · T i
p,pTpα1+α2−β1−β2−2i ,

and thus :

Tpα1 ,pβ1 ◦ Tpα2 ,pβ2 =
inf(α1−β1,α2−β2)∑

i=0

(Norm(p) + 1)i · T i+β1+β2
p,p Tpα1+α2−β1−β2−2i .

Corollary 4.9. For Hecke operators TA,B, TA′,B′ , we have :

TA,B ◦ TA′,B′ =

∑

C|gcd(AB−1,A′B′−1)

∏

p|C

((
(Norm(p) + 1) · Tp,p

)valp(C)

· T valp(BB′)
p,p

)
·TAA′B−1B′−1

C2
,

(4.2)

where C is allowed to be the non-proper ideal OL = (1).
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Proof. We decompose the left hand side with respect to the prime decomposition

of A and A′ (Lemma 4.6) and we take the product over the primes as in Corollary 4.8.

Rearranging with respect to the term TAA′B−1B′−1

C2
yields the above formula.

Consider the recursion formula :

fn+1(x) = x · fn(x)− αfn−1(x),

with f0 = 1, f1 = x.

Lemma 4.10. (Generating series) The fn are given as coefficients of the following

generating series :

∞∑
n=0

fntn =
1

αt2 − t · x + 1
.

Proof. This is straightforward generatingfunctionology ([80]); the recurrence for-

mula :

α · fn−1(x)− fn(x) · x + 1 · fn+1(x),

yields the denominator :

αt2 − tx + 1,

and the numerator of the form a+bt is determined by the two first terms (the recurrence

being of order three). We thus easily get a = 1, b = 0, and we are done.

It is a corollary of the proof of Proposition 4.3 that the following holds :

∞∑
n=0

Tpntn =
1

(Norm(p) + 1)t2 − t · Tp + 1
.

We note that the degree map on Hecke operators deg : T −→ Z is a homomorphism. It

follows that the degrees satisfy the same relations than the Hecke operators. The first

few terms given by the generating series are as follow :

Tp = Tp

Tp2 = T 2
p − (Norm(p) + 1)Tp,p

Tp3 = Tp ◦ Tp2 − (Norm(p) + 1)Tp,p ◦ Tp
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Note that the degree of Tp is Norm(p) + 1, and the degree of Tp,p is 1. The first few

terms are thus :

deg(Tp) = Norm(p) + 1

deg(Tp2) = (Norm(p))(Norm(p) + 1)

deg(Tp3) = (Norm(p)− 1)(Norm(p) + 1)2

Proposition 4.11. The operator TA,B preserve the type. Thus, it maps the super-

singular locus to itself, and likewise the superspecial locus to itself.

Proof. The main idea is as follows : by construction, the ideals A, B are prime-to-

p, hence the Hecke operators do not modify the p-torsion, that is, a pair A1, A2 joined

by a Hecke correspondence has isomorphic p-torsion : A1[p] ∼= A2[p] as polarized group

schemes with RM, and by properties of the type, this is equivalent to t(A1) = t(A2).

Observe that the above loci can be described by the a-number, which is a p-torsion

invariant, of course. More precisely, the locus where the a-number is greater than 0

is the supersingular locus, and the locus where the a-number is greater than 1 is the

superspecial locus.

The reader will have noticed by now that we didn’t construct Hecke operators in

complete generality, but with a restriction with respect to p. The reason is that the

Hecke correspondence Tp is quasi-finite iff p is split. See [1].

4.1. Geometric Brandt Matrices. We define in this section analogues of the

classical Brandt (or Brandt-Eichler) matrices. The entries of the Brandt matrices give

information on supersingular elliptic curves : the (i, j)-entry is equal to the number of

subgroup schemes C of order m in Ei such that the quotient is Ej ; two elliptic curves

Ei and Ej are conjugate by an automorphism of k iff i = j or Bij(p) = 1. We will try to

sketch a similar picture, replacing supersingular elliptic curves by superspecial abelian

surfaces with RM.

Let A,B be relatively prime to p. We define the geometric Brandt matrices with

respect to the Hecke operators TA,B.
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Definition 4.12. (Brandt matrix)

Let Ai, Aj ∈ S. The entry Bij(TA,B) is equal to the number of OL-invariant

subgroup schemes C isomorphic to OL/A ⊕ OL/B (that is, the degree of TA,B) in Ai

such that Ai/C ∼= Aj . The Brandt matrix associated to TA,B is thus a |S|-by-|S| matrix:

B(TA,B)ij 1 ≤ i, j ≤ |S|.

Since we do not have a nice Hecke correspondance for A,B not prime to p, we

need to give a ad hoc construction. We define B(p) using Frobenius : Fr : (A, ι) 7→
(A(p), ι(p)) = (A, ι(p)).

Definition 4.13. Put Bij(p) = 1 if (A, ιj) and (A, ι
(p)
i ) are isomorphic, i.e. iff ι(p)

and ι are conjugate, and 0 otherwise.

The trace of B(p) is then equal to the number of superspecial abelian surfaces

which lie in the prime field. Recall that every superspecial abelian surface with RM has

a model over Fp2 (p.42). The matrix B(p) is therefore a permutation matrix of order

2. To complete the picture, we put: B(pk) = B(p)k. In line with the elliptic case, we

suggest:

Conjecture 4.14. The type number of Eichlers orders of the quaternion algebra

Bp,L is equal to:

t = Tr
(B(1) + B(p)

2

)
.

Properties of the Brandt matrices:

1. • For A =
∏

pα, B =
∏

pβ , we have :

Bij(TA,B) =
∏

Bij(Tpα,pβ ).

• Moreover,

Bij(Tp,p) ·Bij(Tpn,pm) = Bij(Tpn+1,pm+1),

and

Bij(Tm,m) = Id.
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Proof. This is the content of Lemmas 4.6 and 4.7.

2. The row sums of Bij(TA,B) are independent of i and equal to

∑

j

Bij(TA,B) =
∏
p

(deg Tpα−β ),

for TA,B =
∏

Tpα,pβ .

Moreover,
∑

j Bij(TA,B) depends only on AB−1.

Proof. We noticed earlier that deg Tp,p = 1.

3. If p 6= q is a prime in OL and k ≥ 2, then

B(qα) = B(q)B(qα−1)− (Norm(q) + 1)B(qα−2).

More generally,

B(Tpα1 ,pβ1 ) ·B(Tpα2 ,pβ2 ) =

inf(α1−β1,α2−β2)∑

i=0

(Norm(p) + 1)i ·B(Tp,p)i+β1+β2B(Tpα1+α2−β1−β2−2i),

(4.3)

and even :

B(TA,B) ·B(TA′,B′) =

∑

C|gcd(AB−1,A′B′−1)

∏

p|C

(
(Norm(p) + 1)valp(C) ·B(Tp,p)valp(BB′)

)
·B(TAA′B−1B′−1

C2
),

(4.4)

where C is allowed to be the non-proper ideal OL = (1).

Proof. The same relations holds for the corresponding Hecke operators.

4. The matrices B(m) for m ≥ 1 generate a commutative subring T of a matrix

algebra.

5. The abelian surfaces Ai and Aj are conjugate by an automorphism of k iff i = j

or Bij(p) = 1.

Proof. This is immediate from the definition of the Brandt matrix B(p).
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6. Trace formula for Brandt matrices. Elliptic case :

Proposition 4.15. (See [58, Proposition 4.9]) The trace of a Brandt matrix

B(m) associated to an order of level N = pM or p2M is given by :

TrB(m) =
∑

s

a(s)
∑

f

b(s, f)
∏

`|N
c(s, f, `) + δ(

√
m)Mass(O),

where

δ(
√

m) =
{

1 if m is a perfect square
0 otherwise ,

and

Mass(O) =
piM

12
(1− 1

pi
)
∏

`|M
(1 +

1
`
),

for O of level pi ·M .

We explain the meaning of the other terms :

Let s run over all integers such that s2 − 4m is negative. Hence with some

positive integer t and squarefree integer r, s2−4m has one of the following forms:

s2 − 4m =
{

t2r 0 > r ≡ 1 mod 4
t24r 0 > r ≡ 2, 3 mod 4

Put a(s) = 1
2 . For each fixed s let f run over all positive divisors of t.

b(s, f) = h((s2 − 4m)/f2)ω((s2 − 4m)/f2),

where h(d) (resp. (ω(d)) denotes the class number of locally principal ideals

(resp. half the cardinality of the unit group) of the order Od of Q(
√

(d)) of

discriminant d. Finally, c(s, f, `) is the number of inequivalent mod U(Ol)

optimal embeddings of Od
l into Ol where d = (s2 − 4m)/f2. The split order Ol

is congruent to
(

Z` Z`

`νZ` Z`

)
, where ν = ord`(M).

One if left to develop a trace formula for geometric Brandt matrices.

Remark 4.16. An explicit formula for the trace formula for Hecke operators follows

from the work of Shimizu (and Selberg). See [45] and [73].
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To develop a trace formula for generalized Brandt matrices, we need to develop a

generalized trace formula whose residual term is the class number formula of an order

of certain level (related to the congruence subgroup under consideration (Γ0(pkN)),

the main term of the trace formulae coming from the optimal embedding theory. To

pursue this avenue further, one needs a good knowledge of the Jacquet-Langlands cor-

respondence, which for our purposes, links class numbers to spaces of cusps forms. In

particular, it follows from Eichler-Shimizu-Jacquet-Langlands that

H(p) = 1 + dim S0
2(p),

and one can ask a similar question for higher dimensional Hilbert modular varieties.

The explicit approach (using theta series) does not transpose directly, since the degree

map stemming from geometric Brandt matrices is a quartic form, not quadratic.
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CHAPTER 3

Structure and numerology of the supersingular locus

1. On certain quaternion algebras over Q(
√

D)

1.1. A case study.

Lemma 1.1. [6, Lemma 6, p. 464] Let L be a totally real field. Let (A, ι) be an

abelian variety of dimension g = [F : Q] with multiplication by OL over an algebraically

closed field k. Then A is isogenous to Bn for some simple abelian variety B over k.

Let D = Endk(B) ⊗Z Q, so Endk(A) ⊗Z Q ∼= Mn(D). Consider the case when D is a

totally definite quaternion division algebra over Q, dim(B) = 1 and k has characteristic

p. Then the algebra Bp,∞ is the quaternion division algebra over Q ramified at p and ∞,

and B is a supersingular elliptic curve over k. The centralizer of L in Endk(A) ⊗Z Q,

CentEndk⊗Q(L), is the quaternion division algebra over L which is ramified at all infinite

places of L and all places v of L above p such that [Fv : Qp] is odd, and is unramified

at all other finite places. We denote it by Bp,L.

Put L = Q(
√

D). Decompose its ring of integers :

OL = Z⊕ Z · δ,

with δ = 1+
√

D
2 if D ≡ 1 mod 4, δ =

√
D if D ≡ 2, 3 mod 4. Let E be a supersingular

elliptic curve defined over Fp. Its endomorphism ring End(E) is a maximal order in

Bp,∞. Consider the abelian surface E ⊗Z OL, defined canonically by the rule :

(E ⊗Z OL)(R) = E(R)⊗Z OL, R ∈ Fp − algebra.

The isomorphism

E ⊗Z OL
∼= E × E

67
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allows to write an explicit OL-action :

1 7→
(

1 0
0 1

)
,

δ 7→
(

0 −Norm(δ)
1 Trδ

)
.

In short, we have :

Proposition 1.2. 1. E ⊗Z OL is a superspecial abelian surface.

2.

Endk(E ⊗Z OL)⊗Q ∼= M2(Bp,∞).

3.

CentEnd(E⊗ZOL)⊗Q(L) = Bp,L
∼= Bp,∞ ⊗ L.

Proof. Only the last item requires proof : The isomorphism follows from Lemma

1.1. The equality follows from the classification of quaternion algebras over global fields

(Theorem 2.3, Chapter II).

We compute the order :

CentEnd(E⊗ZOL)(OL) ⊂ Bp,L.

Proposition 1.3.

CentEnd(E⊗ZOL)(OL) ∼= CentM2(End(E))(OL) ∼= OL ⊗ End(E).

Proof. Let
(

α1 β1

δ1 λ1

)
∈ M2(End(E)) and

(
a −bNorm(δ)
b a + bTrδ

)
∈ OL ⊂ M2(End(E)).

Let
(

α1 β1

δ1 λ1

)
∈ CentM2(End(E))(OL), i.e.

(
α1 β1

δ1 λ1

) (
a −bNorm(δ)
b a + bTrδ

)
=

(
a −bNorm(δ)
b a + bTrδ

)(
α1 β1

δ1 λ1

)
.

Equating both sides, we obtain the following equations :

aα1 + bβ1 = aα1 − bδ1Norm(δ),

−α1bNorm(δ) + β1(a + bTrδ) = aβ1 − bNorm(δ)λ1,
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aδ1 + bλ1 = bα1 + δ1(a + bTrδ),

−bδ1Norm(δ) + λ(a + bTrδ) = bβ1 + λ1(a + bTrδ),

and these reduce to

β1 = −δ1Norm(δ),

λ1 = α1 + δ1Trδ,

hence
(

α1 β1

δ1 λ1

)
=

(
α1 −δ1Norm(δ)
δ1 α1 + δ1Trδ

)
,

i.e.
(

α1 β1

δ1 λ1

)
= α1

(
1 0
0 1

)
+ δ1

(
0 Norm(δ)
1 Trδ

)
∈ OL ⊗ End(E),

and the converse is clear.

Thus, we need to describe OL ⊗ End(E). It will depend on the ramification of p in

OL. First, we describe the quaternion algebra in which they embedd.

Lemma 1.4. ([76, Théorème 1.3]) Let K be a (non-archimedean) local field. Let H

be the unique quaternion division algebra over k, up to isomorphism. A finite extension

F/K splits H iff its degree [F : K] is even.

Proposition 1.5. The quaternion algebra Bp,L is :

• the totally definite quaternion algebra B∞1,∞2 ramified at both places at infinity

if p is inert or ramified. Its discriminant is 1.

• the totally definite quaternion algebra BS, S = {p, p,∞1,∞2} ramified at both

places at infinity and at both primes over p if p = p · p. Its discriminant is

p · p = p.

Proof. Let S = {p,∞}, and consider the ramification S′ of this set S in OL.

Clearly, Ram(Bp,L) ⊂ S′. By Lemma 1.1, Bp,L is totally definite.

1. If p is inert or ramified, there is only one prime in OL over p. Hence, by parity,

Bp,L is split over p.
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2. If p is split, p = p · p. But for p 6= 2, (d, p) = 1

(d

p

)
= 1 ⇐⇒ p is split in Q(

√
d) ⇐⇒ [Qq(

√
d) : Qp] is odd , q over p

([52, Proposition 8.5]) hence p and p are in Ram(Bp,L. Similarly, if p = 2,

[Qq(
√

d : Q2] is odd ⇐⇒ 2 is split in Q(
√

d), q over 2.

Proposition 1.6. 1. The discriminant of O = OL ⊗ End(E) is p.

2. • O is an Eichler order if p is inert.

• O is maximal if p is split.

• O is none of the above if p is ramified..

Proof. 1. The discriminant of O = OL ⊗ End(E) is p :

disc(OL ⊗Z End(E)) = disc(End(E))(OL)

= pOL

since TrBp,∞(x) = TrBp,L
(x), x ∈ OL ⊗ End(E).

2. • p inert.

Using Proposition 2.18, Chapter I, Proposition 2.14, Chapter I and the fact

that the maximal orders form a tree, it follows that any order in B∞1,∞2

of discriminant p is an Eichler order.

• p split. The discriminant of O is equal to the discriminant of the quaternion

algebra, hence O is maximal (Proposition 2.9, Chapter I).

• p ramified.

Lacking a more precise description, we may only say that local consider-

ations indicates this order is not Eichler (and fortiori, not maximal, and

this is clear from the discriminant).

1.2. Class number formula for Eichler orders.
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Proposition 1.7. [77, Théorème 3.1]

Let O be an Eichler order of level p.

Then the class number of O over Q(
√

d) is given by the formula :

H(d) = h(d)
ζL(−1)

2
(p2 + 1) + a(d)

h(−d)
8

+ b(d)
h(−3d)

12
+ c(d)

h(n)h(n′)
4

,

where a(d), b(d), c(d) are integers. If c(d) 6= 0, the norm of the fundamental unit ε of

Q(
√

d) is one and n = 2− Tr(ε) (modulo squares) and nn′ = disc(Q(
√

d)).

Proposition 1.8. ([78, p.209]) Mass formula Let H/L be the totally definite quater-

nion division algebra, and O an Eichler order of L of level p. Let {Ii} be representatives

of left ideal classes of O. If Oi is the right order of Ii, put wi = [O×i : R×]. We have

the formula :

∑ 1
wi

= hL
p2 + 1

2
ζL(−1).

Remark 1.9. The situation is similar to the elliptic case : the leading term of the

class number formula is the mass formula, and the remainder should account for the

ramification.

Compare the leading term of the class number formula with Corollary 3.26, Chapter

II :

p2 + 1
2

[Mn : M1]ζL(−1) versus
p2 + 1

2
hζL(−1),

This suggests that the class number formula for Eichler orders over real quadratic fields

actually counts (with multiplicities) superspecial points on a Hilbert modular surface.

Furthermore, the weighted sum over the superspecial points would also coincide with

the leading term of the class number formula, that is :

∑ 1
|Aut(A, ι)| = ζL(−1)hL

p2 + 1
2

,

where the sum is over superspecial points.
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Remark 1.10. One would also expect that for p ramified, the same situation holds

with the corresponding formulae :

1
2
[Mn : M1]ζL(−1) versus

1
2
hζL(−1),

and
∑ 1

|Aut(A, ι)| =
1
2
ζL(−1)hL,

where the sum is over superspecial points.

2. ζL(−1) as a volume of moduli space

We denote the Hilbert modular group SL2(OL) by ΓL.

Theorem 2.1. (Siegel) The volume of ΓL\Hg is given by the formula :

∫

ΓL\Hg

ω = 2ζL(−1).

If Γ ⊂ PGL+
2 (R)g is commensurable with the Hilbert modular group ΓL, one has

the following formula for the volume of Γ\Hn :

vol(Γ\Hn) = [ΓL : Γ]2ζL(−1),

where the index [ΓL : Γ] ∈ Q is defined as

[ΓL : Γ ∩ ΓL]
[Γ : ΓL ∩ Γ]

.

The Hilbert moduli space is naturally decomposed in h+ components, parametrized by

the groups SL2(OL ⊕ Ai), for OL, . . . , Ah+ representatives of the narrow class groups

Cl(L)+. Siegel’s theorem states that the volume of the component associated to SL2(OL⊕
OL) is 2ζL(−1). The next proposition shows that all components have the same volume.

Note that this requires justification, because the groups SL2(OL⊕Ai) and SL2(OL⊕Aj)

will be conjugate iff [Ai] = [Aj ] in the genus group ( (Cl(L)+/Cl(L)+2) (see [75, p.12]),

and the volume is of course the same for conjugate groups; the point is that the volume

doesn’t depend on this data.
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Proposition 2.2. Volume computation

vol(Γ(A)) = vol(ΓL\Hg) = 2ζL(−1).

Proof. The idea is to combine [75, Chapter V, Theorem 5.1] and [75, Appendix

to chapter V] in a straightforward way. Given Γ = Γ(A), the Theorem 5.1 stipulated

that a certain generating series:

1
4
vol(Γ\H2) +

∞∑
n=1

anqn,

with constant coefficient 1
4vol(Γ\H2) is in fact equal to the Eisenstein series of weight

two in Mγ
2 (Γ0(D), χD) with γ the genus of A, OL = Q(

√
D). The calculation of the

Appendix in question yields that the associated Eisenstein series has q-expansion :

1
2
ζL(−1) +

∞∑
n=1

anqn.

Equalling the constant terms yields the result.

Remark 2.3. The volume associated to the Hilbert modular group ΓL satisfies the

properties of a “generalized” Euler characteristic, i.e. it is real-valued, and for any

subgroup Γ < ΓL of finite index, vol(Γ) = [ΓL : Γ] · vol(ΓL). As we noticed earlier, since

vol(ΓL) > 0, two conjugate subgroups of finite index have actually the same index.

Remark 2.4. Other proofs of Proposition 2.2 The most elementary is to cal-

culate directly the number [ΓL : Γ], and check that it is indeed equal to one. One can

also use the fact that the Tamagawa number of SL2(OL ⊕ A) is equal to 1. A third

proof uses the fact that for any Γ a discrete subgroup commensurable with the Hilbert

modular group, the Euler number of Γ\H2 is constant and equal to the volume (see [75,

Chapter IV, Theorem 1.2, p.60-61]).

Remark 2.5. Pure group theory. One can see [ΓL : Γ]·2ζL(−1) is the Euler number

of Γ also in the sense of (rational) cohomology theory of groups.
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3. Intersection theory

Let Mp be the Hilbert modular surface of principally polarized abelian surfaces

with RM by OL, L quadratic over Q, in characteristic p. We assume p inert as usual.

We present a different method to count the components of the supersingular locus.

We follow the exposition of [28] . Let c1, c2 be the Chern classes of Ω1
M
∗ = tM, the

tangent sheaf of M. Note that c1 is a canonical divisor. By the theorem of Siegel

(Proposition 2.2), using the smoothness of the moduli scheme over Zp whose special

fibre is Mp, we have ([75]) :

c2
1 = 2c2, c2 = 2ζL(−1).

By the Kodaira-Spencer isomorphism, we have :

Ω1
M ∼= ω⊗2,

as OL⊗OMp
-modules, where ω is the relative cotangent bundle of the universal abelian

scheme

π : Ap −→Mp,

so ω = π∗Ω1
Ap/Mp

.

Let h denote the (total) Hasse invariant. Thus h is a section of (detω⊗p−1). Hence,

(h) = −p− 1
2

c1, c1 = c1(detΩ1
M
∗
).

3.0.1. Number of components. If we put aside for a moment problems arising from

non-rigid level structure, we have on the one hand :

(p− 1)c2
1 = 4(p− 1)ζL(−1).

On the other hand,

(p− 1)c2
1 = (−2c1) · (−p− 1

2
c1) = −2c1 · (h).

By [47, p. 137], using the Kodaira-Spencer isomorphism, one gets :

c1| component of (h) = 2 · (p− 1).
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So

(p− 1)c1
2 = 4 · (1

2
c1| component of (h)) ·#( components ),

hence the number of components is given by ζL(−1).

3.0.2. Number of superspecial points. Under the hypotheses that there exists p2 +1

superspecial points on every component and that all have a fixed number b of branches,

we use the adjunction formula to calculate b. We will clear those hypotheses in the next

section.

We have :

(h)2 = (
p− 1

2
)2c2

1 = (p− 1)2ζL(−1).

On the other hand, if we write (h) = ∪ζL(−1)
i=1 Di (the divisor is reduced by [27, Section

1.2]), then

(h)2 =
∑

i 6=j

Di ·Dj +
∑

i

Di ·Di.

By the adjunction formula,

D2
i = 2g(Di)− 2− c1 ·Di = −2− 2(p− 1) = −2p.

Also,

∑

i 6=j

Di ·Dj = # components ·# singular points on a components · (b− 1)

= (p2 + 1)ζL(−1) · (b− 1).

Thus,

(p− 1)2ζL(−1) = ((p2 + 1)(b− 1)− 2p)ζL(−1),

hence b = 2.

Summing up, we can count the number of superspecial points on the whole moduli

space this way : we have ζL(−1) components, with p2 + 1 points on every component,

and there are two branches crossing at each superspecial points. Furthermore, there are

h+
L components, hence in the SL2-case, the total number of superspecial points is :

ζL(−1)
2

(p2 + 1)h+
L .
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4. Moret-Bailly families with RM

We try doing the study of the supersingular locus for arbitrary polarized abelian

varieties with RM and for arbitrary characteristic (i.e. for p = 2 as well). In fact

the latter is merely a remark. The argument uses the following implication . For X a

polarized superspecial abelian surface, L such that K(L) = Ker(φL : X −→ Xt) = X[p],

if H ⊂ K(L) is of order p, then H is isotropic for eL : K(L) × K(L) −→ Gm (i.e.

eL(H, H) = 1), hence the polarization φL descends to X/H. The argument for p > 2 is

there are no nontrivial skew-symmetric bihomomorphisms:

e : K(L)×K(L) −→ Gm,

so eL : H ×H −→ Gm is necessarily trivial. But this argument is false when H = α2!

There exists non-trivial maps :

α2 × α2 −→ Gm.

See [3] for the interesting consequences of this fact .

To explain our point with precision, we need to introduce the following definition :

Definition 4.1. [50, Section 23] A Heisenberg group is a system of group schemes

and homomorphisms :

0 −→ Gm
i−→ G

π−→ K −→ 0,

such that

• K is commutative (but G need not be);

• there exists an open covering {Ui} of K and sections σi of π ;

• i is a closed immersion, making Gm into the kernel of π ;

• Gm ⊂ the center of G.

We cite another theorem in [50] to explain how theta-groups arise :

Theorem 4.2. ([50, Theorem 1, p.225]) Let L be a line bundle on an abelian variety

X/k. For any scheme S, let Aut(L/X)(S) be the group of automorphisms of S ×k L
covering a translation map of S×kX. Aut(L/X) is a contravariant group-valued functor
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on the category of schemes. There exists a group scheme G(L) and an isomorphism of

group functors:

Aut(L/X) ∼= G(L).

Furthermore, for any scheme S, the natural homomorphisms of groups :

0 −→ H0(S,O×S ) −→ Aut(L/X)(S) −→ K(L) −→ 0,

where

K(L) =
{
S − valued points f : S −→ X such that T ∗f (S × L) ∼= S × L}

,

induces homomorphisms of group schemes:

0 −→ Gm
i−→ G(L)

j−→ K(L) −→ 0,

making G(L) into a Heisenberg group.

Remark 4.3. We may view G(L) alternatively either as the group {φ|φ : L −→ L},
such that φ is an isomorphism of L that covers a translation map on the base and

induces a linear map on fibers, or equivalently as the set of pairs (ψ, a) where a ∈ A

and ψ : L −→ T ∗aL is an isomorphism. With respect to this definition, the group K(L)

is defined as {a : T ∗aL ∼= L}.

Fact 4.4. deg(L) = dimk Γ(A,L), and |K(L)| = (deg(L))2.

Now, since Gm is in the center of G(L), we may define an alternating bilinear pairing,

the Mumford pairing :

eL : K(L)×K(L) −→ Gm

as the bihomomorphism associated to the commutator in the Heisenberg group G(L),

that is :

eL(x, y) = [x̃, ỹ],

where x̃, ỹ are lifts of x and y (resp.) to G(L), and [a, b] = aba−1b−1.

Another argument, including the case p = 2, goes as follows : according to [50,

Lemma 1], if K(L) is finite of prime order, then G is commutative, hence its commutator,

being eL is necessarily trivial.
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Consider the natural projection X
π−→ X/H. Since H ⊂ K(L) and eL|H×H = 1,

it follows from [50, Theorem 2], say, that there exists a line bundle M on Y such that

π∗M ∼= L, hence the polarization φL descends to a polarization φLH on X/H, and we

are finished proving the proposition :

Proposition 4.5. Let (X, µ) be a polarized abelian variety over an algebraically

closed field of characteristic p, such that Ker(µ) contains a subgroup scheme H of order

p. Then the polarization descends to a polarization on X/H.

We described earlier the Γ0(p)-level structure for abelian schemes with real multi-

plication. We want to expose the details of the construction of Moret-Bailly in more

general contexts. We consider certains abelian varieties with RM by OL, and a subgroup

scheme H of A which is OL-invariant, of order p2, killed by p and totally isotropic (i.e.

isotropic with respect to any OL-linear pairing). Moduli theoretically, this is a point on

the fibre of the morphism :

Mn
0 (p) −→Mn

L

over the moduli point of A. For a suitable choice of A and H, one obtains an abelian

scheme with RM by OL :

X −→ P1.

We now give the details of this construction. Let p be inert. This restriction implies

that the non-ordinary locus coincides with the supersingular locus S, which is given by

the vanishing of the determinant of the Hasse-Witt matrix (one equation), hence it is

a divisor (see [30]). As we have seen earlier, there are only finitely many superspecial

points in S . Thus, generically, the a-number is 1 in the non-ordinary locus. Let

A = (Ax, ιx, λ : (MA, M+
A) ∼= (A, A+)) with a-number equal 1. We want to prove that

A lies in a suitable Moret-Bailly family.

Remark 4.6. It is sufficient to prove that the Frobenius transform A(p) of A lies

on a projective line.

Definition 4.7. The group :

α(A) = Ker(Ver : A −→ A( 1
p )) ∩Ker(Fr : A −→ A(p)),
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is called the alpha group of A.

Let α(Ax) be the alpha group of Ax. Since the a-number of A is 1, the alpha

group is isomorphic to αp. It is a characteristic subgroup, and therefore the action

of OL descends to an abelian variety with RM A′ = Ax/α: since the alpha group is

contained in the kernel of Ver and Fr. Thus, we can consider the polarized abelian

variety A′ = (Ax/α(Ax), λα).

We note the following points

1. The abelian variety A′ has RM, but the cotangent space t∗A is not a free OL-

module (Rapoport’s condition fails), which implies that every subspace of H0(A,Ω1
A)

is OL-invariant. Consider the exact sequence :

0 −→ H0(A, Ω1
A) −→ H1

dR(A) −→ H1(A,OA) −→ 0.

These modules are always Dieudonné modules of group schemes, and we can

write :

0 −→ D(Ker(Fr)) −→ D(A[p]) −→ D(Ker(Ver)) −→ 0,

where D denotes the (covariant) Dieudonné functor. The cotangent space t∗A is

the zeroth cohomology group H0(A, Ω1
A), and p acts as 0 on it. The finite OL-

module OL/p = Fp2 acts in two ways (χ1, χ2) = (χ1, σ ◦χ1) (σ is the Frobenius)

on the cotangent space. To show that Rapoport’s condition fails, we describe

(A/α(A))[Fr]. Let B = A/α(A), and let

V = D(α(B)) := D
(
(Fr−1(α(A)) ∩Ver−1(α(A)))/α(A)

)
.

It follows from [13, p.68] that H1
dR(A) ∼= D(A[p]) is a free OL⊗k-module of rank

2. We therefore get a decomposition:

D(A[p]) = W1 ⊕W2,

where Wi is a 2-dimensional k-vector space, with the OL-action given by the

character χi (see [25, Section 2.6, p.291] for more details). The behaviour of Fr

and Ver with respect to this decomposition is :

F (Wi) ⊆ Wi+1, Ver(Wi) ⊆ Wi+1.
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This follows from the σ-linearity of Frobenius and σ−1-linearity of Verschiebung.

For example, for r ∈ OL, v1 ∈ W1, we have:

rFr(v1) = Frr(v1) = Fr(χ1(r)v1) = χ1(r)pFr(v1) = χ2(r)Fr(v1) ∈ W2.

It is true in general that for any abelian variety A,

ImVer = KerFr, ImFr = KerVer on D(A[p]).

Without loss of generality, we can assume that KerFr∩KerVer = D(α(A)) ⊆ W2.

We claim that

Fr(W1) = Ver(W1) = D(α(A)).(4.1)

Since Im(Fr) = Ker(Ver), Fr(W1) ⊆ KerVer ∩ W2 = D(α(A)). The kernel

of Frobenius is a 1-dimensional vector space, hence non zero, and by dimension

considerations, Fr(W1) = D(α(A)), similarly Ver(W1) = D(α(A)).

Recall that the dimension of D(A[p]) is 4, and the dimension of the kernel

of Frobenius is 2, hence Equation 4.1 implies that the rank of Fr−1(D(α(A))

is at most 3, because D(α(A) is one-dimensional. But since it visibly contains

W1 ⊕ D(α(A)) and this is already of dimension 3, we have :

Fr−1(D(α(A)) = W1 ⊕ D(α(A)).

Similarly,

Ver−1(D(α)) = W1 ⊕ D(α(A)).

We then conclude that

V = D(α(B))

= D
(
Fr−1(D(α(A))) ∩Ver−1(D(α(A)))/α(A)

)

∼= D(Fr−1(D(α(A)))) ∩ D(Ver−1(D(α(A))))/D(α(A))

∼= W1 ⊕ D(α(A))/D(α(A))

∼= W1

Note that Frobenius and Verschiebung both act as 0 on W1, and the OL-action

is given by χ1. Moreover, V = D(B[Fr]). This argument also shows that the

a-number of A′ is equal to the dimension of W1, that is, two.
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2. We just proved that the a-number of A′ is equal to 2, that is, the abelian variety

is superspecial. The morphism Ver is identically zero on H0(A,Ω1
A), and every

subspace of H0(A, Ω1
A) is Ver, Fr, and OL-stable, hence every embedded αp in A′

isOL-invariant. The various subgroup schemes isomorphic to αp in a superspecial

abelian variety are parametrized by P1, so we consider the family (see page 48) :

(A′ × P1)/ {αt}t∈P1 .

Note that since any αp is OL-stable, the action of OL descends to the quo-

tient. We get an abelian scheme X π−→ P1 which satisfy Rapoport’s condition,

and we claim that one fibre of π is A(p). We first check locally that Rapoport’s

condition holds. The argument uses the same idea as in point 1.

Let H ∼= αp. We want to show that Rapoport’s condition holds for B/H.

Let us write D(B[p]) = W1 ⊕ W2. We saw above that D(α(B)) = W1, and

Fr(W1) = Ver(W1) = 0. Since the rank of the homomorphisms Fr and Ver is p2,

on the level of Dieudonné module their kernel is of dimension two. Hence

W1 = KerFr = KerVer,

and

Fr : W2
∼= W1, Ver : W2

∼= W1.

Put Z1 = H ∼= αp and Z2 the image of Z1 (under Frobenius or Verschiebung)

in W2. Then by dimension count,

D((B/H)[Fr]) = Fr−1(D(H))/D(H)

= (W1 ⊕ Z2)/Z1

∼= W1/Z1 ⊕ Z2,

with OL acting on W1/Z1 via χ1 and OL acting on Z2 via χ2, and we are done.

Now, there is a unique way to embed α(A) ⊆ Ker(FrA) ⊂ A, and we claim that

β ⊂ KerFrA/α(A) ∼= αp ⊆ A′. This isomorphism follows since for any base field,

any local-local group scheme of rank p is isomorphic to αp (recall that local-local

means that Fr and Ver acts nilpotently, and for any supersingular abelian variety,

Ker(Fr) is annihilated by some power of Ver).
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We get that

A′/β ∼= A/Ker(Fr) = A(p).

In fact, A′/β with its OL-structure is (A(p), ι(p)). It follows that we may take

λ(p) and get (A(p), ι(p), λ(p)) on the Moret-Bailly family X −→ P1.

Summarizing, we have the following theorem :

Theorem 4.8. Let p be inert. Every component of the supersingular locus of the

moduli space of (non-necessarily principally) polarized abelian surfaces with level n ≥ 3

structure is a Moret-Bailly family, that is a family of supersingular varieties parametrized

by the projective line P1.

4.1. Local picture. It follows from the Serre-Tate theorem (2.7, Chapter II) that

there is an equivalence of categories between the isomorphism classes of deformations

of points(A, λ, α) on the Siegel moduli scheme to R and the corresponding isomorphism

classes of deformations of the principally polarized p-divisible groups to R. Similarly,

there is an equivalence of categories between the isomorphism classes of deformations

of points (A, ι, α) on the Hilbert moduli scheme and the corresponding isomorphism

classes of deformations of the p-divisible groups with real multiplication to R.

Since the equivalence of categories (following Serre-Tate) is insensitive to the po-

larization module, it follows that the local picture is the same as in the principally

polarized case.

4.2. Counting points and components. Let us recapitulate the situation when

the polarization is not necessarily principal :

1. the local picture is the same as in the principally polarized case. Namely, there

are [MdL,n : MdL
]ζL(−1) components, the intersection points are equal the

superspecial points and there are p2 +1 of them. Each intersection is transversal

with two branches. See Section 3, Chapter III.

2. Every component of S is parametrized by a projective line.

Indeed, the local picture is the same as in the principally polarized case, and this

validates the appearance of the class number hL in the formula counting the number of



4. MORET-BAILLY FAMILIES WITH RM 83

superspecial points, since the map

(A, ι, λ) −→ (A, ι, (MA,M+
A))

has degree

[(O×L )+ : (O×L )2] = [PGL(A⊕B)+ : PSL(A⊕B)] =
h+

L

hL
.

So the formulae for non-necessarily principally polarized case (GL2) are the same

as in the principally polarized (SL2) case, replacing h+
L by hL.
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CHAPTER 4

Tensor constructions

1. Axiomatics of tensor construction

The matching between the number of superspecial points on the Hilbert modular

surface in characteristic p (p inert) given in Section I, Chapter IV, and the class number

formula for ideal of the non-maximal order of Bp,L appearing as CentE⊗OL(OL) given in

Section II, Chapter IV, suggest that a direct equivalence of category between ideals and

superspecial points should exist, as in the case of elliptic curves. We study in the section

constructions involving tensoring an abelian variety by a finitely generated projective

(left) module (under a ring action), in order to try systematizing (algebraically) the link

between class numbers and isomorphism classes of superspecial abelian varieties.

Definition 1.1. A ring is left hereditary if every left ideal is projective.

Let O be a left noetherian, left hereditary ring acting on A (i.e. we are provided

with an injection in the endomorphism ring). In pratice, we are more precisely interested

in Eichler orders of totally definite quaternion algebras.

Definition 1.2. Let M be a finitely generated left ideal of O. The tensor con-

struction in question is a group functor A ⊗O M , with A an abelian variety with RM

by OL. We define it with the formula :

(A⊗O M)(S) = A(S)⊗O M,(1.1)

where S is a scheme over O.

We construct A⊗O A as follows (see [74]) :

Let A be of finite index in a free O-module. For free O-module A ∼= On, we pick a

basis e1, . . . , en and we define

A⊗O A ∼= An.
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If b ⊂ O is a fractional ideal, there is a canonical isomorphism :

(A⊗O A)[b] ∼= A[b]⊗O A.

In general, if bA′ ⊂ A ⊂ A′, A′ free and b a non-zero ideal of O, then:

A⊗O A := (A⊗O bA′)/(A[b]⊗O A/bA′),

independently of the choice of the superideal A ⊂ A′. We get the same canonical

isomorphism :

A⊗O A[b] ∼= A[b]⊗O A.

If A has an action of O −→ K, then A⊗O K canonically inherits this action.

If λ : A −→ At is a polarization, and f : A −→ A∨ is a O-linear map then λ ⊗ f :

A⊗O A −→ At ⊗O A∨ is a polarization.

Remark 1.3. We also have a canonical isomorphism of λ-adic Tate modules :

Tλ(A⊗O A) −→ (TλA)⊗O A.

When M is a projective rank 1 O-module and A has RM, the functor A ⊗O M is

represented by an abelian variety with RM of the same dimension as A.

For the convenience of the reader, we reproduce the exposition found in [22, Propo-

sition 1.2.7].

1. :

This is similar to the previous construction :

We write down a free resolution of A :

· · · −→ ⊕m O −→ ⊕n O −→ A −→ 0.

Since A is projective, ⊕nO splits into A ⊕ p, where p is a projective O-module.

The map :

⊕mO −→ p,

gives a splitting ⊕mO as p⊕ q. Thus, we have an exact sequence :

· · · ← ⊕mO φ← ⊕nO i← A −→ 0,

where i and φ are the maps obtained from the above splittings.



1. AXIOMATICS OF TENSOR CONSTRUCTION 87

The maps :

A(T )⊗O ⊕nO id⊗Oφ//

∼
²²

A(T )⊗O ⊕mO
∼

²²
An(T ) // Am(T )

(where T is an R-scheme, and Ai denotes A ⊗R · · ·
i
⊗R A) make A ⊗O φ into a

natural transformation of functors, whence a morphism from An to Am, which

we call also φ. Define the scheme B as the fiber product :

B //

²²

R

em

²²
An

φ
// Am

where em is the identity section of Xm. Then, if T is an R-scheme,

B(T ) = ker(id⊗O φ),

which , by the splitting of ⊕nO, is just A(T ) ⊗O A. So the functor A ⊗O A is

represented by B. It remains to show that B satisfy the definition of an abelian

scheme with real multiplication.

2. : B is a group scheme which is proper and locally of finite presentation over S

Clearly, B is a group scheme. Since An and Am are proper over R, An is

proper over Am, and, after base change, B is proper over R. Likewise, An is

locally of finite presentation over R (because it is smooth) and Am is locally of

finite type over R (because it is proper). So An is locally of finite presentation

over Am, and, after base change, B is locally of finite presentation over R.

3. :

B is smooth. If X/R is an affine scheme endowed with a map A −→ S, I is a

quasi-coherent sheaf of ideals on X with I2 = 0, and X0 is the closed subscheme

of X determined by I, the map :

A(X) −→ A(X0)
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is surjective, because A is smooth. Thus

A(X)⊗O A −→ A(X0)⊗O A

is also surjective, and because B is locally of finite presentation over S, it is

smooth over S. (See [2] for a discussion of smoothness).

4. : B has connected geometric fibers of dimension g. Let k̃ be a geometric point

of S. Then we have maps on fibers :

Xn
k̃
↔ Yk̃

whose composition is the identity on Yk̃. Since Xn
k̃

is connected, so is Yk̃. Since

Xn
k̃

has RM by OL, there is an exact sequence of OL-modules :

0 −→ k̃ ⊗Z OL −→ A(k̃[ε]/(ε2)) −→ A(k̃) −→ 0,

by the condition on Lie(A) (see also [38]). Since A is a flat O-module, the

sequence :

0 −→ (k̃ ⊗Z OL)⊗O A −→ B(k̃[ε]/(ε2)) −→ B(k̃) −→ 0

is exact as well; (k̃⊗ZOL)⊗O A has dimension g over k̃, so Bk̃ has dimension g.

5. : Lie(B/R) is a locally free (on R) rank-1 OL ⊗Z R-module

We have an exact sequence of sheaves on An :

φ?ΩAm/R −→ ΩXn/R −→ ΩAn/Am −→ 0.

Let en, eY denote identity sections; pulling back by en yields :

e∗mΩAm/R −→ e∗nΩAn/R −→ e∗nΩAn/Am −→ 0.

Now i : B −→ An is just the base change of em by φ, so

e∗BΩB/R = e∗Y i∗ΩAn/Am = e∗nΩAn/Am .

Replcaing e∗nΩAn/Am by e∗Y ΩY/R and dualizing, we get an exact sequence of

sheaves on R :

0 −→ Lie(B/R) −→ Lie(An/R)
φ−→ Lie(Am/R)

from which Lie(B/R) = Lie(A/R) ⊗O A, which is, locally on R, a free rank-1

OL ⊗R-module (since Lie(A/R) is so.)
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Proposition 1.4. For any a ∈ A, the map :

ε(a) : A −→ A⊗O A,

given by

A(S) −→ A(S)⊗O A

s 7→ s⊗ a,

is an isogeny.

Proof. First, ε(a) is a morphism of proper S-schemes, so it is proper. Now choose

d ∈ A−1 such that ad = n ∈ Z. Then, by composing ε(d)ε(a) with the natural iso-

morphism (A ⊗Ol(A) A) ⊗Ol(A−1) A−1 −→ A, we see that ε(a) factors through [n]. So

ker(ε(a)) ⊂ ker[n] is finite over S. Now by [50, Proposition 8.1c], ε(a) has finite fibers,

so ε(a) is finite.

Remark 1.5.

ker ε(a) = ∩{α∈Qt(O)|AαA⊂A} ker[α].

One inclusion is clear, and ker ε(a) ⊂ ker[α] follows as in the proof of Proposition 1.4.

This proposition enables us to show that the tensor construction satisfies Rapoport’s

condition more easily : just pick an element in A such that the degree of the kernel of

the isogeny is prime to p. Then the familiar argument shows that the tangent spaces

are isomorphic :

t∗A ∼= t∗A⊗OA.

This tensor construction is therefore the direct generalization of the kernel ideal ap-

proach. It is easy to prove that the a-number and the f -number are stable under the

tensor construction.

Remark 1.6. A projective ideal is flat ([64, Corollary 3.46]). Since O is assumed

to be left noetherian, any flat ideal is finitely presented, hence projective ([64, Theorem

3.61]). So flat is equivalent to projective in this context, and we can consider either the

tensor construction −⊗O A or Hom(A,−) equivalently.
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2. Application to superspecial points

In this section, we try describing a higher dimensional analogue of the equivalence

between supersingular elliptic curves and left ideal classes of a maximal order in Bp,∞.

Conjecture 2.1. (Bare conjecture)

Let S be the category of superspecial abelian varieties with real multiplication by

OL and isogenies, and let A0 be an object in S. Then the functor HomS(A,−) to

the category of left ideals of O = EndA0 is an equivalence of categories, with inverse

provided by A⊗O −.

A list of consequences of this conjecture :

Corollary 2.2. (Mass formula for superspecial abelian varieties with RM)

∑ 1
|Aut(A, ι)| =

ζL(−1)
2

hL(p2 + 1),

where the sum is over superspecial points.

Corollary 2.3. For finite extensions of Fp, the functor:

B 7→ (Hom(A,B), π∗),

where π is the Frobenius morphism, gives an equivalence of superspecial abelian surfaces

with RM with the suitable category of pairs.

Corollary 2.4. For A a projective rank one O-module, we have

A⊗O A superspecial ⇐⇒ A superspecial ,

where O ⊂ B∞1,∞2 .

Proof. This can be proven independently using Proposition 1.4.

Corollary 2.5. 1. Under the equivalence, isogenies of superspecial abelian

surfaces correspond to nonzero O-module homomorphisms.

2. The finite set of isomorphism classes in each category are in bijective correspon-

dence. The cardinality of the set of superspecial point on the bare moduli space

is given by the class number formula for Eichler order of level p.
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Corollary 2.6. Every locally free rank one right module over O is isomorphic to

one of the form Hom(A,B) for A,B ∈ S, and all of its embeddings in O are determined

this way.

Remark 2.7. We can define the degree of a morphism φ : I −→ J of right O-

modules and various properties in the quaternion category in parallel with the geometric

category.

Definition 2.8. Let A be a set of isogenies of A. We define A[A] to be the scheme

theoretic intersection of the kernel of all α ∈ A, i.e.

A[A] = ker(ε(1) : A −→ A⊗ A).

A left O-ideal A is called a kernel ideal if A = {α ∈ O|α(A[A]) = 0}.

Proof. Strategy of the proof of the bare conjecture Since the tensor con-

struction is essentially the same idea as the construction using kernel ideas, we could

try using the same proof. Recall the

Lemma 2.9. ([79, Theorem 3.11]) Let A and B be kernel ideals. Then

A⊗O A ∼= A⊗O B ⇐⇒ [A] = [B],

i.e. A = νB for some invertible ν ∈ O.

Thus, the result would follow if the equivalent of Theorem 2.21 is true, that is every

left O-ideal is a kernel ideal, for O an Eichler order of discriminant p in B∞1,∞2 . I

believe that this follows from a modification of the proof of [79, Theorem 3.15] (since

B∞1,∞2 is a simple algebra) and the rest of the proof would follow on the same lines as

in the elliptic case.
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CHAPTER 5

Conclusion

We will digress briefly on a number of possibles avenues of research following the

lines of this thesis.

Serre [67] developped an approach to the theory of modular forms mod p based

on quaternion algebras; at the heart of the application of quaternion algebra is the

connection between supersingular elliptic curves and class number of Bp,∞. Can the

connection between superspecial abelian surfaces and certain ideal class numbers im-

prove our understanding of Hilbert modular forms mod p ? A similar theory valid for

Hilbert modular varieties would already be extremely satisfying (keeping in mind the

conjectural importance of such objects as cohomological motivic “building blocks” ),

but various ingredients used to develop mod p modular forms (such as the Ekedahl-

Oort stratification) are being developped for general Shimura varieties. Of course, one

wouldn’t stop at studying the modular forms mod p, but also the p-adic theory : p-adic

modular forms for Shimura varieties, including p-adic Hilbert modular forms. Back to

the classical theory, since the trace formula for Hilbert modular forms has already been

developped, one could try solving the basis problem by establishing a trace formula for

the geometric Brandt matrices associated to totally definite quaternion algebras over

totally real fields, and comparing the results, following the original strategy (pending a

clarification of the connection between geometric Brandt matrices and Hilbert modular

forms which, as we have noted earlier, does not follow the same lines as the elliptic

case). In comparison with the classical case (with the motivation of understanding rep-

resentations of Gal(Q/Q), it seems that little has been done with regard to arithmetical

applications of quaternion algebras defined over number fields different than Q; likewise

for vector-valued theta series and modular forms : this clearly indicates the pertinence

93
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of considering the “fibred product”, considering vector-valued theta series and modular

forms for more general congruence subgroups.

A perpendicular direction is to replace, following Gekeler, abelian varieties of di-

mension g by Drinfel’d modules of rank r.

Even though we take a geometric point of view to the arithmetic of quaternion

algebra, one could pursue similar themes in the study of the arithmetic of octonion

algebra [21] : compute the number of optimal embeddings of orders with application to

modular forms, for example ( the cardinalities being viewed as q-expansion coeffients).

Always in the theme of arithmetical applications, one might investigate the relation

with the p-adic uniformization of related Shimura curves and applications to p-adic

L-functions, Heegner points, etc.

Most concretely, classical Brandt matrices have been used by Pizer to construct

Ramanujan graphs. Can we exploit the fact that certain of our geometric Brandt ma-

trices are adjacency matrices and give application in extremal graph theory, say. In

order to make computations easier and faster, can we build the Hecke theory wholly

on quaternion algebras (considering Hecke modules as free abelian groups on left ideal

classes of an order in a quaternion algebra, and Hecke operators as

Tn([I]) =
∑

φ

[J ] =
∑

J∈S

an(I, J)[J ],

where the sum runs over cyclic R-modules homomorphisms φ : I −→ J of degree n,

(n, p) = 1.) , etc.), so to be able to choose the less time consuming side of the picture?

Note also that Hilbert modular forms arising from geometric Brandt matrices would

be a good source of computable examples, and establishing this link satisfactorily shall

constitue the evident next step for further research, provided a proof of the bare conjec-

ture (at the time of writing, the author is optimistically working on a proof of a suitably

formulated bare conjecture for Hilbert modular varieties).

On modular curves, the supersingular divisor group can be seen as the monodromy

group at p (see [41]); can we pursue the monodromy point of view in the higher-

dimensional case ?
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One could study theta series coming from exotic lattices : E8, Leech, Elkies-

Borcherds, Thompson-Smith, Barnes-Wall, etc. and develop further sphere-packing

properties of modular forms, or explore various theta series congruences (see [18]).
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