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Abstract

Let Ei, i = 1, ..., n, be all the supersingular elliptic curves over Fp up to isomorphism.

The modules of isogenies Hom(Ei, Ej), equipped with the degree map, are quadratic

modules that give rise to theta series of level p. The space of modular forms of weight

two for Γ0(p) is thus spanned by the theta series coming from supersingular elliptic

curves in this fashion. We generalize this classical result to Hilbert modular forms

by showing that for totally real fields L of narrow class number one, the space of

Hilbert modular newforms of parallel weight 2 for Γ0(p), p unramified, is spanned by

theta series coming from quadratic modules HomOL(Ai, Aj), where Ai, Aj range across

all superspecial abelian varieties with real multiplication by OL. We also provide a

version of this theorem in the more delicate case where p is totally ramified in OL,

building on the classification of superspecial crystals following from the generalization

of Manin’s Habilitationschrift that we present in the first Chapter.
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Résumé

Soient Ei, i = 1, ..., n, toutes les courbes elliptiques supersingulières définies sur Fp,

à isomorphisme près. Les modules d’isogénies Hom(Ei, Ej), munis de l’application

degré, sont des modules quadratiques qui donnent lieu à des séries thêta de niveau p.

L’espace des formes modulaires de poids 2 pour Γ0(p) est donc engendré par des

combinaisons de séries thêta provenant des courbes elliptiques supersingulières. Nous

généralisons ce résultat classique aux formes modulaires de Hilbert en montrant que

pour un corps totalement réel L de nombre de classes restreintes un, l’espace des nou-

velles formes modulaires de Hilbert de poids parallèle 2 pour Γ0(p), p non ramifié, est

engendré par les séries thêta provenant de modules quadratiques HomOL(Ai, Aj), où

les Ai, Aj parcourent l’ensemble des variétés abéliennes superspéciales à multiplica-

tion réelle par OL. Nous fournissons aussi une version de ce théorème dans le cas plus

délicat où p est totalement ramifié dans OL, en nous appuyant sur la classification

des cristaux superspéciaux qui découle de la généralisation de l’Habilitationschrift de

Manin que nous exposons dans le chapitre premier.
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1

Introduction

Let p be a prime number. Let E be a supersingular elliptic curve over Fp. Deur-

ing showed that the endomorphism ring End(E) is a maximal order in the rational

quaternion algebra Bp,∞ ramified at p and ∞. The number h of supersingular j-

invariants, and thus the number of supersingular elliptic curves Ei/Fp, is finite. The

left ideal classes of End(E) are in bijection with supersingular elliptic curves defined

over Fp, and any maximal order in Bp,∞ arises as the endomorphism ring of a suit-

able supersingular elliptic curve Ei for some i. All maximal orders of Bp,∞ are locally

conjugate. The number of maximal orders, up to isomorphism, is thus bounded

by h. It is called the type number, and it can be strictly less than h: End(Ei) is

isomorphic to End(Ek) if and only if jpi = jk. The Z-module Hom(E1, E2) of homo-

morphisms between two supersingular elliptic curves E1 and E2 is naturally equipped

with the degree map, a quadratic form in four variables with values in Z. Indeed,

as the above bijection suggests, this data can be formulated in terms of quaternion

algebras only. Let I1, . . . , Ih be ideals of Bp,∞ representing the left ideal classes of

O = End(E), viewed as a maximal order in Bp,∞. Then E ⊗O Ij for j = 1, . . . , h,

are equal to E1, . . . , Eh, up to isomorphism (and up to re-indexing), and we have

the formula Hom(E ⊗O Ik, E ⊗O Ij) = I−1
j Ik. Moreover, the quadratic forms on

Hom(E ⊗O Ik, E) = Ik, given by the degree map and by Norm(−)/Norm(Ik), are
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equal. The theta series

Θjk =
∞∑

n=0

|{f ∈ I−1
j Ik : deg(f) = n}| · qn, q = e2πiz,

are modular forms of level Γ0(p) and weight 2 (with trivial character). Eichler’s The-

orem states that these theta series span the vector space of weight 2 modular forms

for Γ0(p). The geometry enters the picture when one considers the reduction X0(p)

of the modular curve X0(p) modulo p. It has a canonical projection X0(p) −→ X0(1)

and X0(p) consists of two copies of X0(1), one projecting isomorphically and one

via the Frobenius map on X0(1). The two components intersect transversally at the

supersingular points. Cusp forms of weight 2 on X0(p) with integral Fourier coeffi-

cients can be viewed as holomorphic differentials; they can also be reduced modulo p.

There, we view them as meromorphic differentials on X0(1) with simple poles along

the supersingular locus. Since X0(1) is P1, we get functions on the supersingular

locus (with the value at a point being defined as the residue) such that the sum of its

values is zero.

We generalize some of these results to the Hilbert modular setting in the second

Chapter. From the perspective of this thesis, a key point is the uniqueness of the

superspecial crystal, for p unramified.

The first Chapter of this thesis generalizes mutatis mutandis Manin’s Habilitation-

schrift to obtain a classification up to isomorphism of F -crystals over totally ramified

extensions of the Witt vectors over a perfect field of characteristic p. The key point

of the classification is the concept of a special module. The supersingular special, or

superspecial crystals, arise in geometry from superspecial points on Hilbert moduli

spaces. We derive from the general classification some geometrical results relative

to Hilbert-Siegel moduli spaces e.g., determining the number of superspecial crystals

in the totally ramified case and studying the stratification of the supersingular locus

suggested by the decomposition of the module spaces à la Manin, examples of which
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are calculated explicitly. This stratification of moduli spaces of abelian varieties with

additional structure that we are suggesting, which essentially consists of associating

its special Dieudonné module to an abelian variety with additional structure, is shown

to be the same as the slope stratification of Andreatta and Goren for the supersingu-

lar Newton polygon stratum. We show in particular that the isomorphism type of the

Dieudonné module depends only on the singularity index (which measures the failure

of the tangent space to be a free OL ⊗ Fp-module). We also establish a truncation

conjecture of Traverso in a particular case, showing that a (classical) supersingular

Dieudonné module of rank 2g is determined up to non-canonical isomorphism by its

truncation modulo pg.

The second Chapter of this thesis generalizes for Hilbert moduli spaces the above

mentioned results of Deuring and Eichler. The Main Theorem is a geometric inter-

pretation of Eichler’s Basis Problem for Hilbert modular forms: in short, under the

hypothesis that the narrow class number of the totally real field L is 1 and p unrami-

fied, we show that the theta series stemming from superspecial points on the Hilbert

moduli space span the vector space of Hilbert newforms of level p and weight two.

We also investigate the case where p is totally ramified. The proof follow the gen-

eral strategy of the elliptic case. The Hilbert moduli space parametrizes principally

polarized abelian varieties with an action of OL, where the polarization is OL-linear.

The superspecial points on the Hilbert moduli space in characteristic p form a finite

set A1, . . . , AH . In fact, if E1, . . . , Eg are any supersingular elliptic curves over Fp,

then any Aj is isomorphic to E1 × · · · × Eg as abelian varieties and so the Ai’s are

distinguished precisely by the action of OL (once the OL-action is given, all choices

of OL-linear principal polarizations are isomorphic).

Let A be a superspecial abelian variety with RM. We first show that the centralizer

of OL in End(A) i.e., EndOL(A) is an order of discriminant dividing p in Bp,L that

is, the quaternion algebra Bp,∞ ⊗ L. In particular, if p is unramified, it is an Eichler
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order of level p. Let E be a supersingular elliptic curve over Fp. The key example is

the abelian variety E ⊗Z OL, which is principally polarized. One has

EndOL(E ⊗OL) = End(E)⊗OL = O ⊗OL,

where O is a maximal order in Bp,∞. The order O ⊗ OL clearly has discriminant p.

The local nature of EndOL(Ai) can be studied by a version of Tate’s theorem that we

provide, which states that EndOL(Ai)⊗ Z`
∼= EndOL⊗Z`(T`(Ai)) and EndOL(Ai)⊗ Zp

∼= EndOL⊗W (Fp)[F,V ](D(Ai)), where D(Ai) is the Dieudonné module of Ai. Since all

T`(Ai) and D(Ai) are independent of i when p is unramified, one concludes that

all the orders EndOL(Ai) are locally conjugate. When p is ramified, there is more

than one isomorphism class of Dieudonné module, and we get orders of different

levels. For the rest of this introduction, we suppose that p is unramified. Using

our version of Tate’s theorem, we show that HomOL(Ai, Aj) is a projective rank 1

module over EndOL(Ai). Conversely, left ideals classes of EndOL(A) are in bijection

with superspecial abelian varieties with RM. Also, any superspecial order of level pOL
i.e., an order admitting the same local description as EndOL(E ⊗OL) (see Definition

2.3.11), arises as the endomorphism ring of a suitable superspecial abelian variety

with RM. One can also define the type number in this context (and it is bounded

by the class number H) but we do not study its geometric interpretation in this

thesis. We then consider the OL-module HomOL(A1, A2) of OL-isogenies between

two superspecial abelian varieties A1, A2, equipped with a totally definite quadratic

form called the OL-degree || − ||. This OL-degree is defined as ||f || = λ−1
1 f tλ2f ,

for f ∈ HomOL(A1, A2), and λ1 (respectively, λ2) the principal polarization on the

abelian variety A1 (respectively A2). Thus, the OL-degree is defined up to the choices

of polarizations, which are unique up to totally positive units in OL. Since the norm

Norm(Ij) of an ideal Ij of End(A1) is an ideal in OL, we can make sense of it by

choosing a totally positive generator r of Norm(Ij) and looking at Norm(−)/r, which

is well-defined up to a totally positive unit of OL. Therefore, Norm(−)/r is equal
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to the OL-degree up to a totally positive unit. This quadratic form allows us to

construct a theta series of level p from the quadratic module (HomOL(A1, A2), || − ||)
in the usual way. The Jacquet-Langlands correspondence, translated in classical

terms, implies that the space of Hilbert modular newforms of weight 2 for Γ0(p) is

thence spanned by the theta series coming from superspecial abelian varieties with

RM, and we get the desired result this way.

An isolated result we include in this thesis concerns the Siegel moduli space,

which parametrizes principally polarized abelian varieties. The a-number allows to

slice the Siegel moduli space in characteristic p in finitely many strata Ta. Using

deformation theory, we show that the singular locus of Ta is Ta+1, completing a result

of van der Geer.

More detailed introductions are given at the beginning of each Chapter.
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Chapter 1

Dieudonné modules

1.1 Introduction

This mainly utilitarian chapter covers the basics about Dieudonné modules over per-

fect fields, and treats some questions in line with Manin’s Habilitation [66], especially

its chapter III on the classification, up to isomorphism, of Dieudonné modules. In par-

ticular, we show that Manin’s results extend mutadis mutandis to Dieudonné modules

with real multiplication (RM) in the totally ramified case. Revisiting the spaces of

Dieudonné modules à la Manin in the combined light of old conjectures and modern

theorems enables us to reap many interesting results about supersingular Dieudonné

modules:

1. In Subsection 1.3.6: The classification of superspecial crystals with RM; this,

in turn, is used in the ramified case of the geometric interpretation of Eichler’s

Basis Problem in Chapter II of the present thesis.

2. In Sections 1.4 and 1.5: Some optimal results in line with Traverso’s bounded-

ness conjecture (for classical Dieudonné modules). In particular, we optimize

two propositions of Vasiu ([99]): by proving Traverso’s conjecture in the su-
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persingular case, and by giving the optimal bound for the isocrystal of slopes

{ 1
n
, n−1

n
}, n ≥ 3. A combination of Oort’s result that the first truncation D/pD

of a minimal Dieudonné module D determines uniquely the isomorphism class

of D and the computation of the classical supersingular Dieudonné module space

à la Manin proves that case of Traverso’s conjecture.

3. In Section 1.6: A description of the slope stratification of [1] of the supersin-

gular Newton polygon stratum of Hilbert modular varieties purely in terms of

the geometry of the Dieudonné module spaces à la Manin. Note that the geo-

metric properties of the slope stratification of Hilbert moduli spaces have been

investigated in depth in [1] and [2].

1.2 Basics

We introduce, in this section, all relevant definitions about Dieudonné modules, and

we state the classical Dieudonné-Manin classification. The connection with p-divisible

groups is explained in detail in [18] and also [41], which is nicely complemented by

the lecture notes [78].

Let k be a perfect field of characteristic p > 0, and let K be the fraction field of

the Witt ring W (k); k perfect implies that W (k) is a complete discrete valuation ring

with residue field k. The Frobenius automorphism σ of k induces an automorphism

(also noted σ) of K.

Definition 1.2.1. An F -isocrystal (V,Φ) is a finite dimensional vector space V over

the field K, equipped with a σ-linear bijection Φ : V −→ V .

More generally, we can replace K by the compositum KF := K · F of K and a finite

extension F of Qp in K. We give a few necessary words of explanation, following

Kottwitz ([60, §1]). Suppose that k is algebraically closed. Let kF denote the residue
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field of F and let M denote the fraction field of W (kF). The extension F/M is

totally ramified of degree g, the absolute ramification index of F. The canonical

homomorphism K ⊗M F −→ KF is an isomorphism, since an Eisenstein polynomial

over M remains Eisenstein over K. In particular, the extension KF/K is totally

ramified of degree g, which means that g is also the absolute ramification index

of KF. The Frobenius automorphism σ of k relative to kF induces an automorphism

of K over M , which in turn induces an automorphism (also noted σ) of KF over the

field F. The fixed field of σ on KF is F (see [60, Lem. 1.2]).

Definition 1.2.2. An F -isocrystal (V,Φ) with RM by F is a finite dimensional

vector space V over KF equipped with a σ-linear bijection Φ : V −→ V .

Remark 1.2.3. The terminology “with RM” stems from the fact that Hilbert moduli

spaces classify g-dimensional polarized abelian varieties A over k with real multipli-

cation e.g., equipped with an action

ι : OL −→ End(A),

where OL is the ring of integers of a totally real field L. By functoriality, the ac-

tion of OL carries over to the first crystalline cohomology group H1
crys(A/W (k)). If

pOL = pg is totally ramified, H1
crys(A/W (k)) ⊗ Q can be viewed as an F -isocrystal

with RM by OLp
, the ring of integers of the totally ramified extension of Qp obtained

by completing L at p.

Theorem 1.2.4. (Dieudonné-Manin) Let k be an algebraically closed field. The cate-

gory of F -isocrystals with RM over KF is semisimple with simple objects parametrized

by Q. To λ ∈ Q corresponds the simple object Eλ defined as follows. If λ = r
s
, with

r, s ∈ Z, s > 0, (r, s) = 1, then

Eλ = KF[F ]/(F s − T r),

where T is a uniformizer of KF, and F is σ-linear i.e., Fx = xσF .
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Proof. [60, §3]

Definition 1.2.5. We call the collection of rational numbers { ri
gsi
} associated to a

semisimple object ⊕iEλi , λi = ri
si

its slopes.

Denote by WF(k) the ring of integers of KF. The ring WF(k) is a totally ramified

extension of W (k) of degree g, and since WF(k) arises from an Eisenstein polynomial,

the relation T g = µp holds for some µ ∈ WF(k)
× i.e., some µ of T -valuation zero.

If the field k is algebraically closed, then the equation Xσ = (T σ/T )X in X has a

nonzero solution modulo T , and so by the σ-variant of Hensel’s lemma (e.g., used in

[66, Lem. 2.2, p.29]), has a non-zero solution in WF(k). Then T/X is a uniformizer

of WF(k). Unless otherwise mentioned, k is algebraically closed in the sequel, and we

thus suppose that T is a uniformizer such that T σ = T .

Definition 1.2.6. An F -crystal (M,Φ) with RM by F is a free module M of finite

rank over WF(k) equipped with a σ-linear injective map Φ : M −→M such that

M/ΦM has finite length as a WF-module.

Since we are interested in p-divisible groups, it is useful to introduce Dieudonné

modules, which give a full subcategory of the category of F -crystals, anti-equivalent

to the category of p-divisible groups ([18]). This anti-equivalence holds with additional

structure e.g., RM, by functoriality of the construction.

Definition 1.2.7. • The ring E = WF(k)[F, V ] is the ring of non-commutative

polynomials of the form

w +
n∑

r=1

arF
r +

m∑

s=1

bsV
s, w, ar, bs ∈ WF(k),

satisfying the multiplication rules :

V F = FV = p, Fw = wσF, wV = V wσ.
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• The ring Êk is:

WF(k)((F )) =

{ ∑

i>−∞
aiF

i, ai ∈ WF(k), Fa = aσF, a ∈ WF(k)

}
.

• The ring Ek is defined to be the subring WF(k)[[F ]] ⊂ Êk. Note that Êk is the

localization of Ek at (F ).

Remark 1.2.8. The letter F (resp. V ) stands for Frobenius (resp. Verschiebung).

Definition 1.2.9. A Dieudonné module D is a left WF(k)[F, V ]-module free of

finite rank over WF(k) with the condition that D/FD has finite length.

Remark 1.2.10. A Dieudonné module M is closed under Frobenius and Verschiebung

i.e., FM ⊆ M , and VM ⊆ M . These conditions imply that the slopes of M (i.e., of

the associated F -isocrystal) are ≥ 0 (respectively, ≤ 1) (cf. [66, §4, p. 34]).

An F -crystal M with RM can be viewed as a WF(k)[F ]-module, where F acts

Frobenius-linearly. If F is topologically nilpotent e.g., ∩i≥0F
iM = 0, M can be viewed

as an Ek-module, and reciprocally, any Ek-module M free of finite rank over WF(k)

with M/FM of finite length can be viewed as an F -crystal with RM on which F is

topologically nilpotent.

A Dieudonné module M is free of finite rank over WF(k), hence (M,F ) is always an

F -crystal, but an F -crystal (M,F ) is a Dieudonné module if and only if pM ⊂ FM

(so that Verschiebung is defined as the map V := F−1p : M −→M).

Proposition 1.2.11. (Fitting’s Lemma, [64, §VI 5.7-5.8, p. 180]) A crystal (M,F )

with RM is decomposable uniquely in a direct sum:

M = Metale ⊕Mlocal,

where Metale is a crystal with RM on which F is an isomorphism, and Mlocal is a

crystal with RM on which F is topologically nilpotent.
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Proof. Let n ∈ N. We will prove things mod T n. Let (M/T nM,F ) be the reduced

crystal. Since k is perfect, for all m ∈ N, Im(Fm) is a WF(k)/T
nWF(k)-submodule of

M/T nM . Since the latter is of finite length, for m big enough, the following equalities

hold :

(M/T nM)local :=
⋃

i≥0

kerF i = kerFm and (M/T nM)etale :=
⋂

i≥0

ImF i = ImFm,

andM/T nM = (M/T nM)local⊕(M/T nM)etale since M/T nM is a finite length WF(k)-

module (cf. [41, Lem., p. 39]). We then define Mlocal = lim
←−

(M/T nM)local and

Metale = lim
←−

(M/T nM)etale.

Similarly, we can replace F by V in the statement of Fitting’s Lemma for F -crystals,

and we obtain the following decomposition for any Dieudonné module D:

D = Detale,etale ⊕ Detale,local ⊕ Dlocal,etale ⊕ Dlocal,local.

However, Detale,etale = 0, for if F and V are both isomorphisms on a Dieudonné

module D′, then FVD′ = pD′ = D′, and thus D′/pD′ = 0, and since rkk(D′/pD′) =

g · rkWF(k)D′, if follows that D′ = 0). Also, there is a duality functor called Cartier

duality which in particular switches Frobenius and Verschiebung ([41]); Cartier du-

ality establishes an equivalence of categories between the category of local-étale

Dieudonné modules and the category of étale-local Dieudonné modules. Thus, to

classify Dieudonné modules, it suffices to classify all local Dieudonné modules. Since

the category of local F -crystals with RM is equivalent to the category of Ek-modules,

it suffices to classify Ek-modules. This is the content of the next section.
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1.3 Classification up to isomorphism

We go over Manin’s arguments and establish the classification of Dieudonné mod-

ules up to isomorphism. Only trivial technical modifications are applied to Manin’s

original ideas. Our goal in Subsections 3.1 to 3.5 is to convince the reader that this

is indeed the case. To this end, we highly recommend that the reader keep a copy

of [66, §III] at hand, since we do not reproduce Manin’s proofs in their entirety. As

noted earlier, even though the statements of Theorems, Lemmas, Corollaries involve

general Dieudonné modules, the proofs (especially those quoted from [66]) are written

for local Dieudonné modules, i.e. Ek-modules.

In the classification up to isomorphism of Dieudonné modules, we suppose that:

• the field k is algebraically closed;

• the field F is a totally ramified extension of Qp.

1.3.1 Overview of Manin’s classification in the totally rami-

fied case

Let k be algebraically closed, and let F be a totally ramified extension of Qp. The

main tools that appear in Manin’s classification are two finiteness theorems and some

algebro-geometric classifying spaces. The key idea behind the Finiteness Theorems

is the concept of a special module, a concept we define below; a crucial fact is that

every module has a unique maximal special submodule, of finite colength. Here are

the results we establish below.

Definition 1.3.1. Two Dieudonné modules M1,M2 are isogenous if there is an

injective homomorphism φ : M1 ↪→ M2 such that M2/φ(M1) has finite length over

WF(k). If M1 is isogenous to M2, we write: M1 ∼ M2.
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Remark 1.3.2. Since k is algebraically closed, the isogeny class of a Dieudonné module

is uniquely determined by the associated isocrystal. Isogeny is an equivalence relation.

Theorem 1.3.3. (First Finiteness Theorem) Let M be a Dieudonné module. There

exists only a finite number of non-isomorphic special modules isogenous to M .

Theorem 1.3.4. (Second Finiteness Theorem) Let M be a Dieudonné module. The

module M has a maximal special submodule M0. The length [M : M0] is bounded

uniformly in the isogeny class of M .

Theorem 1.3.5. (Classification Theorem) Let k be an algebraically closed field. A

Dieudonné module M is determined by the following collection of invariants:

• the system of non-negative integers (mi, ni, qi) which defines the isogeny class

of M :

M ∼ ⊕iE/E(Fmi − T qiV ni).

The numbers gni+q
g(mi+ni)

are the slopes of M , thus the restriction

(mi + ni, gni + qi) = 1.

The triples (mi, ni, qi) are uniquely defined from the slopes by the condition

0 ≤ qi < g, and the condition on slopes 0 ≤ gni+q
g(mi+ni)

≤ 1 (arising from the fact

that M is a Dieudonné module) implies that qi, ni are nonnegative and mi > 0;

• the maximal special submodule M0 ⊂M (parametrized by discrete invariants);

• a Γ(M0, H)-orbit of a point corresponding to M in a constructible algebraic set

A(M0, H), where H is a nonnegative integer that depends only on (mi, ni, qi),

A(M0, H) and Γ(M0, H) depend only on M0 and H, and Γ(M0, H) is a finite

group.

Two E-modules are isomorphic if and only if all these invariants coincide.
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We explain how the decomposition M ∼ ⊕iE/E(Fmi − T qiV ni) is equivalent to the

Dieudonné-Manin decomposition.

Note that V := pF−1, so E/E(Fm− T qV n) ∼ E/E(Fm− T q(pF−1)n). Moreover, by

[66, Lem. 2.5],

E/E(Fm − T q(pF−1)n) ∼ E/E(Fm − F−nT gn+q) ∼ E/E(Fm+n − T gn+q),

hence the condition (m + n, gn + q) = 1. Note that the rank of M over WF(k) is
∑

i(mi + ni). We show how to find the system of triples of integers starting from the

Dieudonné-Manin classification. Without loss of generality, suppose

M ∼ E/E(F r − T s), (r, s) = 1,

and r, s > 0. Define q such that q = s mod g, 0 ≤ q < g and define n := s−q
g

. The

integer m is defined as r − n.

Remark 1.3.6. The spaces arising in the classification up to isomorphism are quite

amenable to study. In particular, the dimensions of their components are often easy

to determine.

1.3.2 Special modules

Definition 1.3.7. ([66, §2, p. 37]) Let M be a local Dieudonné module.

An Ek-submodule M ′ of MF := Êk ⊗Ek M is dense if its localization M ′
F is MF .

Lemma 1.3.8. An Ek-module M ′ is isogenous to an Ek-module M if and only if it

is isomorphic to a dense Ek-submodule of MF .

Proof. [66, Lem. 3.1].

We henceforth classify dense submodules of MF .

Lemma 1.3.9. ([66, Lem. 3.2]) Let M = ⊕iE/E(Fmi − T qiV ni). An Ek-submodule

M ′ of MF is dense if and only if its rank, as WF(k)-module, is
∑

i(mi + ni).



16 Dieudonné modules

Proof. Clear, because the rank of M is
∑

i(mi + ni).

Corollary 1.3.10. Dieudonné modules that are isogenous have the same rank.

Definition 1.3.11. • An isoclinic module M of type (m,n, q) is a Dieudonné

module M isogenous to r · E/E(Fm − T qV n), (gn+ q,m+ n) = 1, r ∈ N.

• An isoclinic module M of type (m,n, q) is said to be special if FmM = T qV nM .

An arbitrary Dieudonné module M is said to be special if M ∼= M1⊕· · ·⊕M`,

where Mi, 1 ≤ i ≤ `, are maximal isoclinic special submodules of M .

N.B. Manin calls isoclinic modules homogenous.

Example 1.3.12. The module ⊕iE/E(Fmi − T qiV ni) is special. It suffices to check

the claim on isoclinic components. Consider M = E/E(Fm − T qV n). A basis of the

module M is given by 1, F, F 2, . . . , Fm+n−1. Let x =
∑m+n−1

i=0 aiF
i, for ai ∈ WF(k).

Then

Fmx =
m+n−1∑

i=0

aσ
m

i FmF i =
m+n−1∑

i=0

aσ
m

i T qV nF i = T qV n
m+n−1∑

i=0

aσ
m+n

i F i,

i.e., for any x ∈ M , there exists y ∈ M such that Fmx = T qV ny, and reciprocally.

Thus, FmM = T qV nM .

Definition 1.3.13. Let M be an isoclinic module of type (m,n, q). An element

x ∈M is said to be special if Fmx = T qV nx.

Example 1.3.14. The module ⊕iE/E(Fmi − T qiV ni) is special, but not all its el-

ements are special. E.g., if x is special in E/E(Fm − T qV n), then λx is special if

Fm(λx) = T qV n(λx), that is, if and only if λσ
m

Fmx = λσ
−n

T qV nx, or λσ
m

= λσ
−n

since Fmx = T qV nx. Succinctly, λσ
m+n

= λ i.e., λ ∈ WF(Fpm+n).

Lemma 1.3.15. ([66, Lem. 3.3]) A isoclinic module M of type (m,n, q) is special if

and only if as a WF(k)-module, it has a basis consisting of special elements (called a

special basis) i.e., elements x1, . . . , xm+n such that Fmxi = T qV nxi for all i.
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Proof. (Sketch) The proof in Manin is terse; we make explicit his reference to a result

of Fitting. Incidentally, the proof shows that a non-trivial Dieudonné module M such

that FmM = T qV nM is necessarily isoclinic of type (m,n, q). Manin’s proof first

proceeds to show in a one-line computation that if the module M has a special basis,

then it is special. Conversely, from an isoclinic special module with an arbitrary free

WF-basis, it is possible to construct a special basis by using Fitting’s result applied

to the operator T−qV −nFm, which induces a σm+n-semilinear automorphism on the

k-vector space M/pM . Fitting’s Lemma thus shows that there is a basis x
(1)
i such

that T−qV −nFmx
(1)
i = x

(1)
i mod p. The rest of the proof shows that we can find

compatible elements x
(r)
i such that T−qV −nFmx

(r)
i = x

(r)
i mod pr for all r.

Lemma 1.3.16. (Fitting) Let k be an algebraically closed field of characteristic p,

and let V a k-vector space of dimension n. Let q = pa, for some a ∈ Z\0 and

φ : V −→ V an additive bijection such that for all λ ∈ k, for all v ∈ V, we have

φ(λv) = λqφ(v). Then there exists a base (e1, . . . , en) of V such that φ(ei) = ei ∀i.

Proof. Without loss of generality, we may suppose that a > 0. We first claim there is

a w ∈ V\{0} such that φ(w) = w. Let 0 6= v ∈ V, and r ∈ N∗ be the biggest integer

such that (v, φ(v), . . . , φr−1(v)) is free. There exist αi ∈ k such that

φr(v) =

r−1∑

i=0

αiφ
i(v).

For x = (x1, . . . , xn) ∈ kn, let w = w(x) =
∑r−1

i=0 xiφ
i(v). We solve for φ(w) = w. We

reduce this to solving a single equation:

φ(w) =

r−2∑

i=0

xqiφ
i+1(v) + xqr−1

r−1∑

i=0

αiφ
i(v) =

r−1∑

i=0

xiφ
i(v) = w.
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We obtain a linear system by equating terms:

α0x
q
r−1 = x0

xq0 + α1x
q
r−1 = x1

· · ·

xqr−2 + αr−1x
q
r−1 = xr−1

If we combine all equations into one, we obtain :

xr−1 = αq
r−1

0 xq
r

r−1 + · · ·+ αr−1.

Since this equation is non-trivial (there is an i such that αi 6= 0 and q > 0) and the

field k is algebraically closed, there is a non-trivial solution, and thus φ(w) = w. Let

(e1, . . . , er) be a system of linearly independant vectors such that for all i, φ(ei) = ei.

Consider the subspace W ⊂ V generated by all these vectors. If W 6= V, it follows

from our previous claim that there exists f ∈ V\W such that π(f) ∈ V/W, (where

π : V � V/W is the projection), and π(f) is fixed under π(φ). This means that there

are βi such that

φ(f) = f +
r∑

i=1

βiei.

Just put er+1 = f +
∑r

i=1 yiei for some variables yi ∈ k. Again, we solve the equation

φ(er+1) = er+1 in the variables yi, e.g. we solve

er+1 +
r∑

i=1

(βi + yqi )ei = er+1 +
r∑

i=1

yiei,

which is possible, since for all i, yqi − yi = −βi has a solution (k being algebraically

closed).

Theorem 1.3.17. ([66, Thm. 3.1, p. 39]) Let M be a Dieudonné module. Then

among the special submodules of M there exists a unique maximal one, M0 ⊂ M .

The factor module M/M0 is of finite length.
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Proof. The maximal special submodule is obtained as a direct sum of isoclinic special

submodules, and the proof is the same as in [66, Thm. 3.1].

1.3.3 The First Finiteness Theorem

We define the cyclic local algebra Em,n,q we use in the proof of the First Finiteness

Theorem. We denote by KF(Fpm+n) the subfield of KF fixed under σm+n. With this

notation, KF(Fp) = F.

Definition 1.3.18. Let m,n, q be non-negative integers such that 0 ≤ q < g and

gn+q
g(m+n)

, is the slope of an isosimple Dieudonné module (i.e., (m + n, gn + q) = 1,

and 0 ≤ gn+q
g(m+n)

≤ 1). Let Em,n,q be the associative WF(Fpm+n)-algebra (with unit)

generated by θ such that

θm+n = T, θα = ασ
−b

θ, α ∈ WF(Fpm+n),

where b is such that −b(gn + q) = 1 mod m + n.

Note that the center of Em,n,q is OF, the ring of integers of F: since −b is a unit

modulo m + n, ασ
−b

= α implies that ασ
−b(gn+q)

= ασ
1+a(m+n)

= ασ = α, and thus

α ∈ OF.

Let Km,n,q := Em,n,q ⊗ Q. It is a division algebra: let x =
∑m+n−1

i=0 ai ⊗ θi be a

right zero divisor. By multiplying by suitable powers of T and θ, we can suppose

that ai ∈ WF(Fpm+n), and a0 6∈ TWF(Fpm+n), up to relabeling. The matrix of right

multiplication by X in the basis 1, . . . , θm+n−1 is (write τ for σ−b) :



a0 a1 · · · am+n−1

Taτm+n−1 aτ0 · · · aτm+n−2

· · · · · · · · · · · ·

Taτ
m+n−1

1 aτ
m+n−1

m+n−1 · · · aτ
m+n−1

0



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Its determinant is congruent to a0a
τ
0 · · · · · aτ

m+n−1

0 = Norm(a0) mod T , which cannot

be zero, contradiction.

We introduce an isosimple module Mm,n,q which will be useful in the explicit

computation of modules spaces. Define:

Mm,n,q := WF(k)⊗WF(F
pm+n) Km,n,q.

Recall that T g = p · µ for some µ ∈ WF(k)
× from the discussion following the

Dieudonné-Manin classification (Theorem 1.2.4). The module Mm,n,q is a vector space

over KF, a right Km,n,q-module and has a E-module structure given by:

Fθi = θi+gn+q;

V θi = µθi+gm−q;

Tθi = θi+m+n,

bearing in mind that F is σ-linear on WF(Fpm+n) and V is σ−1-linear on WF(Fpm+n).

The relation V θi = µθi+gm−q actually follows from the actions of F and T by using

the relations T g = µ · p and FV = p. Note that gm− q ≥ 0 since gn+q
g(m+n)

≤ 1 implies

that gn + q ≤ gm + gn. Note that FV = V F = p, with the above relations, is

equivalent to the equality µ = µσ because we picked our uniformizer T such that

T σ = T , and T g = µ · p implies that µ = µσ.

Lemma 1.3.19. ([66, Lem. 3.5])

• The module Mm,n,q is isogenous to E/E(Fm+n − T gn+q).

• Any non-zero finitely generated E-submodule of Mm,n,q is dense.

Proof. • Since Fm+nθi = θi+(gn+q)(m+n), and T gn+qθi = θi+(m+n)(gn+q), the result

follows from the relation: Fm+nθi = T gn+qθi and the fact that both modules

have the same rank m + n.
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• The second statement follows from the fact that Mm,n,q is isosimple.

Lemma 1.3.20. Let T ⊂ WF(k) be a multiplicative system of representatives for the

field k such that 0 ∈ T. Any x ∈Mm,n,q can be uniquely expressed as:

x =
∑

i>−∞
εiθ

i, εi ∈ T.

In this notation, the element x is special if and only if εσ
m+n

i = εi.

Proof. [66, Lem. 3.6]. In particular, the condition of x to be special is that

F−mT qV nx = x,

i.e.,
∑
εiθ

i =
∑
εσ

−m−n

i θi, since m(gn+q)−n(gm−q) = q(m+n), hence the equality

εσ
m+n

i = εi.

Lemma 1.3.21. One has

AutcEk
(Mm,n,q) = K×m,n,q,

where the action of K×m,n,q is given by multiplication on the right. In particular, an

automorphism of Mm,n,q leaving all special elements fixed is the identity.

Proof. As in the proof of [66, Lem. 3.7], it is enough to check this on α = εθj 6= 0,

ε ∈ T ∩WF(Fpm+n). Then we have:

F
(
(
∑

i

aiθ
i)εθj

)
= F

( ∑

i

aiε
σ−biθi+j

)
=

∑

i

aσi ε
σ−bi+1

θi+j+gn+q.

On the other hand,

(
F (

∑

i

aiθ
i)
)
εθj = (

∑

i

aσi θ
i+gn+q)εθj =

∑

i

aσi ε
σ−b(i+gn+q)

θi+j+gn+q.

Since −b(gn+ q) = 1 modulo m + n, the assertion follows.
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The following discussion follows closely [66, §§2, p. 47]. Let M be a module isogenous

to a simple module of slope (m+ n, gn+ q). We embed M in WF(k)⊗Kn,m,q. Every

element x of M can be written in the form x =
∑

i>−∞ εiθ
i. Let us put ν(x) to be

the minimal i such that εi 6= 0. We choose an element x =
∑

i≥i0 εiθ
i for which

i0 = ν(x) has the least possible value (for the given embedding), and consider a

new embedding M −→MF for which 1 +
∑

i>0 ηiθ
i ∈ M (this is the composition

M
ψ−→MF

φ−→MF , where φ is right multiplication by θ−i0 ∈ Km,n,q and ψ is the

original embedding). We identify M with its image under this embedding. Then M

is included in the submodule WF(k)⊗Em,n,q and contains an element congruent to 1

mod WF(k)⊗ Em,n,qθ.
We define:

J = J(M) = {ν(x)|x ∈M}.

It is a set of non-negative integers containing 0. It is easy to see that ν(Fx) =

ν(x) + gn + q, ν(V x) = ν(x) + gm − q, ν(Tx) = ν(x) + m + n. Thus, the set J is

invariant under translations of the form

a(gn+ q) + b(gm− q) + c(m + n), a, b, c ≥ 0.

Since (gn + q,m + n) = 1, N\J is finite: clearly, from [66, Lem. 3.8], every integer

N ≥ (gn+ q − 1)(m+ n− 1) is in J .

Example 1.3.22. We list the possible sets J that can arise for g = 4 and rank 2

modules under the condition that (gn+ q,m+ n) = 1.

m = 2, n = 0 m = 1, n = 1

q = 1 ∅ ∅, {1}

q = 3 ∅, {1} ∅

We now give a nice description of isosimple modules.
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Lemma 1.3.23. ([66, Lem. 3.9]) Let M be an isosimple module of type (m,n, q),

with (gn+ q,m+ n) = 1. Consider the finite set of integers J(M) = N\J(M).

1. The set J does not depend on the choice of the embedding and is an invari-

ant of the module M (N.B. we restrict ourselves to embeddings that satisfy

min{ν(x)|x ∈M} = 0).

2. For the given embedding M ↪→ WF(k)⊗Em,n,q, the module M contains a system

of elements of the form:

zji = θji +
∑

k∈J,k>ji

εikθ
k, εik ∈ T,

where T is a multiplicative system of representatives for k. Here ji runs over

all numbers of J such that

ji − (gn+ q), ji − (gm− q), ji − (m+ n) ∈ J.

The system {zji} is uniquely determined and coincides with a minimal gener-

ating set of the E-module M . It will be called a standard system.

3. The module M is special if and only if all elements zji are special.

Proof. We follow the proof of [66, Lem. 3.9] very closely.

1. By Proposition 1.3.21, any embedding M ↪→ WF(k)⊗Em,n,q containing x such

that ν(x) = miny∈M ν(y) = 0, differs from another such embedding by right

multiplication by a unit in Em,n,q i.e., an element of valuation zero, for which

{ν(y), y ∈M} is invariant.

2. As in Manin, one constructs such a system by choosing at the j-th step, j ∈ J ,

any element z′ ∈M of the form z′ = θj +
∑

i>j εijθ
i and then putting:

zj = 0 if j ∈ ∪jk<j{jk + a(gn+ q) + b(gm− q) + c(m + n)},
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zj = z′j −
∑

i∈J
ηijz

′
i, if j /∈ ∪jk<j{jk + a(gn+ q) + b(gm− q) + c(m+ n)},

where the elements ηij ∈ WF(k) are chosen so that the decomposition of the

element zj has the form given in the lemma i.e., εik ∈ T, the multiplicative

system of representative fixed earlier, which is always possible by multiplying

ηij by a suitable unit. Let us show now that the elements zj form a minimal

generating system of the Ek-module M . In fact, from the equality

J = ∪i{ji + a(gn+ q) + b(gm− q) + c(m+ n)},

it follows that M =
∑

iEzji. The minimal number of generators of M agrees

with the dimension of the k-linear space M/(FM+VM+TM), by Nakayama’s

Lemma. But the images of zji in this linear space are linearly independant,

because the leading coefficients θji are all different by construction. Since the

zji generate M , it follows that they form a minimal system.

The same argument as in Manin gives the uniqueness of the system {zji} as

well as statement (3).

Corollary 1.3.24. (First Finiteness Theorem for isosimple modules, [66, Cor. 1, p.

48]) There exists only a finite number of non-isomorphic special modules isogenous

to a fixed simple module.

Proof. As in Manin, one notes that by Lemma 1.3.23, every such M is determined by

its standard system {zji}, where the condition that M is special implies that coeffi-

cients εik ∈ T ∩WF(Fpm+n) that occur in the standard system, satisfy the conditions

εσ
m+n

ik = εik. The number of coefficients in such a collection is finite, and this implies

that the number of non-isomorphic special modules isogenous to E/E(Fm − T qV n)

is finite.



1.3 Classification up to isomorphism 25

Manin gives a reformulation of the description of special isosimple modules in more

classical terms. The (non-principal) order E0
m,n,q is defined as

WF(Fpm+n)[θgn+q, θgm−q] ⊂ Em,n,q.

Theorem 1.3.25. ([66, Thm. 3.6, p. 50]) The isomorphism classes of special

modules of type (m,n, q) can be put into one-to-one correspondence with the classes

of (fractional left) ideals of the order E0
m,n,q.

Proof. Put Wm,n := WF(Fpm+n). There is a correspondence between the special mod-

ules M ⊂ WF(k) ⊗ Km,n,q and the sets Ms of special elements in M via picking a

special basis of M . By Lemma 1.3.20, the set Ms is actually a Wm,n[F, V ]-submodule

of M and, moreover, Fm − T qV n belongs to the annihilator of Ms. Hence there is a

natural left Wm,n[F, V ]/Wm,n[F, V ](Fm − T qV n)-module structure on Ms. The ring

Wm,n[F, V ]/Wm,n[F, V ](Fm − T qV n)

is isomorphic to the order E0
m,n,q, by the map:

F 7→ θgn+q, V 7→ θgm−q,

hence M corresponds to the E0
m,n,q-ideal Ms. We have supposed that M embeds

into WF(k) ⊗ Km,n,q under a given embedding. Any other embedding of M in

WF(k)⊗Km,n,q differs from the one chosen only by right multiplication by an element

α ∈ Km,n,q, which maps special elements to special elements since α ∈ Aut(Mm,n,q) =

K×m,n,q commutes with F and V . Finally, we can reconstruct an E-module M uniquely

(up to isomorphism) from the E0
m,n,q-module Ms, again by picking a special basis of

Ms and letting M be the W (k)-module generated by this special basis.

Lemma 1.3.26. (First Finiteness Theorem for isoclinic modules) Let

M ∼ r · E/E(Fm − T qV n)

be a special E-module and Ms the left E0
m,n-module of its special elements.
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• The module Ms is isomorphic to a certain E0
m,n,q-submodule of a free Em,n,q-

module M ′s of rank r, containing a generating system (x1, · · · , xr) of M ′s as a

Em,n,q-module.

• Any E0
m,n,q-submodule Ms of M ′s containing the system (x1, · · · , xr) possesses

over E0
m,n,q a system of generators of the form

r∑

i=1

xi

cm,n,q∑

j=0

εijθ
j, εij ∈ T ∩WF(Fpm+n),

where cm,n,q is the biggest number not representable as a sum

a(gn+ q) + b(gm− q) + c(m+ n),

with a, b, c ≥ 0, or 0.

Proof. Same proof as in [66, Lem. 3.10, p. 51].

• We take M ′
s := Em,n,q ⊗Ms. M

′
s is clearly free of rank r. The map

Ms −→ En,m ⊗Ms, m 7→ 1⊗m,

yields the required isomorphism.

• For any N > cm,n,q, we have xiθ
N ∈ Ms for all i = 1, . . . , r, by definition of

cm,n,q. Pick any generating system, and write its elements in the form :

r∑

i=1

xi

∞∑

j=0

εijθ
j, εij ∈ T ∩WF(Fpm+n),

removing terms in θj, j > cm,n,q since they already are in Ms.

Corollary 1.3.27. (First Finiteness Theorem) Let M be a Dieudonné module. There

exist only a finite number of non-isomorphic special modules isogenous to M .
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Proof. This follows from the definition of a special module: a special module is

the sum of its maximal isoclinic special modules. Up to replacing M by an isoge-

nous Dieudonné module, we can decompose it in a finite sum of isoclinic compo-

nents M = ⊕tMt of pairwise different slopes. Then by the First Finiteness Theo-

rem for isoclinic modules, every isoclinic component Mt admits only finitely many

non-isomorphic special modules isogenous to it. It is thus clear that the number of

non-isomorphic special modules isogenous to M is also finite.

1.3.4 Second finiteness theorem

Theorem 1.3.28. Let M be a Dieudonné module. Let M0 be its maximal special

module. Then F tM ⊂M0 holds, for some t ∈ N depending only on the isogeny class

of M .

Proof. See the proof of [66, §6, Thm. 3.8].

1.3.5 The algebraic structure on the module space

We follow [66, Chapter III, §3] very closely. For a reference on the general theory of

ramified Witt vectors, see [45].

Definition 1.3.29. Let M be a Dieudonné module. Let M belong to M0 if the

maximal special submodule of M is isomorphic to M0.

Remark 1.3.30. The module M belonging to M0 can be realized as a dense submodule

of (M0)F containing M0. There exists h, g ∈ N such that

M0 ⊂M ⊂ T−hM0 and M0 ⊂M ⊂ F−gM0.

Definition 1.3.31. The T -height of x ∈MF over the dense submodule M ′ of MF is

the least integer h such that T hx ∈ M ′. The T -height of a module M ′′ ⊃ M ′ is the

maximum of the T -heights of the elements of M ′′ over M ′.
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Theorem 1.3.32. ([66, Thm. 3.2]) There is a bijection between on one hand: the

E-modules M such that M belongs to M0 and M satisfies

M0 ⊂M ⊂ T−hM0 (1.3.1)

and on the other hand : a certain constructible algebraic set A(M0, h) defined over k,

i.e. a finite union of subsets of projective space that are locally closed in the Zariski

topology.

Remark 1.3.33. In view of the Second Finiteness Theorem, we can take h big enough

to get all modules M belonging to M0.

Proof. The strategy of Manin’s proof is outlined as follows :

• Parametrize all WF(k)-modules satisfying Equation 1.3.1.

• Cut out algebraically the Ek-modules.

• Cut out algebraically the points not belonging precisely to M0 (i.e. having too

many special elements) to get the final constructible algebraic set.

We begin the proof per se:

• Parametrize all WF(k)-modules satisfying Equation 1.3.1

Definition 1.3.34. Let M0 ⊂ M ⊂ T−hM0 be a WF(k)-module. There exists

a WF(k)-basis (x1, . . . , xN ) of M0 such that

(T−e1x1, . . . , T
−eNxn), 0 ≤ e1 ≤ e2 ≤ · · · ≤ eN ≤ h,

is a WF(k)-basis for M . We call the string of integers

i(M0,M) = e = (e1, . . . , eN),

the e-index of M .
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The index defines the module M uniquely; note that we only used the WF(k)-

module structure.

Any module satisfying Equation 1.3.1 is completely determined by its image in

T−hM0/M0 under the homomorphism

M −→M/M0 −→ T−hM0/M0.

We check that the group of automorphisms of T−hM0/M0 is defined over k. The

trick is to replace h by gh (we bring back the whole set-up to truncated Witt

vectors Wh(k) = W (k)/phW (k)), and note that :

WF(k) ∼= ⊕gi=1W (k) as W (k)-modules ;

WF(k)/p
kWF(k) ∼= ⊕gi=1Wh(k) as W (k)-modules,

where Wh(k) are the Witt vectors of length h. Note that T−hM0/M0 is a free

module (of rank N , say) over WF(k)/phWF(k).

Lemma 1.3.35. The group of automorphisms of T−hM0/M0 is:

Gk := (MN (WF(k)/p
hWF(k))

× ∼= (MN (⊕gi=1Wh(k))
×

∼= GLN(Wh(k))⊕gi=2 MN (Wh(k)),

where MN represents the N -by-N matrices.

Proof. This follows from the formulae defining the multiplication of Witt vec-

tors: The units in the Witt vectors W (k) are the elements w = (w1, w2, . . . , )

whose first coefficient w1 is non-zero, and the similar statement holds for the

truncated Witt vectors. Since the multiplication of f and h for f = (f1, f2, . . . , fg)

and h = (h1, h2, . . . , hg) in WF(k) is f ·h = (P1(f, h) = f1h1, P2(f, h), . . . , Pg(f, h)),

for some polynomials Pi(x, y) ([45, Eq. 6.14, §6.7, p. 60]), we can pick the
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isomorphism WF(k) ∼= ⊕gi=1W (k) so that an element f ∈ WF(k) ∼= ⊕gi=1W (k) is

invertible if and only if the first coefficient f1 of f = (f1, f2, . . . , fg) is invertible.

Thus, a matrix D ∈ (MN (WF(k)/p
hWF(k))× with coefficients dij, 1 ≤ i, j ≤ N

will be invertible if and only if the matrix D1 whose entries are the coefficients

dij1 , 1 ≤ i, j ≤ N , is invertible i.e., D1 ∈ GLN(Wh(k)).

This group Gk is defined over k (since the composition law of Witt vectors

is defined over k), and its action on the space Ae of modules of index e is

transitive. The action of the group can be transferred to M as follows : let

M0 ⊂ M , g ∈ Gk. Fix a right action of Gk on the factor module T−hM0/M0;

then

Mg = {x|x mod M0 ∈ (M/M0)g}.

The same proof as in Manin’s paper show that the stabilizer G0 of the module

M of index e is closed in G. Consequence : Ae is the set of geometric points of

the homogeneous space of right cosets G/G0.

• Cut out algebraically the E-modules.

The module Mg is an E-module if F (Mg) ⊂ Mg;V (Mg) ⊂ Mg. Manin

translates these conditions into two morphisms φ1, φ2 from G to a closed variety

such that the set we are looking for is H = φ−1
1 (G0) ∩ φ−1

2 (G0), G0 closed.

The image of H under the projection G −→ G/G0 is a constructible algebraic

set whose geometric points are in one-to-one correspondence with the set of

E-modules M0 ⊂M of index e.

• Cut out, among the E-modules, those that belong to M0 only. A special

element x ∈ T−hM0 lies in M if and only if (x mod M0)g
−1 ∈ M/M0. But if

we see T−hM0/M0 as an affine variety over k,

φx : G −→ T−hM0/M0,



1.3 Classification up to isomorphism 31

g 7→ (x mod M0)g
−1,

is a morphism. Thence x ∈ Mg if and only if g ∈ φ−1
x (M/M0) = Fx, a closed

set. So we discard ∪x Fx, for x special, x ∈ T−hM0, x 6∈M0.

Lemma 1.3.36. ([66, Lem. 3.4]) The set ∪x Fx is closed, since the special

elements x ∈ T−hM0 belong to a finite number of cosets mod M0.

Proof. The cosets x mod (M0) of special elements are in bijection withN -tuples

(a1, . . . , aN), ai ∈ WF(k)/T hWF(k) such that aσ
m+n

i = T qai, and those N -tuples

are finite in number.

Summing up, we get a constructible algebraic set A(M0, h), but there are differ-

ent points on it that correspond to isomorphic E-modules. The next theorem

takes care of this.

Theorem 1.3.37. ([66, Thm. 3.3]) There exists a finite group of automor-

phisms Γ(M0, h) such that two points correspond to isomorphic Dieudonné

modules if and only if they are contained in the same the orbit relative to

Γ(M0, h).

Proof. We follow Manin’s proof. The group Γ = Aut(M0) acts on A(M0, h)

(it acts on Ae, and it maps A(M0, h) to A(M0, h), since the condition on the

module M0 is invariant under isomorphisms of M0). Let M ′,M ′′ ∈ A(M0, h)

be isomorphic modules. Any isomorphism M ′ −→M ′′ induces an isomorphism

of the corresponding special modules. Now M ′,M ′′′ have the same maximal

special submodule, namely M0, therefore any isomorphism induces a certain

automorphism of M0. Since any element of Γ that does not move the coset of

x mod M0 for all special elements x ∈ T−hM0, leaves all points of A(M0, h)

fixed. But the special elements x ∈ T−hM0 belong to a finite number of cosets
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mod M0. We can thus take Γ(M0, h) to be the permutation group (of cosets)

induced by the action of Γ, and it is clearly finite.

This finishes the proof of Theorem 1.3.32.

1.3.6 Superspecial Dieudonné modules with real multiplica-

tion

Let L be a totally real field of degree g. In this section, we show that the general

theory yields effective computations by counting the number of supersingular special

Dieudonné modules with RM. We call a supersingular special module a superspecial

module with RM by OL if it is a W (k)⊗OL-module. If pOL = pg, then W (k)⊗OL
is a totally ramified extension of W (k) of degree g i.e., F = Lp.

Corollary 1.3.38. The number of isomorphism classes of superspecial Dieudonné

modules with RM by OL of rank 2 over a totally ramified prime p = pg is

[g
2

]
+ 1.

Proof. This follows in a straightforward way from Lemmas 1.3.23 and 1.3.26: The

supersingular isocrystal has slope gn+q
g(m+n)

= 1
2
. We are looking at rank 2 modules (over

WF(k)), hence if g is odd, m+ n = 2, and it follows that gn+ q = g, hence

n = 1, q = 0 and m = 1,

and the supersingular isocrystal is given by the isosimple module E/E(F − V ). We

count the number of special crystals isogenous to E/E(F − V ) by looking at the

discrete invariants. The triplet {gm−q, gn+q,m+n} boils down to {g, 2}, hence for

g = 2k + 1, the sets J have the shape (1, 3, . . . , 2c− 1), where 0 ≤ c ≤ k (J is empty
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if c = 0): |J| ≤ g since g ∈ {g, 2}, and even integers are ruled out since 2 ∈ {g, 2}.
The complement of such a set is

Jc = {2a+ (2k + 1)b} ∪ {2c+ 1 + 2a+ (2k + 1)b}, a, b ≥ 0.

Recall that E0
1,1,0 = WF(Fp2)[θ

g], θ2 = T . By Lemma 1.3.23, the special submodule

M ⊂ WF(k) ⊗ E1,1,0 containing 1 is generated by the elements 1, θ2c+1 if the set

J(M) = {v(x)|x ∈M} coincides with Jc, and all the corresponding modules are non-

isomorphic. Note that the number of modules is precisely k + 1 = [g/2] + 1, so this

proves the classification theorem for g odd. If g is even, the isogeny class is given by the

non-simple module 2·E/E(F−T g

2 ), som = 1, n = 0, q = g
2
. What we need to conclude

is a computation-free application of Lemma 1.3.26: since E0
1,0,g/2 = WF(Fp)[θg/2],

θ = T , the generating system of the special module M as an E1,0,g/2-module can be

chosen to be {1, θc}, for 0 ≤ c ≤ g/2, since it depends only on the valuations of

the generators. According to Lemma 1.3.26, any E0
1,0,g/2-submodule of M ′s, the left

E0
1,0,g/2-module of special elements of M , is generated by a system of the form:

z1 = ε11 · 1 + ε12 · θc,

z2 = ε21 · 1 + ε22 · θc,

εcj ∈ T ∩ WF(Fp). By changing variables, we can suppose that z1 = 1, z2 = θc,

thence there is a unique superspecial crystal for every c, 0 ≤ c ≤ g/2. The number

of superspecial Dieudonné modules is uniformly [g/2] + 1 as claimed.

Definition 1.3.39. We define the superspecial Dieudonné module Mc as follows, for

c ∈ {0, . . . , [g/2]}:

Mc is generated by





{1, θ2c+1} if g is odd

{1, θc} if g is even
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Proposition 1.3.40. Supersingular special modules M are supersingular modules

M with maximal a-number a(M) = g (hence the name superspecial).

Proof. Recall that the a-number of a Dieudonné module M over W (k) is defined as

a(M) := dimkM/FM + VM . A supersingular special module M is supersingular

i.e., of slope 1
2

and special, therefore F ·M = V ·M and since the W (k)-rank of M is

2g, the a-number a(M) = dimkM/FM + VM = dimkM/FM = dimkM/VM = g,

since dimkM/FM + dimkM/VM = 2g. In other words, any supersingular special

module M is isomorphic to ⊕gi=1W (k)[F, V ]/(F − V ) as W (k)[F, V ]-module.

We postpone a proof and a discussion of the endomorphism orders of superspecial

crystals to Section 7 in Chapter II of this thesis, where we compute the orders of

superspecial points on Hilbert moduli spaces in the totally ramified case.

1.4 Traverso’s boundedness conjecture

In this section, we treat classical Dieudonné modules (without RM!). Traverso in his

1967 Pisa thesis [97] proved the following result:

Theorem 1.4.1. ([97]) Let k be an algebraically closed field of characteristic p. Let

M,N be two Dieudonné modules over W (k) of rank 2g. If M ∼= N mod pg
2+1, then

M ∼= N .

His work on a conjecture of Grothendieck led Traverso to speculate that much more

is true:

Conjecture 1.4.2. ([98]) Let k be an algebraically closed field of characteristic p.

Let M,N be two Dieudonné modules over W (k) of rank 2g. If M ∼= N mod pg, then

M ∼= N .

Traverso also showed that for any g, there are Dieudonné modules M , N of rank 2g

which are isomorphic modulo pg−1 but such that M 6∼= N ([98]).



1.4 Traverso’s boundedness conjecture 35

Remark 1.4.3. ([13, p.8]) Zink proved in a letter to Chai ([115]) the following trunca-

tion result: A crystal M over k is determined, up to non-unique isomorphisms, by its

quotient modulo pN , for some suitable N > 0, depending only on the height of the

module M and the maximum among the slopes of M .

An interesting test for Traverso’s conjecture is the supersingular isocrystal.

Lemma 1.4.4. ([74, Proof of Prop. 1.6]) Let D1 be determined by its truncation

modulo pn1 , up to isomorphism. Let D2 −→ D1 be a degree pn2 isogeny. Then D2 is

determined by its truncation modulo pn1+n2, up to isomorphism.

Minimal Dieudonné modules were first introduced by Manin ([66, p.45]): they are

isomorphic to direct sums of modules Mm,n, (m,n) = 1, that we defined in Section

1.3.3. There is thus a unique minimal module for each Newton polygon. A minimal

module is special, since Mm,n is special.

Example 1.4.5. The superspecial crystal is minimal.

Minimal modules were also used in [54, Section 5.3] and their key truncation property

was proved in [75].

Theorem 1.4.6. ([75, Thm. 1.2]) Let M,N be Dieudonné modules. Suppose that

the module M is minimal. If M/pM ∼= N/pN , then M ∼= N .

Corollary 1.4.7. Let D1 be a minimal Dieudonné module. Suppose that the minimal

degree of the isogeny between D2 and D1 is pn. Then D2 is determined by its truncation

modulo pn+1.

We proceed with the computation in the supersingular isocrystal case. The super-

special module, denoted M0, is the minimal supersingular module. We therefore only

want to bound the degree of the isogeny between an arbitrary supersingular crystal

and the superspecial crystal. To this end, we generalize [66, Theorem 3.15].
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Theorem 1.4.8. The Dieudonné modules isogenous to g ·E/E(Fm−V ), m ≥ 1 split

into m(g− 1) + 1 components. The indices are the m(g− 1) + 1 possibilities ranging

from (0, . . . , 0) to (0, . . . , 0, 1, . . . , 1) (with m(g − 1) repetitions of 1’s).

Proof. The analogue of [66, Lem. 3.14] holds: any module is isomorphic to a primitive

submodule whose F -height does not exceed m, and any primitive submodule whose

F -height h is small or equal than m admits a cyclic factor module M/M0, a generator

of which is given by the image of an element of the form:

z = θ−h1 +

g∑

j=2

h∑

i=1

εijθ
−i
j , εij ∈ T, ehj 6= 0 for all j,

where θj is the element θ ∈ Em,1 in the jth copy of Em,1. The rest of the proof follows

exactly as in [66, Thm. 3.15].

Corollary 1.4.9. Let m = 1. The crystal g · E/E(F − V ) is superspecial, and the

maximal index corresponds to isogenies of degree pg−1.

Corollary 1.4.10. Any supersingular crystal is determined up to isomorphism by

its truncation modulo pg.

Remark 1.4.11. This strengthens Traverso’s and Vasiu’s results ([97], [99, Prop.

3.4.1.1]) which gave the bound g2 + 1 (resp. g2).

1.5 Explicit computations of module spaces à la

Manin

We present in this subsection explicit computations of modules spaces: an infinite

family of non-supersingular Dieudonné modules (without RM), and the supersingular

isocrystal with RM.
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1.5.1 A family of non-supersingular Dieudonné modules

This example concerns classical Dieudonné modules i.e., F = Qp. Note that there is

only one special module in the isogeny class of M0 = E/E(F − V n)⊕E/E(F n− V ),

n ≥ 2 (the case n = 1 is covered in [66, Thm. 3.15]). Write it as:

M0 = W (k)⊗ E1,n ⊕W (k)⊗ En,1 = M01 ⊕M02.

We will consider modules M containing M0 and contained in:

M0F = W (k)⊗K1,n ⊕W (k)⊗Kn,1.

Any module isogenous to M0 is isomorphic to a module contained in M0F . We denote

the element θ ∈ E1,n (resp. θ ∈ En,1) by θ1 (resp. θ2). By height, we mean in this

example the F -height.

Lemma 1.5.1. Let M be isogenous to E/E(F − V n)⊕ E/E(F n − V ), n ≥ 2.

Let M be an E-module such that M0 ⊂ M ⊂ M0F . Then the height of M over M0

is smaller or equal to one. Moreover, M/M0 is cyclic, and a generator is given by the

image of an element of the form:

z = θ−1
1 + εθ−1

2 , ε 6= 0.

The module Ez +M0 belongs to the special submodule M0 and its index over M0 is

(0, · · · , 0, 1).

Proof. • The calculations are similar to the proof of [66, Lem. 3.13a]. Let x =

F−h1x1 + F−h2x2 ∈ M , x1 ∈ M01\FM01 ∪ 0, x2 ∈ M02\FM02 ∪ 0. We may

suppose that xi belong to a special basis of M0i. We also assume that M 6=
M0, x 6= 0 and h1h2 > 0. Then x2 6= 0, for otherwise EF−h1x1 would be a

special submodule of M not contained in M0, which is impossible, because M0

is maximal. Similarly, x1 6= 0. Further, h1 = h2 = h; for if h1 > h2, the element
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F h2x−x2 = F−h1+h2x ∈M generates a special submodule not contained in M0.

Similarly, we obtain a contradiction in the case where h1 < h2. Finally, h ≤ 1.

For if h > 1, then

V x = x′ + x′′, x′ ∈ (M01)F , x
′′ ∈ (M02)F ,

is such that x′′ ∈M02, but x′ ∈M01. Therefore x′ generates a special submodule

not contained in M0, which is impossible. One sees that h = 1 if and only if

x2 = V n−1y for some y 6∈ VM02.

• Same proof as in [66, Lem. 3.13b]

• The same argument as in [66, Lem. 3.13c] applies word for word, since valV (z) =

n− 1 for z of height 1.

Theorem 1.5.2. The modules isogenous to E/E(F − V n) ⊕ E/E(F n − V ) are

parametrized by A1.

Proof. The Dieudonné modules isogenous to E/E(F − V n) ⊕ E/E(F n − V ) split

into 2 components Ah, 0 ≤ h ≤ 1. The component Ah consists of modules having a

maximal special submodule of index (0, · · · , 0) if h = 0 (resp. (0, · · · , 0, 1) if h = 1).

The space A0 consists of one point, the special module itself, while A1 is isomorphic

to A1\{0}, since ε = 0 is excluded. The quotient of A1\{0} by the associated finite

group Γh is necessarily isomorphic to A1\{0}, since Γh is finite, and quotients of affine

varieties by finite groups are affine varieties. We then glue A0 and A1 in the obvious

way and we get A1, the affine line.

Theorem 1.5.3. Let M1,M2 be two modules isogenous to

E/E(F − V n)⊕ E/E(F n − V ).

Then M1/p
2M1

∼= M2/p
2M2 implies that M1

∼= M2.
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Proof. Note that the special module E/E(F −V n)⊕E/E(F n−V ) is minimal in the

sense of [75]. Oort has shown that a minimal Dieudonné module M can be identified

from its M/pM only. The index of any non-trivial module N over E/E(F − V n) ⊕
E/E(F n−V ) is p, thence there is an isogeny φ : N −→ E/E(F−V n)⊕E/E(F n−V )

of degree p, and so N is determined by N/p1+1N = N/p2N by Corollary 1.4.7.

Remark 1.5.4. This theorem recovers a result of Vasiu ([99, Prop. 3.4.4.1, p. 32]).

1.5.2 The supersingular isocrystal in the totally ramified case

Case I: g odd.

We follow [66, Thm. 3.12] to study the case g odd. Any supersingular module

is isogenous to the isosimple module E/E(F − V ). In Definition 1.3.39, we enumer-

ated all special modules Mc isogenous to E/E(F − V ) by giving the set of discrete

invariants Jc. By Lemma 1.3.23, any module over a special module corresponding to

the set Jc has two standard generators:

z1 = 1 +

h∑

k=1

ε2k−1θ
2k−1, z2 = θ2h+1,

where ε2k−1 ∈ T are determined by M . We define a number d, 0 ≤ d ≤ h, by the

conditions:

ε2k−1 ∈ WF(Fp2), k ≤ h− d,

ε2(h−d)+1 6∈ WF(Fp2).

Theorem 1.5.5. Let M be a module belonging to Mc. The following holds:

1. The T -height of M is at most [g/2] + 1.

2. The factor module M/Mc is generated by the coset of one element z, where

z = 1 +

d∑

k=1

ε2k−1θ
−(2k−1).
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3. The e-index of M (see Definition 1.3.34) is (0, d), for some d ≤ c ≤ [g/2].

4. The space Md
c of modules M of e-index (0, d) belonging to a fixed special module

Mc has dimension d and is isomorphic to the complement of the disjoint union

of p2 hyperplanes

εd = a, a ∈ Fp2.

Proof. This follows very closely the calculations of [66, Thm. 3.12, Thm.3.15].

Case II: g even.

For g even, any supersingular module is isogenous to 2E/E(F − T g

2 ). The space

of modules M belonging to a superspecial module Mc are always finite union of quasi-

affine varieties. We use the same notation as in Example 1.5.1 i.e., we label θi the

generator of the cyclic local algebra coming from the i-th copy of E/E(F − T g

2 ). A

submodule M , where Mc ⊂ M ⊂ Mc,F is called primitive if it does not contain θ−1
1

and θ−1
2 . Any module isogenous to Mc is isomorphic to a primitive submodule of Mc,F

([66, Lem. 3.14]).

Define the invariant d in the same fashion as in the g odd case.

Theorem 1.5.6. Let M be a module belonging to Mc. The following holds:

1. There is a primitive module M ′ isomorphic to M with T -height d ≤ g
2
.

2. The factor module M ′/Mc is generated by the coset of z, where

z = θ−d1 +

d∑

k=1

εkθ
−k
2 , ε ∈ T, εc 6= 0.

3. The index of M is (0, d), for some d ≤ c ≤ [g/2].

4. The space Md
c of modules M of index (0, d) belonging to a fixed special module

Mc has dimension d, and is isomorphic to the complement of the disjoint union

of p2 hyperplanes

εd = a, a ∈ Fp2.
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Proof. Same as in [66, Lem. 3.14, Thm. 3.15].

Corollary 1.5.7. There are infinitely many non-isomorphic supersingular Dieudonné

modules.

Remark 1.5.8. Cf. [1, Appendix].

1.6 Stratification(s) of the supersingular Newton

polygon stratum

In this section, we show that the stratification introduced by Andreatta-Goren in [1]

coincides with the stratification suggested by the decomposition of the moduli spaces

à la Manin at least on the supersingular Newton polygon stratum.

We recall briefly the definition of the stratification of [1]. Let p be a totally ramified

prime. Let A/k be a polarized abelian variety with RM, defined over a field k of

characteristic p. Fix an isomorphism OL ⊗Z k ∼= k[T ]/(T g). One knows that H1
dR(A)

is a free k[T ]/(T g)-module of rank 2, and there are two generators α and β such that:

H1(A,OA) = (T i)α + (T j)β, i ≥ j, i + j = g.

The index j = j(A) is called the singularity index. For perspective, recall the short

exact sequence:

0 −→ H0(A,Ω1
A) −→ H1

dR(A) −→ H1(A,OA) −→ 0.

These modules are Dieudonné modules of group schemes, and we rewrite this exact

sequence as:

0 −→ (k,Fr−1)⊗k D(Ker(Fr)) −→ D(A[p]) −→ D(Ker(Ver)) −→ 0.

The slope n = n(A) is defined by j(A) + n(A) = a(A), where a(A) is the a-number

of the abelian variety.
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The subsets W(j,n) parameterizing abelian varieties with singularity index j and

slope n are quasi-affine, locally closed and form a stratification ([1, Thm. 10.1],

[2, §6.1]).

Note that for any Dieudonné module M with RM of rank 2, we can define abstractly

j(M) and n(M) without any reference to abelian varieties i.e., j(M) = j is the integer

such that

T iα + T jβ = Ker(V : M/pM −→M/pM), i ≥ j,

for α, β some generators of M . The slope is n(M) := a(M)− j(M).

Remark 1.6.1. Here is our first main observation: Outside the supersingular locus, the

slope n defines the Newton polygon uniquely as {n
g
, g−n

g
}. For each non-supersingular

Newton polygon, there is a unique special module, given by

E/E(F − T n)⊕ E/E(F − T g−n).

In the visual representation of the stratification of [1, p.1829], this means that the

maximal special module is constant along diagonals i.e., it depends only on the slope

n. In the supersingular locus, the diagonal constancy of the maximal special modules

is also de rigueur, but we need more computations to establish it.

Remark 1.6.2. We present our second main observation: Consider the supersingular

Newton stratum. It decomposes in ([g/2]+1)·([g/2]+2)/2 strata indexed by the type

(j, n), n/g ≥ 1/2. Recall that for a fixed superspecial module Mc, the component

classifying modules of index (0, d) over the special module Mc is denoted by Md
c . The

explicit computations of the supersingular module spaces à la Manin carried out in

Section 1.5 indicate that the dimension of Md
c is the same as the dimension of the

stratum W(c−d,g−c) of type (i− d, g − i) i.e.,

dim Md
c = dim W(c−d,g−c).

Moreover, the components Md
c , like the corresponding strata W(c−d,g−c), are quasi-

affine by our explicit computations.
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Conjecture 1.6.3. Define Nd
c as the strata on the Hilbert moduli space such that

for A ∈ Nd
c , the Dieudonné module D(A) of A belongs to Md

c . Then the stratification

induced by the components Md
c coincide with the slope stratification {W(j,n)}j,n i.e.,

Nd
i = W(c−d,g−c).

Given the conjecture, we may draw the following conclusions:

Let M belong to Mc, Mc a superspecial Dieudonné module.

• The slope n of M depends only on the maximal special submodule Mc.

• The a-number of M depends only on the e-index i(Mc,M):

a(M) = a(Mc)− i(Mc,M).

We prove these conclusions independently, thus providing evidence for Conjecture

1.6.3 by settling it for the supersingular strata. The proofs consist in translating the

precise, explicit knowledge of the supersingular moduli spaces à la Manin in terms of

the invariants of [1]. We first prove that the a-number of a supersingular slope stratum

only depends on i(Mc,M). Recall that in the contravariant Dieudonné theory we are

using, an embedding αp ↪→ A[p∞] at the level of p-divisible groups corresponds to a

surjection D(A[p∞]) � D(αp) ∼= k.

Proposition 1.6.4. The a-number of the Dieudonné module M belonging to a fixed

superspecial moduleMc depends only on the index i(Mc,M) = (0, d) over this module:

a(M) = g − d.

Proof. Let M be a module belonging to Mc such that i(Mc,M) = (0, d). We use

the specific computations of Section 1.5. The a-number of M is, by definition,

dimkM/FM + VM . Since Mc is superspecial, dimkMc/FMc + VMc = g. Thence,

showing that a(M) = g − d is equivalent to showing that the e-index of FM + VM
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over FMc + VMc is (0, d) i.e., i(FMc + VMc, FM + VM) = (0, d). This is possible if

and only if d ≤ c ≤ [g/2].

Let g be odd.

F (1 +
d∑

k=1

ε2k−1θ
−(2k−1)) = θg +

d∑

k=1

εσ2k−1θ
−2k+1+g, F θ2c+1 = θ2c+1+g,

and

V (1 +

d∑

k=1

ε2k−1θ
−2k+1) = µ

{
θg +

d∑

k=1

εσ
−1

2k−1θ
−2k+1+g

}
, V θ2c+1 = µθ2c+1+g.

This implies that

FM+VM =< θg+

d∑

k=1

εσ2k−1θ
−2k+1+g, θ2c+1+g > + < θg+

d∑

k=1

εσ
−1

2k−1θ
−2k+1+g, θ2c+1+g >,

as we can ignore the unit µ by changing the generator (note the crucial difference in

the action of σ (resp. σ−1) for F (resp. V ). Of course,

FMc + VMc =< θg, θ2c+1+g > .

Since the second generator θ2c+1+g of FM and VM is the same as the second generator

of FMc+VMc, to compute the e-index of FM+VM over FMc+VMc, we only need to

inspect the coefficients of the first generators. Since εσ2d−1 6= εσ
−1

2d−1, the corresponding

coefficient in the generator of FM + VM is non-trivial, and this implies that the

e-index of FM + VM over FMc + VMc is (0, d), since for g odd, θ2 = T .

Let g be even. We exploit Theorem 1.5.6. Similarly to the g odd case, F acts by σ on

the coefficients εk ∈ T and by multiplication by θg/2 in the cyclic local algebra Mm,n,q,

and V acts by σ−1 on the coefficients εk ∈ T and by multiplication by µθg/2 in the

cyclic local algebra Mm,n,q, where θ = T . We can ignore µ as before by making the

obvious change of generator of VM . Since Mc = {1, θc}, FMc+VMc = {θg/2, θg/2+c}.
In the same way as in the g odd case, the e-index of FM + VM over FMc + VMc is

also clearly (0, d), and we are done.
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We provide the conversation to Proposition 1.3.40.

Corollary 1.6.5. A supersingular module M with a-number a(M) = g is special.

Proposition 1.6.6. Let M be a module belonging to Mc with e-index (0, d). Then

M has type (c− d, g − c).

Proof. The invariants j(M) and i(M) are computable modulo p. In particular,

g − j = min{m|TmH1(A,OA) = 0 mod p}.

Recall that H1(A,OA) ∼= H1
dR(A)/H0(A,Ω1

A), and, in terms of the contravariant

version of Dieudonné theory, H1(A,OA) = D(A[p])/V D(A[p]) = D(A[p])/D(A[p])[F ].

We can compute the singularity index j(M) by computing min{m|Tm(M/M [F ]) = 0

mod p} for any Dieudonné module M . We reduce the claim to the case of e-index

(0, d) = (0, 0). Fix an isomorphism M ∼= WF(k) ⊕ WF(k), such that Mc = Mc

mod p ∼= k[T ]/(T g)⊕ T dk[T ]/(T g). In this representation, it is obvious that j(Mc)−
d = j(M). We now show that

j(Mc) = c.

Suppose first that g is odd. Recall that in this case,

E0
1,1,0 = WF(Fp2)[θ

g], θ2 = T.

Recall that the superspecial module Mc is generated by < 1, θ2c+1 >. Therefore

θ2g−2c−1(M/VM) = 0, θ2g−2c−2(M/VM) 6= 0,

and so

T g−c(M/VM) = 0, T g−c−1(M/VM) 6= 0,

i.e., j(Mc) = c. Suppose now that g is even. Recall that in this case,

E0
1,0,g/2 = WF(Fp)[θ

g/2], θ = T,
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and Mc is generated by {1, θc}. Therefore,

θg−c(M/VM) = 0, θg−c−1(M/VM) 6= 0,

and since θ = T , j(Mc) = c.

Corollary 1.6.7. A supersingular module M of type (j, n) belongs to a maximal

special module of type (g − n, n).
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Chapter 2

Superspecial Abelian Varieties and

Theta Series

2.1 Introduction

Supersingular points on modular curves are highly significant in arithmetic geometry:

1) for the connection with modular forms via quaternion algebras, 2) for the geomet-

ric realization of the monodromy pairing (Picard-Lefschetz formula à la Grothendieck

([42, Exposé IX, Thm. 12.5])), 3) for the geometric analogue of the Jacquet-Langlands

correspondence ([86, Thm. 4.1]), etc. Polarized abelian varieties with real multiplica-

tion i.e., equipped with an action of the ring of integers OL of a totally real field L,

constitute a generalization of elliptic curves that carries a strong arithmetic flavour.

The algebraic stacks classifying these objects are called Hilbert moduli spaces and are

the main object of study of this chapter. Albeit our treatment does not do justice

to the depth of its topic, we lay the groundwork to some extent for all three aspects

mentioned above for superspecial points on Hilbert moduli spaces. Grosso modo, our

results can be viewed as geometric variations on the theme of trace formulae.

We describe the main features of this chapter in more details.
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Let h+(L) = 1. This implies that the abelian varieties under consideration are princi-

pally polarized. Our starting point is the investigation of the abelian variety E⊗ZOL,

where E is a supersingular elliptic curve. We show that its ring of endomorphisms

EndOL(E ⊗Z OL) is isomorphic to End(E) ⊗Z OL, a primitive order (in the sense

of Eichler) of level pOL. It turns out that, in general, the endomorphism ring of a

superspecial abelian variety A is of a particular type of Bass order that we call a

superspecial order.

Theorem:(cf. Theorem 2.5.27) Let p be unramified. Let A be a superspecial abelian

variety with RM. Then the order EndOL(A) is an Eichler order of level p.

The knowledge of the order EndOL(A) allows us to parameterize the set of super-

special points using the double cosets of the adelic points of a quaternionic group.

Theorem:(cf. Theorem 2.5.35) Let p be unramified. The left (resp. right) ideals

classes of EndOL(A) are in bijection with superspecial abelian varieties with RM.

Corollary:(cf. Corollary 2.5.36) Any superspecial order of level p arises as the en-

domorphism ring of a suitable superspecial abelian variety with RM.

Our next step is to consider the OL-module HomOL(A1, A2) of OL-homomorphisms

between two superspecial abelian varieties A1, A2. We equip HomOL(A1, A2) with the

structure of a quadratic module by defining a notion of OL-degree || − ||, which is

essentially the norm form of the quaternion algebra Bp,L := Bp,∞⊗L, hence a totally

definite positive quadratic form in four variables. This allows us to construct a theta

series of level p from the quadratic module M = (HomOL(A1, A2), || − ||), that is,

ΘM :=
∑

ν∈OL ] {m ∈M | ||m|| = ν} qν. From the bijection between left ideal classes

of a superspecial order of level p and the superspecial abelian varieties, it follows

that all theta series of level p coming from Bp,L arise from geometry. The Jacquet-

Langlands correspondence, translated in classical terms, implies that the space of

Hilbert modular newforms of weight 2 for Γ0(p) is thence spanned by the theta series

coming from superspecial abelian varieties with RM.
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Denote by X0(1)/Fp the Hilbert moduli space (à la Deligne-Pappas) with no level

structure in characteristic p. It has dimension [L : Q].

Main Theorem:Let h+(L) = 1, p unramified. The theta series attached to the

superspecial points of the Hilbert moduli space X0(1)/Fp span the vector space of

weight 2 Hilbert modular newforms of level Γ0(p).

We can view this theorem as a geometric version of Eichler’s Basis Problem for

Hilbert modular forms. We also study the case where the prime p = pg is totally

ramified in OL. We show that results analogous to the unramified case hold, with the

added subtlety that the Hilbert modular forms arising from HomOL(A1, A2) can have

level pi, g − [g/2] ≤ i ≤ g, depending on the superspecial crystal of A1 and A2. We

illustrate numerically to a limited extent some of the results concerning theta series

in Subsection 2.7.1 and Section 2.9.

We also prove a theorem about the singularities of the a-number stratification

of the Siegel moduli space Ag classifying principally polarized abelian varieties of

dimension g. Let Ta be the locus of points A ∈ Ag ⊗ Fp such that a(A) ≥ a.

Theorem:(cf. Theorem 2.4.14) Let a > 0. The set Sing(Ta) of singular points of the

locus Ta is precisely Ta+1.

2.2 Orders in quaternion algebras

2.2.1 Basic definitions

The main reference for this section is Vignéras’ book [102], and we follow its notation

for this subsection, in which we recall succinctly the basic definitions pertaining to

quaternion algebras.

We need the notion of a Bass order to describe accurately in the general case the

orders arising as endomorphism orders of a superspecial abelian variety with RM. On

the other hand, a hurried reader might want to restrict to the case p unramified, in
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which case she only needs the well-known concept of an Eichler order. On the other

hand, in the totally ramified case, the orders arising from geometry are never Eichler

orders, so the algebraic terminology is necessary.

Let K be a field.

Definition 2.2.1. ([102, p.1]) A quaternion algebra H over K is a central, simple

algebra of rank 4 over K.

If the characteristic of K is different from two, a quaternion algebra H is given

by a couple (a, b), where a, b ∈ K\{0}, as the K-algebra of basis 1, i, j, k, where

i, j ∈ H, k = ij, and

i2 = a, j2 = b, ij = −ji.

A quaternion algebra is equipped with a canonical involutive K-endomorphism h 7→ h

called conjugation. The (reduced) norm of H is defined as n(h) := hh, and the

(reduced) trace is defined as t(h) := h+ h.

Any field K admits over itself the quaternion algebra M2(K). For local fields

(different than C), there is only one more:

Theorem 2.2.2. ([102, p.31]) Let K 6= C be a local field. Then there exists a unique

quaternion division algebra over K, up to isomorphism.

Definition 2.2.3. ([102, p.58]) Let H be a quaternion algebra over a number field K.

Let v be a place of K. We denote Hv := H ⊗K Kv. A place v is ramified if Hv is a

division algebra. If Hv
∼= M2(Kv), we say the place v is split (or unramified).

Global fields admit infinitely many quaternion algebras, but we can classify them

according to the ramification of places:

Theorem 2.2.4. ([102, Thm. 3.1]) Let K be a number field. The number |Ram(H)|
of ramified places is even. For any even set S of places, there exists a unique quater-

nion algebra H/K up to isomorphism such that Ram(H) = S.
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We will later need the notion of a splitting field:

Definition 2.2.5. ([102, p.4]) Let F be a field containing K, and let H be a quater-

nion algebra over K. The tensor product HF := H ⊗K F is a quaternion algebra. If

HF
∼= M2(F ), we call F/K a splitting field of H.

There are useful criteria to determine whether a quadratic field extension of K is a

splitting field, when K is a local or global field.

Theorem 2.2.6. ([102, p.9]) Let K be a local or a global field. Let L be a quadratic

extension of K. Then L is a splitting field of a quaternion algebra H/K if and only

if L is isomorphic to a (maximal) subfield of H.

Theorem 2.2.7. ([102, Thm. 1.3, p.33]) Let K be a non-archimedean local field. A

finite extension F/K splits H if and only if its degree [F : K] is even.

Remark 2.2.8. The archimedean cases i.e., R and C, are simpler: M2(C) is the only

quaternion algebra over C, and C is the only finite extension of R. Over R there are,

up to isomorphism, two quaternion algebras: M2(R) and the Hamilton quaternions

HR given by the couple (−1,−1).

Theorem 2.2.9. ([102, Cor. 3.5]) An extension L/K of degree [L : K] <∞ splits a

quaternion algebra H over a number field K if and only if Lw splits Hv for any place

w|v of L.

Theorem 2.2.10. ([102, Thm. 3.8]) A quadratic extension L/K can be embedded

in a quaternion algebra H over a global field K if and only if Lv = L⊗Kv is a field,

for all v ∈ Ram(H).

2.2.2 Orders

We are motivated by the study of orders like O ⊗Z OL, where O is a maximal order

in the quaternion algebra Bp,∞ over Q ramified at p and ∞, and OL is the ring
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of integers of a totally real field L. They arise as endomorphism orders of some

superspecial points on Hilbert modular varieties. Our main reference for orders is [6];

we also found [15, p.970-977] useful.

Let R be an integral domain. Let V be a finite dimensional vector space over the

quotient field of R. A finitely generated left R-module M contained in V is called a

left R-lattice of V . Let K be a number field. Let OK be its ring of integers and H/K

a quaternion algebra. All OK-lattices M we consider in H are ideals i.e., lattices

such that M ⊗OK K ∼= H.

Definition 2.2.11. Let (M, q) be an OK-lattice M equipped with a quadratic form

q : M −→ OK . We denote N(M) the norm of M , defined as the OK-ideal generated

by the values q(x) for x ∈M (the name originates from the particular instance where

M ⊂ H, and the quadratic form is the reduced norm of the quaternion algebra).

Definition 2.2.12. Let x1, . . . , x4 ∈ H. Let d(x1, . . . , x4) be the determinant of the

matrix [t(xixj)]. If M is an OK-lattice in H, then the OK-ideal in K generated by

all d(x1, . . . , x4), where xi ∈ M, 1 ≤ i ≤ 4, is basis of H, is a square of an OK-ideal

in K, which we call the discriminant d(M) of M .

Definition 2.2.13. The dual of an OK-lattice M ⊂ H is defined as

M ] := {x ∈ H : t(xM) ⊂ OK} .

The OK-ideal N(M ])−1 is called the level of M .

This definition of the level of a quaternionic lattice using the trace coincides with the

definition of the level of an arbitrary quadratic lattice equipped with a bilinear form

for lattices of norm 1. Denote by N(x) the K-valued quadratic form associated to a

quadratic lattice M . We denote by V the vector space M ⊗Q. We denote by B(x, y)

the symmetric, bilinear form defined by:

B(x, y) :=
1

2
(N(x + y)−N(x)−N(y)) .
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The dual of M is thus defined as M [ := {x ∈ V |B(x,M) ⊆ OK} . Moreover, the

[-level is defined as (N(M)N(M [))−1, where N(M) is the ideal generated by N(x),

for x ∈ M . Observe that in the quaternionic case, B(x, y) = t(xy) = xy + yx for

all x, y implies immediately that M [ = M ] and that for all lattices M such that

N(M) = (1), the two notions of level coincide.

Definition 2.2.14. An order of H is an ideal of H which is a ring (containing 1, by

definition).

Let O be an order of H.

Definition 2.2.15. An ideal I of H is a left O-ideal if it is an ideal and its left order

Og(I) := {h ∈ H|hI ⊂ I} is O.

Definition 2.2.16. Two ideals I and J are (right) equivalent if I = Jh, h ∈ H×.

This is an equivalence relation, and the equivalence classes of ideals whose left order

is O are called the left ideal classes of O.

A maximal order is an order which is not properly contained in any order. Maximal

orders always exist, and any order is contained in a maximal order. An order is

maximal if and only if its discriminant is equal to the product of the ramified, finite

places of H.

Definition 2.2.17. An order O in H is Gorenstein if O] is O-projective as a left

(or right) O-lattice.

Proposition 2.2.18. ([6, Prop. 1.3]) The discriminant of an order O is equal to its

level i.e., d(O) = N(O])−1, if and only if the order is Gorenstein.

Remark 2.2.19. The level N(O])−1 of an order O always divides the discriminant

d(O) ([6, Prop. 1.3]).
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Definition 2.2.20. An order O in a quaternion algebra H over K is primitive if it

contains the maximal order of a quadratic field extension of K or the maximal order

of the split extension K ⊕K.

Primitive orders were first studied by Eichler in his Ph.D. thesis [22].

Definition 2.2.21. An order O is a Bass order if each order in H containing it is

a Gorenstein order. In particular, a Bass order is Gorenstein.

Proposition 2.2.22. ([6, Cor. 1.6]) An order O in H whose discriminant is cube-free

is a Bass order.

Let O be an order in the quaternion algebra H/K. Let Op := O ⊗ OKp
. Denote

by k the residue field of OKp
. The Jacobson radical Np of Op is the intersection

of all maximal left (or equivalently right) ideals of Op. An order Op is said to be

an Azumaya order if Op/Np is a non-trivial central simple algebra over k. Since

pOp ⊆ Np, Op/Np is a k-vector space with dimk(Op/Np) ≤ 4. If Op is Azumaya, then

we must have Op/Np
∼= M2(k), since there are no skew fields over a finite field.

Definition 2.2.23. (cf. [6]) The Eichler symbol (O
p
) at p of a Gorenstein order O

of H, which is not Azumaya at p, is defined by

(O
p

)
=





1 if Op/Np
∼= k × k,

0 if Op/Np
∼= k,

−1 if Op/Np is a quadratic field extension of k.

Remark 2.2.24. The previous definition exhausts all possibilities: If Op/Np is not

k×k, k nor a quadratic field extension of k, then O is necessarily Azumaya at p ([6]).

Definition 2.2.25. Let O be an OK-order in H. The order O is Eichler if O is an

intersection of two maximal orders, not necessarily distinct.
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Remark 2.2.26. One source of confusion arises from the terminology of the level e.g.,

in the literature, an Eichler order will often be said to be of level N , for (N, p) = 1,

in the quaternion algebra ramified at p and infinity Bp,∞ (see [102, p.84]), while

according to our terminology, it is of level Np, that is, the reduced discriminant of

the quaternion algebra is always included in the level.

Proposition 2.2.27. An Eichler order O in a quaternion algebra over Kp is a Bass

order, independently of its level.

Proof. Use [6, Cor. 2.2, 2.4] and the observation that Bass is a local property.

Proposition 2.2.28. (cf. [6, Prop. 5.3])

• Let e ∈ {−1, 1}. Two orders O1 and O2 in Hp with (O1

p
) = (O2

p
) = e are

conjugate in Hp if and only if their discriminants are equal.

• Two Bass orders O1 and O2 in Hp with (O1

p
) = (O2

p
) = 0 are conjugate in Hp if

their discriminants are equal.

Proposition 2.2.29. Let O be a Bass order 1 in H/K.

If valp(d(O)) = 1, then:

• if p 6∈ Ram(H), (O
p
) = 1, and Op does not contain the ring of integers of an

unramified quadratic field extension of Kp;

• if p ∈ Ram(H), (O
p
) = −1 and Op does not contain a split extension OKp

⊕OKp
;

If valp(d(O)) ≥ 2, then:

• (O
p
) = 1 if and only if Op contains a split quadratic extension OKp

⊕OKp
;

• (O
p
) = 0 if and only if Op contains the ring of integers of a ramified quadratic

field extension of Kp;

1A Bass order is locally primitive by the proof of Proposition 2.3.5.
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• (O
p
) = −1 if and only if Op contains the ring of integers of an unramified

quadratic field extension of Kp.

Proof. [8, Prop. 1.11, 1.12, 1.16].

Corollary 2.2.30. ([9, Prop. 3]) Let O be a primitive order 2 in H/K. Let S be a

maximal order in a maximal commutative subfield of H/K and assume S ⊂ O.

If valp(d(O)) = 1, then:

• the prime p is split or ramified in S when p 6∈ Ram(H), and (O
p
) = 1;

• the prime p is ramified or inert in S when p ∈ Ram(H), and (O
p
) = −1.

If valp(d(O)) ≥ 2, then:

• (O
p
) = 1 if p splits in S;

• (O
p
) = 0 if p is ramified in S;

• (O
p
) = −1 if p is inert in S.

According to [6, Prop. 2.1], an order O in a quaternion algebra over Kp has Eichler

symbol 1 if and only if is conjugate to the order consisting of matrices



OKp

OKp

πdpOKp
OKp


 ,

where πp is a uniformizer of the maximal ideal of OKp
, and d is a non-negative integer.

Since a division quaternion algebra over a local field has a unique maximal order, it

follows ([6, Cor. 2.2]) than an Eichler order in H/K is characterized by its Eichler

symbols being 1 for all non-zero prime ideals p such that Op is not maximal.

2 A primitive order is Bass; cf. Proposition 2.3.5.
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Definition 2.2.31. An order O is left (respectively right) hereditary if each left

(respectively right) O-lattice is projective.

Remark 2.2.32. Another source of confusion is the terminology used in the literature

on quaternion algebras for the completions of modules. If M is an O-module the

completion M ⊗OKp
for a prime p of OK is called the localization of M at p. Note

that there is a different notion of non-commutative localization in line with the usual

localization of commutative algebra, subject to some extra hypothesis called Ore’s

condition (which is automatically satisfied in the commutative case).

Definition 2.2.33. An O-lattice M is locally principal if the localizations M⊗OKp

are principal for all p.

Proposition 2.2.34. ([6, Prop. 1.1]) Let O be an order in H/K. An O-ideal M is

projective if and only if M is locally principal.

A complementary result is that an order O is hereditary if and only if all the com-

pletions Op are hereditary ([84, Thm. 40.5, p.368]).

Proposition 2.2.35. ([6, Prop. 1.2, p.504]) An order is hereditary if and only if its

discriminant is square-free. In particular, a hereditary order is always Bass.

Proof. The second statement follows from Proposition 2.2.22.

Theorem 2.2.36. ([21, Satz 27, p.106]) Every ideal class of a hereditary order O
contains an ideal I whose norm is relatively prime to the norms of a given, finite

number of ideals Ji of O i.e., for any Ji, N(Ji) +N(I) = OK as OK-ideals.

Proof. The proof in [21] only uses the fact that the ideals are locally principal, which

is automatic for hereditary orders.
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2.3 Ideal theory in quaternion algebras

We will encounter in the sequel some very specific quaternion algebras. They are

closely related to the rational quaternion algebra Bp,∞ ramified at p and ∞, and

they arise from geometry as algebras of endomorphisms of supersingular abelian va-

rieties with real multiplication. We study in this subsection which orders and which

quadratic modules derived from these orders can be retrieved from the geometry of

Hilbert modular varieties.

2.3.1 Bp,∞ and related quaternion algebras

Definition 2.3.1. A quaternion algebra H over a totally real field L is totally

definite if H ⊗L,σ R is a division algebra for all embeddings σ : L ↪→ R.

The totally definite quaternion algebra Bp,L := Bp,∞ ⊗ L over L and its orders of

level p will be our central concern.

Example 2.3.2. The ring of endomorphisms End(E) of a supersingular elliptic curve

(over an algebraically closed field of characteristic p) is a maximal order in Bp,∞ ([40,

§2], [20]). We give explicit descriptions of some maximal orders, following [80, Prop.

5.1, 5.2]. First, the quaternion algebra Bp,∞ over Q ramified precisely at p and ∞
can be given by:

Bp,∞ = (−1,−1) if p = 2;

Bp,∞ = (−1,−p) if p = 3 mod 4;

Bp,∞ = (−2,−p) if p = 5 mod 8;

Bp,∞ = (−p,−q) if p = 1 mod 8,where q = 3 mod 4 is a prime and (p/q) = −1.
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Moreover, one maximal order of Bp,∞ can be given by the Z-basis:

1
2
(1 + i+ j + k), i, j, k if p = 2;

1
2
(1 + j), 1

2
(i + k), j, k if p = 3 mod 4;

1
2
(1 + j + k), 1

4
(i+ 2j + k), j, k if p = 5 mod 8;

1
2
(1 + j), 1

2
(i + k), 1

q
(j + dk), k if p = 1 mod 8,where d is such that q|(d2p+ 1).

Here 1, i, j, k is the canonical basis of Bp,∞ = (a, b) with relations i2 = a, j2 = b, and

ij = k = −ji.

Proposition 2.3.3. Let O be a maximal order in Bp,∞.

1. A quadratic imaginary field Q(
√
−D) embeds in Bp,∞ if and only if p does not

split in Q(
√
−D). Moreover, for any integer n, we can choose a D prime to n

such that the ring of integers of Q(
√
−D) embeds in O.

2. The order O⊗Z OL in Bp,∞ ⊗ L is primitive of level p = pOL. Moreover, if p is

unramified, the order O ⊗Z OL is hereditary.

Proof. The first statement in Part 1 is Theorem 2.2.10. The second statement fol-

lows from the surjectivity of Deuring’s map of singular moduli onto supersingular

j-invariants for −D �p 0 ([27, Thm. 1.2]). To prove Part 2, we check that O ⊗ OL
contains the ring of integers of a quadratic field extension of L. Recall ([53, Cor. 9.4])

that for S an imaginary quadratic field, OS ⊗OL is a maximal order if the discrimi-

nants of S and L are relatively prime. The proof of Part 1 gives us an appropriate ring

of integers of discriminant coprime to the discriminant of L for any O maximal. We

compute the level: The discriminant of O is p, and d(O ⊗Z OL) = d(O)OL = pOL,

since TrBp,L(
∑

i ai ⊗ bi) =
∑

i TrBp,∞(ai)bi, for
∑

i ai ⊗ bi ∈ End(E) ⊗ OL. Since

O⊗ZOL is primitive, it is Gorenstein by Proposition 2.3.5 and Definition 2.2.21, and

its level is equal to its discriminant by Proposition 2.2.18. Proposition 2.2.35 shows

that O ⊗Z OL is hereditary when p is unramified.
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2.3.2 Algebraic aspects of ideals

Proposition 2.3.4. (Local-global principle, [102, Prop. 5.1]) Let K be a number

field. Let X be a lattice of a quaternion algebra H/K. There exists a bijection

between the lattices Y of H, and the set of lattices

{Yp|Yp a lattice of Hp, Yp = Xp for all but finitely many p} ,

given by the applications:

Y 7→ (Yp)p and (Yp)p 7→ Y = {x ∈ H|x ∈ Yp, ∀p} ,

where on both sides the prime ideals p of OK are the index set.

Many properties can be read off locally e.g., the property of being an order, a maximal

order, an Eichler order, a Bass order, a Gorenstein order, an ideal, etc. Note, though,

that we cannot check locally that an order is globally primitive.

Proposition 2.3.5. A primitive order O in H/K is a Bass order.

Proof. Being a Bass order is a local property. According to [8, Prop. 1.11], being

primitive and being Bass are the same thing locally. It is clear that a (global) primitive

order is locally primitive at all primes.

Proposition 2.3.6. An order O in a quaternion algebra H is Eichler of square-free

level if and only if it is hereditary.

Proof. By Propositions 2.2.18 and 2.2.27, the level of an Eichler order is equal to

the discriminant, which is thus square-free. This implies that an Eichler order of

square-free level is hereditary by Proposition 2.2.35. By the same Proposition, a

hereditary order O is Bass of square-free discriminant. Therefore, the level, being

equal to the discriminant since a hereditary order is Gorenstein, is also square-free.

It suffices to show that a hereditary order O is Eichler. Recall that an order is
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Eichler if and only if for every prime ideal p: Op is a maximal order or a Bass

order with Eichler symbol equal to one. A hereditary order is maximal at all primes

p ∈ Ram(H). By Proposition 2.2.29, a hereditary order, being Bass, has Eichler

symbol +1 if p 6∈ Ram(H), and we are done.

We gather in a succinct form the relationships between the various kinds of orders:

Maximal +3

%-S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Hereditary +3 Eichler

��

Primitive +3 Bass +3 Gorenstein

Diagram I: Properties of orders in quaternion algebras

• A hereditary order O is maximal if and only if its discriminant d(O) is equal to

the discriminant of the quaternion algebra.

• An Eichler order O is hereditary if and only if its discriminant d(O) is square-

free.

• A Bass order O in H/K is Eichler if (O
p
) is 1 when Op is not maximal, for all

primes p.

• A Gorenstein order O is Bass if its discriminant d(O) is cube-free.

• An order in a quaternion algebra over a local field is primitive if and only if it

is Bass.

2.3.3 Arithmetic aspects of ideals

Cf. [79, §2]. Define the idele group JB of B := Bp,∞ ⊗ L as:

JB :=

{
ã = (ap) ∈

∏

p

B×p |ap ∈M×p for almost all p

}
,
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where M is any order in B, and p runs over all places of L. This is independent

of M . The set JB is a locally compact group with the topology induced by the

product topology on the open sets
∏

p∈S B
×
p

∏
p6∈SM

×
p , where S ranges over all finite

subsets of primes containing the infinite primes. If ã = (ap) ∈ JB, we define the

volume of ã as vol(ã) =
∏

p |N(ap)|, where |− |p is normalized such that |p|p = 1
Norm(p)

for p < ∞ and with the usual absolute value at infinity. Let J 1
B denote the ideles of

volume 1 i.e.,

J1
B :=

{
ã ∈ J1

B|vol(ã) = 1
}
,

and embed B× ⊂ J1
B with the diagonal embedding. If M is an order of B, define

B1(M) :=
{
ã = (ap) ∈ J1

B|ap ∈M×p for all p <∞
}
.

Proposition 2.3.7. The following holds:

• B× is a discrete subgroup in J1
B;

• J1
B/B

× is compact;

• For any order O of B, B1(O) is an open compact subgroup of J1
B.

Proof. The references are scattered in Weil’s book ([110]): the first statement is

proved in [110, p. 71]; the second statement follows immediately from [110, Thm. 4,

p.74], and the third statement follows from the definition.

Corollary 2.3.8. ([79, Prop. 6]) Let O be hereditary. The double cosets

B1(O)\J1
B/B

×

correspond bijectively to the ideal classes of (right) O-ideals.

Proof. If I is a left O-ideal, then since O is hereditary,

Ip = Opap,
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for some ap ∈ Bp,L ⊗ Lp, for all finite places p and ap ∈ O×p for almost all p, since

Ip = Op for almost all p. Thus there exists an element ã ∈ J 1
B with the p-th component

of ã equal to ap for all finite places p. Conversely, if ã = (ap) ∈ J1
B, then by the local-

global correspondence, there is a unique lattice I such that Ip = Opap for all finite

places p. Thus, via the local-global correspondence, we get a transitive action of J 1
B

on the left O-ideals. Under this action, the isotopy subgroup of O is B1(O) and the

corollary follows from the decomposition:

J1
B = ∪Hn=1B

1(O)ã(n)B×.

The Oã(n) represent the distinct O-ideal classes.

Proposition 2.3.9. ([79, Prop. 7]) J1
B acts transitively (by conjugation) on heredi-

tary orders of level p in B.

Proof. Recall that a hereditary order is Bass (Proposition 2.2.35) and that hereditary

orders of equal discriminant (equivalently, level) are locally conjugate by Propositions

2.2.28 and 2.2.29. The action is: for ã = (ap) ∈ J1
B, a hereditary order of level p:

M 7→ {Mp} 7→
{
a−1

p Mpap

}
7→ N,

and we write N = ã−1Mã.

Corollary 2.3.10. ([79, Prop. 8]) The class number H(O) is finite and independent

of the particular hereditary order of level p used in its definition. It is also the same

for left or right ideals.

2.3.4 Superspecial orders

We flesh out the local properties of the primitive order R = O ⊗Z OL of level p,

where O is a maximal order in Bp,∞. To this end, we determine the possible Eich-

ler symbols, and then model on this our general definition of a superspecial order.
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Our choice of terminology is motivated by the fact that the endomorphism orders

of superspecial points on the Hilbert modular variety associated to L modulo p are

superspecial orders (see Theorem 2.5.27 and Corollary 2.8.10). Note first that R is

maximal outside p by Proposition 2.2.28. Let

p =
∏

i

pαii ·
∏

j

q
βj
j ,

for pi ∈ Ram(Bp,L), qj 6∈ Ram(Bp,L). We remark that pi ∈ Ram(Bp,L) if and only

if [Lpi : Qp] is odd (Lemma 2.5.23). Using Corollary 2.2.30 (cf. [6, §§2,3,4]), we get

the following possibilities:

•
(
R
pi

)
= −1 if αi = 1;

•
(
R
qi

)
= 1 if βi = 1.

By Proposition 2.2.30, if αi = 1, an embedded quadratic extension can be unramified

or ramified; if βi = 1, an embedded quadratic extension can be split or ramified. In

general for primitive orders, the Eichler symbol is allowed to be zero for exponents

bigger or equal than two. But in the proof that O ⊗Z OL is primitive, we could

pick the order S to have discriminant prime to p, so no ideal dividing p can ramify

in S, and this forces the Eichler symbol to be ±1 for any pi, qj. Moreover, since

pi ∈ Ram(Bp,L), pi is not split in S for otherwise S⊗Q cannot be embedded in Bp,L.

In short, we have the following possibilities:

•
(
R
pi

)
= −1 if αi > 1;

•
(
R
qi

)
6= 0 if βi > 1.

In fact,
(
R
qi

)
= (−1)f(pi/p), as we explain now. Since qi is not ramified in Bp,L,

[Lqi : Qp] is even. Suppose we write OK · OL = OK·L = OL[X]/(X2 − d), with

(dK, pdL) = 1, and
√
d 6∈ Zp, (p, d) = 1. Then qi is split if and only if

√
d ∈ Lqi ⇐⇒
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√
d ∈ kL ⇐⇒ 2|f(qi/p), and otherwise is inert. Proposition 2.2.30 implies that(
R
qi

)
= (−1)f(pi/p) encapsulates this data.

This observation suggests the following definition for superspecial orders:

Definition 2.3.11. Let P =
∏

i p
αi
i ·

∏
j q

βj
j for pi ∈ Ram(Bp,L), qj 6∈ Ram(Bp,L),

be an ideal of OL dividing p. An order O in Bp,L of level P is superspecial if the

following conditions hold:

• if αi ≥ 1,
(
O
pi

)
= −1 ;

• if βj > 1,
(
O
qi

)
= (−1)f(qj/p);

• if βj = 1,
(
O
qi

)
= +1;

• for any other finite prime l satisfying (l, p) = 1, Ol is maximal.

In particular, by Proposition 2.2.28, a superspecial order is Bass i.e., locally primitive.

We rephrase these findings by specifying at each prime which quadratic extension of Lp

arises, and describing the (local) primitive order containing it, using the terminology

and ideas of [50].

Definition 2.3.12. ([49, Def. 2.3, p.64], [50]) Let B be the quaternion algebra

over Lp. Let K = Kp be a quadratic extension of Lp contained in B. Set

Rv(K) = OK + P v−1
B ,

for PB the unique maximal ideal in OB and v = 1, 2, . . . .

Definition 2.3.13. An order O is superspecial of level P dividing p, P =
∏

i p
αi
i ·

∏
j q

βj
j , for p ∈ Ram(Bp,L), qj 6∈ Ram(Bp,L), if the following conditions hold:

• if αi ≥ 1, there is an unramified quadratic extension OK of OLp
such that

Opi = Rαi(K);
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• if βj > 1, if f(qj/p) is even, Oqj contains a split quadratic extension; if f(qj/p)

is odd, there is an unramified quadratic extension OK such that

Oqj
∼=








α βσ

π
βj
qj β ασ


 , α, β ∈ OK




,

for σ the involution on K, πqj a uniformizer in OLqj
;

• if βj = 1, Oqj contains a split extension, more precisely

Oqj
∼=



OLqj

OLqj

qjOLqj
OLqj


 ;

• for any other finite prime l, Ol contains a split extension.

Proposition 2.3.14. The two definitions of superspecial orders are equivalent.

Proof. It is clear a superspecial order in the second sense is superspecial in the first

sense by Propositions 2.2.29 and 2.2.28. We show that a superspecial order in the

first sense is also superspecial in the second sense.

• For αi = 1, this follows directly from Proposition 2.2.29;

• For βj = 1, the order Oqj is Eichler, and thus contains a split extension

OLqj
⊕OLqj

;

• For αi > 1, since
(
O
pi

)
= −1, the order Opi contains an unramified quadratic

extension OK of OLpi
by Proposition 2.2.29 and this forces Opi = Rαi(K) by

[50, Cor. 2.4, p.64].
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• For βj > 1, if
(
O
qj

)
= 1, the order OLqj

is Eichler by Proposition 2.2.29, and thus

contains a split extension, as before. If
(
O
qj

)
= −1, Oqj contains an unramified

quadratic extension by Proposition 2.2.29. Since a (local) primitive order is

determined by its Eichler symbol and its discriminant by Proposition 2.2.28,

the result follows.

We can now see that superspecial orders are quite similar to special orders:

Definition 2.3.15. ([50, Def. 6.1]) An order O in Bp,∞ ⊗ L is special if

• there exists an integral ideal I ofOL, prime to the ramified primes pi of Bp,∞⊗L,

such that for each finite split prime p of Bp,∞⊗L, Op is conjugate to
(
Op Op

IOp Op

)

by an element of (Bp,∞ ⊗ L)×p ;

• for each finite ramified prime pi of Bp,∞⊗ L, there exists a quadratic extension

K = K(pi) of Lpi and a positive integer ν = ν(pi) such that Opi = Rν(K). If

O is a special order of Bp,∞ ⊗ L, the collection of local data:

(I; . . . , L(pi), ν(pi), . . . ),

is called the (extended) level of O.

Definition 2.3.16. Let O be a special order of Bp,L with local data (I;L(pi), ν(pi)).

The classical level is I
∏

i p
ν(pi)
i .

Remark 2.3.17. We transpose the terminology of extended and classical level to Bass

orders in the obvious way e.g., keeping in mind that the extended level uniquely

determines the Eichler symbols.
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2.3.5 Norm forms of orders

The main reference is [59, §6]. We recall that a quadratic space (V, q) over a field

F of characteristic different than 2 is a finite dimensional F -vector space V with a

symmetric bilinear form Φ : V × V −→ F . To the bilinear form Φ we can associate

a quadratic map q : V −→ F by q(v) = 1
2
Φ(v, v). A quadratic space is said to be

regular if for every v ∈ V , the condition that Φ(u, v) = 0 for all u in V implies v = 0.

We only consider regular quadratic spaces of rank 4.

Let R be an integral domain with field of fractions F , and let Λ be an R-lattice in

space V i.e., a finitely generated R-submodule of V containing a basis for V over F .

If q(Λ) is contained in R, we say that (Λ, q) is a quadratic module over R. If R is a

principal ideal domain, then every quadratic module has a basis, and thus determines

a quadratic form f(x) over F . The ideal generated by the coefficients of a quadratic

form f(x) is defined to be the content of f(x). If the content of a quadratic form

f(x) is equal to 1, then we say that f is proper.

In order to distinguish which quadratic modules arise from projective rank one left

modules for an order in a quaternion algebra, we need to recall the notion of a Clifford

algebra (a general reference for Clifford algebras is [62]).

Definition 2.3.18. An injective homomorphism of R-modules ι : Λ −→ A of Λ in

an R-algebra A is said to be compatible with q if ι(v)2 = q(v) · 1, for all v ∈ V . An

R-algebra C = C(Λ) with an injection ιC : Λ −→ C compatible with q is said to be

a Clifford algebra for (Λ, q) if for any R-algebra A and R-module monomorphism

ιA : Λ −→ A, there exists a unique R-algebra homomorphism φ : C(Λ) −→ A such

that φ ◦ ιC = ιA.
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The Clifford algebra of (Λ, q) exists and is unique up to unique isomorphism. Let

T i(Λ) =





R i = 0

Λ⊗R · · · ⊗R Λ (i times ) i > 0

The Clifford algebra can be constructed as the quotient of the tensor algebra T (Λ) =

⊕iT i(Λ) of Λ by the relations v ⊗ v − q(v), with ι defined to be the isomorphism

of Λ with T 1(Λ). The relations v ⊗ v − q(v) generating the kernel of the surjection

T (Λ) −→ C(Λ) lie in ⊕iT 2i(Λ). It follows that C(Λ) has a Z/2Z-grading and we have

a decomposition of R-modules C(Λ) = C0(Λ)⊕C1(Λ), where C0(Λ) is the even part of

C(Λ) and C1(Λ) is the odd part. The ring C0(Λ) is called the even Clifford algebra of

(Λ, q). The Clifford algebra of the quadratic space (V, q) is defined to be the Clifford

algebra C(V ) of (V, q) as a quadratic module over F . Let e be a nontrivial central

idempotent of C0(V ). The algebra eC0(Λ) ⊗ Q is a quaternion algebra ([62, Thm.

5.2.5]).

Let (Λ, q) be a quadratic module of rank 4 over R admitting a basis {v1, . . . , v4}. Let

Φq be the bilinear form associated to q. Then the determinant of Λ, denoted det(Λ),

is defined to be det(Φq(vi, vj)). This is the square of the discriminant of (Λ, q) (see

Definition 2.2.12) i.e., det(Λ) = d(Λ, q)2. The determinant is nonzero if and only if

(Λ, q) is regular. The determinant is well-defined modulo (R×)2.

Theorem 2.3.19. ([59, Thm. 61], [77]) (Kohel-Pays’ criterion) Let (Λ, q) be a

proper regular quadratic module of rank 4 over R of square determinant, contained

in the quadratic space (V, q). Let e be a nontrivial central idempotent of C0(V ).

Then (Λ, q) is the quadratic module associated to a projective rank one left module

for an order in the quaternion algebra eC0(Λ)⊗Q if and only if one of the following

equivalent statements is true.

• eΛ = eC1(Λ);
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• eΛ is a left module for eC0(Λ);

• Λe is a right module for eC0(Λ);

• For every u in Λ, eΛu is a left ideal of eC0(Λ);

• For some u in Λ, eΛu is a left ideal of eC0(Λ);

• For some v in Λ, vΛe is a right ideal of eC0(Λ).

For any projective O-module I of rank one, for O an order in the quaternion

algebra H/L, we can define a reduced norm map from the reduced norm of O. For

every finite place l of OL, fix a generator xl of Il as an Ol-module. Since I is locally

principal, every x ∈ I is of the form αlxl ∈ Il for some αl ∈ Ol. Since xl is defined up

to a unit in O×l , and Norm(O×l ) = O×Ll
, we define Norm(x) = Norm(αl) mod O×Ll

.

Since H is totally definite, the reduced norm on H⊗σi R is contained in R≥0 for all σi.

Thus we define Norm(x) to be a totally positive generator of ∩l(Norm(αl)OLl
∩OL),

it is thus defined up to a totally positive unit (which is a square of an element of

(OL)×, since h+(L) = 1).

Proposition 2.3.20. (cf. [59, Prop. 51]) Let O be an order in a quaternion algebra

H/L. Let I be a projective O-module of rank one, with the quadratic map defined

by the reduced norm on I. Then the determinant of I is d(O)2. Any isomorphism

of I with an ideal J of O determines a similitude σ : I −→ O with similitude factor

Norm(J).

Proof. The reduced norm on I is defined using the local isomorphisms Il
∼= Ol.

Thus det(Il) = det(Ol) mod O× 2
Ll

for all l and the two determinants are equal, since

determinants (and levels likewise) are determined locally. The reduced norm on the

order O, restricted to elements of J is Norm(J) times the reduced norm on J defined

via its left O-module structure. Thus an isomorphism of I with J defines a similitude

with factor Norm(J).
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Recall that L is a totally real field of narrow class number h+(L) = 1.

Corollary 2.3.21. Suppose that p is unramified. Any totally positive definite,

proper, quadratic module (Λ, q) over OL of level p (and determinant p2) contained in

Bp,L arises from a projective rank one left module for an order in Bp,L if and only if

the level of the associated order eC0(Λ) is p.

Remark 2.3.22. This corollary is not used in the sequel, but a priori, a totally definite,

proper, quadratic module of level p could maybe come from a non-projective rank

one left module for an order of level qp, for some q|p.

Proof. Since p is unramified, the level of eC0(Λ) will be p if and only if its discriminant

is p (Propositions 2.2.22, 2.2.18) if and only if its determinant is p2. We check Kohel-

Pays’ criterion. Note that eC0(Λ) ⊗ Q ∼= Bp,L by assumption. Since the composite

map V −→ C1(V ) −→ eC1(V ) = eV is an isometry (cf. [59, Prop. 59, p. 76]);

det(Λ) = det(eΛ) and the quadratic module eΛ is contained in the quadratic module

eC1(Λ):

eΛ ⊆ eC1(Λ).

Since h(L) = 1, any quadratic module is free over OL, and the two modules eΛ and

eC1(Λ) coincide if and only if the quadratic module eC1(Λ) has determinant equal to

the determinant of eΛ i.e., p2 by [59, Prop. 50]. Since eC1(Λ) is a projective module

over eC0(Λ) by [59, Prop. 60], det(eC1(Λ)) = det(eC0(Λ)) by the proof of Proposition

2.3.20 and we are done.

Remark 2.3.23. More generally, the same proof applies when we know a priori that

the associated order eC0(Λ) of (Λ, q) in Bp,L is Gorenstein i.e., that its level is equal

to its discriminant.
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2.4 Abelian varieties

2.4.1 Polarizations and endomorphisms

Let L be a totally real number field of degree g over Q and let OL be its ring of

integers. Let S be a scheme. Let A be an abelian scheme over S of relative dimension

g = [L : Q]. Consider abelian schemes with OL-action

ι : OL −→ EndS(A).

Definition 2.4.1. Let λ be a polarization on an abelian variety A, and put End0(A) =

End(A)⊗Q. The Rosati involution associated to λ is the map

End0(A) −→ End0(A), f 7→ f ∗ := λ−1f tλ.

The Rosati involution is a positive involution on End0(A). The semi-simple rational

finite-dimensional algebras with positive involution were classifed by Albert. Every

division algebra over Q with a positive involution belongs to one of the following four

types of algebras ([92, §1]):

1. Type I: Totally real number field L;

2. Type II: Central simple algebra B over L such that the simple components of

B ⊗ R are all isomorphic to M2(R);

3. Type III: Central simple algebra B over L such that the simple components of

B ⊗ R are all isomorphic to the Hamilton quaternions over R.

4. Type IV: Central simple algebra B over a totally imaginary quadratic extension

of L.

The canonical involution σ is defined by x 7→ σ(x) = Tr(x)−x. For Type III algebras,

the positive involution is necessarily the canonical involution.
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Denote by P(A) the sheaf of OL-linear, symmetric morphisms from A to its dual

abelian scheme At for the étale topology on (Sch/S). The sheaf P(A)+ is the subsheaf

of P(A) obtained by imposing the extra condition that the morphisms be polariza-

tions. We call P(A) the polarization module of A and P(A)+ the positive cone

of polarizations. A principal polarization is a polarization A −→ At which is also

an isomorphism.

Definition 2.4.2. ([17, 2.1.3, p.64]) The abelian scheme A satisfies the condition

of Deligne-Pappas if the canonical morphism A⊗OL P(A) −→ At, (a, λ) 7→ λ(a) is

an isomorphism.

This condition implies that P(A) is locally constant ([103, Lem. 1.8]).

Definition 2.4.3. An abelian scheme with RM is an abelian scheme with action

by OL satisfying the Deligne-Pappas condition.

Definition 2.4.4. ([82, §1, Def. 1.1, p. 257]) The abelian scheme A satisfies the

condition of Rapoport if the Lie algebra of A is locally on S a freeOL⊗ZOS-module

of rank 1.

Proposition 2.4.5. ([39, Lem. 5.5,p. 99]) The condition of Rapoport implies the

condition of Deligne-Pappas.

Proposition 2.4.6. ([17, Cor. 2.9, p.66]) If p is unramified, the condition of Deligne-

Pappas is equivalent to the condition of Rapoport.

Narrow class number one

Let S = Spec(k), k a field. Our theorems are proved under the hypothesis that the

narrow class number h+(L) of the totally real number field L is one. This is equivalent

to asking that h(L) = 1, and that all totally positive units are squares. If the class

number h(L) = 1, P(A) is unique up to isomorphism as a projective OL-module of
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rank one. If h+(L) = 1, then (P(A),P(A)+) ∼= (OL,O+
L ) as invertible OL-modules

with a notion of positivity. A principally polarized abelian variety with RM satisfies

the Deligne-Pappas condition automatically. Conversely, an abelian variety A with

RM always admits an OL-polarization ([82, Prop. 1.10]). Let (A,A+) be a projective

OL-module with a notion of positivity.

The moduli space of pairs (A, ι) such that (MA,M+
A) ∼= (A,A+), and the mod-

uli space of triples (A, ι, φ), where φ : (MA,M+
A)

∼=−→ (A,A+) are the same when

h+(L) = 1. Since Cl(L)+ classifies the isomorphism classes of projective OL-modules

with a notion of positivity, we can assume that (A, ι) comes equipped with a given

principal OL-linear polarization (see [17, §2.6]).

2.4.2 Dieudonné modules

Dieudonné modules were discussed extensively in the first part of this thesis (see

Chapter I). The following is the bare minimum needed for the sequel. Let k be a

perfect field. Denote by W (k) the ring of Witt vectors over k. Let σ be the unique

automorphism of W (k) which reduces to the map x 7→ xp on the residue field k. Let

W (k)[F, V ] denote the non-commutative ring with indeterminates F, V subject to the

relations FV = V F = p, and Fa = aσF and aV = V aσ for a ∈ W (k). The first

crystalline cohomology group D(A) := H1
crys(A/W (k)) of an abelian variety A/k is

a Dieudonnné module, i.e., a W (k)[F, V ]-module that is free of finite rank over

W (k). This Dieudonné module (or equivalently, the corresponding p-divisible group)

plays the role at p of the more familiar `-adic Tate modules, which we review in the

next subsection.
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2.4.3 Tate modules

Our reference for this section is [109]. Let A,B be abelian varieties over a per-

fect field k, of dimension g, and let ` be a prime different from p. The scheme

A[`n] := ker(A
`n−→ A) is a finite étale group scheme of order (`n)2g, moreover A[`n] ∼=

(Z/`nZ)2g when k is algebraically closed. The group schemes A[`n] form an inverse

system under the maps `m : A[`n] −→ A[`n−m], n ≥ m, and we fit them together

to form the Tate module T`(A) = lim
←−
n

A[`n]. Over an algebraically closed field,

T`(A) ∼= Z2g
` . We denote by Tp(A) the p-divisible group of A, defined as the limit

lim
−→

A[pn] of the inductive system of closed immersions

A[p] ↪→ A[p2] ↪→ A[p3] ↪→ · · · ,

provided by the finite flat commutative group schemes A[pn] of rank (pn)2g.

Theorem 2.4.7. ([109, Thms. 3, 5]) The maps

Homk(A,B)⊗Z Z` −→ HomGal(k/k)(T`(A), T`(B)),

Homk(A,B)⊗ Zp −→ HomGal(k/k)(Tp(A), Tp(B)),

are injective with torsion-free cokernels.

Theorem 2.4.8. ([109, Thm. 6]) Let k be a finite field. Then the maps of Theorem

2.4.7 are bijective.

Remark 2.4.9. Here is a confusing point: If A is a supersingular abelian variety

over Fp, End(A) ⊗ Zp
∼= End(A[p∞]), but End(A) ⊗ W (k) ∼= EndW (k)(D(A)) as

W (k)-modules. The correct version of Tate’s theorem using Dieudonné modules is

End(A)⊗ Zp
∼= EndW (k)[F,V ](D(A)).
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2.4.4 The a-number

The main result of this section is not needed in the sequel. The reader can acquaint

herself with the definition of the a-number and Theorems 2.4.10 and 2.4.11.

Let A be an abelian variety of dimension g over an algebraically closed field k of

characteristic p. The a-number of A (cf. [70, §II 12-3]) is defined by

a(A) := dimk Homk(αp, A),

where αp is the local-local group scheme of order p i.e., Ker(Fr : Ga/k −→ Ga/k).

Note that 0 ≤ a(A) ≤ g.

Theorem 2.4.10. [95, Thm. 3.5, p.580] Let E1, E2, E3, E4 be supersingular elliptic

curves over k = k. Then E1 × E2
∼= E3 × E4.

Theorem 2.4.11. ([71, Thm. 2]) Let k = k. A d-dimensional abelian variety A has

a-number a(A) = g if and only if A ∼= Eg, E a supersingular elliptic curve.

An abelian variety A such that A ∼= Eg, E a supersingular elliptic curve, is called

superspecial.

Let Ag/Spec(Z) be the moduli stack of principally polarized abelian varieties of

dimension g. It is an irreducible algebraic stack of relative dimension g(g+1)
2

. The

fibres Ag ⊗Fp and Ag ⊗Q are irreducible. Let Ta be the locus of points A ∈ Ag⊗Fp

with a(A) ≥ a.

Theorem 2.4.12. ([31, §6]) The dimension of Ta is equal to

dim(Ta) = g(g + 1)/2− a(a+ 1)/2.

Theorem 2.4.13. ([32, Thm. 2.11]) The loci Ta are irreducible for a < g.

The Ta loci are analogous to special Schubert cycles ([57]). We give some support for

this statement in the next theorem.
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Theorem 2.4.14. Let a > 0. The set Sing(Ta) of singular points of the locus Ta is

precisely Ta+1.

Remark 2.4.15. Note that Ag = T0 is smooth (as a stack).

Before proving the theorem, we need to state a well-known lemma.

Lemma 2.4.16. Let U1, U2 be two closed subsets of a variety A, and let U1 be

irreducible. Suppose there exists x ∈ U1 such that formally around x, U1 is contained

in U2 i.e., x ∈ U2 and U1 ⊆ U2 in Ôx,A. Then U1 ⊆ U2.

Proof. Since U1 is irreducible, the claim is reduced to verifying that the inclusion of

sets infinitesimally implies the inclusion of sets locally i.e., we suppose without loss

of generality that U1, U2 are affine. Since U1, U2 are closed, they correspond to ideals

A1,A2 in Ox,A. Since U1 is contained in U2 formally around x i.e., Â2 ⊆ Â1, where

Âi := Ai · Ôx,A. Since Âi ∩ Ox,A = Ai ([113, Cor. 2, p. 257]), the inclusion A2 ⊆ A1

follows.

Proof. (of Theorem 2.4.14) The inclusion Sing(Ta) ⊂ Ta+1 is known ([31, Prop. 6.2]).

We only need to prove the other inclusion : Ta+1 ⊂ Sing(Ta). The locus Ta is

irreducible, and contains Tg. If we can show locally around the superspecial points

that Ta+1 ⊆ Sing(Ta) holds, we are done by Lemma 2.4.16. The standard superspecial

display has the form
(

0 −Ig
Ig 0

)
(where Ig is the g-by-g identity matrix), hence the

Hasse-Witt matrix of the universal display (mod p) is given by a symmetric g-by-g

matrix D = (tij), where tij = tji are indeterminates. We can describe the locus

of Ta+1 and Ta as so-called symmetric determinantal varieties in terms of the Hasse-

Witt matrix, given by the subdeterminants of rank g − a (respectively g − a+ 1). It

is well-known (the “second fundamental theorem of invariant theory”, see [3, Prop.,

p. 69]) that for so-called generic determinantal varieties the relation Ta+1 = Sing(Ta)

holds for 0 < a < g. A similar result holds for symmetric matrices, as we show now.
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Let Ia be the ideal generated by the (g−a+1)×(g−a+1)-minors of D for 0 < a < g.

It is known ([61]) that Ia is a radical ideal in the symmetric case also. Thus, since Ia

defines Ta, to show Ta+1 ⊂ Sing(Ta), it is enough to show that the rank of the Jacobi

matrix coming from Ta i.e., composed of the derivatives of the (g−a+1)×(g−a+1)-

minors at any points of Ta+1 is smaller than a(a + 1)/2. Observe that the derivative

with respect to any variable tij of the subdeterminant of any m-by-m minor in the

generic matrix is a subdeterminant of an (m−1)-by-(m−1) minor. That is, if (tirjr),

1 ≤ r ≤ m, is an m-by-m minor, then

δ

δtir0 jr0
det(tirjr) = det(tisjs), s 6= r0,

e.g., the line ir0 and the column jr0 being removed from the m-by-m minor to produce

the (m − 1)-by-(m − 1) minor. An analogous statement holds when we replace the

generic matrix by the symmetric matrix e.g., the derivative of the subdeterminant of

an m-by-m minor of the symmetrix matrix can be written as the sum of subdetermi-

nants of (m− 1)-by-(m− 1) minors of the symmetrix matrix. Let G be an arbitrary

subdeterminant of the generic matrix and denote by sym the operation consisting in

identifying tij and tji: as G runs through all subdeterminants of m-by-m minors of

the generic matrix, Gsym runs through all subdeterminants of m-by-m minors of the

symmetric matrix, trivially. If G = Gsym, or G 6= Gsym and i = j, the result follows

from the generic case, e.g., we actually get only one subdeterminant of a (m− 1)-by-

(m − 1) minor. In contrast, if G 6= Gsym and i 6= j, the chain rule allows to write

explicitly what the derivative is in the symmetric case:

δGsym

δtij
=

(
δG

δtij
+
δG

δtji

)sym

=

(
δG

δtij

)sym

+

(
δG

δtji

)sym

,

and this is clearly a sum of two subdeterminants. Summing up, the elements of the

Jacobi matrix of Ta all vanish on Ta+1, and therefore Ta+1 ⊂ Sing(Ta).



2.5 The algebra of superspecial points on Hilbert modular varieties 79

2.5 The algebra of superspecial points on Hilbert

modular varieties

2.5.1 Tate’s theorem for supersingular abelian varieties with

RM

Let k be the algebraic closure of a finite field k. All varieties will be defined over

Spec(k). We show in this section a variant of Tate’s Theorem for supersingular

abelian varieties with RM.

Definition 2.5.1. An αp-isogeny is an isogeny of abelian varieties that can be de-

composed in a sequence of isogenies whose kernel is the local-local group scheme αp.

We say that two abelian varieties are αp-isogenous if there exists an αp-isogeny be-

tween them.

Remark 2.5.2. Note that αp has a unique form over any perfect field.

The Siegel space Ag,1 parametrizes g-dimensional principally polarized abelian vari-

eties. Its supersingular locus Sg,1 has been much studied by Li and Oort in [65]. In

particular, it is shown that any point in Sg,1 is linked to an arbitrary superspecial

point by a sequence of αp-isogenies ([65, p.23], cf. [65, §6.3]), called a rigid PFTQ. Li

and Oort’s work has been generalized in detail by S. Harashita to principally polarized

supersingular abelian varieties with RM by OL ([43, Prop. 4.10] and [43, §6 Coarse

moduli spaces]; Harashita’s thesis appeared in print in [44]), so the mere existence of

rigid PFTQ with OL-structure i.e., in which in each step the αp-isogeny respects the

OL-structure, gives us the following result right away.

Proposition 2.5.3. (Harashita) Any two principally polarized supersingular abelian

varieties with RM are αp-isogenous.
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Note that the OL-structure on an abelian variety A induces an OL⊗Z Z`-structure on

its Tate module T`(A). Thus, the Tate module decomposes according to the primes

l|`OL:
T`(A) = lim

←−
A[`n] =

∏

l|`
lim
←−

A[ln] =:
∏

l|`
Tl(A).

Lemma 2.5.4. ([82, Lem. 1.3]) Let A be an abelian variety with RM over an al-

gebraically closed field k of characteristic p. Then the Tate module T`(A) is a free

OL ⊗ Z`-module of rank 2 for any ` 6= p.

Note that any two abelian varieties A defined over k are actually defined up to an

isomorphism over a finite subfield of k. We can fix k to be big enough i.e., so that

A1, A2 and all OL-homomorphisms are defined over k.

Theorem 2.5.5. Let A1, A2 be two supersingular abelian varieties with RM by OL
defined over a finite field k. Then

HomOL,k(A1, A2)⊗ Z`
∼= HomOL⊗Z`(T`(A1), T`(A2))

∼= M2(OL ⊗ Z`),

HomOL,k(A1, A2)⊗ Zp
∼= HomOL⊗W (k)[F,V ](D(A2),D(A1)),

where the homomorphisms respect the OL-structures.

Note that

Z` ⊗Z HomOL(A1, A2) ∼= HomOL⊗Z`(T`(A1), T`(A2))

if and only if

OLl
⊗OL HomOL(A1, A2) ∼= HomOLl

(Tl(A1), Tl(A2)) ∀l|`,

since
∏

l|`
OLl
⊗OL HomOL(A1, A2) ∼= Z` ⊗Z HomOL(A1, A2)
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and
∏

l|`
HomOLl

(Tl(A1), Tl(A2)) ∼= HomOL(T`(A1), T`(A2)).

Proof. We explain the modifications to Tate’s original argument ([96, §2]) that are

necessary to adapt his proof to supersingular abelian varieties with RM by OL. Also,

we skip the details of the proof for ` = p, since the argument is similar.

We begin by explaining the disappearance of the Galois group G = Gal(k/k) com-

pared to the statement of the original Tate theorem (Theorem 2.4.7, cf. [14, Lemma

7.1]). This has everything to do with the fact that supersingular abelian varieties

have lots of endomorphisms. We need to verify that the canonical map

Z` ⊗ HomOL,k(A1, A2) −→ HomOL⊗Z`(T`(A1), T`(A2)), (2.5.1)

is injective. To see that, look at the following diagram:

Z` ⊗ Homk(A1, A2)
f1−−−→ HomG(T`(A1), T`(A2))

f2

x
xf3

Z` ⊗ HomOL,k(A1, A2) −−−−−→
canonical

HomG,OL⊗Z`(T`(A1), T`(A2)

The maps f1, f2 (and f3) are all injective, hence the map “canonical” is also injective.

Since the left side of the canonical map (2.5.1) has Z`-rank equal to 4g and the right

side, once coordinates are chosen, is an order inside of M2(OL ⊗ Z`), the cokernel is

torsion. It follows that the Galois group G acts through scalars. Thus, after proving

the analogue of Tate’s theorem, we can eliminate the mention of G from the statement

of the theorem in the end.

Recall the main ideas of Tate’s proof: we reduce the desired bijection (in the statement

of the theorem) to the bijection of the map:

Q` ⊗ EndOL(A) −→ EndOL(V`(A)), (2.5.2)

for any abelian variety A defined over k, where V`(A) = T`(A)⊗Q. To show that the

map in Equation (2.5.2) is bijective, we first use the fact that h(L) = 1 to show that
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the canonical map is injective with torsion-free cokernel: if an OL-homomorphism

f : A1 −→ A2 vanishes on A1[l], we pick a generator ηl of the principal ideal l to

define the homomorphism g := η−1
l ◦ f as in Tate’s proof.

Tate then introduces two commuting subalgebras E` and F` of the Q`-algebra

End(V`(A)) which are defined as follows: E` is the image of Q` ⊗ Endk(A) under the

map 2.5.2, while F` is the subalgebra of End(V`(A)) generated by the automorphisms

of V`(A) defined by elements of G. Tate then proceeds to show that the desired

bijection is again equivalent, by the theorem of bicommutation, to the fact that F` is

the commutant of E` in End(V`(A)), if F` is semisimple.

The name of the game is now to consider the obvious OL-versions of these subalgebras

and show that they are also commutant to one another.

In Tate’s axiomatic proof comes next a hypothesis called Hyp(k, A, d, `) which is satis-

fied for finite fields: Hyp(k, A, d, `) stipulates that there exists (up to k-isomorphism)

only a finite number of abelian varieties B defined over k such that:

• There exists a polarization ψ of B of degree d2 defined over k

• There exists a k-isogeny B −→ A of `-power degree.

It is clear that the OL-version of this hypothesis holds for supersingular abelian

varieties with RM by OL. Tate then proves two propositions under the hypothe-

sis Hyp(k, A, d, `). The first proposition is to show that for any G-stable maximal

isotropic subspace W of V`(A) with respect to the non-degenerate alternating bilin-

ear form on V`(A) corresponding to an OL-linear polarization of A defined over k,

there exists an element u ∈ E` such that W is the image of V`(A) under u. An

additional ingredient necessary in the OL-setting is the existence of OL-polarizations

of A: The existence of such a polarization was proved by Rapoport in his thesis ([82]).

Tate’s second proposition shows that the Hypothesis Hyp(k, A, d, `) and the fact the

the Q`-algebra F` is isomorphic to a product of copies of Q` implies that the map
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2.5.2 is bijective. The proof proceeds by descending induction of the dimension of

an isotropic subspace of V`(A), and thus the first induction is guaranteed by Tate’s

first proposition, and the rest of the proof is completely general. Tate’s proof finishes

by using the particulars of assuming k to be finite to relate F , the subalgebra of

Q⊗ Endk(A) generated by the Frobenius endomorphism of A relative to k, with F`,

thus showing that F` is indeed semisimple and moreover isomorphic to a product of

copies of Q`. The OL-version of the proof’s ending follows from the fact that the

Frobenius endomorphism commutes with any OL-endomorphism.

Corollary 2.5.6. Let A1, A2 be two principally polarized superspecial abelian vari-

eties with RM with isomorphic Dieudonné modules D(A1) ∼= D(A2) defined over a

finite field k. Then HomOL(A1, A2) is a projective EndOL(A1)-module of rank one.

Proof. Let O := EndOL(A1). By Proposition 2.2.34, an O-ideal is projective if and

only if it is locally principal. We thus check the latter condition. Tate’s theorem for

supersingular OL-abelian varieties shows that

HomOL(A1, A2)⊗ Z`
∼= HomOL⊗Z`(T`(A1), T`(A2));

respectively,

HomOL(A1, A2)⊗ Zp
∼= HomOL⊗W (k)[F,V ](D(A2),D(A1)).

It follows that

HomOL(A1, A2)⊗ Z`
∼= HomOL⊗Z`(T`(A1), T`(A2))

∼= HomOL⊗Z`(T`(A1), T`(A1))

∼= EndOL(A1)⊗ Z`

where we have used that T`(Ai) ∼= (OL ⊗ Z`)
2, and thus HomOL(A1, A2) is locally

principal at ` 6= p. A similar argument shows that HomOL(A1, A2) is locally principal

at p.
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The projective EndOL(A1)-module HomOL(A1, A2) can be embedded as an integral

ideal in EndOL(A1) by the map f 7→ φ ◦ f , where φ : A2 −→ A1 is an arbitrarily

chosen OL-isogeny.

Corollary 2.5.7. Let p be unramified in OL. Let A1, A2 be two principally po-

larized superspecial abelian varieties with RM. Then HomOL(A1, A2) is a projective

EndOL(A1)-module.

Proof. If p is unramified, there is a unique superspecial Dieudonné module with RM.

Indeed, since in general Dieudonné modules factorize according to the ramification

of p (cf. [38, §2.3]), we can reduce the question to the inert case, which is found in

[36, Thm. 5.4.4]; see also Chapter I of the present thesis for a discussion of the totally

ramified case.

We need a version of Tate theorem’s for supersingular abelian varieties with RM

that holds for principally polarized abelian varieties.

Denote by Z`(1) = lim
←−

µ`r the inverse limit of `r-th roots of unity for all positive

integers r and let λ be an OL-polarization of (A, ι). The polarization λ and the Weil

pairing

e` : T`(A)× T`(At) −→ µ`∞,

induce an alternating form eλ := e`(−, λ(−)) on T`(A) such that the elements of OL
are self-adjoint. This is equivalent to an alternating OL ⊗ Z`-bilinear form

ψλ : T`(A)× T`(A) −→ D−1
L ⊗Z Z`(1),

such that TrL/Q◦ψλ = e`(−, λ(−)). We shall call a pairing such as ψλ an alternating

pairing of a Tate module with RM.
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Definition 2.5.8. A quasi-polarization on D(A) is an (OL ⊗ W (k))-bilinear form

eλ = ep(−, λ(−)) from

D(A)⊗ D(A) −→ D−1
L ⊗W (k)

satisfying the conditions:

eλ(Fx, y) = eλ(x, V y)
σ, eλ(V x, y) = eλ(x, Fy)

σ−1

,

eλ(x, y) = −eλ(y, x),

where σ is the Frobenius.

Theorem 2.5.9. Let (A1, ι1, λ1), (A2, ι2, λ2) be two principally polarized supersingu-

lar abelian varieties with RM by OL. Then

HomOL((A1, λ1), (A2, λ2))⊗ Z`
∼= HomOL⊗Z`((T`(A1), eλ1), (T`(A2), eλ2)),

and

HomOL((A1, λ1), (A2, λ2))⊗ Zp
∼= HomOL⊗W (k)((D(A2), eλ2), (D(A1), eλ1)),

where

HomOL((A1, λ1), (A2, λ2))⊗ R := {φ ∈ HomOL(A1, A2)⊗ R such that φ∗λ2 = λ1} ,

and where

HomOL⊗Z`((T`(A1), eλ1), (T`(A2), eλ2))

:= {φ ∈ HomOL⊗Z`((T`(A1), (T`(A2))|φ∗eλ2 = eλ1} ,

and similarly at ` = p.

Proof. Let ` 6= p. The map

HomOL((A1, λ1), (A2, λ2))⊗ Z` ↪→ HomOL⊗Z`((T`(A1), eλ1), (T`(A2), eλ2)),
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is clearly injective. Pick a map φ ∈ HomOL⊗Z`((T`(A1), eλ1), (T`(A2), eλ2)). Then, by

Theorem 2.5.5, there exists a map ψ ∈ HomOL(A1, A2) ⊗ Z` which induces φ and

ψ∗λ2 = q · λ1 for some q ∈ OL ⊗ Z`. An alternating pairing on T`(A) can be viewed

as an element of

HomOL⊗Z`(∧2
OL⊗Z`

T`(A),D−1
L ⊗ Z`(1)),

so a map ψ ∈ HomOL(A1, A2) will induce a map ∧2ψ : ∧2T`(A1) −→ ∧2 T`(A2) that

makes the obvious diagram commute i.e., eλ1 = eλ2 ◦ ∧2ψ. Since A1 and A2 are

principally polarized, they are αp-isogenous, we can suppose that eλ1 = eλ2 for ` 6= p,

and this amounts to ∧2ψ = 1 i.e., q = ∧2ψ = 1. The proof is similar for ` = p.

Corollary 2.5.10.

Aut(EndeλOL(T`(A)) = {φ ∈ EndOL(A)⊗ Z`| φ′φ = 1} ,

Aut(EndeλOL(D(A)) = {φ ∈ EndOL(A)⊗ Zp| φ′φ = 1} ,

where φ′ is the Rosati involution induced by λ.

Proof. If A1 = A2 = A, the condition φ∗λ1 = λ1 is the same as φ′φ = 1.

2.5.2 Transitivity of the Hecke action of H`

We prove the existence of an `-power degree OL-isogeny between any two superspecial

abelian varieties with RM with isomorphic Dieudonné modules: this follows from the

strong approximation theorem ([12, Proof of Prop. 4.6]) and using Corollary 2.5.10

to adapt the argument to the RM case. The idea of the proof is that the `-power

Hecke orbit of a supersingular point on the Hilbert moduli space can be described

by double cosets for the `-adic points of a suitable algebraic group. To obtain the

desired result, we apply the strong approximation theorem to show that the double

cosets parameterizing the `-power Hecke orbit of a superspecial point x on the Hilbert
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moduli space has the same cardinality as the double cosets (for the adelic points of

the same algebraic group) parameterizing the set of superspecial points with the same

Dieudonné module as x.

This argument in the elliptic case is to be found in great detail in Cornut’s Ph.D.

thesis (see [16, Cor. 5.5.6], but bear in mind that the prime characteristic in that

reference is `, not p).

Let Ax be a fixed (principally polarized) superspecial abelian variety with RM by OL.

Let Gx denote the group scheme over Spec(Z) whose group of R-points, for any

commutative ring R, is :

Gx(R) =
{
φ ∈ (EndOL(Ax)⊗ R)×;φ′φ = 1

}
,

where φ 7→ φ′ is the Rosati involution induced by the polarization of Ax. We will

sometimes drop the suffix in Gx if no confusion can arise.

Let Λx denotes the set of isomorphism classes of principally polarized superspecial

abelian varieties with RM (A, λ, ι) of dimension g over k such that the Dieudonné

module D(A) is isomorphic to D(Ax) as quasi-polarized Dieudonné modules with RM,

and the Tate module T`(A) is isomorphic to T`(Ax) as nondegenerate alternating

OL ⊗ Z`-modules for all ` 6= p. We know that these conditions are automatically

satisfied i.e., that the prime-to-p Tate modules are isomorphic, since there exists an

αp-isogeny between any two principally polarized superspecial abelian varieties with

RM by Proposition 2.5.3; the condition at p is satisfied by hypothesis.

Theorem 2.5.11. ([111, Thm. 10.5]) The set Λx is in natural bijection with the

(adelic) double cosets Gx(Q)\Gx(Af )/Gx(Ẑ).

We now describe the `-Hecke orbit of a superspecial point on the Hilbert moduli space

can be describe by the `-adic points of the same algebraic group Gx.

We adapt to our algebraic group Gx the argument of Ching-Li Chai ([12, Proof of

Prop. 4.6]): The special unitary group Gx over Q attached to the semisimple algebra
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EndOL(Ax) ⊗Z Q ∼= Bp,L with Rosati involution is an inner form of SU2 such that

Gx(Rσ) ∼= SU2(R) is compact for any embedding σ : L ↪→ R, while

Gx(Q`) = {b ∈ (Bp,L ⊗Q`)
×|Norm(b) = 1}

is non-compact for every prime number ` 6= p. The Z`-lattice EndOL(Ax) ⊗Z Z` in

EndOL(Ax)⊗Z Q` defines a maximal compact subgroup Gx(Z`) of Gx(Q`). Note that

EndOL(Ax)⊗Z Zp

∼=−→ EndOL(D(Ax))

by our supersingular version of Tate’s theorem. Moreover,

Gx(Zp) = Aut(EndeλOL(D(Ax)))

by Corollary 2.5.10.

We now describe the Hecke orbits in terms of Gx: by the argument of [11, End of

§1] (cf. [12, p.9], [16, Prop. 5.5.2]), the prime-to-p Hecke orbit of x on the Hilbert

moduli space of Γ0(N) level (N, p) = 1, is in natural bijection with the finite set

(Gx(Q) ∩Gx(Zp))\
∏

r 6=p

′

Gx(Qr)/Γ0(N),

where Γ0(N) is the usual congruence subgroup of restricted product
∏′

r 6=pGx(Qr) of

level N . We are only interested in the N = 1 case, so the prime-to-p Hecke orbit of

the point x on the Hilbert moduli space is in natural bijection with the double cosets

(Gx(Q) ∩Gx(Zp))\
∏

r 6=p

′

Gx(Qr)/
∏

r 6=p

′

Gx(Zr).

A similar argument of course applies to the `-power Hecke orbit. The `-power Hecke

orbit H` · x of a point x is thus parametrized by:

(
Gx(Q) ∩

∏

`′ 6=`
Gx(Z`′)

)
\Gx(Q`)/Γ0(N)′,

where Γ0(N)′ is the congruence subgroup of Gx(Q`) of level N e.g., Gx(Z`) if N = 1.
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Now that we have the description of the `-Hecke orbit, we use the strong approxima-

tion theorem to related the `-adic double cosets with the adelic double cosets.

For the group Gx, the statement of the strong approximation theorem ([102, p.81])

is: Gx(Q)Gx(Q`) is dense in Gx(Af ). Since Gx(Ẑ) is open in Gx(Af), we thus get the

equality:

Gx(Q`)Gx(Ẑ)Gx(Q) = Gx(Af).

It follows that for any ĝAf ∈ Gx(Af ), there exists some gQ ∈ Gx(Q), g` ∈ Gx(Q`) and

ĝbZ
∈ Gx(Ẑ) such that gQg`ĝbZ

= ĝAf . This implies that the map Q` ↪→ Af induces a

surjection:

Gx(Q`) � Gx(Q)\Gx(Af )/Gx(Ẑ).

which in turn yields a bijection at the level of double cosets

Gx(Z[
1

`
])\Gx(Q`)/Gx(Z`) −→ Gx(Q)\Gx(Af)/Gx(Ẑ).

Since Gx(Z[1
`
]) = Gx(Q) ∩∏

`′ 6=`Gx(Z`′), this shows that the `-power Hecke orbit of

the point x is Λx. We therefore conclude:

Proposition 2.5.12. Let A1, A2 be principally polarized supersingular abelian va-

rieties with RM with Tate modules T`(A1), T`(A2) and Dieudonné modules D(A1),

D(A2). Recall that T`(A1) ∼= T`(A2) as OL ⊗ Z`-module with alternate pairings by

Proposition 2.5.3. Assume further that D(A1) ∼= D(A2) as quasi-polarized OL⊗W (k)-

modules, a condition holding automatically if p is unramified (see Proposition 2.5.7).

Then for any prime ` 6= p, there exists an `-power isogeny between A1 and A2. In

particular, the module HomOL(A1, A2) contains two isogenies which are of coprime

degrees.
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2.5.3 Quadratic forms arising from superspecial points

Let A1, A2 be two abelian varieties with RM. Let λi = Ai −→ Ati, i = 1, 2, be principal

OL-polarizations, and define, for φ ∈ HomOL(A1, A2)

||φ|| = ||φ||λ1,λ2 := λ−1
1 ◦ φt ◦ λ2 ◦ φ,

At2
λ2←−−− A2

φt

y
xφ .

At1 −−−→
λ−1
1

A1

Then we obtain a function:

|| − || : HomOL(A1, A2) −→ EndOL(A1).

Lemma 2.5.13. The function ||− || takes values in OL ⊂ EndOL(A1) and is a totally

positive OL-integral quadratic form,

1. ||φ|| = 0 if and only if φ = 0 and ||φ|| � 0 for all φ 6= 0;

2. < φ, ψ >OL := ||φ + ψ|| − ||φ|| − ||ψ|| = λ−1
1 ψtλ2φ + λ−1

1 φtλ2ψ is a symmetric

OL-bilinear form. In particular,

3. ||` ◦ φ|| = `2||φ||, for ` ∈ OL.

Proof. The element ||φ|| is fixed by the Rosati involution f 7→ f ′ = λ−1
1 f tλ1 :

λ−1
1 · (λ−1

1 ◦ φt ◦ λ2 ◦ φ)tλ1 = λ−1
1 ◦ φt ◦ λ2 ◦ φ.

This implies that ||φ|| ∈ {ψ ∈ EndOL(A1)|ψ′ = ψ} = OL, since in general, the

Rosati involution fixes L in End0
OL(A1): If A1 and A2 are supersingular abelian va-

rieties, it follows from Albert’s classification that we are in the Type III situation:

the quaternion algebra EndOL(A1) ⊗ Q over the totally real field L is totally defi-

nite, hence the Rosati involution is the canonical involution i.e., the conjugation map

i.e., xσ = Tr(x) − x = x on the quaternion algebra Bp,L. Since λ1 is principal, all

computations are integral, and the image of || − || is OL.



2.5 The algebra of superspecial points on Hilbert modular varieties 91

Let us check Assertion (1). Clearly, ||φ|| = 0 if and only if φ is the zero map (any non-

zeroOL-homomorphism of abelian varieties is an isogeny). The total positivity follows

from properties of the embedding of the Néron-Severi group NS0(A) in End0
OL(A1)

sym

via the map µ 7→ λ−1
1 µ ([39, p.46]): the polarizations are sent to positive symmetric

elements. We finally check the OL-linearity of the symmetric bilinear form. The

argument is essentially the same for the first variable and the second variable:

||` ◦ φ+ ψ|| − ||` ◦ φ|| − ||ψ|| = λ−1
1 ψtλ2(` ◦ φ) + λ−1

1 (` ◦ φ)tλ2ψ

= λ−1
1 ψt`tλ2φ+ λ−1

1 φt`tλ2ψ

= λ−1
1 `tψtλ2φ+ λ−1

1 `tφtλ2ψ

= `λ−1
1 ψtλ2φ+ `λ−1

1 φtλ2ψ

= `(||φ+ ψ|| − ||φ|| − ||ψ||)

How can we compare || − || with the norm form on End0
OL(A) ?

Proposition 2.5.14. The OL-degree || − || is multiplicative: if ψ ∈ HomOL(A2, A3)

and φ ∈ HomOL(A1, A2), then

||ψ ◦ φ||λ1,λ3 = ||ψ||λ2,λ3 · ||φ||λ1,λ2 .

Proof.

||ψ ◦ φ||λ1,λ3 = λ−1
1 (ψφ)tλ3(ψφ)

= λ−1
1 φtλ2λ

−1
2 ψtλ3ψφ

= λ−1
1 φtλ2||ψ||λ2,λ3φ

= ||ψ||λ2,λ3λ
−1
1 φtλ2φ

= ||ψ||λ2,λ3 · ||φ||λ1,λ2.



92 Superspecial Abelian Varieties and Theta Series

Remark 2.5.15. This property defines the quadratic form up to a constant multiple.

Lemma 2.5.16. Let ψ ∈ HomOL(A1, A2). Let O = EndOL(A1). We can use ψ to

embed HomOL(A1, A2) as an O-ideal:

HomOL(A1, A2)
jψ
↪→ EndOL(A1),

φ 7→ λ−1
1 ◦ ψt ◦ λ2 ◦ φ.

Then

Norm(jψ(φ)) = ||ψt|| · ||φ||.

Let Iψ be the O-ideal jψ(HomOL(A1, A2)). Then the reduced norm N(Iψ) is equal to

the ideal (||ψt||).

Remark that for A1 = A2, λ1 = λ2,

||φ|| = φ′ · φ = Norm(φ),

for φ ∈ EndOL(A1).

Proof. Compute the norm of jψ(φ):

Norm(jψ(φ)) = jψ(φ)jψ(φ)

= [λ−1
1 ◦ (λ−1

1 ◦ ψt ◦ λ2 ◦ φ)t ◦ λ1] ◦ [λ−1
1 ◦ ψt ◦ λ2 ◦ φ]

= [λ−1
1 φtλ2ψ][λ−1

1 ψtλ2φ]

= [λ2ψλ
−1
1 ψt][λ−1

1 φtλ2φ]

= ||ψt|| · ||φ||,

since λ2ψλ
−1
1 ψt ∈ OL. It follows that

||jψ(φ)|| = Norm(jψ(φ)) = ||ψt|| · ||φ||,
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hence the norm of Iψ, being the greatest common denominator of the norms of the

elements ||jψ(φ)||, is the greatest common denominator of all ||ψt|| · ||φ||, for φ ∈
HomOL(A1, A2). Since any superspecial abelian varieties with isomorphic superspecial

crystal admit two isogenies φ1, φ2 of relatively coprime absolute degree by Proposition

2.5.12 i.e., such that

(
NormL/Q||φ1||,NormL/Q||φ2||

)
= 1,

and thus (||φ1||, ||φ2||) = (1), thence it follows that N(Iψ) = (||ψt||).

Summarizing the previous discussion, we obtain the desired link between the norm

map and the OL-degree.

Proposition 2.5.17. Let O := EndOL(A1). Let HomOL(A1, A2) ∼= A, A an integral

O-ideal. Then theOL-degree of anOL-isogeny φx corresponding to a non-zero element

x ∈ A is related to the norm of the quaternion algebra by the formula, valid up to a

unit:

||φx|| =
Norm(x)

Norm(A)
.

The indeterminacy between the OL-degree and the norm of an element is thus a

constant multiple: it is a totally positive element well-defined up to a totally positive

unit.

2.5.4 Tensor construction

We gather a few well-known properties of a tensor construction attributed to Serre

(cf. [14, §7] and [16, §10]).

Definition 2.5.18. ([14, Thm. 7.2]) Let S be a scheme. Let R be an associative

ring with identity, M be a finitely generated projective right R-module with dual left

R-module M t := HomR(M,R) of right R-linear homomorphisms and M be a left
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R-module scheme over S i.e., an R-module object in the category of S-schemes. The

functor

T −→M ⊗R M(T ) ∼= HomR(M t,M(T )) (2.5.3)

is represented by a commutative group scheme over S, denoted by M ⊗R M.

In particular, if M is an abelian scheme, then M ⊗R M is also an abelian scheme.

Definition 2.5.19. ([14, Def. 7.6]) A finitely generated projective (right) R-module

M has constant rank r if the finitely generated right K-module M ⊗R,φ K has

length dKr for every map φ : R −→ K to a finite-dimensional central simple algebra

over an algebraically closed field k = Z(K), with dimkK = d2
K. In other words, as a

right K-module, M ⊗R,φ K is isomorphic to an r-fold direct sum of copies of K.

Proposition 2.5.20. ([14, Proof of Thm. 7.8]) Let M −→ S be a locally finite type

left R-module scheme over S, and let M be a finitely generated projective (right)

R-module. We use the notation T0 to denote the tangent space at 0. There is a

natural isomorphism:

M ⊗R T0(M) ∼= T0(M ⊗R M).

Proposition 2.5.21. ([14, Thm. 7.5]) Let M be a left R-module scheme which has

relative dimension g over S. Then M ⊗R M has relative dimension gr over S if the

module M has constant rank r over R.

Proposition 2.5.22. ([14, Lem. 8.2]) Let R be an associative ring and M a finitely

generated projective left R-module. For any left R-module scheme M over S and any

commutative S-group scheme G, view the group HomS(M, G) as a right R-module

via the R-action on M. Then the natural map:

ηM : HomS(M, G)⊗R M −→ HomS(HomR(M,M), G),

defined functorially by ηM(φ⊗m) : f 7→ φ(f(m)) (on the level of points in S-schemes)

is well-defined and an isomorphism.
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2.5.5 Endomorphism orders of superspecial abelian varieties

In this section, we need to establish another property of the tensor construction. In

general, if A is an abelian scheme equipped with an action by a commutative ring R,

and T is an R-algebra, it is natural to expect that the following isomorphism holds:

EndR(A)⊗R T ∼= EndT (A⊗R T ).

In fact, as we will see shortly, a more general statement holds. We specifically need

the case R = Z, A a supersingular elliptic curve and T = OL.

Lemma 2.5.23. ([11, Lem. 6]) Let L be a totally real field. Let (A, ι) be an abelian

variety of dimension g = [L : Q] with multiplication by OL over an algebraically

closed field k. Then A is isogenous to Bn for some simple abelian variety B/k. Let

D = Endk(B) ⊗Z Q, so Endk(A) ⊗Z Q ∼= Mn(D). Consider the case when D is a

totally definite quaternion division algebra over Q, dim(B) = 1 and the field k has

characteristic p. Then the algebra D = Bp,∞ is the quaternion division algebra over

the rationals ramified at p and∞, and B is a supersingular elliptic curve over k. The

centralizer of L in Endk(A)⊗Z Q,

CentEndk(A)⊗Q(L),

is the quaternion division algebra Bp,∞ ⊗ L which is ramified at all infinite places of

the totally real field L and all places v of L above p such that [Lv : Qp] is odd, and

is unramified at all other finite places.

Lemma 2.5.24. ([14, Lem. 7.14]) Let R be an associative ring, M1 and M2 two

finite projective left R-modules. Let M t
1 denote the right module of left-linear maps

from M1 to A. For any two left R-module schemes M1 and M2 over a base S, view

the group HomS(M1,M2) as a right R-module via the R-action on M and as a left
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R-module via the action on M2. Then the natural map:

ηM2,M1 : M t
1 ⊗R HomS(M1,M2)⊗RM2 −→ HomS(HomR(M2,M1),HomR(M1,M2))

(2.5.4)

defined functorially by

ηM2,M1(`1 ⊗ φ⊗m2))(f) : m1 7→ `1(m1)φ(f(m2)),

(on the level of points in S-schemes) is well-defined and an isomorphism.

In particular, there is a natural isomorphism

M t ⊗R EndS(M)⊗RM ∼= EndS(HomR(M,M)),

given by `⊗φ⊗m 7→ (f 7→ `(−) ·φ(f(m))), and this is an isomorphism of associative

rings.

Remark 2.5.25. An interesting feature of Lemma 2.5.24 is that the natural map 2.5.4

upgrades to an isomorphism of associative rings when both sides of 2.5.4 are rings

e.g., M1 = M2 and M1 = M2; M1 = M2 and M2 = R, M t
1 an R-algebra (or vice

versa);

Proposition 2.5.26. Let E be a supersingular elliptic curve. Then EndOL(E⊗OL) ∼=
End(E)⊗OL. In particular, the order EndOL(E ⊗OL) is Bass.

Proof. We have seen earlier (2.3.3) that End(E)⊗OL is primitive. Thence, it suffices

to show that the centralizer of OL in End(E ⊗ OL), EndOL(E ⊗ OL), is isomorphic

to End(E)⊗OL.
First, the general algebraic properties of Hom and ⊗ gives the following isomor-

phism of rings:

EndOL(E ⊗Z OL) ∼= Hom(E,HomOL(OL, E ⊗Z OL))

(by the Hom-⊗ adjunction)

∼= Hom(E,E ⊗Z OL) (by definition).
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From Lemma 2.5.24, we get the second isomorphism of rings needed:

OL ⊗Z End(E) ∼= Hom(HomZ(Z, E),HomZ(OtL, E))

∼= Hom(E,E ⊗Z OL) (cf. Equation 2.5.3)

We conclude immediately that

EndOL(E ⊗Z OL) ∼= End(E)⊗Z OL.

Theorem 2.5.27. Let p be unramified. Let A be a principally polarized superspecial

abelian variety with RM. Then EndOL(A) is a superspecial order of level p.

Proof. By Proposition 2.5.12, the order EndOL(A) is locally conjugate to the order

EndOL(E⊗OL) = End(E)⊗OL, which is a superspecial order of level p. Since being

superspecial is a local property, we are done.

Remark 2.5.28. This also follows straight from Theorem 2.5.5.

2.5.6 The bijection between ideal classes and superspecial

points

Let p be unramified. The goal of this section is to give a direct connection be-

tween superspecial abelian varieties with real multiplication and the arithmetic of

quaternion algebras over totally real fields, generalizing the classical bijection be-

tween supersingular elliptic curves and left ideals classes of a maximal order in the

rational quaternion algebra ramified at p and ∞. We suppose that p is unramified

throughout, so that the order O under consideration is an Eichler order of level p. The

precise identification of the orders appearing as endomorphism orders of superspecial
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abelian varieties with RM by OL enabled us to derive, using standard tools, the class

number formula or rather an expression in terms of double cosets of the number of

ideal classes (see Corollary 2.3.8). It turns out that this finite set B1(O)\J1
B/B

× has

the same cardinality as the set of superspecial points on a Hilbert modular variety

à la Deligne-Pappas. We use the Serre tensor construction to establish a functorial

bijection. The argument using kernel ideals we generalize was already developed and

applied to the case of elliptic curves in [108, §3], where the endomorphism order is

maximal.

Definition 2.5.29. Let A be a superspecial abelian variety with RM by OL. Denote

by I an integral left O-ideal, where O = EndOL(A). We define A[I] to be the scheme-

theoretic intersection of the kernels of all α ∈ I. A left O-ideal I is called a kernel

ideal if I = {α ∈ O|α(A[I]) = 0}.

The tensor construction is defined in Definition 2.5.18 and studied in depth in Section

2.5.4. It was also defined in detail in the context of Hilbert modular varieties in [28,

Proposition 1.2.7].

Proposition 2.5.30. Let A be a superspecial abelian variety with RM. Let I be

a projective rank one O-module, where O = EndOL(A). Then A ⊗O I is also a

superspecial abelian variety with RM.

Proof. Since A is principally polarized, the cotangent space will be killed by Ver-

schiebung if and only if the tangent space is killed by Frobenius. Both conditions are

equivalent to A being superspecial. It follows from Proposition 2.5.20 that Frobenius

also kills the tangent space of A⊗O I, and we are done.

Theorem 2.5.31. ([108, Prop. 3.11]) Let A, B be kernel ideals. Then

A⊗O A ∼= A⊗O B
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if and only if

[A] = [B]

i.e., A = Bν for some v ∈ B×p,L.

We now make this theorem relevant by showing that any left ideal of the hereditary

order O = EndOL(A), as in the case of a maximal order in Bp,∞, is a kernel ideal.

Definition 2.5.32. ([108, Def., p.533]) Let I1 be a left O-ideal. The ideal

I2 := {ρ ∈ O|ρ(A[I1]) = 0}

is called the associated kernel ideal to I1. Note that A[I1] = A[I2], so I2 is indeed

a kernel ideal.

Lemma 2.5.33. Let I1 be a leftO-ideal, and let I1 ⊂ I2 be the associated kernel ideal.

Then NL/Q(Norm(I1)) = NL/Q(Norm(I2)), and therefore I1 = I2 i.e., all O-ideals are

kernel ideals.

Proof. The proof by Waterhouse ([108, Thm. 3.15]) in the maximal case essentially

relies on a theorem of Nehrkorn (see below) which generalizes without modification

to the hereditary case.

Proposition 2.5.34. (Nehrkorn) Let I be an O-ideal. Let Or(I) be its right order.

Then there is an Or(I)-ideal J such that IJ = Rλ for λ ∈ Bp,L, and

(NormL/Q(N(J)), |A[I]|) = 1.

Proof. The proof of Nehrkorn’s theorem in Deuring’s book ([21, Satz 27, p. 106])

only uses the fact that a (left) ideal is locally principal, which is always true in the

hereditary case.
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Theorem 2.5.35. The map B 7→ A ⊗O B from ideal classes of O to superspecial

abelian varieties with RM by OL is a bijection at the level of sets and is functorial

in A.

Proof. The functoriality is clear from the construction given in Section 2.5.4. We have

seen that all O-ideals are kernel ideals, hence the map B 7→ A⊗OB is injective. We

just need to prove it is surjective. Let A′ be a superspecial variety with RM. We want

to find a projective module B such that A⊗OB ∼= A′. Consider B := HomOL(A,A′).

The natural map ψ:

A⊗O HomOL(A,A
′)

ψ−→ A′, a⊗ φ 7→ φ(a).

is a well-defined, and an isomorphism of abelian varieties with RM.

Corollary 2.5.36. Let p be unramified. All superspecial orders O of Bp,L of level

pOL arise from geometry.

Proof. Since superspecial orders O of level p are locally isomorphic (Proposition

2.2.28), the set of right orders of a complete set of representatives of left, projec-

tive ideal classes of any superspecial order of level p represent all isomorphism classes

of superspecial orders by [102, Lem. 4.10, p. 26] and Proposition 2.2.34 (cf. [102,

Cor. 5.5, p. 88]).

2.5.7 Application of Kneser’s Theorem to superspecial or-

ders

The avowed purpose of this subsection is to coin Kneser’s Theorem, and derive an

easy corollary pertaining to superspecial abelian varieties.

Theorem 2.5.37. (Kneser) Let f be a totally positive definite quadratic form in

n ≥ 4 variables over the totally real field L. There is a constant Cf (depending
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effectively on f) such that if ν ∈ OL is totally positive and Norm(ν) ≥ Cf , then the

number ν is primitively represented by f if and only if it is primitively represented

locally at every completion v of L. By primitive representation, we mean an integral

n-tuple (x1, . . . , xn) such that gcd(x1, . . . , xn) = (1).

Proof. The proof in ([10, §11, Section 9]) for Q works for any totally real number

field L.

Definition 2.5.38. AnOL-isogeny φ : A1 −→ A2 is primitive if for any factorization

φ = [m] ◦ ψ, where ψ is an OL-isogeny and [m] is multiplication-by-m for m ∈ OL, it

is necessary that m ∈ O×L .

The strategy of the proof of the existence of an isogeny of arbitrary degree in the

elliptic case (as in [59, Cor. 77]) works in the Hilbert case. Recall that we proved the

existence of an `-power isogeny in Proposition 2.5.12.

Theorem 2.5.39. Let A1, A2 be two principally polarized superspecial abelian va-

rieties with RM. Then for every n ∈ OL sufficiently large and relatively prime to p,

there exists a primitive isogeny φ : A1 −→ A2 over k of OL-degree n.

Proof. We equip the module M of k-isogenies with the structure of a quaternary

quadratic module with the || − || map. It is sufficient to look at solutions locally.

Put O := EndOL(A1). For all primes l in OL, the projective Ol-module Ml is free

of rank one over Ol and generated by an isogeny of degree relatively prime to l. For

all primes away from p, Ol splits and the local condition is trivially satisfied, be-

cause the matrix algebra M2(OL) represents all (totally positive) integers primitively.

Thus we need only consider the primes p over p in Bp,∞ ⊗ L. Here also, every in-

teger n relatively prime to p is represented, since Op contains a split extension or

an unramified quadratic extension Rp of OLp
, O being superspecial (see Definition

2.3.13), and the reduced norm map on Op induces the surjective norm map on units
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Norm : R×p −→ O×Lp
. Since n lies in OLp

, any representation of n is trivially primi-

tive in Mp. At places p||p unramified in Bp,L, there is also a split or an unramified

extension, and the same argument applies. Thus the conditions of Kneser’s theorem

are satisfied, and the result follows.

2.6 Theta series arising from superspecial points

In this section, p is arbitrary. Let A1, A2 be two principally polarized superspecial

abelian varieties. The OL-module HomOL(A1, A2) becomes a quadratic module when

equipped with the OL-degree || − || (see Lemma 2.5.13). We study in this section the

theta series that arise from these quadratic modules. We prove that the q-expansion

Θ :=
∑

OL3ν�0 or ν=0

aνq
ν,

where

aν = | {φ ∈ HomOL(A1, A2) such that ||φ|| = ν} |,

is the q-expansion of a Hilbert modular form. This actually stems from the fact

that Θ is a theta series i.e., aν is given by the totally positive quadratic form || − ||.
In particular, a0 = 1 (the zero map!). Since h+(L) = 1, all totally positive units are

squares and thus the quadratic form || − || is uniquely defined as the norm up to an

integral change of basis, operation under which the representation numbers of the

quadratic form are invariant. This shows that the theta series does not depend on

the polarizationos λ1, λ2 used for the definition of the OL-degree || − ||.

Theorem 2.6.1. A theta series constructed from a quadratic OL-lattice (M, q) of

levelN yields a Hilbert modular form of weight 2 and quadratic character χM (modulo

the level) given by a Gauss sum, which transforms under the group

SL2(OL ⊕N ·Norm(M)DL) := {( a bc d ) ∈
(

OL (Norm(M)DL)−1

NNorm(M)DL OL

)
|ad− bc = 1},
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where N = (p) is the level of the lattice M , and DL is the different of L.

Proof. This was first proved by Eichler ([24, Th. I]).

We apply this general theorem to the OL-lattices (HomOL(A1, A2), || − ||) of level (p)

(the level has been calculated in Proposition 2.3.20).

We need to explain why the quadratic character χ is identically 1 for the theta series

coming from quaternion algebras. The expression of χM in terms of a Gauss sum in

[24, Thm. I] for a lattice of OL-rank 4 is given by the formula:

χM(δ) =
i2g

n(γ)2
√

Φ

∑

X∈M/δM

eπitr(δ
−1q(X )), Φ = det(tr(q(Iµ, Iν))),

where γ ∈ NNorm(M)DL, and Φ is computed with respect to a basis Iµ, Iν of M .

This is a quadratic character modulo the level, and it is equal to 1 if the determinant

of M is a square. Since the determinant of (HomOL(A1, A2), ||− ||) is always a square

(in this occurrence p2), the quadratic character χM is thus identically 1.

For (M, q) = (HomOL(A1, A2), ||−||), the existence of two isogenies of coprime degrees

imply that Norm(M) is 1. But since h(L) = 1, the group of transformation is actually

isomorphic to Γ0(p) i.e., the matrices ( a bc d ) ∈
( OL OL
pOL OL

)
such that ad − bc = 1 : the

bottom-left entry and the top-right entry “cancel out” if the ideals are principal,

since SL2(OL) and SL2(OL,DL) are conjugate. Thus, the value of the norm of the

quadratic OL-lattice HomOL(A1, A2)) disappears completely from the end result.

2.7 The Basis Problem for Hilbert modular forms

We explain the derivation of a special case of the Basis Problem for Hilbert modular

forms from the Jacquet-Langlands correspondence i.e., we show that theta series

coming from ideals of an Eichler order of level p in Bp,∞⊗L span the space of Hilbert

modular newforms of weight two for Γ0(p) (and trivial character).
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The Jacquet-Langlands correspondence ([52, Thm. 16.1]) establishes, for any totally

definite quaternion algebra B, a Hecke-equivariant injection π 7→ JL(π) from the set

of classes of automorphic representations π = ⊗vπv of GB(A) = (B ⊗F A)× with the

set of classes of automorphic representations of GL2(A). The image of the map is the

set of cuspidal automorphic representations of GL2(A) that are discrete series (i.e.,

special or supercuspidal at a finite place) at all ramified places of B. Imposing that the

representation is of the discrete series at infinite places means that it is holomorphic

of weight k ≥ 2. A complete proof of the Jacquet-Langlands correspondence can be

found in [34, §VI, Section 2]; for a more complete discussion, see [47, §5].

The key fact that we use is that the representation πp corresponding to a newform at

a prime p whose exponent is odd in the level is necessarily in the discrete series, since

the conductor at p is not a square (see [33, Proof of Prop. 5.21, p. 95; Table 4.20,

p. 73]). Recall from Lemma 2.5.23 that a prime p dividing p is ramified in Bp,∞ ⊗ L
if and only if [Lp : Qp] is odd. It is necessary for this to happen that the exponent

α of pα occuring in the prime decomposition of p is odd i.e., for level p, only odd

exponents occur. But then the local representation πp of any cuspidal automorphic

representation of GL2(A) of level p occurs in the discrete series at p for any ramified

place p of Bp,L.

In brief, in the case of level exactly equal to p, the Jacquet-Langlands correspondence

implies that all cuspidal automorphic representations of GL2(A) arise as quaternionic

representations on the adelic group associated to the quaternion algebra Bp,L.

Having explained the situation in the representation-theoretic setting, we derive the

classical statement that the corresponding space of Hilbert newforms of weight 2 and

level (p) is spanned by classical theta series. We follow [46, §5].

The space S
Bp,L
2 (N,C) of modular forms on Bp,L is defined as the space of functions

satisfying [48, Condition (SB1), p. 201]. The space S2(N,C) is the space of functions

f : GL2(A) −→ C satisfying [48, Conditions (SA1), (SA2), (SA3), p. 193], that
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is, the automorphy condition, the holomorphy condition and some rapid decreasing

condition at all cusps of GL2; this space corresponds to classical Hilbert cusp forms

of weight 2 and Γ0(N)-level.

Theorem 2.7.1. ([48, Thm. 4.34, p.202]) Suppose N = N0d(Bp,L) for an inte-

gral ideal N0 prime to d(Bp,L). Then we have an Hecke-equivariant embedding

S
Bp,L
2 (N,C) ↪→ S2(N,C). The image of this embedding only depends on Bp,L and is

made up of cusp forms in S2(N,C) new at all primes dividing d(Bp,L).

Remark 2.7.2. Since Bp,L is totally definite, the elements of S
Bp,L
2 (N,C) can be viewed

as functions on the double cosets parametrizing ideals classes of an Eichler order of

level d(Bp,L)N0 (cf. [46, p.2112] and [47, p. 46]): Put N = p and N0 such that

N0d(Bp,L) = p; N0 is clearly prime to d(Bp,L). We now explain why a maximal order

in Bp,L equipped with N0-level structure is the same thing as an Eichler order of

level p in Bp,L. This is clear from the local description of Eichler orders: at primes

dividing d(Bp,L), we locally have a maximal orders, so there is no difference with

the global maximal order at those primes; at a prime q dividing N0, the local order

Oq is isomorphic to
( OLq OLq

qOLq OLq

)
, which we recognize to be the local maximal order

M2(OLq
) with Γ0(q)-level.

Corollary 2.7.3. ([46, p. 2113]) LetH(C) be the Hecke algebra in End(S
Bp,L
2 (N,C)).

Then S
Bp,L
2 (N,C) is free of rank 1 over H(C).

Hida then defines a “theta map”

Θ : S
Bp,L
2 (N,C)⊗H(C) S

Bp,L
2 (N,C) −→ Snew2 (Γ0(N); C),

which is an isomorphism by [46, Cor. 5.2] since S
Bp,L
2 (N,C) is free of rank 1 over

H(C) for N squarefree. As pointed out by Hida ([46, Case r = 0, p. 2114] and [47,

Equation 7.9], Θ(f, g), for f, g ∈ SBp,L2 (N,C), is the classical theta series associated to

an ideal of an Eichler order of level N of Bp,L. We thus get that all Hilbert newforms
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of weight 2 and level Γ0(N) come from the space S
Bp,L
2 (N,C) via the theta map i.e.,

theta series of left ideals of an Eichler order of level N in Bp,L span Snew2 (Γ0(N); C).

We state our conclusion.

Theorem 2.7.4. Let p unramified. Let S2(Γ0(p), 1)new be the subspace of new-

forms of the vector space of Hilbert modular forms of weight two, level p. Then

S2(Γ0(p), 1)new is spanned by theta series coming from left ideals of an Eichler order

of level p in the quaternion algebra Bp,L.

Remark 2.7.5. A self-contained exposition of this result can be found [33, Thm. 10.13]

in the elliptic case.

2.7.1 Examples

The more explicit examples of Hilbert modular forms and theta series that appear in

the literature are typically computed for real quadratic fields of narrow class number

one e.g., Q(
√

5); nonetheless, fairly general explicit formulas are available for the

arithmetic invariants (e.g., type number, class number, etc.) of orders in quaternion

algebras and the dimensions of spaces of modular forms.

We begin with an example of theta series. Consider a maximal order O of Bp,∞

given by the Z-basis

e1 =
1

2
(1 + j), e2 =

1

2
(i + k), e3 = j, e4 = k, if p = 3 mod 4.

An element
∑4

i=1 xiei = x1

2
+ i(x2

2
) + j(x1

2
+ x3) + k(x2

2
+ x4) has norm (x1

2
)2 + (x2

2
)2 +

p(x1

2
+x3)

2 +p(x2

2
+x4)

2 = (p+1)
(
(x1

2
)2 +(x2

2
)2

)
+p(x2

3 +x2
4 +x1x3 +x2x4). Consider

the order O ⊗ OL. Its norm form is the same norm form N(x1, x2, x3, x4) but with

values in OL. The associated theta series is defined as:

θ(z) = a(0) +
∑

ν>>0

a(ν)qν , a(ν) = ]|{N(x1, x2, x3, x4) = ν, for xi ∈ OL}|.
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Of course, a(0) = 1. For L = Q(
√

5) and p >> 0, we can easily compute the first

coefficients a1, say. We first use the fact that 1 is self-conjugate to eliminate the terms

in
√

5 that arise form the norm form. Putting xi = ai+bi
√

5
2

, i = 1, ..., 4, and exploit

the fact that the terms in p vanish for p big in the expression:

2∑

j=1

(aj
4

)2

+
(bj
√

5

4

)2

+ p

2∑

j=1

(aj
4

+
aj+2

2

)2

+ 5
(bj

4
+
bj+2

2

)2

.

We see that we need only solve
a21
16

+5
b21
16

+
a22
16

+5
b22
16

= 1. The solutions are (a1, b1, a2, b2) =

(±4, 0, 0, 0) and (a1, b1, a2, b2) = (0, 0,±4, 0). Thus there are 4 solutions, and a(1) = 4.

In [102], one can find useful formulas concerning Eichler orders; we list a few. Let

H/L be a totally ramified quaternion algebra over a totally real number field L of

degree g, and let O be an Eichler order of squarefree level n. Let d be the discriminant

of H.

Proposition 2.7.6. ([102, Cor. 2.3, p.142]) (Mass formula) Let d be the discriminant

of the quaternion algebra H/L. Let O be an Eichler order of squarefree level n. Let

{Ii} be representatives of left ideal classes of O. For Oi the right order of Ii, define

wi := [O×i : O×L ]. The following holds:

h∑

i=1

1

wi
= 21−gh|ζL(−1)|

∏

p|d
(Norm(p)− 1)

∏

p|n/d
(Norm(p) + 1).

Remark 2.7.7. For a table of values of ζL(−1) for L of small discriminant, consult

e.g., [37, p.373-374].

The number M :=
∑h

i=1
1
wi

is called the Mass of O.

In general, the celebrated Siegel-Weil formula allows to show that a suitable weighted

sum of theta series is an Eisenstein series (see [94, Introduction]). The sum of theta

series is
∑h

i=1
1
wi

ΘHomOL
(A1,Ai), where wi = |[EndOL(Ai)

× : O×L ]| and HomOl(A1, Ai)

runs through all projective EndOL(A1)-ideals. The first coefficient of the correspond-

ing Eisenstein series is thus given by the Mass formula (cf. [29, Prop. 3.15]).
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Definition 2.7.8. Let B be an order in a separable, quadratic algebra K/L contained

in H. An optimal embedding of B in O is an isomorphism f of K into h such that

O ∩ f(K) = f(B).

Let mi be the number of optimal embeddings of B in Oi. The number M(B) =
∑h

i=1
mi
wi

is called the Mass of B. Define w(B) := [B× : O×L ].

Proposition 2.7.9. ([102, Cor. 2.5, p.144]) (Class number formula) Let O be an

Eichler order. Recall that the number of left ideal classes of O is called the class

number h(O). It is given by the following formula:

h(O) = M +
1

2

∑

B

M(B)(w(B)− 1),

where B runs through orders of quadratic extensions K/L.

Let (A) be a list of representatives of principal ideals of OL, representing all

principal ideals that are reduced norms of two-sided ideals of O, modulo squares of

principal ideals.

Proposition 2.7.10. ([102, Cor. 2.6, p.145]) (Type number formula) Let O be an

Eichler order of level n. Recall that the number of isomorphism classes of Eichler

orders of level n is called the type number t(O). It is given by the following formula:

t(O) =
1

h2r+1

∑

B

M(B)w(B)x(B) +
M

h2r
,

where x(B) is the number of principal ideals of B of reduced norm in (A). The orders

in question run through orders of quadratic extensions K/L.

We give explicit formulas for the class number in some special cases.

Proposition 2.7.11. ([100, Thm. 3.1, 3.2]) Let p be unramified. Let L = Q(
√
D).

Let O be an Eichler of order p in Bp,L. The class number of O is given by the formula,
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for D > 5:

Cl(O)

hL
=
ζL(−1)

2

∏

p|d(Bp,L)

(Norm(p)− 1)
∏

p|p/d(Bp,L)

(Norm(p) + 1)

+a(D)
h(−D)

8
+ b(D)

h(−3D)

12
+ c(D)

h(n)h(n′)

4
,

where a(D), b(D), c(D) are integers that are defined as follows. Let

Ed,p/d(f) =
∏

p|d(Bp,L)

(
1−

(O
p

))
·

∏

p|p/d(Bp,L)

(
1 +

(O
p

))
,

where O is an order in a quadratic extension of L, f = f(O) is the conductor and(
O
p

)
is equal to 1 if p divides f(O) or p is split in O;

(
O
p

)
is equal to 0 is p is ramified

in O and −1 otherwise. The integers a(D), b(D) and c(D) are determined by the

following relations:

S2 =
h(D)h(−D)

8
a(m);

S3 =
h(D)h(−3D)

12
b(m);

Sε =
h(D)h(−n)h(−n′)

4
c(D),

where

S2 =
h(D)h(−D)

8
[Ed,p/d(1) + 9Ed,p/d(2)];

S3 =
h(D)h(−3D)

12
[5Ed,p/d(1) + 2bEd,p/d(3) + cEd,p/d(2)],

with b = 4 (resp. 2) if m = 3 mod 9 (resp. if m = 6 mod 9) and c = 3 if m = 5

mod 8, 15 if m = 1 mod 8 and 9 otherwise. We skip the definition of Sε for brevity,

but it is similar to the others. If c(D) 6= 0, the norm of the fundamental unit ε of

Q(
√
D) is one; and n = 2− Tr(ε) (modulo squares) and nn′ = disc(Q(

√
D)).

We give a general formula for the dimension of the space of Hilbert modular forms

for the sake of comparison.
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Theorem 2.7.12. ([30, Thm. 4.8]) Let Γ ⊂ SL2(R)n be a discrete subgroup such

that the extended quotient Γ\(Hn)∗ is compact. We assume that the restriction of

each of the n projections pj : SL2(R)n −→ SL2(R), 1 ≤ j ≤ n to Γ is injective. If

Γ\Hn is compact, we assume that the image of Γ under each of the n projections:

πj : SL2(R)n −→ SL2(R)n−1, 1 ≤ i ≤ n, (cancelling off one component) is dense in

SL2(R)n−1. Then the following formula holds:

1 + (−1)n dim S2(Γ) = (−1)nvol(Hn/Γ) +
∑

a

E(Γ, a) +
∑

κ

L(Γ, κ),

where a (resp. κ) runs over a complete set of representatives of Γ-equivalence classes

of elliptic fixed points (resp. cusps). Here, E(Γ, a) is some finite sum in terms of the

stabilizer Γa that captures the contribution of elliptic fixed points, while L(Γ, κ) is

Shimizu L-series (for details, see [30, p. 121, p.109]).

Remark 2.7.13. We point out that the first term (although not necessarily the “main”

term) of the formula giving the dimension of the space of Hilbert modular forms is pre-

cisely the volume vol(Hn/Γ). For Γ = SL2(OL), the volume is 21−g(−1)gζL(−1); thus

the volume for Γ0(p) is precisely the index of Γ0(p) in SL2(OL) times 21−g(−1)gζL(−1).

Let L = Q(
√

5). We find in [37, p. 373] that ζQ(
√

5)(−1) = 1
30
. The numerical data

we discuss in the rest of this section is taken from [19]. This is the real quadratic

field of narrow class number one of smallest discriminant. According to [19], the

smallest level p (p inert) such that the space of newforms is non-trivial is p = 7.

The quaternion algebra Bp,∞ ⊗Q Q(
√

5) = B∞1,∞2 is the totally definite quaternion

algebra unramified at every finite prime. The class number of B∞1,∞2 is equal to

one; therefore, the class number h(O) of an Eichler order O of level p in B is roughly

p2 + 1. But there are h(O)·(h(O)+1)
2

different quadratic modules HomOL(Ai, Aj), for

Ai, Aj superspecial abelian varieties with RM by OQ(
√

5). It will be clear to the reader

that some computational effort would have to be exerted to illustrate our general

theory satisfactorily beyond the simplest cases (cf. [40, §6] for examples over Q).
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2.8 The ramified case

The ramified case is more complex than the unramified case, since different superspe-

cial points might have non-isomorphic superspecial crystals (see Appendix I), and in

general the endomorphism orders are not hereditary. We explain in detail the simplest

possible situation, and we give the essential results for the general totally ramified

case. Let g = 2, and pOL = p2. There are then two kinds of superspecial points (cf.

[5]): those that satisfy the Rapoport condition (the non-singular superspecial points),

and those that do not (the singular superspecial points). The abelian surface E⊗ZOL
has non-singular type. In [1], it has been shown that E ⊗Z OL admits a unique sub-

group scheme H ∼= αp invariant under OL, and the quotient (E⊗ZOL)/H has singular

type (the OL-structure and the principal polarization always descend). We compute

the level of the endomorphism order of (E ⊗Z OL)/H. Recall that EndOL(E ⊗ OL)
has level p = p2 and Bp,L = B∞1,∞2.

Proposition 2.8.1. Let A = E ⊗Z OL, and let H be the unique OL-invariant copy

of αp in A. Then EndOL(A/H) has level p.

Before the proof per se, we need a few preliminaries. Since pOL = p2, OL ⊗ Fp ∼=
Fp[ε]/(ε2), and H = αp ⊗ (ε) ([1, Prop. 6.5]). We denote A/H by B. The map

f : A −→ B is the projection map.

Lemma 2.8.2. Let g ∈ EndOL(A) ⊗ Q. If g descends to an element in EndOL(B),

then pg ∈ EndOL(A).

Proof. If g descends, then there exists h ∈ End(B) such that g = 1
p
(pf−1) ◦ h ◦ f i.e.,

pg ∈ EndOL(A).

In the sequel, we write H1 for the first crystalline cohomology group H1
crys.
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Corollary 2.8.3. If g ∈ EndOL(A)⊗Q, then g ∈ EndOL(B) if and only if either

• g ∈ EndOL(A) and g preserves H1(B);

• g = g0/p, g0 ∈ EndOL(A), p 6 |g0, g preserves H1(B).

Proof. Clear, since EndOL(A) and EndOL(B) only differ at p, and there, it is controlled

by H1(B) by Tate’s theorem for supersingular abelian varieties with RM.

We now prove Proposition 2.8.1.

Proof. Since pH1(A) ⊆ f ∗(H1(B)) ⊆ H1(A), we can study the situation modulo p:

H1(A)

pH1(A)
∼= H1(E)

pH1(E)
⊗OL,

as End(E)⊗OL-modules.

There exists a basis e0, e1 for H1(E) such that

End(E)⊗W (Fp) =
{(

a b
pbσ aσ

)
|a, b ∈ W (Fp2)

}
, σ the non trivial involution.

Recall that H1(E)/pH1(E) = D(E[p]). For the following computations, it is easier to

use covariant Dieudonné theory, so that an embedding αp ↪→ A becomes an inclusion

D(αp) ⊂ D(A). The condition that H1(B) is preserved means modulo p that the

following filtration is preserved:

〈( 1
0 )〉 ⊗ (ε) ⊆ D(αp)⊗OL ⊆ D(E[p])⊗OL.

We compute the divisibility conditions on the coefficients of g0 so that g0/p preserves

H1(B). Since e0, e1 is a basis of H1(E), e0,⊗1, e1 ⊗ 1, e0 ⊗ π, e1 ⊗ π is a basis of

H1(A), where π is a uniformizer of W (Fp)⊗OL. We thus write g0 = r0 ⊗ 1 + r1⊗ π,

where ri = ( ai bi
pbσ aσi

), i = 0, 1. The element g0/p preserves H1(B) if and only if

g0

{
〈
(

1/p
0

)
〉 ⊗ (π) +H1(A)

}
⊆ 〈( 1

0 )〉 ⊗ (π) + pH1(A).
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We decompose this in five subcases:

g0(〈
(

1/p
0

)
〉 ⊗ (π)) ⊆ 〈( 1

0 )〉 ⊗ (π) + pH1(A);

g0(e0 ⊗ 1) ∈ 〈( 1
0 )〉 ⊗ (π) + pH1(A);

g0(e0 ⊗ π) ∈ 〈( 1
0 )〉 ⊗ (π) + pH1(A);

g0(e1 ⊗ 1) ∈ 〈( 1
0 )〉 ⊗ (π) + pH1(A);

g0(e1 ⊗ π) ∈ 〈( 1
0 )〉 ⊗ (π) + pH1(A).

Explicitly,

[(
a0 b0
pbσ0 aσ0

)
⊗ 1 +

(
a1 b1
pbσ1 aσ1

)
⊗ (π)

]
· (e0 ⊗ 1) =

( a0
pbσ0

)
⊗ 1 +

( a1
pbσ1

)
⊗ (π).

This forces p to divide a0.

[(
a0 b0
pbσ0 aσ0

)
⊗ 1 +

(
a1 b1
pbσ1 aσ1

)
⊗ (π)

]
· (e0 ⊗ π) =

( a0
pbσ0

)
⊗ (π) +

( a1
pbσ1

)
⊗ (p)

This has no consequence.

[(
a0 b0
pbσ0 aσ0

)
⊗ 1 +

(
a1 b1
pbσ1 aσ1

)
⊗ (π)

]
· (e1 ⊗ 1) =

(
b0
aσ0

)
⊗ 1 +

(
b1
aσ1

)
⊗ (π)

This forces p to divide a0, b0, a1.

[(
a0 b0
pbσ0 aσ0

)
⊗ 1 +

(
a1 b1
pbσ1 aσ1

)
⊗ (π)

]
· (e1 ⊗ π) =

(
b0
aσ0

)
⊗ (π) +

(
b1
aσ1

)
⊗ (p)

This forces p to divide a0.
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[(
a0 b0
pbσ0 aσ0

)
⊗ 1 +

(
a1 b1
pbσ1 aσ1

)
⊗ (π)

]
·
[
〈
(

1/p
0

)
〉 ⊗ (π)

]
=

(
a0/p
bσ0

)
⊗ (π) +

(
a1/p
bσ1

)
⊗ (p)

We see from this implies that p divides a0, a1 and b0. Note that this last line gives

redundant information.

Summing up,

g0/p =
1

p

(
a0 b0
pbσ0 aσ0

)
⊗ 1 +

1

p

(
a1 b1
pbσ1 aσ1

)
⊗ (π);

with p|a0, b0, a1. We thus obtain a slightly bigger order than End(E) ⊗ OL since p

does not necessarily divide b1. More precisely, g0/p =
(

a′0 b′0
paσ0 bσ0

)
⊗ 1 +

(
a′1 b1/p

bσ1 a′σ1

)
⊗ π,

where all coefficients are in W (Fp2). To compute the level, we compute the index

of this order over End(E) ⊗ OL. Recall that the level of End(E) ⊗ OL is p. A

priori, we know that the level of a strictly bigger order will divide p strictly, so in

this case it will be either 1 or p. The quotient of End(E⊗OL/H) over End(E)⊗OL
is W (Fp2)/pW (Fp2) ∼= Fp2, which is also the quotient of an order of level p over an

order of level p2, since OLp
/pOLp

∼= Fp, and the residue degree of an unramified

quadratic extension of OLp
is 2. This shows that the discriminant of this bigger order

is indeed p.

Remark 2.8.4. Note that all the computations rely on the facts that if we normalize

the valuation of p to be 1, the valuation of π is 1
g
.

We recalled the connection with de Rham cohomology and the descriptions of the

slope stratification and the type (j, i) in Subsection 1.6 of Chapter I.

Theorem 2.8.5. Suppose that pOL = pg. Let A be a superspecial abelian variety

with RM by OL of type (j, i), i ≥ j. The order EndOL(A) is Bass of level pg−j, where

j ≤ [g/2]. Moreover, we can give an explicit description at p of this order. Use the

decomposition

(End(E)⊗Z OL)⊗W (Fp) =
{
⊕g−1
k=0

(
ak bk
pbσ
k
aσ
k

)
⊗ (πk), ak, bk ∈ W (Fp2)

}
,
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and denote by Mk the set of matrices of the form
(
ak bk/p
bσ
k

aσ
k

)
, for ak, bk ∈ W (Fp2). then

EndOL(A)⊗W (Fp) ∼= ⊕i−1
k=0End(E)⊗ (πk)⊕⊕g−1

k=iMk ⊗ (πk).

Remark 2.8.6. We explain later on that all such Bass orders of level pg−j, 0 ≤ j ≤ [g/2]

(with the extra condition that (O
p
) = (End(E)⊗ZOL

p
) if 2 ≤ g−j), arise as endomorphism

orders of superspecial abelian varieties on the Hilbert moduli space.

The ideas involved in the proof all arose in the g = 2 case. The structure of Moret-

Bailly family of abelian varieties with RM ([1, Proposition 6.6, (2c) and (2d)]) indi-

cates that there is a canonical chain of OL-invariant αp-isogenies of superspecial

abelian varieties starting from E ⊗Z OL:

• for g odd:

A = A0,g
∃!αp−→ A1,g−1

∃!αp−→ A2,g−2
∃!αp−→ . . .

∃!αp−→ A[g/2],[g/2]+1;

• for g even:

A = A0,g
∃!αp−→ A1,g−1

∃!αp−→ A2,g−2
∃!αp−→ . . .

∃!αp−→ Ag/2,g/2,

where the pair (j, i), i + j = g is the type of the superspecial abelian variety.

All αp-isogenies above are uniquely defined by being OL-invariant. The idea of the

proof consists in bootstrapping the computation done for g = 2. Note that these

supersingular abelian varieties are specific examples of superspecial points of type

(j, i). It suffices to study this specific subset because (1) there is a unique superspecial

crystal for every type (j, i), as shown in Chapter I (we also derived the result in the

language of [1] in Appendix I) and (2) the Tate modules at ` 6= p are isomorphic

(Proposition 2.5.3).

Lemma 2.8.7. LetOL⊗Fp = Fp[T ]/(T g). Let Aj,i be a superspecial abelian variety of

type (j, i) in a canonical chain. The OL-invariant αp is isomorphic to αp⊗(T i−1)/(T i)

(cf. Section 4, Chapter I).
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Proof. This is immediate from [1, Section 6.2, Table 6.1], where r = i− 1 if i ≥ j+2,

which is verified for every abelian variety in a canonical chain (except the last one,

which is not needed).

We abuse the notation by writing αp⊗ (T i−1) for the group scheme αp⊗ (T i−1)/(T i).

Lemma 2.8.8. If g ∈ EndOL(Aj,i)⊗Q, then g ∈ EndOL(Aj+1,i−1) if and only if either

• g ∈ EndOL(Aj,i) and g preserves H1(Aj+1,i−1);

• g = g0/p, g0 ∈ EndOL(Aj,i), p 6 |g0, g preserves H1(Aj+1,i−1).

Proof. The proof of Lemma 2.8.3 applies without change.

We now prove Theorem 2.8.5.

Proof. We proceed by induction on j. We have already shown in Proposition 2.5.26

that the level of the endomorphism order of E⊗OL is p. We explain the computation

for the passage from type (0, g) to type (1, g−1). The divisibility conditions are given

by:

g0/p
{
〈( 1

0 )〉 ⊗ (πg−1) + pH1(A)
}
⊆ 〈( 1

0 )〉 ⊗ (πg−1) + pH1(A),

for g0 = ⊕g−1
k=0

(
ak bk
pbσ
k
aσ
k

)
⊗ (πk) ∈ EndOL(A0,g) = EndOL(A). As in the case g = 2, it is

enough to check the divisibility conditions on the basis

e0 ⊗ 1, e1 ⊗ 1, . . . , e0 ⊗ (πg−1), e1 ⊗ (πg−1).

First, necessarily

1

p

(
a0 b0
pbσ0 aσ0

)
⊗ 1 · 〈( 1

0 )〉 ⊗ (πg−1) =
(
a0/p
b0

)
⊗ (πg−1) ∈ 〈( 1

0 )〉 ⊗ (πg−1);

this implies that p divides a0 and b0. Second, necessarily

(
ag−1 bg−1

pbσg−1 ag−1

)
⊗ (πg−1) · e0 ⊗ 1 =

(
ag−1

pbσg−1

)
⊗ (πg−1) ∈ 〈( 1

0 )〉 ⊗ (πg−1),
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and (
ag−1 bg−1

pbσg−1 ag−1

)
⊗ (πg−1) · e1 ⊗ 1 =

(
bg−1

aσg−1

)
⊗ (πg−1) ∈ 〈( 1

0 )〉 ⊗ (πg−1);

therefore, we get that p divides ag−1 from the second vector. All other coefficients ai,

bi, 0 < i < g−1 are easily seen to be divisible by p, since the corresponding vectors all

have to land in pH1(A). Now, suppose that we know EndOL(Ag−i,i). The divisibility

conditions are now given by:

g0/p
{
〈( 1

0 )〉 ⊗ (πi−1) + pH1(Ag−i,i)
}
⊆ 〈( 1

0 )〉 ⊗ (πi−1) + pH1(Ag−i,i),

or, in terms of H1(A),

g0/p
{
〈( 1

0 )〉 ⊗ (πi−1) + pH1(A)
}
⊆

g−1∑

t=i−1

〈( 1
0 )〉 ⊗ (πt) + pH1(A),

for g0 ∈ EndOL(Ag−i,i), that is,

g0 = ⊕i−1
k=0

(
ak bk
pbσ
k
aσ
k

)
⊗ (πk)⊕⊕g−1

i

(
ak

1
p
bk

bσ
k
aσ
k

)
⊗ (πk).

Again, almost all coefficients will be divisible by p: p will divide all ak’s: since

1

p

(
ak bk
pbσ
k
aσ
k

)
⊗ (πk) · 〈( 1

0 )〉 ⊗ (πi−1) =
(
ak/p
bσ
k

)
⊗ (πk+i−1) ∈

g−1∑

t=i−1

〈( 1
0 )〉 ⊗ (πt),

then p divides ak for k = 0 to g − i, and since

1

p

(
ak bk
pbσ
k
aσ
k

)
⊗ (πk) · 〈( 1

0 )〉 ⊗ (πi−1) =
( ak
pbσ
k

)
⊗ (πk+i−1−g) ∈ pH1(A),

then p divides ak for k = g− i+1 to g− 1. Let us show that bi−1 does not have to be

divisible by p. Since i ≥ g− [g/2] + 1, 2(i− 1) ≥ g, and thus 1
p

(
ai−1 bi−1

pbσi−1 a
σ
i−1

)
⊗ (πi−1) ·

〈( 1
0 )〉⊗(πi−1) =

(
ai−1

pbσi−1

)
⊗(π2i−2−g)), and the term pbσi−1 will always be divisible by p.

What about the other bk’s ? If k < i− 1, p divides bk because necessarily

(
ak bk
pbσ
k
aσ
k

)
⊗ (πk) · e1 ⊗ 1 =

(
bk
aσ
k

)
⊗ (πk) ∈ pH1(A).
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If k > i− 1, the induction hypothesis shows that p has to divide bk because

(
ak

bk
p

bσ
k
aσ
k

)
⊗ (πk) · e0 ⊗ 1 =

( ak
bσ
k

)
⊗ (πk).

To finish the computation, recall that g0 ∈ EndOL(Ag−i,i), and therefore, as expected

g0/p ∈ ⊕i−2
k=0End(E)⊗ (πk)⊕⊕g−1

k=i−1Mk ⊗ (πk).

To finish the proof, note the every type admits a unique isomorphism class of super-

special crystal: therefore all superspecial points of type (j, i) have Bass endomorphism

orders of the same level.

In the previous section, we relied heavily on the fact that for p unramified, the proof

for supersingular elliptic curves generalizes without too much difficulty. On the other

hand, the Jacquet-Langlands correspondence allows for more general levels (in partic-

ular, it applies to level p independently of the ramification). Recall that a superspecial

order is hereditary if and only if p is unramified. In particular, since it is Bass, the

discriminant pi of a given superspecial order is equal to its level, and thus the corre-

sponding theta series also has level pi.

Recall that the quadratic modules HomOL(A1, A2) are projective (Proposition 2.5.6)

when the Dieudonné modules of A1 and A2 are isomorphic, which is the case if and

only if A1 and A2 have the same Dieudonné module.

Proposition 2.8.9. The projective left ideals of a superspecial order O of Bp,L of

level pi are parametrized by the double cosets B1(O)\J1
B/B

×.

Proof. This follows from the proof of the quaternionic parametrization of the locally

principal left ideals which are therefore in bijection with the superspecial points of

given type (j, i) by exactly the same argument as in the hereditary case.

Corollary 2.8.10. All superspecial orders O of Bp,L of level pi arise from geometry.
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Proof. Since superspecial orders O of level pi are locally isomorphic (Proposition

2.2.28), the proof of Corollary 2.5.36 applies with no further modification.

Recall that in the totally ramified case, p is ramified in Bp,L if and only if [L : Q] is

odd.

Question 2.8.11. Let h+(L) = 1, pOL = pg. Let 0 ≤ j ≤ [g/2]. If [L : Q] is odd,

suppose that g− j is odd. Do the theta series attached to superspecial points of type

(j, g − j) of the Hilbert moduli space X0(1)/Fp of dimension [L : Q] span the vector

space of Hilbert modular newforms of level pg−j ?

Proposition 2.8.12. Let h+(L) = 1, pOL = p2. The theta series attached to singular

superspecial points of the Hilbert moduli space X0(1)/Fp of dimension [L : Q] span

the vector space of Hilbert modular newforms of level p.

Proof. The order EndOL(A), for A a singular superspecial point, is Eichler.

Recall that local deformation theory decomposes according to the primes, and that

the type allows to label uniquely the isomorphism classes of superspecial crystals.

We therefore conjecture that a similar pattern holds for general p and g > 2 (i.e.,

all theta series “come from geometry”, within the inescapable limits imposed by the

Jacquet-Langlands correspondence and the levels arising on Hilbert moduli spaces).

2.9 Lifts of theta series and twists by Aut(OL)

Tensoring supersingular elliptic curves with OL enables us to lift elliptic modular

forms of level p to Hilbert modular forms of level p: Let E1, E2 be supersingular

elliptic curves, and let (HomZ(E1, E2), q) be a quadratic module giving rise to an

elliptic theta series θE1,E2. We associate to θE1,E2 the theta series ΘE1⊗OL,E2⊗OL

coming from the quadratic module

(HomOL(E1 ⊗OL, E2 ⊗OL), || − ||λE1⊗OL
,λE2⊗OL

).
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We also study the effect of changing the OL-action by an OL-automorphism. That is,

let σ : OL −→ OL be an automorphism. We then define the σ-twist of an OL-abelian

variety (A, ι) by putting σ ? (A, ι) := (A, ι ◦ σ).

2.9.1 Comparing the lifts

The lift we are interested in takes an elliptic modular form for Γ0(p) with trivial

character to Hilbert modular forms for Γ0((p)) with trivial character. We call the lift

obtained by tensoring supersingular elliptic curves by OL the trivial lift. In fact, our

first proposition justifies its name, by showing it has little to do with geometry. First,

observe that Lemma 2.5.24 shows that

Hom(E1 ⊗Z OL, E2 ⊗Z OL) ∼= OL ⊗Z HomZ(E1, E2)⊗Z OtL.

This suggests the following OL-version:

Proposition 2.9.1.

HomOL(E1 ⊗OL, E2 ⊗OL) ∼= HomZ(E1, E2)⊗Z OL.

Proof. Recall that Proposition 2.5.26 states that EndOL(Ei ⊗ OL) ∼= End(Ei)⊗OL,

for i = 1, 2. We know from the bijection between left ideal classes of

O = EndOL(E1 ⊗Z OL)

and superspecial points that there exists an ideal A such that

(E1 ⊗OL)⊗O A ∼= E2 ⊗OL.

Using these extra informations and Proposition 2.5.22, the isomorphism:

HomOL(E1 ⊗OL, E2 ⊗OL) ∼= HomZ(E1, E2)⊗Z OL,
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is recast via

HomOL(E1 ⊗Z OL, E1 ⊗Z OL)⊗End(E1)⊗OL A ∼= HomZ(E1, E2)⊗Z OL

as

A ∼= HomZ(E1, E2)⊗Z OL.

Thus, to prove the desired isomorphism, it is enough to show that:

(E1 ⊗Z OL)⊗End(E1)⊗ZOL (HomZ(E1, E2)⊗OL) ∼= E2 ⊗OL.

This, in turn, is proved by general properties of the tensor product. The univer-

sal property of the tensor product shows that for M1, N1 two R1-modules, M2, N2

two R2-modules, and R1, R2 two R0-algebras, R0 a commutative ring, the following

isomorphism holds:

(M1 ⊗R1 N1)⊗R0 (M2 ⊗R2 N2) ∼= (M1 ⊗R0 M2)⊗R1⊗R0
R2 (N1 ⊗R0 N2).

In our specific case, this becomes:

(E1 ⊗OL)⊗End(E1⊗ZOL) (Hom(E1, E2)⊗OL) ∼= (E1 ⊗ HomZ(E1, E2))⊗Z OL
∼= E2 ⊗OL,

since E1 ⊗ HomZ(E1, E2) ∼= E2.

Thus, the trivial lift amounts to tensoring left ideals of Bp,∞ with OL. This extends to

the quadratic modules, since the natural quadratic map on HomOL(E1⊗OL, E2⊗OL)

i.e., the degree map on HomZ(E1, E2) tensored with OL is always the same as the

OL-degree (as it is clear from the E1 = E2 case).

Corollary 2.9.2. The number of isomorphism classes of quadratic modules of the

form HomOL(E1 ⊗ OL, E2 ⊗ OL) is equal to the number of isomorphism classes of

quadratic modules of the form HomZ(E1, E2).
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Proof. This follows from a general theorem of Kitaoka ([56, Theorem 7.5.1]) about

tensoring with the maximal order of a totally real field, which says that

A1 ⊗OL ∼= A2 ⊗OL implies A1
∼= A2,

for A1,A2 two positive definite quadratic lattices over Z.

Question 2.9.3. Does the trivial lift coincide with the base change lift à la Langlands

([63]) when the latter is defined?

The answer to this question is surely well-known to base change experts, and we guess

it is yes.

We investigate symmetric forms in the next section.

2.9.2 Automorphisms of OL and theta series

In this section, we take a look at the twist of the OL-action by an automorphism

σ : OL −→ OL. Recall that the σ-twist of an OL-abelian variety (A, ι) is σ ? (A, ι) :=

(A, ι ◦ σ).

Proposition 2.9.4. The OL-modules HomOL(A1, A2) and HomOL(σ ?A1, σ ?A2) are

canonically isomorphic as quadratic modules.

Proof. Note that HomOL(σ?A1, σ?A2) = Homσ(OL)(A1, A2). We consider the identity

map sending φ ∈ HomOL(A1, A2) to φ ∈ Homσ(OL)(A1, A2). We check it is well-

defined: Note that

φ(ι1(t)(x)) = ι2(t)(φ(x))

for all t ∈ OL and x ∈ A1 is equivalent to

φ((ι1 ◦ σ)(t)(x)) = (ι2 ◦ σ)(t)(φ(x))
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for any σ ∈ Aut(OL). This shows that HomOL(A1, A2) = Homσ(OL)(A1, A2). We

check that the polarizations λ1, λ2 of A1, A2 are also polarizations of σ ? A1, σ ? A2:

this is an immediate consequence of the identity

ιt ◦ σ = (ι ◦ σ)t,

which follows trivially from the definition of the dual action ιt, that is ιt(t) = (ι(t))t.

Since the polarizations are the same, the induced OL-degrees also coincide, and there-

fore the quadratic modules are canonically isomorphic.

This suggests looking at the quadratic modules HomOL(σi ? A1, σj ? A2) for different

OL-automorphisms σi, σj, and study the effect on the coefficients of the q-expansions

of the corresponding theta series.

Definition 2.9.5. An order O in a quaternion algebra B = Bp,∞⊗L is called totally

(weakly) symmetric or simply symmetric if for any σ ∈ Aut(L/Q) there exist an

extension σ such that

Oσ = C−1OC,

with some C ∈ B× i.e., Oσ and O are conjugate.

Remark 2.9.6. In general, there would be infinitely many extensions of an automor-

phism of L to an automorphism (of the same order) of a quaternion algebra B ⊗ L,

for B a quaternion algebra over Q.

Proposition 2.9.7. Let E be a supersingular elliptic curve. The endomorphism

order EndOL(E ⊗OL) is symmetric.

Proof. Let σ = 1⊗σ0 be the extension of an OL-automorphism σ0. Note that it fixes
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End(E).

(EndOL(E ⊗OL))σ ∼= (EndZ(E)⊗OL)σ

∼= EndZ(E)⊗ σ(OL)

∼= EndZ(E)⊗Z OL
∼= EndOL(E ⊗Z OL).

Corollary 2.9.8. The theta series ΘHomOL
(E1⊗OL,E2⊗OL) is symmetric.

Proof. This theta series is defined in terms of a projective ideal of the symmetric

order EndOL(E1 ⊗OL), hence necessarily has symmetric coefficients.

2.10 Appendix I: The number of superspecial crys-

tals in the totally ramified case is [g/2] + 1

We present a derivation of the classification theorem for superspecial crystal with RM

in the totally ramified setting on the lines of [1] so that the reader interested in the

ramified case of Eichler’s Basis Problem can skip Chapter I of this thesis. The result

that we need gives a certain normal form for the Frobenius, and a tiny computation

involving σ-algebra yields the result. We prove this by exhibiting a canonical form

for the Frobenius operator of the associated display. Recall that L is a totally real

field of degree g over Q, p ∈ Z such that p = pg is totally ramified in OL.

Lemma 2.10.1. A non-constant σ-linear equation in one variable with coefficients

in OL ⊗Z W (k) with k = k of characteristic p always has a solution.

Proof. This is a standard trick of reducing the problem to solving successive poly-

nomials over k: reduction mod T gives a polynomial which has a solution, k being
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algebraically closed. Now suppose we have a solution xn mod T n i.e., p(xn) = T n · c,
c ∈ OL ⊗W (k). Put xn+1 − xn = T ny, and plug xn+1 in p(X) mod T n+1 :

p(xn + T ny) = p(xn) + T np(y) = T n · c + T np(y) mod T n+1,

hence we have to find a solution to p(y) + c = 0 mod T , which is always possible,

thence we have a solution xn+1 mod T n+1 and we are done by induction.

Proposition 2.10.2. Let D be a principally polarized superspecial display

(P,Q, F, V −1),

of type (i, j) over an algebraically closed field k of characteristic p. There exists a

basis α′, β ′ generating P such that Frobenius is given by :

F =




0 T i

T j 0


 .

Proof. According to [1, Proposition 4.3.1], the display can be given in a normal form

as follows : there exists α, β such that P ∼= (OL⊗W (k))α⊕ (OL⊗W (k))β such that

Frobenius is given by :

F =




Tm c3T
i

T j 0


 ,

where i + j = g, 0 ≤ j ≤ g
2
, m ≥ i and c3 ∈ (OL ⊗W (k))×.

• Step 1. Suppose i > j.

First observe that in this case the requirement on the determinant of the change

of basis matrix is given by AAσ 6= 0 mod T , e.g. A is a unit in OL ⊗W (k).

Put α′ = Aα +Bβ, for A,B ∈ OL ⊗W (k).
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We compute F (α′) in order to get the formula expressing β ′ in terms of α and β.

F (α′) = AαF (α) +BαF (β) = Aσ(Tmα+ T jβ) +Bσc3T
iα,

and on the other hand

F (α′) = T jβ ′;

thence, since m ≥ i > j,

β ′ = (AσTm−j +Bσc3T
i−j)α + Aσβ.

We now compute F (β ′):

T jF (β ′) = (Aσ
2

Tm +Bσ2

cσ3T
i)(Tmα + T jβ) + Aσ

2

c3T
gα

= (Aσ
2

T 2m +Bσ2

cσ3T
i+m + Aσ

2

c3T
g)α+ (Aσ2

Tm+j +Bσ2

cσ3T
g)β,

and on the other hand

T jF (β ′) = T gα′ = T g(Aα+Bβ);

thence we get the following system of equations :

B = Aσ
2

Tm+j−g +Bσ2

cσ3 ; (2.10.1)

A = Aσ
2

T 2m−g +Bσ2

cσ3T
i+m−g + Aσ

2

c3; (2.10.2)

and the determinant condition insuring the change of basis is invertible :

det




A B

AσTm−j +Bσc3T
i−j Aσ


 ∈ (OL ⊗W (k))×.

We multiply Equation 2.10.1 by Tm−j and subtract Equation 2.10.2 to obtain

BTm−j − A = −Aσ2

c3.
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We plug this expression for B in Equation 2.10.2; this yields one equation:

Aσ
2

T 2m−g − Aσ4

cσ
2

3 c
σ
3 + Aσ

2

cσ3 + Aσ
2

c3 − A = 0. (2.10.3)

According to Lemma 2.10.1, this equation has a solution. Let us verify that it

is possible to pick a unit among all such solutions. The reduction mod T of the

Equation 2.10.3 is :

−ap4cp2cp + ap
2

cp + ap
2

c− a = 0,

where c = c3.

The degree of this polynomial is clearly greater than one and we can thus pick

a 6= 0, hence we obtain a unit solution for A.

• Step 2. Suppose i = j.

Recall that under p-isogenies, we can map any superspecial point to any other

superspecial point. Our strategy is simple : we start from a point of type

(j − 1, j + 1) and map it to a point of type (j, j), and see how Frobenius vary.

We use the Moret-Bailly families described in [1, Proposition 6.8,2.d], since

j + 1− (j − 1) = 2, hence [A(0:1)] ∈M(j,j). We describe the map at the level of

crystals : let (P,Q, F, V −1) be the superspecial of type (j − 1, j + 1), given in

a canonical form as in the first step of this proof, explicitly :

P = OL ⊗W (k)α⊕OL ⊗W (k)β,

Q = OL ⊗W (k)T j+1α⊕OL ⊗W (k)T j−1β,

F =




0 T j+1

T j−1 0


 .
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The superspecial crystal of type (j, j) is constructed as follows ([1, Definition

6.1]) :

Pγ :=
1

p
W (k)γ + P where Q 3 γ := T g−1β,

and

Qγ := Q + F−1(W (k)γ).

Explicitly, this yields :

Pγ = OL ⊗W (k)α⊕OL ⊗W (k)
β

T
,

and

Qγ = OL ⊗W (k)T j ⊕OL ⊗W (k)T j−1β,

and in the basis α′ = α, β ′ = β
T
, Frobenius is given by :

F =




0 T j

T j 0


 .

Proposition 2.10.3. The local deformation theory is the same at any superspecial

point of given type on a Hilbert modular variety over a totally ramified prime.

Proof. Since for every type (i, j), there is a unique principally polarized superspecial

crystal associated to it, the statement follows from Zink’s theorem (cf [1, Theorem

4.1.7]).
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Conclusion

The exploration of the generalization of the superspecial locus for general Shimura

varieties offers many opportunities for interesting work: generalizing the Picard-

Lefschetz formula à la Grothendieck, the character group, and Ribet’s Exact Se-

quence, using the powerful tool of p-adic uniformization of [83] which enables us to

get our hands on the relevant strata for a wide class of Shimura varieties (thus in-

cluding cases of bad reduction). Moreover, p-adically uniformized varieties and the

simple Shimura varieties of Harris-Taylor satisfy the weight-monodromy conjecture

of Deligne (see [51]). More concretely, we can put our hand on the superspecial locus

of a certain quaternionic Shimura variety of dimension g coming from the totally in-

definite quaternion algebra over L ramified at the finite ramified primes of Bp,L and

at the primes qi dividing a totally split prime q, and we can show that the superspe-

cial locus of the Hilbert modular variety is in bijection with the superspecial locus of

that quaternionic Shimura variety. By varying the splitness of q, we get quaternionic

Shimura varieties of dimension between 1 and g; except for the example we have just

discussed, these are not of P.E.L. type, but their geometry has been thoroughly inves-

tigated by H. Reimann. It would be interesting to investigate this circle of ideas for

a Shimura variety with non-trivial endoscopy. Moreover, the stratification of moduli

spaces of abelian varieties with additional structure that we are suggesting, which

essentially consists of associating its special Dieudonné module to an abelian variety

with additional structure, could be generalized beyond the Hilbert moduli spaces that
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we studied (say, to Hilbert moduli spaces with Γ0(p)-level structure). As mentioned

in the introduction, we did not investigate the geometric interpretation of the type

number. Any principally polarized superspecial abelian variety with RM is defined

over Fp2. We expect that the number of superspecial points defined over Fp should

be given by a very simple formula in terms of the class number and the type number.

Let p be unramified. We have shown that the space of Hilbert modular newforms

of weight 2 of level p can be spanned by theta series coming from superspecial abelian

varieties with RM by relying on the fact that the endomorphism order EndOL(A)

of A, a superspecial abelian variety with RM, is an Eichler order of level p and the

related description of the superspecial locus of the Hilbert moduli space by suitable

double cosets. On the other hand, the exploration of the ramified case is not complete,

since we could not describe yet the span of the theta series (note that we also left

the realm of special orders à la Hijikata-Pizer-Shemanske). The issue is that the

Jacquet-Langlands correspondence in its current form deals with greatest ease with

Eichler orders. It is not clear what is the most general class of orders for which we

get the usual solution to Eichler’s Basis Problem, and how we could apply directly

the Jacquet-Langlands correspondence in all known cases.

This thesis also offers the opportunity to revisit [40] for Hilbert modular forms (see

[114]) or to investigate the integral version of Eichler’s Basis Theorem via geometric

methods (see [29], [46]).

Also, Eichler proved additional results about symmetric modular forms whose

generalization has not been investigated e.g., we expect that the number of linearly

independent symmetric Hilbert modular forms of level pOL and weight 2 is equal to

the number of symmetric Eichler orders of level pOL (for un ramified p).

On the other hand, the Main Theorem of this thesis begs to be improved. It is indeed

an easy matter to adapt the argument to deal with Γ0(Np), (N, p) = 1. What is

not clear to us is how to tackle weights higher than 2 geometrically i.e., to find a
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interpretation of spherical polynomials in terms of Hilbert modular data. It is also

not so clear to us how hard it would be to avoid the restriction on the narrow class

number of L, which has quite a simplifying effect. It is possible that a geometric

proof of the Main Theorem using vanishing cycles along the lines of Mestre-Oesterlé

graph method could work for an arbitrary L.
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Qué., 1985), 115–187, CMS Conf. Proc., 7, Amer. Math. Soc., Providence, RI,

1987.

[41] Grothendieck, A., Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire
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l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris

1962.

[90] Serre, J.-P., Complex multiplication, in Algebraic number theory. Proceedings of

the instructional conference held at the University of Sussex, Brighton, Septem-

ber 1–17, 1965. Edited by J. W. S. Cassels and A. Fröhlich. Reprint of the 1967
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