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Abstract

In this thesis we study the simplest types of generalized Grassmann varieties. The
study involves defining those varieties, understanding their local structures, calculat-
ing their Zeta functions, defining cycles on those varieties and studying their coho-
mology groups.

We begin with the classical Grassmannian G(d,n) and then study a special type
of the Grassmannian, namely the Lagrangian Grassmannian. For a field £ and a
subring R C End(k") we study the generalized Grassmann variety G(R;d,n) which
is the set of all d-dimensional subspaces of k™ that are preserved under R. We study
the local structure of the generalized Grassmann scheme Fgp := G(R;d,n) and its
zeta function in some particular cases. We study closely the example of a quadratic

field when R is the ring of integers.
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Résumé

Dans cette these, nous étudions les plus simples variétés de Grassmann genéralisées.
Cette étude consiste a définir ces variétés, a comprendre leur structure locale, a cal-
culer leurs fonctions Zéta, a définir des cycles sur ces variétés et a étudier leurs groupes
de cohomologie.

Nous commengons avec la variété de Grassmann classique G(d, n) et ensuite, nous
étudions spécialement la variété de Grassmann Lagrangienne. Pour un corps k donné
et un sous-anneau R C End(k"), nous étudions la variété de Grassmann généralisée
G(R;d,n), c’est-a-dire I'ensemble de tous les sous-espaces de k™ de dimension d qui
sont préservés par R. Nous étudions la structure locale du schéma de Grassmann
généralisé Fr := G(R;d,n) et, dans quelques cas particuliers, sa fonction Zéta. Nous
étudions en détail I'exemple d'un corps quadratique lorsque R est I’anneau des en-

tiers.
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Introduction

Let us start with the classical Grassmann variety G(d,n), which is the set of all
d-dimensional subspaces of a vector space V' of dimension n. The same set can be
considered as the set of all (d—1)-dimensional linear subspaces of the projective space
P"~1(V). In that case we denote it by G¥(d — 1,n — 1).

In Chapter 1 we see that G(d,n) defines a smooth projective variety of dimension
d(n—d). It is quite interesting to note that the number of IF-rational points of G(d, n)
equals the standard ¢-binomial coefficient (Z)q that can be expressed as a polynomial
in powers of q. Consequently, the Zeta function of G(d, n) is easy to calculate and we
see that all odd Betti numbers of the Grassmannian are zero. The Euler characteristic
of G(d,n) comes out to be the usual binomial coefficient (7).

The Schubert calculus is introduced thereafter to understand the cohomology ring
of the Grassmannian, namely H*(G¥(d,n)(C);Z). Schubert calculus helps us solve
many enumerative problems such as : How many lines in 3-space in general intersect
4 given lines? The subject is studied quite intensively in [7, 11, 17, 12, 20]. We mainly
follow [12] to develop the basic notions of the subject and state without proof many
results like the Basis Theorem, Giambelli’s formula and Pieri’s formula. Then we
study the cohomology ring H*(G*(1,3)(C);Z) in detail.

In the last few sections of Chapter 1 we see that the construction of the classical
Grassmannian has a natural extension to the category of schemes. Indeed the Grass-

mann scheme Gz(d,n) represents the Grasmann functor ¢ : (rings) — (sets) given
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g(T) = {T-submodules K C T™ that are rank d direct summands of 7" }.

We show the representability of the Grasmann functor following [6]. The Basis Theo-
rem of the Schubert calculus states that the Schubert cycles generate the cohomology
ring H*(G*(d,n)(C);Z). As one of its applications we compute the Zeta function of
the Grassmannian using the information of cohomology groups in characteristic zero
and get the information of the cohomology groups in characteristic p. Finally, we
compute the Zeta function of the Grassmann scheme Gz(d, n) which comes out to be
a product of Riemann Zeta functions.

In Chapter 2 we discuss a special type of Grassmannian, L(n,2n), called the La-
grangian Grassmannian; it parametrizes all n-dimensional isotropic subspaces of a
2n-dimensional symplectic space. A lot of symplectic geometry can be found in [14]
and [2]. The Lagrangian Grassmannian L(n,2n) is a smooth projective variety of di-

n(n+ 1)

mension . We then give a similar treatment to the Lagrangian Grassmannian
as to the classical Grassmannian and compute its Zeta function, Euler characteristic
etc.

The Schubert calculus for Lagrangian Grassmannians is discussed for example
in [17, 22]. We mostly follow [22]. Using the Basis Theorem for the Lagrangian
Garssmannian we compute the dimensions of the cohomology groups H'(L(n,2n); Z).

We then study the representability of the Lagrangian Grassmann functor, which is a

functor [ : (rings) — (sets) given by
I(T) = {isotropic T-submodules K C T*" that are rank n direct summands of 7%"}.

Finally we compute the Zeta function of the Lagrangian Grassmann scheme Lz (n, 2n).
In Chapter 3 we begin with the following set up. Let 0 < d < n be integers,
R C M, (Z) be a ring, and consider the functor fg : (rings) — (sets) given by

fr(T) = {T-submodules K C T" that are R-invariant rank d direct summands of 7"}



We show that fr is representable by a scheme Fr. We study the local structure of
the scheme Fr and its Zeta function in some examples.

We consider in detail the example of a quadratic field L = Q(\/E) where D is
a squarefree integer. Let R be the ring of integers in L. Let Ry = R® F,. We

concentrate on the case D = 2,3 (mod 4), study the scheme Fg, (F,) and compute

its Zeta function.



Introduction




Chapter 1

Grassmann Varieties

In Chapter 1 we discuss in detail the classical Grasssmannian, first as a variety and
then as a scheme. In section 1.1 we discuss the construction of the Grassmannian as
an algebraic variety. We also study an affine cover of the Grassmannian. Section 1.2
discusses the Zeta function of these varieties. In section 1.3 we give an introduction
to the Schubert calculus. This leads us to understand the cohomology ring of the
complex Grassmannian G(d, n)(C) with integer coefficients. In section 1.4 we describe
how the construction of the classical Grassmannian has a natural extension to the
category of schemes. We will also talk on the representability of the Grassmann

functor and the Zeta function of the Grassmann scheme.

1.1 Grassmann varieties

1.1.1 The Grassmannian, basic notions

Recall the construction of a projective space over field k. The projective space P"(k)
is defined as the collection of all lines in k"*!. Equivalently, it is the set of all

hyperplanes in £""!. This construction gives rise to a natural question : Why not
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consider the set of subspaces in k"*! of arbitrary dimension? The construction of
Grassmannians has its origin in answering this question. Classically we define the

Grassmannian as follows.

Definition 1.1. Let V be a vector space of dimension n > 2 over field k. Let
0 < d < n be an integer. Then the Grassmannian G(d,n) over k is defined as the set

of all d-dimensional subspaces of V i.e.
G(d,n)(k) = {W| W is a k-subspace of V' of dimension d}.

Alternately, G(d,n) can be considered as the set of all (d — 1)-dimensional linear
subspaces of the projective space P"~1(k). If we think of the Grassmannian this way,
we denote it by G (d—1,n—1). The simplest example of the Grassmannian is G(1,n)
which is the set of all 1-dimensional subspaces of the vector space V' which is nothing

but the projective space on V.

1.1.2 Review of some exterior algebra

Let R be a commutative ring with unity and let M be an R- module. For each natural

number r let
R if r=0,
(M) =
M @p T (M) otherwise.

Thus T"(M) = M ®g--- ®@g M. The tensor product is assosiative and we have a

(.

vV
r times

bilinear map 7" (M) x T*(M) — T"+*(M) by which we can define a ring structure on

the direct sum

T(M) := P17 (M).

In fact, T(M) is an R-algebra. It is called the tensor algebra of M over R. Let
us denote by A, (M) the submodule in 7" (M) generated by the elements of the type
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1 ® - ® x, where x; = z; for some ¢ # j. We define

A\ M =T"(M)/A,(M).

Also define the exterior algebra of M as the direct sum

A\ M = n@)/\M
Let I be the ideal in T'(M) generated by {x ® x | € M}. Then we have
N\ M =T(M)/I.
If we A" M with, w=u+ A, (M) and w’ € \° M, with v’ =« + A;(M), we define
wAw =u@u + A (M)

as an element of A" M.
Notation: Let ug,...,u, € M. The element u; ® - -+ ® u,, + A, (M) is denoted by
Up A A,

One has the following Lemma.

Lemma 1.2. [9, Corollary 10.16] Let {uy,...,u,} and {vy,...,v,} be two families
of vectors of M related by a matrizc A = (aij)nxn of coordinate change, which means,

(U1, ..., Un) = (W1, ..., Up)(@ij)xn- Then,

VI A A, =det(A) s ug A A g,

1.1.3 The Pliicker map and coordinates

We can embed G(d, n) in the projective space P( /\d V') as follows. Let U be a subspace
of V' of dimension d with a basis {uy, - ,uq}. Define P(U) as the point of the
projective space IP’(/\d V') which is determined by u; A - -+ A ug. The map P,

d

P:G(d,n) —P(\V),
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is called the Pliicker map. By Lemma 1.2, P is a well defined map. Since the wedge
product u3 A--- AugAuw =0 if and only if u € U, it follows that P is injective. Thus,
via P, we may consider G(d,n) as a subset of P(A"V). Let {e1,...,e,} be a basis
for V. Then the canonical basis for /\d V' is given by

{eq Ao Ney, | 1<iy < - <ig<n}.

Let U be a d-dimensional subspace of V' with a basis {uy,...,uq}. For 1 <i <d, let
u; = Y i, aije;. Then the coordinates of P(U) = uj A- -+ Aug are called the Pliicker

coordinates. These are nothing but the (') minors of the matrix (a;)izizn.
1252d

1.1.4 Examples

Example 1.3. The Grassmannian G(1,n) : Let U be the space spanned by the vector
uy = are1+---+ane,. The Plicker coordinates are the maximal minors of the matrizx
(ai, -+ ,a,). Therefore the Grassmannian G(1,n) = P"~! and the Plicker map P

sends U to (ay : -+ : ayp).

Example 1.4. The Grassmannian G(2,4) : Let {ey, ea, e3,e4} be a basis for V.. The

canonical basis for /\2 V' s given by
{e1 Ney, e Nes, ex Ney, ea Neg, ea Ney, €3N ey}
Let {uy,us} be a basis for U € G(2,4) with
Uy = a11€1 + a21€2 + a31€3 + A41€4, Ug = A12€1 + A22€2 + A3263 + A42€4.
Then,
uy Ay = (@11a22 — @12G91)€1 A €g + (a11a32 — aziaiz)er A es

+ (a11G42 — ag1a12)er A eq + (ag1a32 — aziagz)es A es

+ (ag1a42 — ag1a92)ea N eq + (az1a42 — ag1as2)es A ey.

So the Pliicker coordinates are
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(a11a22 — a12G21, Q11032 — A31Q12, A11Q42 — A41012, A21A32 — A310A22,

21042 — Aq1G22, A31042 — a41a32)-

We will denote these coordinates by x19,T13, T14, Ta3, Tog, T34 TESpectively. One ob-

serves that these are indeed the 2 X 2 minors of the matriz

a11 Q12
G21 (22
azr as2
Q41 Q42

1.1.5 The Grassmannian as an algebraic variety

We observed that G(d,n) can be embedded in the projective space P(A?V) via the
Pliicker map P. The goal of this section is to show that the image is a closed subset

of PV where N = (Z) — 1.

Definition 1.5. Let w € /\d V. Let v € V, v # 0. We say that v divides w if there

exists u € A"V such that w = v A u.
We have the following Lemma.

Lemma 1.6. Let w € /\dV. Letv € V, v # 0. Then v divides w if and only if the

wedge product w N\ v = 0.

Proof. Clearly if v divides w, say w = u A v, then w Av=uAv Av=0. To see the
other direction let {ey, es,...,e,} be a basis of V' with e; = v. The canonical basis
for /\d V is given by:

{eil/\---/\eid]1§i1<---<id§n}.

Let e, A= Ae€iy = €iyiy...iy- ANy w € /\dV can be written as

w = E Qiy,...iqCit iz, ig-

1<i1 < <4g<n
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Then
vAW = Z iy oig€1 N €iy o iy
i1<<ig
So we see that v Aw = 0 if and only if a;, _;, = 0 for every ¢y,...,iq with 1 < 7; i.e.
the vector e; = v divides w. ]

Using above lemma we can show that the collection of all vectors v € V' dividing

a fixed vector w € /\d V' is a subspace of V. Indeed, if v, vy divide w then
(v +v) ANw=v Aw~+ vy Aw =0,

which implies that v; + v, divides w. And also v A w = 0 implies that av A w = 0 for

any scalar a.

Definition 1.7. We say that w € /\dV is totally decomposable if there exist

linearly independent vectors vy,...,vg € V so that w = vy A--- A vy.

Lemma 1.8. Let w € /\dV. Then w 1s totally decomposable if and only if the space

of vectors dividing it is d-dimensional.

Proof. Let w € /\dV be a totally decomposable vector. Let w = vy A --- A vy for
some linearly independent v; € V. Then by lemma 1.6 the space of vectors dividing w
is given by

U={veV]|v A ANvgAv=0}

Thus v € U if and only if it is linearly dependent with the vectors vy,...,v4, i.e. U
has a basis {vy,...,v4}. Conversely let U be d-dimensional subspace of V' with a
basis {v1,...,v4}. Extend this to a basis {vy,...,v4,Vgs1,.-.,0,} for V. Then we

can write w € A’V as

w = E @iy y.iq Vi ig,ia-

1<i1 < <ig<n
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For all j =1,...,d we have v; Aw = 0. Then,

v ANw = § Wiy,...igV5 N\ Vig o, ig
1<i1 < <ig<n

- § ail,...,’id/Uj A vi17i27~~~7id'

1<iy < <ig<n
ir#j

The right hand side of the above equation is zero if and only if a;, ;, = 0 unless
some ¢, = j. Thus,

nAw=---=ysANw=20

if and only if a;, . ;, = 0 unless {1,...,d} C {i1,...,%4}. Then we have

W=y .. i, V1 N\ N vg.

Lemma 1.9. Let w € \°V. Let

d+1
OV — /\ V
be the linear map given by
Yu(v) =w Av.

Then w is totally decomposable if and only if Ker(p,,) has dimension d.

Proof. The proof of this lemma follows from the last two lemmas. Note that the
kernel of ¢, is given by Ker(p,,) = {v € V | p,(v) = wAv = 0}. This by Lemma 1.6
is the space of vectors dividing w. And by Lamma 1.8, w is totally decomposable if

and only if this space has dimension d. O]

Theorem 1.10. The image of G(d,n) via the Plicker map P is an algebraic set of
the projective space PN = P(/\d V).
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Proof. We observe that P(G(d,n)) is the set of all totally decomposable vectors w in
/\d V. By the Lamma 1.9, it can be identified with the set of vectors w € /\d V such
that dim (Ker(p,)) = d. Equivalently the rank of the map ¢,, is n —d. Now the map
AV — Hom(V, A" V) sending w to o, is linear, that is, the entries of the matrix
¢w € Hom(V, A" V) are homogeneous coordinates on P(A%V). Thus the subset
P (G(d,n)) € P(A\*V) can be considered as the subvariety defined by the vanishing
of (n —d+1) x (n—d+ 1) minors of this matrix. O

Unfortunately the equations we get by the above method do not generate the
homogeneous ideal of the Grassmannian. To work out this ideal we have to work a

bit further.

Lemma 1.11. [9, p.18-19] Let V' be a vector space over k of dimension n with V* as

the dual space. Let 0 < d < n be an integer. We have a nondegenerate pairing

d n—d n
AVx ANV —= AV =k,

inducing an isomorphism

/\Vg(/\V)*:/\V*.

Thus, we can identify /\dV naturally (up to scalar multiplication) with the exterior

power /\nid V* of the dual space.

Now given w € ( /\d V') let w* be the corresponding vector in /\"7d V*. This gives

us a linear map
n—d+1

R AL

which sends v* tow* A v*. By the same argument w € /\d V' is totally decomposable

if and only if the map 1, has rank d.
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Moreover the kernel of ¢,, is precisely the annihilator of the kernel of v,,. Take

the transpose maps

d+1 n—d+1
gpfvs/\V*—ﬂ/* and o /\V—>V,
whose images annihilate each other. Thus, a vector w € G(d,n) if and only if for

every pair a € A" V*and g e AV YV,

Zap(w) = (9 (0) , ¥,(8)) = ¢ (@) L(B)] = 0.

The Z, g(w) are quadratic polynomials and they are called the Pliicker relations.
It turns out that they do generate the homogeneous ideal of the Grassmannian. This

ideal is called the Pliicker ideal.

Example 1.12. The ideal defining the Grassmannian G(2,4).
As before let {eq,eq,e3,e4} be a basis for V.. The canonical basis for /\2V 1S given
by:

B={e1 Neg, e1 Neg, e1 Ney, ea Nes, ea Aey, e3 A eg}.

Also the natural basis for /\3 V' s given by
B1 :{61/\62/\63, 61/\62/\64, 61/\63/\64, 62/\63/\64}.

If w=> a;je; Nej, then g, : V — /\3 V' sending v to v AN w is given by the following

matrix

azs —aiz a0
Q24 —0A14 0 a12
azgs 0 —au as

0 ass —au ags

Thus, the variety G(2,4) is defined by the ideal I generated by all 3 X 3 subdeter-
minants of the above matriz, namely by the entries of the matriz of the adjoint of the

above matriz.
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To find the homogeneous ideal defining G(2,4) one observes that w € A*V
where V' is a vector space over field k, char (k) # 2, is totally decomposable if and
only if w A w = 0 and in the case when V = k* we get exactly one quadratic Pliicker

relation.

Lemma 1.13. Let k be a field, char(k) # 2. Let V' be a 4-dimensional vector space
over the field k. Then a vector w € /\2V is totally decomposable if and only if the

corresponding Plicker coordinates satisfy the relation x15034 — £13T94 + T14T93 = 0.
Proof. Let w € /\2 V' be totally decomposable. Let w = v; A vy. Then
WAW=v ANVag Avy Ay = —v; Ay Avg Avyp = 0.
We can write w as
W = o€ N €y + a13e1 N\ €3 + a1q4e1 N\ €4 + aozea N\ €3 + aoges N eq4 + asgqges N ey4.
Then by simple computation we get
w A w = 2(a12a34 — 13024 + G14a23)e1 A €3 A ez A ey.

Thus w A w = 0 implies that ajsasy — ai3a94 + a14a23 = 0. Therefore, if w is totally

decomposable then it satisfies x12234 — 13724 + 14223 = 0. Conversely, let
W = @121 N\ €g + a13e1 N\ e3 + aqae1 N\ eq4 + aozes N\ €3 4 agges N €4 + agqes N\ €4

be a vector satisfying
12034 — 13024 + a14a23 = 0. (1.1)
Then w A w = 0. Now we want to show that w is totally decomposable. For this we

consider the following different cases.

1. Suppose first that a5 # 0,a13 # 0. Then using equation 1.1 we can show that

230712 A23014 — A130424 ais Q14
w = (a12€1 —+ ()] + €4 A ()] + —e€3 + —e€4 | .
a13 a3 a2 12
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2. Let a;3 = 0 = ay3. Then equation 1.1 yields ay4a03 = 0. So we have a4 = 0 or

as3 = 0 or both are zero. If in this case a4 = 0 = ag3 we can write w as
W = ages A ey + agses N eq = (agges + azqes) A ey.
If a4 = 0, a3 # 0 then we can decompose w as

. a24
w = (agzes — azseq) N | €3+ a_€4 .
23

If ay4 # 0,a93 = 0, w can be written as
w = (a1s€1 + ages + agses) A ey.
So w is totally decomposable.
3. If a;p = 0,a13 # 0, equation 1.1 gives us that aj3as4 = aga23 and w can be

decomposed as

. a14
w = (a13€1 + agzes — asqeq) N | €3+ a—64 .
13

4. If a13 = 0,a12 # 0, equation 1.1 gives us that ajsazy = —ajsas3 and w in this

case can be decomposed as

. a4
w = (a1261 — A93€3 — a24e4) A €9 —+ —a €4 ] .
12

Thus we see that in all the cases w is totally decomposable. O

1.1.6 An affine covering of the Grassmannian

Abstractly the Grassmannian G(d, n) can be considered as a union of open sets each
isomorphic to the affine space A“"~9_ To see this, let I' C V be a fixed subspace of V/
of dimension n—d. Let {e;,,...,e; ,} beabasisfor . Let A = P(I') = e;, A---Ae;,

be the image of I' via the Pliicker map P. We can view A\ as a linear form on
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P(A\* V) as follows. For v € A*V define A(v) := v AX € A"V = k. We can check
that whether A(v) is zero or not is well defined and writing everything in terms of
coordinates we get that A is a homogeneous polynomial of degree 1. We then get the

affine variety

d
Ur=[P(\V)-Z(N]NG(d,n)
={P(K)|K eG(d,n), P(K) NX#0}.
Now P(K) A A # 0 means that K is spanned by d elements none of which is linearly
dependent with e;,,...,e; ,. So we can find a basis of V with first d elements span-
ning K and the remaining elements spanning I'. Therefore V= K @ T'. Conversely

suppose that V = K@ T. Then we have such a basis for K as these basis vectors
together with e;,,...,e; _, are linearly independent. So, P(K) A X # 0.

Proposition 1.14. Let I' C V be a fized subspace of dimension n — d. Fix a sub-
space Ko of V' such that V. = T & Ky. Then in the above notations, Ur is given
by
Ur = Hom (K,,T') 2 k=%,

Proof. For ¢ € Hom(Ky,I') we associate to it its graph {(¢, ¢(t)) | t € Ky} which is
a d-dimensional subspace of V. Also given K € G(d,n) such that K &' =V we can
see that K arises as a graph of some ¢ € Hom(Kj,I'). If w € K there exists unique
u € I' such that (w,u) € K. Then we define p(w) = u. Thus we can identify the
set Ur with Hom (Ko, T'). Moreover, the identification Ur = Hom (K,,T') & kdn=d)

respects the Zariski topology, i.e.,
Ur = Hom (K, T') = A4,
O

We now see this condition in terms of coordinates. Let {eq,es,...,e,} be a basis

for V"= k™ and let I be spanned by {egy1,...,e,}. Then if K € Ur and if K has basis
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{v1,...,va} with v; = > | a;je;, then the first d x d minors of the matrix (a;;) are
nonzero. As P(K) does not depend on the choice of the basis, the basis {vy,...,v4}

may be chosen so that the matrix (a;;) has the form

(aij) = 1
b171 R de

bnfd,l <o bnfd,d

Thus, any K € Ur can be represented as the column space of the unique matrix of the

above form, the entries b; ; of this matrix give the bijection between Up and k%"=%.

Corollary 1.15. The dimension of the Grassmannian G(d,n) is d(n — d).

Proof. Since the Grassmannian G(d,n) can be covered by open sets isomorphic to

the affine space A“"~9 an immediate consequence is that

dim(G(d,n)) = d(n — d).

1.2 The number of points in G(d,n)(F,)

Let k be a perfect field. The Galois Group I' = Gal(k/k) acts on the projective space

P"(k) as follows. For 0 € " and (ag : ay : -+ : a,) € P"(k), we define

olag: -+ :ay) = (o(ag) : -+ :0(ay)).
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The action is well defined since V) € k* we have

g(Aag: -+ Aay) = (0(Aag) = -+ o(Aay))
= (e(Ma(ao) : ---: a(N)o(an))
= o(ayp an)

One can easily verify that
L. Id(ag : -+ :an) = (ag: -+ : an),
2. oro9(ag: -+ :ay) =o1(oa(ag -+ ay)).

Lemma 1.16. The Galois group I' = Gal(k/k) acts on P"(k) and the fived points are
precisely the points in P™(k) i.e.
{u=(ap: - :a,) €P'k) | o(u) =u, Voel}=P"k).
Proof. Suppose that for o € T,
oag: -t an) = (ag: - an).
Then for every o there is a A\, such that

o(a;) = Asa;, 1=0,--- n.

Without loss of generality let ag # 0. Then for o € I we have

o(ag) - a;
a(ai):L for i=0,1,---,n.
Qo
Therefore, we have
a a;
L (—Z> Vo el
Qo (on)
that is,
Q;
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So we get
(ag:ay:---:ay,)=(1:ay/ag: -+ :ay/ag) € P*(k).

Thus, the Galois group I' = Gal(k/k) acts on P"(k) and the fixed points are
precisely the points in P"(k). O

On similar lines we will now consider the action of the Galois group on the Grass-

mannian G(d,n) and use that to calculate the number of points of G(d, n)(F,).

1.2.1 Action of the Galois group on the Grassmannian

Without loss of generality suppose that the n-dimensional vector space V is (k).

Then G/(d, n) is the collection of all d-dimensional subspaces of (k)" and I' = Gal(k/k)

acts on it as follows. For U € G(d,n) and o € I' define
o(U) ={o(z1,22,...,2,) | (x1,...,2,) €U},

where,
o(xy,zo,. .., xn) = (0(x1),...,0(zp)).

It is easy to verify that if U has a basis {vy,vs,...,vq} then o(U) is again a d-

dimensional subspace of (k)" with a basis {o(v1),...,0(vq)}. We therefore get an
action of ' on G(d, n)(k). We can also think of G(d, n) as embedded in the projective
space PNV = P(A? V) via the Pliicker map P : G(d,n) — PV and we may consider the
action of I" on it as induced by the action on the projective space. Note that the two

actions of I" on G(d,n) are compatible, this means, for ¢ € I', U € G(d, n), we have,

Definition 1.17. We say that U € G(d,n) is I'-invariant if o(U) = U for all o € I

Lemma 1.18. A subspace U € G(d,n)(k) is I'-invariant if and only if U has a

basis {wy,ws, ..., we} with each w; € k™.
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Proof. Clearly if the subspace U has a basis {wy, ws,...,ws} with each w; € k"
then U is ['-invariant. Now let U be a d- dimensional subspace of V' spanned by the
vectors {vy,ve, - -+ ,vg} such that o(U) = U, V o € I'. We prove that there is a basis
{wy, ws, ..., wy} of U such that

VUEF,U(wZ):w“ i:1’2""7d.

As o(U) = U, 3A(0) € GL(d, k) such that

o () — A(0) <> .

A(oT) <v2> =0 |7 (02>] =0
= o[A(r)o () = o[A()]A(0) () .

So we have A(o 1) = [0A(T)] A(0), i.e., {A(0)} is a 1-cocycle and using the result that
HY(T',GL(n,k)) is the identity [18, p.159] we get that the I-cocycle {A(c)} splits.
Therefore, there exists B € GL(d, k) such that B = (0 B) A(c). Now let

Then we have
() =B () = (0B)- A(0) () = (0B) 0 () =0 |B () =0 ()

So for all 0 € T, o(w;) = w;, i = 1,2,---d, which implies that U has a basis
{wy, ws, -+ ,wq} with w; € k™ (as (k)F = k). O

Then we have,

We now use these results to calculate the cardinality of G(d,n)(F,).
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Proposition 1.19. The number of points of G(d,n)(F,) is given by

f(n)
|G(d’ n)(Fq)’ = f(d) ] f(n _ d) . qd(nfd)'

where f(n) = (¢" —1)(¢" —q) - (¢" — ¢" 7).

Proof. Let k = F,. Then we have | G(d,n)(k) | = | [G(d, n)(E)]F | which is the
number of d-dimensional subspaces of (k)" that are I'- invariant. Let J denote the
collection of all ordered bases {vi,vs,...,v4} with each v; € k™. Then J defines
an open subset of (k). By Lemma 1.18 it follows that to compute the number of
subspaces which are ['-invariant one can compute the number of elements of J and
take into account how many different ordered bases give rise to the same element of

G(d,n). Let U € G(d,n). The cardinality of G(d,n)(F,) is given by

number of points of J

number of ordered bases for each U’

The number of ordered bases for each U is |GL(d, k)|. So we get

/1
G(d,n)(F,)| = 77—-

Now we find |J|. The general linear group GL(n, k) = Aut(k™) acts naturally on J
and the action is transitive. The stabilizer of X = {ej,...,es} has the block matrix
of the form

]d *

0 GL(n—d,k)
Hence,

GLeLK) 1 |GL( k)]

7= |stabilizer(X)| ~ ¢¥n=9 |GL(n —d, k)|’

Then we have

n,Fy)l _ f(n)
n—d,F,)|-q¥ =9 o fd) - f(n—d)-qin=d)

1G(d, n)(F,)| 'G”(

~ |GL(d,F,)[- |GL

where f(n) = (¢" — 1)(q" - q)--- (¢" — ¢"). =
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1.2.2 The Zeta function of the Grassmannian
Let X be a smooth projective variety over & = [F,. The Zeta function of X is defined

by

r=1

Z(X,t) = exp <Z N%) e Q[[t]],

where N, is the number of points of X defined over F,. Let X be a non-singular
projective variety of dimension n. Then the Weil conjectures [8, Appendix C], proven

by Deligne and Dwork, concerning Z(X,t) are:
1. Rationality : Z(X,t) is a rational function in t.
2. Functional equation : Z(X,t) satisfies the functional equation namely,
Z X’_t =+q 2 t"Z(X,1),
q'n,

where F is the Euler characteristic of X which can be defined as the self inter-

section number of the diagonal A C X x X.

3. Riemann hypothesis : We can write

CPi(t) - Pa(t) - Paya(t)

where Py(t) = 1 —1t, Py,(t) = 1 — ¢"t and for each 1 < i < 2n —1, Pi(t) is a
polynomial with integer coefficients which can be written as

b;

Pi(t) = [ J(1 = wist),

=1
where w;; are algebraic integers with |w;;| = ¢"/2. Given Z(X,t), these condi-

tions uniquely determine the polynomials P;(t).

4. Cohomological interpretation: Define the i-th Betti number b; of X as
the degree of the polynomial P;(t) where P;(t) is as in 3. Then we have the
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Euler characteristic, E = >_(—1)'b;. Suppose now that X is obtained from a
variety Y defined over an algebraic number ring R, by reduction modulo a prime
ideal p of R. Then b; is equal to the i-th Betti number of the topological space
Y, =Y ®rC, i.e., b; is the rank of the singular cohomology group H'(Yy;Z).

As seen before, the Grassmannian G(d,n) can be embedded into the projective
space P(A\? V) via the Pliicker map. Recall that G(d, n) can be covered by open affine
spaces of dimension d(n—d), so it is a smooth projective variety of dimension d(n—d)
which may be considered over any finite field FF,. We now calculate the Zeta function
of some Grassmannians over FF,. We will also see the rationality of the Zeta function

and the functional equation in a few examples.
Example 1.20. Projective space G(1,n+ 1) =P™. One has
[P"(F)l =1+q+q"+ -+,

and $so,

Nr _ |]Pm(Fq7)| =1 +qr +q2r 4. +an,

7 - T nr t
Z(t):=Z(P, @ F,,t) = exp (;(14—(] +. g )?) _
Taking logarithm on both sides and using the formula : In(1—t) = —t—12/2—#3/3—. ..,
we get,
oo tT
In[Z(t)] = 14+¢ +...+q¢")—
MO = YT
= —In(l—¢)—In(l —qgt) — - —In(1 — ¢"t).

— —ln[(1—t)- (1= q"t)].

It follows that
1

Z(]P%@Fq,t) = (1_t)(1_qt)...(1—q"t)'
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We see that Pi(t) = 1 for all odd i and Py(t) = 1 —¢'t for i = 0,1,2,--- ,n. The
degree of Pi(t) is zero for i odd and 1 for i even; odd Betti numbers are zero and the
even Betti numbers are equal to 1. The Euler characteristic is E = > b; =n+1. We

now verify the functional equation

1 1
Z(ProF, —) =
( S q”t) (1—=1/g"t)(1 —q/q"t)--- (1 — q"/q"1)
q”t-q”_lt---qt-t

(I=t)(1—qt)--- (1 —q"t)
qn(n+1)/2 . tn+1

= PR AE . 7P T, t).

Thus, the functional equation is verified. Also note that the numbers by, by, - - by,
match with the Betti numbers of the complex projective space P"(C) and the number

E = n+ 1 matches with the Euler characteristic of P"(C).

Example 1.21. The Grassmannian G(2,4)®@F,. By the general formula, the dimen-
sion of G(2,4) is 4. We first calculate N,. By Proposition 1.19,
(@' = D(¢* — ) (¢" — )" — &)
(> = 1)*(¢* — q)*¢*
= (@ + D@ +g+1)=1+q+2¢"+¢* + ",

G(2,4)(F,)] =

and so

erl_'_qr+2q2r+q3r+q4r.

It follows that

[e.e] t,r,
Z2(G(2,4) @F,,t) = exp (Z(l +q"+ 20" + ¢ + q47")?>
r=1

1
(1 =1)(1 = gt)(1 = ¢*t)*(1 = ¢*)(1 — g*t)’
We see that Z(t) is a rational function int. The polynomial P;(t) = 1 for all oddi. We
hGUG, PO(t) = 1_t7 PQ(t) = 1_qt7 P4(t) = (1_q2t)27 Pﬁ(t) = 1_q3t7 PS(t) = ]'_q4t
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The Betti numbers b; are zero for all odd i and by =1, by =1, by =2, bg =1, bg = 1.
The Euler characteristic E = > b; = 6. We now verify the functional equation for
X=G(2,4)xF,

1 1
g (X’ E) =1/ = q/q*t) (1 — ?/q"t)2(1 — ¢*/q*t) (1 — ¢*/q*t)
= q't-¢’t-(¢*t)* - qt-t- Z(X,1)

= ¢2- 1% Z(X,1)

= ¢"FIHE . Z(X 1),
and the functional equation is verified.

Example 1.22. The Grassmannian G(2,5) @ F,. We have

(® = D(¢® — ) (® — )@ — ) — ¢
(= 1)(¢* = (@ — (¢ — ) (¢® — ¢*)g°
= 1+q+2¢°+2¢°+2¢" + ¢° + ¢°,

|G(2,5)(F,)]

and so,

Nr:1+qr+2q2r+2q3r+2q4r+q5r+q6r.

It follows that

o t,r

Z(G(2,5) @ Fy, t) = exp (Z(l g+ 207+ 247 + 24" + ¢ + qﬁr);> ,
r=1

and by stmilar calculations we get

1
(1—=0)(1 —qt)(1 = ¢®t)>(1 — ¢®t)>(1 — ¢*t)>(1 — ¢°t)(1 — ¢5t)

Z(G(2,5) @ F,,t) =

1.2.3 The general case G(d,n) @ F,

By proposition 1.19 we get

N, = |G(d,n)(Fy)|

_ (¢ = 1)(¢" —q") - (g" — ¢ ")
- (qdr _ 1) .. (qdr _ q(d—l)r) . (q(n—d)r _ 1) - (q(n—d)r _ q(n—d—l)r) . qrd(n—d) ’
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For simplicity set ¢" = [. So we have

("= =1)--- (" =11
(14 =1)--- (14 = [4=1) . (In=d — 1) - (n=d — [n=d=1) . [d(n—d)

Multiplying and dividing by [?*~9 and simplifying we get

"= 1) = 1) (L)
(- D)1 —1)---(1—1)

This is the usual Gaussian binomial coefficient or /-binomial coeflicient (Z)

N, =

N, =

1
and it can be interpreted as a polynomial in [. To be more precise

d(n—d)
nyo i
( d> = > bl
! i=0
where the coefficient b; of I* is the number of distinct partitions of 7 elements that

fit inside a rectangle of size d x (n — d). For a detailed discussion on the Gaussian

binomial coefficient refer to [1, section 13.5]. We illustrate this with examples.

Example 1.23. Find the Gaussian binomial coefficient (3)1.

Suppose (;‘)l = by + byl + byl? + b3l® + byl*. We summarize the number of partitions
of v forv=0,1,2,3,4 in the following table.

it | admassible partitions of i | b; = number of admuissible partitions
0 {} 1
1 {1} 1
{2 {1,1}} 2
{2,1} 1
{2,2} 1

= W N

Hence we get
4
<2> =1+14+22+8B+14
I
i.e., Ny, = 14+¢"+2¢* +¢* +q*". Note that this calculation matches with the calculation
done before while calculating the Zeta function of G(2,4) @ F,.
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Example 1.24. Find the Gaussian binomial coefficient (g)l
Suppose (g)l = bo + byl + byl® + b3l3 4+ byl* + bs1°. We summarize the number of allowed
partitions of © for i =0,1,2,3,4,5,6 in the following table

i | admissible partitions of i | b; = number of admissible partitions
0 {} 1
1 {1} 1
2 {2}, {1, 1}} 2
3 {{2,1},{1,1,1}} 2
4 {{2,2},{2,1,1}} 2
5 {{2,2,1}} 1
6 {{2,2,2}} 1

Hence we have
(Z) = 141422428 4204 +1° + 15,
!

ice., Np = 14+q" 4+ 2¢% + 2¢°" + 2¢* + ¢°" + ¢°". Again this calculation matches with
the calculation done before while calculating the Zeta function of G(2,5) ® IF,.

Example 1.25. Find the Gaussian binomial coefficient (g)l.

Suppose
(g) = by + byl + byl® + b3l® + byl* + byl + bgl® + b7l + bgl® + byl°.
[

We summarize the number of allowed partitions of i fort =0,1,...,9 in the following

table
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i | admissible partitions of i | b; = number of admissible partitions
0 {} 1
1 {1} 1
2 {{2},{1,1}} 2
31 {3 {21} {1,1,1}} 3
4] {{3,1},{2,2},{2,1,1}} 3
51 {42,2,1},{3,2},{3,1,1}} 3
6 | {{2,2,2},{3,2,1},{3,3}} 3
7 {{3,2,2},{3,3,1}} 2
8 {{3,3,2}} 1
9 {{3,3,3}} 1

Hence we get
6
(3) =14+14+224+33+32 +3° +315 2"+ 8+ 1°,
l
i, Np=1+¢"+2¢* + 3¢ +3¢" +3¢° + 3¢" +2¢" + ¢* + ¢

Now we consider the general case. Regarding [ as a formal variable, it is possible

to express the coefficient N, of any Grassmannian G(d,n) ® IF, as

where b; = b;(d,n,l) can be found as explained before and the Zeta function of the

Grassmannian then comes out to be
1
(L= (L= gt (1 — o

From this we observe that all the odd Betti numbers of the Grassmannians are zero.

Z(G(d,n) @ F,,t) =

As we shall see in section 1.4.3, the numbers b; here are the even topological Betti num-
bers of the complex Grassmannian X(C) = G(d,n)(C) ,i.e., b; = dim Hy (X (C),Z).
The odd Betti numbers of X(C) are zero.
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1.2.4 Euler characteristic of the Grassmannian

Consider the Grassmannian G(d,n). As seen in the last section, the odd Betti num-
bers of the Grassmannian are zero and the even Betti numbers are related to the

Gaussian binomial coefficient by
d(n—d)

n .
= b;l".
(6),- 2
=0
Putting [ = 1 in the above expression we immediately get the Euler characteristic of

the Grassmannian as
d(n—d)

E=Y b= (Z)l.

1=0

Referring to [1] section 13.5, Theorem 1, the Gaussian binomial coefficient (1), is the

usual binomial coefficient (7). Hence the Euler characteristic of G(d,n) is (%).

1.3 Schubert calculus

Let G¥(d,n) be the set of all d-dimensional subspaces (or d-planes) of the n dimen-
sional complex projective space P" i.e. in our old notation, G*(d,n) = G(d+1,n+1).
Now onwards we always refer to the projective space P over the complex numbers C.
Let N = (Zﬁ) — 1. As seen before there is a natural way of associating a point of PV
to a d-plane L € G¥(d,n) and the coordinates of L regarded as elements of PV are
called the Pliicker coordinates. This embedding of G¥(d,n) into PY makes it into a
manifold of dimension (d+ 1)(n — d). The Schubert Calculus describes the cohomol-
ogy ring of G¥(d, n) say with integer coefficients when the base field is C. The subject
started with a typical enumerative problem: How many lines in 3-space in general,
intersect 4 given lines? The answer to this question lies in finding the degree of some
Schubert cycles. The fundamental theorem of Schubert calculus also helps under-

stand the generalization of Bézout’s theorem. We now develop important notions of

the subject.
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1.3.1 Schubert conditions and Schubert varieties.

We are interested in finding a necessary and sufficient condition for a d-plane in the
projective space P" to intersect a given sequence of linear spaces of P" in a prescribed
way. Let A : Ay C A; C --- C Ay be a strictly increasing sequence of d 4+ 1 linear
spaces of P™. Such a sequence is called a flag. Let dim A; = a; for each i. If we take A;
to be consisting of all points in P of the form (xg:xy: -+ :2;:0:0:0:---:0) then

we call A the standard flag.

Definition 1.26. A d-plane L in P" is said to satisfy the Schubert condition
defined by the flag A if dim(A; (L) >4 forall i=0,1,--- d.

Thus a d-plane satisfying the Schubert conditions with respect to the flag A in-
tersects Ag at least in a point, A; at least in a line etc., and it lies in Ay. It can be
seen that the condition dim(A; (L) > for ¢ = 0,--- ,d is satisfied if and only if the
Pliicker coordinates of the d-plane L satisfy certain linear relations in addition to the
quadratic relations. Indeed the collection of all such planes defines a variety. For the

proof of this refer to [12, p.1066-1070].

Definition 1.27. The collection of all d-planes in G¥(d,n) satisfying the Schubert
condition with respect to a given flag A defines a projective variety. It is known as

the Schubert variety (2(A) corresponding to the flag A.

In fact this variety is the intersection of a linear subspace of P* with G¥(d,n).
The dimension of the Schubert variety 2(A) with A as above is Zfzo(ai —1i). For the
proof of this fact refer to [12, p.1071].

Example 1.28. Let Ay be a line in P2. Let Ay = P3. Let A: Ay C Ay = P3 be a
flag in P3. Then Q(A) is the set of all lines L in P3 such that dim(L N Ay) > 0 and
dim(L NP3) > 1. As LNP3 = L, the second condition is automatically satisfied and
Q(A) is the set of all lines L in P3 that intersect the line Ay.
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Example 1.29. Suppose that dim(A;) =i Vi=0,1,--- ,d. Then Q(A) consists of
the single d-plane Ay.

Example 1.30. Suppose that dim(A;) =i Vi=0,1,--- ,d—1. Let dim(A4y) = d+r.
Then Q(A) consists of all d-dimensional subspaces of G* (d,n) which contain Aq_y and

which are contained in Ay and such a set is isomorphic to P".

Example 1.31. Suppose that dim(A;) = n—d+i Vi =0,1,--- ,d. Then, the Schubert
variety Q(A) is GF(d,n).

1.3.2 Some cohomology theory for a topological space and

Schubert cycles

We recall some singular homology theory. For the details of the subject one can refer
to [10, Chapters 2 and 3]. An n-simplex is the smallest convex set in R™ containing
n + 1 points vy, v1,...,v, that do not lie in a hyperplane of dimension less than n.
The points v; are the vertices of the simplex, and the simplex itself will be denoted

by [vg, -+ ,v,]. The standard n simplex is given by
A" = {(tg,...,t,) € R*T| Zti =1, >0V}

A singular n-simplex in a topological space X is a continuous map o : A" — X.
Let C,(X) be the free abelian group with basis consisting of the set of all singu-
lar n-simplices in X. Elements of C,(X) are called singular n-chains. These are
formal sums ) .n;0;, n; € Z,almost all zero and o; : A" — X. The boundary
of the n-simplex [vg,--- ,v,| consists of the various (n — 1)-dimensional simplices
[vo, -, 0iy ..., Uy], where the symbol hat over v; indicates that this vertex is deleted
from the sequence vy, - - - ,v,. The boundary map 9, : C,,(X) — C,,_1(X) is defined
by
On(0) = (=)o [vo, ... i, ., 0]

i
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We have 0, - 0,,+1 = 0 and we define the n-th homology group of X by
H,(X)=Kerd,/Im0o,,;.
We now define the cohomology of a space.

Definition 1.32. Let X be a topological space and G be an abelian group. We
define the group C"(X; G) of singular n-cochains with coefficients in G to be the dual
group Hom(C,,(X);G) of the singular chain group C,(X). The coboundary map
6" C"(X;G) — C"(X; @) is the dual of the map between n chains and we have
d"-6"1 = 0. Elements of Ker 6" are called n-cocycles and the elements of Im §" are
called n-coboundaries. We define the cohomology group H"(X;G) as the quotient
Ker §"/Im 6" 1.

Definition 1.33. Cup product: We consider the cohomology with coefficients in a
ring R (e.g. in Z). For cochains ¢ € C*(X;R), v € CY(X,R), the cup product
p U € C*(X; R) is the cochain whose value on a singular simplex o : AF — X
is given by

(U ) (o) = ¢(al[vo, - .., vk]) Y(o|[vk . .. vipi]).

The cup product of cochains is bilinear and associative. It can be shown that the cup

product of cochains induces a cup product of cohomology classes namely
H*(X;R) x H(X; R) — H*"'(X; R).

This product is bilinear, associative and distributive since at the level of cochains the
product has these properties. If R has an identity element, there is an identity element
for the cup product. Note that the cup product is, in general, not commutative.

Instead it is anti-commutative. If ¢ € C*(X;R), v € CYX, R)then one has (in

cohomology)
pUY = (-1 U
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Definition 1.34. Cap product: Let X be a topological space. Let R be the coefficient
ring. For for o : AF — X and ¢ € C'(X; R),k > [, define an R-bilinear cap product
N: Cr(X;R) x CY(X;R) — Cp(X; R) by

oN¢ = o(allvo, ..., ul)alv, ..., vkl
This induces a cap product in homology and cohomology namely

Hi(X;R) x H(X;R) — Hy1(X; R),
which is R-linear in each variable.

Definition 1.35. The cohomology ring: Define the cohomology ring H*(X; R) as
the graded ring H*(X; R) := €D,5 H"(X; R). Elements of H*(X; R) are finite sums
> a; with oy € H'(X; R). We define the product (37, i).(32, 8i) = >, ou U B;.
This makes H*(X, R) into a ring with identity if R has identity.

Poincaré Duality: The Poincaré duality relates the homology and the cohomology
groups of a compact oriented triangulated n-manifold X in dimension k£ and n — k.
The cohomology groups form a graded ring with respect to cup product and the
homology groups form a module over the cohomology ring by means of cap product.
The canonical map H'(X; R) — H,_;(X; R) taking « to o N [X] is an isomorphism.
This map is called the Poincaré duality map. When X is a non-singular complex
projective variety of dimension n, it is an oriented real 2n-manifold and the group
H,(X; R) has a canonical generator [X]. A closed subvariety V' of dimension k of a
projective variety X determines a class [V] in Hoi(X; R) and, by Poincaré duality, we
have the class in H?*(X; R) = Ho,(X; R), where ¢ is codimension of V in X. Thus, if
X is smooth proper over C and V' is a subvariety of codimension & then, there exists
associated to V a cohomology class n(Y) € H?*(X;7Z). This map extends by linearity

to cycles.
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Applying this to Schubert varieties we see that (2(A) defines a cohomology class in
the cohomology ring H*(G*(d,n);Z). The cohomology class of Q(A) in H*(G¥(d, n); Z)
is called a Schubert cycle. Although the variety €2(A) depends on the choice of the
flag A, it can be shown that [12, p. 1070] the cohomology class of 2(A) depends only
on the integers a; = dimA;. So we denote the class of Q(A) by Q(ao,...,aq) = Q(a)
where a is defined by integers a; = dimA;, 0 < ag < a; < --- < aqg < n.

We now state the fundamental theorem of Schubert calculus which asserts that

the Schubert cycles completely determine the cohomology of G¥(d, n).

Theorem 1.36. The Basis Theorem (as stated in [12, p. 1071]) Considered addi-
tively, H*(G¥(d,n);Z) is a free abelian group and the Schubert cycles Q(ag, ..., aq)
form a basis. Each integral cohomology group H?*(G*(d,n);Z) is a free abelian group
and the Schubert cycles Q(a) with [(d+ 1)(n —d) — ijo(ai — )] = p form a basis.
Each cohomology group H"(G®(d,n);Z), with r odd, is zero.

The Basis Theorem determines the additive structure of the cohomology ring
H*(G*(d,n);Z). Since each odd cohomology group is zero we observe that the cup
product is commutative and the ring H*(G*(d,n);Z) is a commutative ring.

To determine the multiplicative structure we need some combinatorics. Let b;
denote the i-th Betti number of G¥(d,n), i.e. b; = rank (H'(G®(d,n);Z)). By the

Basis Theorem, by, is equal to the number of solutions in integers a; to the equation

d
[(d—l—l)(n—d)—Z(ai—i)}:p where 0<ag<a; <---<aqg <n.
=0

We now calculate the cohomology groups of some Grassmannians and find their

dimensions.

Example 1.37. The projective space P*= GF(0,n). The dimension of P* is n. Using
the Basis Theorem forp=0,1,... ,n, H**(P";Z) is one dimensional generated by the
Schubert cycle Q(ag) such that n — ag = p. In fact, Q(ag) is a hyperplane of complex
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codimension n — ag. The cohomology group H"(P™;Z) is O for r odd. So all the odd

Betti numbers are zero and the even Betti numbers are equal to 1.

Example 1.38. The Grassmannian G(2,4) = G¥(1,3). The dimension of G(2,4)
is 4. For 0 < p < 4, H®(G®(1,3);Z) is generated by the Schubert cycle Q(ag, ar)
such that 4 — [ag + (a1 — 1)] = p i.e. ag+a; =5 —p. For p =0, the only integer
solution to ag+ ay = 5 with ag and a; as in Schubert conditions is ayg = 2 and a; = 3.
Hence, H°(G®(1,3);Z) is generated by 2(2,3) and has dimension 1. We summarize

the calculations for the other cohomology groups in the following table.

p | dim(H?*(G*(1,3);Z)) generators
1 Q(2,3)
1 1 Q(1,3)
2 2 Q(0,3),(1,2)
3 1 2(0,2)
4 1 Q(0,1)

Example 1.39. The Grassmannian G(2,5) = G¥(1,4). The dimension of G(2,5) is
6. For 0 <p <6, H?(G"(1,4);Z) is generated by the cohomology class of Q(ag,a;)
with 6 — [ag + (a1 — 1)] = p i.e. ap+ay =7 —p. For p =0, the only integer solution
to ag + a1 = 7 with ag and ay as in Schubert conditions is ag = 3 and a1 = 4. We

summarize the calculations for other cohomology groups in the following table.
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p | dim(H?(G*(1,4);Z)) generators
1 (3,4)
1 1 Q(2,4)
2 2 0(1,4), Q(2,3)
3 2 0(0,4), (1, 3)
4 2 0(0,3), Q(1,2)
5 1 Q(0,2)
6 1 Q(0,1)

Example 1.40. The Grassmannian G(3,6)
is 9. For 0 < p <9, H**(G¥(1,4);Z) is generated by the cohomology classes of
Qag, a1, as) with 9 — [ag + (a1 — 1) + (a2 — 2)] = p i.e. ag+ a1 +az = 12 —p. For
p = 0, the only integer solution to ag+ a1 + as = 12 with ag, a; and as as in Schubert

conditions is ag = 3, aq

=4 and as = 5. We summarize the calculations for other

= G¥(2,5).

cohomology groups in the following table.

p | dim(H?(G¥(2,5);Z)) generators

1 (3,4, 5)
1 | 0(2,4,5)
2 2 0(1,4,5),9(2,3,5)
3 3 0(0,4,5), (1, 3,5), (2, 3,4)
4 3 Q(0,3,5),92(1,2,5), (1, 3,4)
5 3 0(0,2,5), 2(0,3,4), (1,2, 4)
6 3 0(0,1,5), Q(0,2,4), Q(1,2,3)
7 2 0(0,1,4), 2(0,2,3)
8 1 0(0,1,3)
9 1 Q(0,1,2)

The dimension of G(3,6)
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1.3.3 Intersection theory of Schubert cycles

We now state without proof some important results for computing the products of
Schubert cycles. The Basis Theorem says that the Schubert cycles, i.e. the coho-
mology classes of Schubert varieties, form an additive basis for the cohomology ring.
Moreover the product of any two Schubert cycles can be uniquely expressed as a

linear combination of Schubert cycles with integer coefficients.

Proposition 1.41. [12, p.1071] Let m = dimG*(d,n) = (d+ 1)(n — d). The basis
{Qag, ... aq) | m —dim Qag,...,aq) =p } of H*?(G*(d,n);Z) and the basis

{Qn—aq,...,n—ag) | m—dim Qn—aq,...,n—ay) =n—p}
of H*™=P)(G®(d,n);7Z) are dual under the Poincaré duality pairing (v, w) — deg(v.w).

The Schubert cycles Q(ag,---,aq) and Q(n —agq,--- ,n — ag) are called dual

cycles.

Corollary 1.42. [12, p.1071] Let v € H*(G®(d,n);Z). Then v can be written

uniquely as
v = Zé(n—ad,...,n—ag)Q(ao,...,ad),

where §(n — ag,...,n —ag) = deg(v.Q(n — agq,...,n — ag)) is an integer.

Definition 1.43. The special Schubert cycles of the Grassmannian G¥(d,n) are
defined by

o(h)=Qh,n—d+1,...,n), for h=0,...,(n—d).
Example 1.44. The special Schubert cycles of GF(1,3) are

o(0) = Q(0,3), o(1) = Q(1,3), 0(2) = Q2,3).
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Example 1.45. The special Schubert cycles of G*(2,5) are
o(0) =9Q(0,4,5), (1) =Q(1,4,5), 0(2) =Q(2,4,5), 0(3) =Q(3,4,5).

Giambelli’s Formula (Determinantal Formula) [12, p.1073] : Suppose that
0<ag<---<ay <nis asequence of integers. Then the following formula holds in
H*(G*(d,n);Z):

olag) ... o(ay—d)

O'((ld) O'(Cld—d)
where o(h) =0 for h ¢ [0, (n — d)].

Example 1.46. In G¥(1,3) consider the Schubert cycle Q(1,2). Using Giambelli’s

Formula we have
o
Q(1,2) = =o(1)? — 0(2) - 0(0).

Giambelli’s Formula together with the Basis Theorem implies that every coho-
mology class is equal to a linear combination of products of special Schubert cycles
i.e. the special Schubert cycles generate the cohomology ring H*(G¥(d,n);Z) as a
Z-algebra. Moreover, Giambelli’s Formula reduces the problem of determining the
product of arbitrary Schubert cycles to finding the product of special Schubert cycles.
Pieri’s Formula [12, p.1073] : Let 0 < ap < --- < aq < n be any sequence of inte-
gers. Then for h =0,...,(n — d) we have the following formula for the product in

the cohomology ring H*(G*¥(d,n);Z) :

Qag, ...,aq).0(h) = ZQ(bo, -5 ba),

where the sum ranges over all sequences of integers by < - -+ < by satisfying conditions

Ogbogao, a0<b1§a1,-~~,ad_1<bd§ad and Z;jzobZ:Zfzoaz—(n—d—h)
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Example 1.47. We compute the product of Schubert cycles in G¥(1,3) and hence
describe the cohomology ring H*(G*(1,3);Z) as a Z- algebra. By Giambelli’s Formula
and the Basis Theorem we know that H*(G*(1,3);Z) is generated by special Schubert
cycles {a(0),0(1),0(2)} as a Z-algebra. One observes that o(2) acts as identity. So
we can express H*(G¥(1,3);Z) as Z[o(0),0(1)] with some relations. To find these

relations we first compute the products of special Schubert cycles.

1. 0(0)* = Q(0,3) - 0(0). By Pieri’s formula we have o(0)? = > Q(bo,by) where
by < by are distinct integers satisfying, 0 < by < 0, 0 < by < 3 and we have
bo + b1 =3 —(2—0) = 1. Therefore o(0)? = Q(0,1).

2. 0(1)*> = Q(1,3) - o(1). By Pieri’s formula we have o(1)? = > Q(bo,by) where
by < by are distinct integers satisfying, 0 < by < 1, 1 < by < 3 and we have
bo+b=4—(2—-1)=3. Soc(1)?=9Q(0,3) +Q(1,2).

3. 0(0) - o(1) = 2(0,3) - (1) = > Q(bg, by) where by < by are distinct integers
satisfying 0 < by < 0, 0 < by <3, bp+b; =3 —(2—1) = 2. Therefore the
product o(0) - o(1) = €(0,2).

4. 2(1,2) - o(1) = > Qbo, by) where by < by are distinct integers satisfying the
relations 0 < by < 1, 1 < by <2, bg+b; =3 —(2—1) = 2. Therefore the
product 2(1,2).0(1) = (0,2).

Computing in a similar way we can summarize the products of special Schubert cycles

in G¥(1,3) in the following table

o | o(0) o(1) o (2)
a(0) | ©(0,1) Q(0,2) Q(0, 3)
o(1) | Q(0,2) | Q(0,3) +Q(1,2) | Q(1,3)
a(2) | ©(0,3) Q(1,3) Q(2,3)
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We compute some more products

1. Q(1,2) - 0(0) = > Qbo,b1) where by < by are distinct integers satisfying the
conditions 0 < by <1, 1 <by <2, bg+b =3—-(2—-0)=1. We can’t find

integers by, by satisfying these conditions. Hence the product €(1,2) - o(0) = 0.

2. Q(1,2) - Q(1,2). By Giambelli’s formula we have Q(1,2) = o(1)? — o(2) - 0(0).
So Q(1,2) - Q(1,2) = Q(1,2)[0(1)? — a(0)].

Again using Pieri’s formula we get

0(1,2) - Q(1,2) = Q(0,2) - o(1) — Q(1,2) - 0(0) = Q(0,1) — 0 = Q(0, 1).

We have now enough information to describe the relations between the generators.

By the Basis Theorem we can write
H*(G"(1,3);Z)=H°® H*® H'® H° ® H®
= Zwo @ ZU)Q EB (ZU}4 @ Zw4/) @ Zw6 @ ZU)S

where wy = §2(2,3) = 0(2), wy = Q(1,3) =0o(1), wy =Q(0,3) = c(0),

wy = N(1,2) = 0(1)2=0(0)-0(2), weg = Q2(0,2) = 0(1)5(0), wg = Q(0,1) = o(0)*. In
this new notation each w; is of weight i i.e. each w; is a class in H*. In order to find
all possible relations we have to compute the products in all weights. So we have to
compute the products w3, w3, W, wowy, Woly, Wollg, W, WAWyr, WAWS, W, Wy w3,
Also we have relations w,w; = 0 for i + j > 8. Then referring to the computation

done above, we have the following relations
2 2
Wy = Wy + Wy, Wy = W, Wy = W, Wj = Ws. (1.2)

wowg = Wy, Wywy = ws, wr = 0. (1.3)

The relations w3 = 2wg, wy = 2ws can be obtained from the above set of relations.

Also note that the relations waw3 = wg, wyw3 = wg are redundant. They can be
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obtained by the relations above. The equations arising from w;w; = 0 for i 4 7 > 8

are

Walg, W4aWeg, Wawg Wy Weg, Wwyrwsg, WeWS. (14)

We have considered all possible weights. So these are enough relations. Hence as a
Z- algebra we can write
H*(G*(1,3);Z) = Z[0(0),0(1)] = Z[wy, w,)

with the relations given in equations 1.2,1.3 and 1.4.

Example 1.48. [12, p.1073] Compute the number of lines L € P which (simultane-
ously) intersect four given lines Ly, Lo, L3 and Ly.

As seen in Example 1.28, the lines which (simultaneously) intersect a given line Ay

in P3 are represented by the Schubert variety Q(Ag, P?) defined by the flag
A:AyC A =P3

Therefore the lines which intersect (simultaneously) four given lines are represented

by the intersection of the Schubert varieties
4
Q=) QL;, P
i=1

Assume that the set of lines intersecting four given lines is finite. Then this set has
cardinality equal to the degree of the Schubert cycle Q(1,3)*. Using the computations

. Fxample 1.47, we have

Q(1,3)* = wy = 2ws.

Now wg = (0, 1) is the class of a single point its degree is one. So the degree of the
Schubert cycle Q(1,3)* is two. So the number of lines in P? interesecting four given

lines is either infinity or 2 or one (counted twice), with 2 being the ”common case”.
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1.4 The Grassmannian as a scheme

Very interestingly Grassmannians exist in the category of schemes and can be con-
sidered as natural generalizations of the notion of classical Grassmannians over alge-
braically closed fields. For a detailed discussion on this refer to [6], IIT 2.7. Let S be
any scheme and let 1 < d < n be integers. There exists a scheme Gg(d, n), called the

Grassmannian over S with the following properties.

1. f T — S is any morphism of schemes, then Gr(d,n) = Gg(d,n) xgT. In
particular there exists a scheme Gz(d,n) the Grassmannian over SpecZ and

any Grassmannian Gg(d,n) can be realized as the fiber product Gz(d,n) x S.

2. If S = Spec (k), k an algebraically closed field, then the scheme Gg(d,n) is the

classical Grassmann variety G(d,n) over k.

To construct Grassmannians over a general scheme, we begin by constructing them
over affine schemes. Then given any scheme S we can cover S by affine open schemes
say {U,} and glue together the Grassmannians {Gy, }.

To motivate our discussion we recall that in the classical setting Grassmannians
are over an algebraically closed field k. There are at least two ways of construct-
ing Gi(d,n). We may consider Gx(d,n) as a non-disjoint union of open sets each
isomorphic to the affine space AZ("_d). Alternatively we may consider it as a closed
subvariety of P defined by the Pliicker relations. Each of these constructions has
an immediate extension to the category of schemes. Recall the following glueing con-
struction of G (d, n). The Grassmannian G(d,n) over k, i.e. the set of d-dimensional
subspaces of the vector space k™, can be viewed as the set of d X n matrices M of
rank d, modulo the multiplication on the left by invertible d x d matrices. For each
subset I C {1,2,...,n} of cardinality d we can multiply any matrix M whose I-th

minor is nonzero by the inverse of its I-th submatrix M;, to obtain a matrix M’
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whose [-th submatrix is the identity. Thus the set of all d-planes A complementary
to the subspace of k™ spanned by the basis vectors {ei}ig 7 can be identified with the

affine space A“"~% whose coordinates are the remaining entries of the matrix A’

Now let W = A9" be the space of d x n matrices. For each subset I C {1,2,...,n}
of cardinality d consider the closed subset W; C W defined by the matrices with
I-th submatrix equal to identity. For each I and J # I, let W;; C W; be the
open subset of matrices whose J-th minor is nonzero. Define ¢; ; : W;; — W by
multiplication on the left by M 1.]\/[]1. Then ¢ is an isomorphism. Thus we can define
the Grassmannian Gy(d,n) as an abstract variety which is the union of affine spaces

W; = AZ("_d) modulo the identifications of Wy ; with W given by ¢ ;.

This construction has a natural extension to the Grassmannian over any affine

scheme Gg(d,n). Let S = Spec A be any affine scheme. Let
W = SpeCA[ cey Ly ] = Agn

For each set {i1,...,iq} C {1,2,...,n} let W; C W be the closed subscheme cor-
responding to the matrices whose I-th d X d matrix is identity. This subscheme is
the zero locus of the ideal (..., 244, — 6a,3,...). For each I and J # I define Wy ;

d(n—d
S

and ¢ ; as before. Then we glue all affine spaces W; = A ) along ¢ ; to get the

scheme Gg(d,n).

The other classical approach to Grassmannians is via the Pliicker coordinates. Let
N = (g) — 1. If S = Spec A is any affine scheme, we consider the polynomial ring
Al...,X;,...] in (}) variables over A where the variables are indexed by the subsets
I =(iy <iyg < - <ig) CA{1,2,...,n}. We can describe the Pliicker ideal J as

follows. Let ¢ be the map

A[ 7X17"‘] —>A[I1,1,~" 7xd,n]
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T1iy - Ty
X[ —
Tdiy -+ Tdig
sending each generator X; of A[---, X7, -] to the corresponding minor of the matrix

(xi;), and we let J = Ker¢. Then the Grassmannian Gg(d,n) is defined to be the

projective scheme
Gs(d,n) =Proj A..., Xy,...]/J C ProjA[..., X1,...] :Pgd>_1.

To see how the whole construction works we refer to [6, p.121 — 122].

1.4.1 Schemes and functors

One of the useful ways to describe schemes is through the notion of functor of points.
The category of schemes can be embedded into the category of contravariant functors.
The category of contravariant functors is a very large category and only some of these
functors come from schemes. A scheme can be described via its functor of points.

The functor of points of a scheme X is a functor
hx : (schemes)® — (sets)

where (schemes)® and (sets) represent the category of schemes with arrows reversed

and the category of sets. If Y is any scheme, we define
hx(Y) = Mor(Y, X).

Also for every morphism f : Y — Z we define the map of sets hx(Z) — hx(Y) by
sending g € hx(Z) = Mor(Z,X) to the composition g o f € Mor(Y,X). A functor
F : (schemes)® — (sets) is said to be representable if it comes from a scheme, i.e. if
F' = hx for some scheme X. By Yoneda’s Lemma below, such a scheme is unique if

it exists.
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For any scheme X the set hx(Y) is called the set of Y-valued points of X. If
Y = SpecT is an affine scheme we write hx(7") instead of hx(SpecT') and call it the

set of T-valued points of X. Also we have the functor
h : (schemes) — Fun((schemes)®, (sets))
(where the morphisms in the category of functors are natural transformations) sending
X — hx

and associating a morphism f : X — X’ the natural transformation hx — hx/ that

for any scheme Y sends g € hx(Y) to the composition fog € hx/(Y).

Lemma 1.49. (Yoneda’s Lemma)[6, p.252 — 253] Let C be a category and let X
and X' be objects of C.

1. If F is any contravariant functor from C to the category of sets, the natural
transformations from Mor(—, X) to F are in natural correspondence with the

elements of FI(X).

2. If the functors Mor(—, X') and Mor(—, X') from C to the category of sets are iso-
morphic, then X = X'. More generally, the maps of functors from Mor(—, X)
to Mor(—, X') are the same as the maps from X to X'; that is, the functor

h:C — Fun(C° (sets)),

sending X to hx, is an equivalence of C with a full subcategory of the category

of functors.

Viewing a scheme as its functor of points is often much easier than actually con-
structing a scheme. To show the existence of a certain scheme it is enough to define
a functor from the category of schemes to the category of sets and then to prove an

existence theorem asserting that there is a scheme of which it is the functor of points.
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Definition 1.50. [6, p.259] A functor F' : (rings) — (sets) is said to be a sheaf in
the Zariski topology if for each ring R and each open covering of X = Spec R by
distinguished open affines U; = Spec Ry,, the functor F' satisfies the sheaf axiom for
the open covering {U;} of X. To be more precise, for every collection of elements
o; € F(Ry,) such that o; and o; map to the same element in F(Ry,y,) there is a

unique element o € F(R) mapping to each of the «;.

Theorem 1.51. [6, Theorem VI — 14] A functor F : (rings) — (sets) is of the form

hy for some scheme Y if :
1. F is a sheaf in the Zariski topology

2. There exist rings R; and elements «; € F(R;) - that is, by Lemma 1.49 the
maps

a;: hg, — F,

such that for each field K, F(K) is the union of the images hg,(K) under the

maps Q.

The goal of the next section is to show the representability of the Grassmann
functor using above theorem. Before that we first see that the projective space P}

comes from the functor p : (rings) — (sets) given by
p(T) = {T-submodules K C T™"! that are locally rank n direct summands of 7"'}.

To see how it works we refer to the following theorems.

Theorem 1.52. [6, Proposition I11-40] If T' is any ring, then

Mor(Spec T, P}) ={T-submodules K C T""! that are locally

rank n direct summands of 77!}
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Theorem 1.53. [6, Theorem I11-37] For any scheme X, we have the natural bijec-

tions
Mor(X,P%) = {Ox-subsheaves K C O%" that are locally direct summands of rank n}

Remark 1.54. In general, we see that if K is a submodule of T™ which is locally a
rank d direct summand of T™ then the quotient module T" /K is a locally free module

of rank n — d and it is projective. We get that the following sequence splits:
0-K—->T"—T"/K —0

So K is a rank d direct summand of T". Indeed a submodule of a finitely gener-
ated free module that is locally a direct summand is a direct summand. Thus in the
above theorems one can consider direct summands of T™ instead of locally direct

summands.

1.4.2 Representability of the Grassmann functor

Let 0 < d < n be integers. The Grasmann scheme Gz(d, n) is a closed subscheme of
the projective space P, where r = (7)) — 1. Let g : (rings) — (sets) be the functor

defined by
g(T) = {submodules K C T" that are rank d direct summands of T"}.

This functor is called the Grasmann functor. We now use Theorem 1.51 to show
that the scheme Gz(d,n) indeed represents the Grassmann functor.

We first show that ¢ is a sheaf in the Zariski topology. Let R be a ring. Let
X = Spec R. Consider the open covering of X by distinguished open affine sets
U; = Spec Ry,. Suppose that for every collection of elements W; € g(Ry,), W; and W;

map to the same element in g(Ry,y,;). So in g(Ry,y,) we have

Wi ®Rfi Rfifj = Wj ®Rfj Rfifj'
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We wish to show that there exists a unique element W € g(R) that maps to each of
the W;. Let us first show the existence part. We want a rank d direct summand W
of R™ such that

W @gr Ry, = W;.

For each i we have an Ry, module W; which is a rank d direct summand of R . For
every 1 let F; = 17[7@ be the sheaf associated to W; on SpecRy,. Now X is the union of
distinguished open affine sets U; = SpecRy, and in g(Ry,y,) we have

So for each 4,7 we get the isomorphisms ¢;; : E|UimUj — ~7'_j|U,-mUj- Then by using
the glueing lemma of sheaves [8, p.69] there exists a unique sheaf F on X which
is obtained by glueing the sheaves F; and we have F|y, = F; for every i. Indeed
the sheaf F on X is a coherent sheaf as X is covered by open affines U; with the
property that for each i we have a finitely generated Ry, module W; and F|y, = I//IV/Z
Then by using Lemma 5.3 and Proposition 5.4 of [8], we see that there exists a finitely
generated R module W such that F = w. Going through the proof of [8, Proposition
5.4], it follows that this R module W is given by

W=TI(X,F)={we R"|we€ R},we W, for all i}.

Moreover, we have

FU) =W, =W; =W ®g Ry,.

Since each W is a rank d direct summand of R’ , by the above construction it follows
that W is a rank d direct summand of R™. To prove the uniqueness part let W; and

Wy be two elements of g(R) such that

So we get (W1)y, = (Wa)y, in g(Ry,). We wish to show that Wy = W,. For this we

use the following result.
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Lemma 1.55. Let A, B be R-modules. Let m: A — B be a morphism. Suppose that
Spec R = |JSpec Ry,. If wy, © Ay, — By, is an isomorphism for all i then 7 is an

1somorphism.

Proof. The space Spec R = |JSpec Ry, implies that f; generate unit ideal. The map
Ty, is an isomorphism for all 7. For each maximal ideal m the map Ay, — By is an

isomorphism. Then we use [5, Corollary 2.9] to show that 7 is an isomorphism. [

Now we have the inclusion map 7 : W7 N Wy < W; such that
(Wl N WQ)fi = (Wl)fi N (WQ)fi = (Wl)fw for all 7.

So 7y, is an isomorphism for all 7. Therefore by the above lemma 7 is an isomorphism
i.e. Wi N Wy =W; which implies that W; = Ws.

Having verified ¢ is a sheaf in the Zariski topology, we next have to show that
there exist rings R; and elements W; € g(R;) such that for every field F', g(F) is the
union of images hg, (F') under the maps W; : hr, — g.

Let P}, = Proj[...,Xy,...] be the projective space with homogeneous coordi-
nates X; corresponding to the subsets of cardinality d in {1,2,...,n}. Recall that

the projective scheme P, comes from the functor hp; : (rings) — (sets) given by

he; (T') = Mor (SpecT,Py)
= {T-submodules K C T""! that are rank r direct summands of 7"}
We have a pairing
<, > T X T ST
defined by )
(o, 1,y xr)y (Yor Y1y Yr)) = szyz
i=0

In general, one can prove that if M C T"*! is a rank 1 direct summand of 77*! then

M+ C T is a rank r direct summand of 77 If {e;,...,e,} is the standard basis
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for T™ then {e; | iy < --- < iq} is a basis to 77+ = A®T™. We would like to build a

functor ¢ : g — hpy that sends

(KT — (N\NK)*TcT).

~

Cover P7, by usual open affine subschemes U; = AJ. Referring to [6, p.261], these

subschemes represent the subfunctors

rank r summands of 77t! such that the I-th
Ul(T) =

basis vector e; of 771 generates the cokernel

The pairing <, > allows us to associate a subspace to its annihilator. If K is a rank d
direct summand of 7™ spanned by {vq, va,...,v4}, we have the corresponding perfect
pairing

d d

N K x (TTH/(/\ K)L> —T.
We get

rank d summands of 7™ such

that e; generates 77+ /(\? K)*

UT)(Yulg(T)) =

Lemma 1.56. Let K be a rank d direct summand of T™ spanned by the vectors
U1, Vg, -, Ug. Then w generates Tt /(N K)* if and only if (v, A -+ Avg, w) is a
unit of T'.

Proof. As before have a pairing
<, >: T x Tt ST

which gives rise to a perfect pairing

N K x (TT“/(/\ K)L> —T.
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Suppose first that w generates 777 /(A K)L. Now A% K is a rank 1 direct summand
of T™*!. We can find ¢;,t, € T such that

(tivg A+ Ny, taw) = 1.

So we have,

tﬂlg(’l}l/\"'/\vd, w>:1

Therefore (v; A -+ Avg, w) is a unit of 7. Conversely let (vy A - -+ A vg, w) be a unit
of T. Without loss of generality let us assume that (v; A--- Avg, w) = 1. We need
to show that w generates 77 /(A* K)*. For any v € T"+! /(A K)* let

(Vi A= ANy, v) =t.
Then for all s we have,
(svp A+ Nvg, tw—v) = st (v A+ Avg,w) — s (v A=+ Avg) =0,
and the pairing is perfect implies that tw = v. O]
By the above discussion we see that

r+1
Ul(T)Nu(g(T)) = {rank d summands K of T such that e; generates W}

={K CT"|K =Sp{vi,...,vg}with (vy A--- ANvg, e;) € T"}.
So it is enough to understand for a subspace K = Span < e;,,...,¢;, >, when is

(€iy N+ Neiy,er) aunit of T

Lemma 1.57. Let r = (Z) — 1. Let K be a rank d direct summand of T™ spanned
by the set {vy,--- ,vq}. Then in the above notations (vi A--- Nvg,er) € T if and

only if the image P(K) of K via the Plicker map P belongs to the basic open set
Ur =2 AN=D  of P defined by ey # 0.
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Proof. We first understand the classical case when T is a field k. Let V' be a vector
space over field k£ of dimension n. Let I = (i1 < --- < ig). Let U be spanned by
{eiy,....ei,_,}. Let \=P(U) =e; A---Ne;,_, be the image of U via the Pliicker
map P. We can view \ as a linear form on P(A” V) as follows. For v € A®V define
Aw) :==vAXe NV = k. Referring to the section 1.1.6, we see that Uy, the basic

open set of P" defined by e; # 0 is given by
Ur ={A € G(d,n) | the I-th Plucker coordinate of P(A) is nonzero (unit) }

=[P(A\V) - Z(\)]NG(d,n)
—{P(K) | K € G(d,n), P(K) A X # 0}
—{P(K) | K € G(d,n),V = K ® U}.

We now fix some splitting V' = Ky @ U of V. We can then identify U; with
Hom(Ky, U). Therefore, the set of d-dimensional subspaces K spanned by {ej, ..., €4}
with the property that < e; A---Aeg, e ># 0 is same as the set of all K € G(d,n)
with P(K) € U; and hence is isomorphic to the affine space A‘,j(n_d).

Let us now work in the the general case. Let U C V = T™ be a free rank n — d
summand of V. Let U = Span{vg,1,...,v,}. Let A= P(U) = v441 A -+ A v, be the
image of U via the Pliicker map P. Then we can view A as a linear form on P( /\d V).
As before let Uy be the basic open set of P" defined by e; # 0. Then

d

Ur=[P(\V)-Z\)]NG(d,n)

— {P(K) | K € G(d,n), P(K) A\ € T*}.

Here P(K) A XA € T* means as follows. If {e,...,e,} is a basis for V, A"V is one
dimensional with the canonical basis given by e; =e; A--- Ae, and P(K) A X € T*
means that if P(K) A X = te; then ¢t € T*. Now we wish to identify the set U; with

(P(K)|K € G(d,n),V = K& U).



1.4 The Grassmannian as a scheme 53

To see this identification let first K € G(d,n) such that P(K) A X = te; with ¢ € T*.
Let K = Span{vy,...,vq}. Then

VI A ANVgNVgg1 N - Nvy, = Tey, telr.
But we have

VA ANVg AV AN ANv, =det A-ey, teT

where the matrix A has vq,...,v, as its columns. Since det A = ¢t € T* and
{e1,...,e,} is a basis for V' the vectors vy,...,v, form a basis for V. Therefore
V = K & U, the vectors vy ...,vg span K and the vectors vgyq,...,v, span U. Con-

versely suppose that V = K @ U for some K = Span{vy,...,v4}. Let
(V1,...,0n) = (€1,...,e,) - P and  (eq,...,e,) = (v1,...,0,) - Q,
where P, Q) € GL(n,T). Then PQ = Id and det (P) is a unit of T". Therefore,
P(K)AX=det(P)-e;=tey,
and t is a unit of . To summarize we have
Ur={P(K)|KeG(dn),V=KaoU}.

Then fixing some splitting Ko @ U = V of V, we can identify the set Hom(Kj, U)
with the set
(P(K) | K € G(d,n),V = K & U}

by associating to ¢ : Ky — U its graph I', = {(w, p(w)) | w € Ky}. Note that
Lo nU = A{(w, p(w)) [ w =0} = {0}
and given v € Vv = (w, u) for w € Ky, u € U we can write
v=(w,p(w))+ 0,u—pw)el,dU.

In this way we can identify U; with Hom (Ko, U) = A%(nfd) and we have that for K
spanned by vy, ..., vg, (01 A+ Avg, er) € T ifand only if P(K) € Uy 2 A7, O
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By this lemma, Uy (¢(g) is represented by affine scheme A%"~9 = Spec Z[(z;;)]
where 1 < i <d, 1 <j < (n—d). Then taking the rings R; in Theorem 1.51 as

Z[z;j], we have for any field F,

g(F) = JWrni(g)(F).

Hence, the second condition in Theorem 1.51 is satisfied by the Grassmann functor.

It follows that the Grassmann functor is represented by the Grassmann scheme.

1.4.3 Computation of the Zeta function of G(d, n) using Schu-

bert calculus

In section 1.2.3 we computed the Zeta function of G(d,n) by simple combinatorics.
It is noticed that by the knowledge of the cohomology groups of the Grassmannian in
the characteristic p we can get the information of the cohomology in the characteristic
zero. As an application of the Schubert Calculus we now compute the Zeta function
with the Basis Theorem without actually going through the computations as in section
1.2.3 and we recover the information of the cohomology groups in characteristic p.
First recall a few notions of the morphisms of schemes and Galois actions on étale
cohomology groups. The best reference for this is [15]. If X — Spec Z,) is a smooth
and proper morphism of schemes then the cohomology of X ® Q with the Galois
action gives the information of the cohomology of X ® F, with its Galois action.
Let O be the ring of integers of Q. Suppose p is a prime and m is a maximal ideal
containing p. Then O, is a local ring with unique maximal ideal mQO,,. The residue
field k = On/mOy = F,. Let X =X®0, IfX — Spec Oy, is a smooth and
proper morphism of schemes the cohomology of X® Q with Galois action gives the
cohomology of X ®k with its Galois action. Now let X = G(d,n) be the Grassmannn
variety. Let m = dimG(d,n) = d(n — d). The equations defining the Grassmannian

i.e. the Pliicker relations are relations with integer coefficients. So we can consider
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G(d,n) over fields of characteristic zero namely Q, C and also over finite field F,. Let
G(d,n) ®o,, Q denote the Grassmann variety G(d,n) over Q and let G(d,n) ®o¢, k
denote the Grassmann variety G(d, n) over IF,,. Since over any algebraically closed field
L, G(d,n) is smooth and proper, the morphism G(d,n) — Spec Oy, is a smooth and
proper morphism of schemes. Let [ be a prime other than p. We have an isomorphism

of étale cohomology groups [15, section 20.4] namely,
[ Hg(G(d,n) @ Q; Q) — Hg(G(d,n) © k; Qu),

which is Galois equivariant. The Galois group Gal(Q / Q) contains the decomposition

group Dy and the inertia group I, as its subgroups. We have
I, C Dy C Gal(Q/ Q).

To say f is Galois equivariant means that, if 7 € Dy, then, 7 € Gal(F, /F,) and for
a class ¢ € HZ(G(d,n) ® Q; Q) one has

flre) =7 f(o).

This implies that the inertia group I, acts trivially on H (G(d,n) ® Q;Q;). The
Frobenius morphism F' : G(d,n) ® F, — G(d,n) ® F, induces linear map F* on
cohomology. Let a in Gal(F, /F,) be the geometric Frobenius morphism z + x'/P.
Let us also denote the induced linear map on cohomology by «. Then o = F*. Also
there exists 3 € Dy, such that 5 = a. We now use all this information to simplify
the expression of the Zeta function of G(d,n). Referring to [8, Appendix C], the Zeta
function of G(d,n) is given by

2m
Z(G(d,n),t) = Hdet[l —tF* | Hi(G(d,n) @ F,; Q)] V™
1=0

2m

= [[detlt —ta | HL(G(d,n) @ Fpy Q)]0

=0

2m
— T[detll -5 | Hy(G(d,n) @ T Q)] D"

=0
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We use 3.6 and 3.7 of [8] Appendix C' for X = G(d,n) and get,
Hét(X ®Q Q) = Hgt(X ®C; Q) = HliBetti(X ®CQ) = H]getti(X ® C;Z) @z Q.

By the Basis theorem of the Schubert calculus (Theorem 1.36), we know that the
Schubert cycles generate H*(G(d,n) ® C;Z). Now if Y is a subvariety of G(d,n)
of codimension i, it gives a class [Y] € HZ(G(d,n) ® Q;Q;) on which 3 acts by
BlY] = p[B(Y)]. Since the Schubert cycles are defined over Q, we have a simpler

formula for the Zeta function for G(d,n) as

1
[[Zo(1 —pit)>=’

where by; denotes the rank of H?(G(d,n);Z) over Z. Thus, the Zeta function of the

Z(G(d,n),t) =

Grassmann variety G(d,n) of dimension m is given by

1
(=01 = ptp(1— PP (1= prtoen’

Z(G(d,n),t) =

which agrees with the calculations done before in section 1.2.3. One observes that
with the knowledge of the cohomology in characteristic p, we have the information of

the cohomology in characteristic zero and vice versa.

1.4.4 The Zeta function of the Grassmann scheme

For an exposition of the Zeta function of schemes we refer to the paper by Serre
[19]. Let X be a scheme of finite type over SpecZ. Such a scheme has a well defined
dimension denoted by dimX. Let max (X) denote the set of closed points of X. It
can be shown that {x} in X is closed in X if and only if the residue field k(z) of z is
finite. For x € max(X), the norm N(z) of z is defined as the number of elements of

k(x). Then the Zeta function of the scheme X is defined by a Eulerian product

(o= Il
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It can be seen that the product ((X,s) converges absolutely for Re(s) > dimX.

In the case when X = Spec A, where A is the ring of integers of a number field K,
((X,s) coincides with the classical Dedekind Zeta function attached to K and thus
is the same as the Riemann Zeta function when A = Z. The Riemann Zeta function

is defined by a Fulerian product

the product being taken over all positive integer primes p.
Now let X be a scheme of finite type over F,. If x € max (X)), the residue field k(z)
of 7 is a finite extension of F,; let deg(z) be its degree. Then we have N (x) = gde&(®)

and

C(Xv S) = H !

z€max (X) 1= [qdeg(;c)]_s
Recall the definition of the Zeta function of a smooth projective variety X over k = F,.

The Zeta function is given by

Z(X,t) = exp (Z N%) e Q[[t]],

where N, is the number of points of X defined over F . This can also be written as

1
Z(X,t) = H T

z€max (X)

where the product is taken over the closed points of X. Therefore, we have
((X,s) =Z(X,q7).
If X is a disjoint union of subschemes X; we have

C(X,5) =[] ¢(Xi9).
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Example 1.58. Consider the projective scheme Py. The Zeta function ((PY,s) is
given by

C(Py,s) = [ [ ¢, 5) = [ 2(B5,.p7)

p p

Proposition 1.59. The Zeta function of the Grassmann scheme Gz(d,n) is a product
of the Riemann zeta functions. If b; denote the i-th Betti number of the Grassmannian

G(d,n), we have
d(n—d)

((Gzld.n),s)= ] ¢"(s—1).

=0
Proof. Let m = dim Gz(d,n) = d(n—d). Referring to the section 1.2.3, Z(Gr,(d,n),t)
is given by

1
(1= )b (1 —pt)br ... (1— pmt)bm’

Z(Gz(d,n) @ Fp,t) =

where the Betti numbers b; are given by the Gaussian binomial coefficients. Then the
Zeta function ((Gz(d,n), s) is given by
((Gz(d.n),s) = [[¢(Gald.n) @F,, 5) = [ [ Z2(Gz(d.n) @ F,.p~*)

P
1

- 1;[ (1= t)bo(1 —pt)br ... (1 — pmt)om’

=TI —9.

=

where t=p°

o

We conclude that ((Gz(d,n),s) can be expressed as a product of the Riemann Zeta

functions. [
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Chapter 2

Lagrangian Grassmannian

In this Chapter we discuss the Lagrangian Grassmannian L(n, 2n), which parametrizes
n-dimensional isotropic subspaces of a 2n-dimensional vector space V' endowed with
a symplectic form (, ). In section 2.1 we discuss general notions of symplectic spaces
and the Lagrangian Grassmannian. Section 2.2 discusses the Lagrangian Grassman-
nian as an algebraic variety and its covering by affine neighbourhoods. In section 2.3
we calculate the Zeta function and the Euler characteristic of the Lagrangian Grass-
mannian. In section 2.4 we discuss without proofs the Schubert calculus for the
Lagrangian Grassmannian and using the Basis Theorem we compute the dimensions
of the cohomology groups of the Lagrangian Grassmannian. Section 2.5 discusses
the representability of the Lagrangian Grassmannn functor. Finally in section 2.6 we

compute the Zeta function of the Lagrangian Grassmann scheme.

2.1 Lagrangian Grassmannian

First recall the notion of a symplectic space.

Definition 2.1. Let V be a vector space over field k. A symplectic form

(,Y: VXV >k
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is an antisymmetric and non-degenerate bilinear form i.e. it satisfies
(v,v) =0 forallveV,

and if
(v,wy=0 foral veV,

then w = 0. A vector space V is called a symplectic vector space if it is equipped

with a symplectic form.
One has the following theorem.

Theorem 2.2. [14, Theorem 2.3] or [2, p. 10 — 11] A symplectic vector space V is
necessarily of even dimension and there exists a basis Uy, ..., Up,V1,...,V, of V such
that

<ui,uj> = <Ui7vj> =0 and <U7;,Uj> = 61]

Such a basis for a symplectic vector space V is called a standard basis. With
such choice a symplectic form can be described for v = (x1,..., 24, ¥y1,...,yn) and

o= (2, . 2y, yl) by

n

(v, 0) = Z(%y; — i)

i=1
It is easy to verify that the above pairing is a non-degenerate alternating pairing on

the vector space V. The above form on V' is called the standard symplectic form.

Definition 2.3. Let V' be a symplectic vector space of dimension 2n. Two vectors
v,w € V are called orthogonal if (v,w) = 0. This is denoted by v L w. If W is a

m-dimensional subspace of V, we define the orthogonal space of W, W+ by
Wr={veV| (vyw)y=0 forall we W}

Definition 2.4. Let V be a symplectic space of dimension 2n.
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1. A subspace U C V is isotropic if (u,u') =0 for all u,u’ € U.

2. A subspace W C V is a symplectic subspace of V if the symplectic form on

V' when restricted to W remains symplectic.
3. A subspace W C V is coisotropic if W+ is isotropic.

4. A subspace L C V is Lagrangian if it is both isotropic and coisotropic (thus
L= L' and dim L = n).

Definition 2.5. Let V' be a symplectic vector space of dimension 2n. Let L(n,2n)
denote the collection of all Lagrangian subspaces of V. One can prove that L(n,2n)
is a subvariety of the Grassmannian G(n,2n), called the Lagrangian Grassmann

variety or the Lagrangian Grassmannian.

Definition 2.6. Let V;, 15 be two symplectic vector spaces. Let ¢ : Vi — V5 be a

linear map. Then we call ¢ a symplectic map if for all v,w € V;

(0(v), p(w)) = (v, w).

Suppose now V; = V5, = V with the same symplectic form. If ¢ : V — V is any
symplectic map then it is an automorphism of V. The collection of all symplectic
automorphisms of V' is a group under composition called the symplectic group of
(V,(,)) denoted by Sp(V). If V = k*" with the standard symplectic form, we write
this group as Sp,, (k) C GL(2n, k). If we define

we can verify that [2, p.15] a matrix A € GL(2n, k) leaves the standard form invariant

if and only if A'JA = J where, A’ denotes the transpose of the matrix A. Thus,

Spy, (k) = {A € GL(2n, k) | AYJA = J}.
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Lemma 2.7. Let W be an n-dimensional k vector space. Let W* be the dual space.

Then V=W & W* is a symplectic space with
(,Y: VXV >k
given by

((wi, f1), (wo, f2)) = fi(ws) — fo(w:)

for wi,we € W and f1, fo € W*.

Proof. Clearly for w € W and f € W* we have

((w, f), (w, f)) = flw) = f(w) = 0.

Also, if
((wi, f1), (w2, f2)) = fi(wz) — fa(w1) =0

for all wy € W, fi € W*, then fi(ws) = fo(wy), Yw € W, Vf; € W*. Hence, wy =0
and fo = 0. O

2.2 The Lagrangian Grassmannian as an algebraic
variety

Let V be a symplectic vector space of dimension 2n. We now see that the Lagrangian
Grassmannian over V', i.e. L(n,2n), is actually a closed subset of the Grassmannian
G(n,2n). Let U be an n-dimensional isotropic subspace in G(n,2n). Since U is
isotropic, by a result of linear algebra [3, section 1.5] there exists an isotropic linear
subspace W such that

UsW=1V.

It follows that W = U* the isomorphism being given by w — ((w,-) : U — k). Fix a
splitting V' = U & U* of V. Then we observe that the standard symplectic structure
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on V is same as the symplectic structure on V' defined in Lemma 2.7. Recall that in
case of the classical Grassmannian G(d,n), an affine neighbourhood of U € G(d,n)
is given by Hom (U, I") where I is a complementary subspace to U. To find the affine

neighbourhood in the Lagrangian case we need the following Lemma.

Lemma 2.8. Let ¢ : U — U* be a linear map. Then ¢ = ¢* if and only if the graph
of p, I'y CU @ U is a Lagrangian subspace with respect to the structure defined in
the Lemma 2.7.

Proof. Suppose that ¢ = ¢*. In general [4, p.414] the matrix of ¢, M(p), is related
to M(p*) by M(p) = (M(¢*))". Consider two elements in the graph of ¢ namely,
(u17 ¢u1)7 (Ug, (;Oug) e U ® U*. We have

((ur, uy), (U2, Pus)) = Puy (u2) = Puy (u1)
= (p(u1), uz) — (p(uz), w)
=0
as the matrix of ¢ is symmetric. Conversely if I, is a Lagrangian subspace of U © U™,

then for all uy,us € U we have

(p(u1), uz) = (p(us), us) .

It follows that M (y) is symmetric and ¢ = ¢*. O

By this lemma we have a neighbourhood of U namely,
Hom(U, W)™ C Hom (U, W),

where

Hom(U, W)™ = {f .U - W | f = f*}.

n(n+1)

We have Hom (U, W) = M, (k) = A" and Hom (U, W)™ = A2 . So if z;; are
the coordinates, the Lagrangian Grassmannian can be defined locally by z;; = xj;.
Thus L(n,2n) is closed in every open set and hence defines a closed subvariety of

1
G(n,2n) of dimension n(nTH
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2.2.1 Examples

Example 2.9. The Lagrangian Grassmannian L(2,4) is the collection of all 2 di-
mensional isotropic subspaces of G(2,4). Now U € G(2,4) is isotropic if and only if
(u,v) is zero for all u,v € U. We express this condition explicitly in terms of the

Pliicker coordinates. Let {ey, es, es,e4} be the basis for V. Then the canonical basis

for /\2 V' is given by
B={e1 Ney, e1 Neg, e1 Ney, ea Nes, ea Aey, €3N ey}
Let {uy,us} be a basis for U € G(2,4) with
Uy = aji€1 + Gg1€2 + az1€3 + Aq1€4, Uz = Q12€1 + A22€2 + A32€3 + Ag2€4.

Then we get

<U17 U2> = (a11a32 - a31a12) + (a21a42 - CL41CL22)-

If 212,13, 14, To3, Tog, T34 are the Plicker coordinates corresponding to the canonical

basis, referring to Example 1.12 the Grassmannian G(2,4) is defined by the relation
T14%93 — T24%13 + T12234 = 0.

If further U is isotropic then (u,u’) = 0 for all u,u’ € U. This condition in the

Pliicker coordinates translates to
T13 + 224 = 0.

Imposing this additional condition on the Grassmann condition we have that L(2,4)

is a 3-dimensional variety of P* defined by

713> = — (214223 + T12%34).
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2.3 The number of points in L(n,2n)(F,)

Lemma 2.10. The symplectic group Sps, (k) acts transitively on the set of all isotropic
subspaces of G(n,2n)(k), i.e. on the Lagrangian Grassmannian. In other words given

Ly, Ly in L(n,2n) there exists ¢ € Sp(V') such that

o(V1) = Va.

Proof. This is a consequence of a special case of a theorem of Witt. For the details

refer to [2, Theorem 1.26 and Corollary 1.27]. O

By the above theorem we have

[SPo, (Fy)|
L(n,2n)(F,)| = fi X € L(n,2n).
[E(n, 2n)(F, )] |Stabilizer of X| o € Lin, 2n)

To find [Sp(2n)(F,)| we use the following result from linear algebra.

Lemma 2.11. [21, p. 373 — 374] If f is a symplectic form on a 2n-dimensional vector
space V' over a field of q elements then the number of pairs {u,v} such that f(u,v) =
() = 1is (2 — 1),

Proposition 2.12. The number of points of Sp,,(F,) is given by

TL2
|Span(Fy)| = ¢ (¢ = D(g" + 1)
=1
Proof. Given a symplectic form f on vector space V of dimension 2n by standard
results there exists a symplectic basis {v, va, -+ ,v9,} for V such that
(Viy Vign) =1fori=1,--- . n and (v;,v;) =0 for [i—j|#n.

If {v;} is a symplectic basis of V then 6 € Sp(V) if and only if {6v;} is also a symplectic
basis for V' [21, p.336]. Therefore we have

(Bvi, Oviyy) =1fori=1,...,n and (Ov;, Ov;) =0 for |i—j|#n.
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Using Lemma 2.11 the number of pairs {0vy, vy, } such that (Qvy, 0vi,) = 1 is

(¢*"

number of pairs {Avy, fvy, } such that (Jvy, Bva,,) = 11is equal to ¢?"=2)1(¢?"~2 1),

— 1)¢*"~!. Once we choose {0vy,0vi,,} for {fv;} to be a symplectic basis the

and so on. Finally, the number of pairs {fv,, 0vs,} such that (Qv,,0vs,) = 1 is

q(¢> — 1). Thus we get

Sp(2n)(F)| = [[(¢* — Dg*

Lemma 2.13. Let V be a symplectic space of dimension 2n. Let uq, ..., Up, V1,...,Up

be the standard basis of V' such that
(ui,uj> == <UZ‘,U]‘> =0 and <ui,vj) == 5”

The symplectic group Sp,, (F,) acts transitively on L(n,2n)(F,) and the number of
elements in the Stabilizer X for X = Span{uy,us, - ,u,} is given by

A1) n-D) T
|Stab (X)(Fy)l =q = ¢ =[] —1).

=1

A B
Proof. First note that if € Stab(X) then D has to be zero.
D C

A B
Let M = € Stab(X). If it has to be in Sp(2n) we must have
0o C

t

A B 0 I, A B 0 I,
0 C -1, 0 0 C -1, 0

)
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that is
0 AlC 0o I,

—C'"A B'C-(C'B -1, 0

Thus we get, C' = (A™1)" and B'C' = C'B, i.e., C'B is a symmetric matrix. So M is

of the form
A AS

0 (A—l)t
for some symmetric n x n matrix S. Let M35¥™ be the group of symmetric n x n
matrices. Consider the maps ®; : GL(n) — Sp(2n) and ®, : M>Y™ — Sp(2n) given
by
A 0 I s

D, (A) = and 0o(S5) =
0 (A1) 0 I

Then &, and 5 are homomorphisms and

A 0 I, S A AS
Q)l(A)@Z(S) = =
o 4 \o I, 0 (A1)

We have Im (¢1)N Im (¢2) = {I}. It can be checked that Stab (X)) is the semidi-
rect product of GL(n), the general linear n x n group, and M?™, the group of

symmetric n X n matrices. Therefore, we get

[Stab (X)(F,)| = [M"(F,)| - |GL(n) (F,)| = ¢*% 1:[(61” —q)

1=0

n
:q 2 q 2 (qz_l)

=1
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Proposition 2.14. The number of points in L(n,2n)(F,) is given by

n

[L(n,20)(F,)| = [ (1 +4).

i=1
Proof. The proof follows immediately from Proposition 2.12 and Lemma 2.13. We
have

I 1 R G0 s (N VN )
[CL) ) ISaE] 0 0 [ (g — 1)

n

=[] +d).

=1

|L(n, 2n) (F,)|

2.3.1 The Zeta function of the Lagrangian Grassmannian

The Lagrangian Grassmannian L(n,2n) is a smooth projective subvariety of the
Grassmannian G(n,2n) and we may consider it over any finite field F,. By using
Proposition 2.14, the number of points in L(n,2n)(F,) is given by

n

|L(n,20)(Fy)| = ] [(1 + ).

i=1
As there are no terms in the denominator, NV, is a polynomial in powers of ¢" and the

Zeta function of such Grassmannians is easy to calculate.

Example 2.15. The Lagrangian Grassmannian L(2,4) ®F,. By Proposition 2.14 we
have |L(2,4)(F,y)| = (1 +¢)(1+¢%) and s0, N, = 1+¢" + ¢ +¢"" = 1+¢" +¢* +¢".

We get,
1

(1 =8 —gt)(1 = ¢?*)(1 - ¢*)

Example 2.16. The Lagrangian Grassmannian L(3,6) @ F,. We have

Z(L(2,4) @ F, 1) =

1L(3,6)(F)| = (1 +¢)(1 +¢*) (1 + ¢*),



2.3 The number of points in L(n,2n)(F,) 69

therefore we get, N, = 1+ q" + ¢*" + 2¢*" + ¢*" 4+ ¢ + ¢°", and
1
(1=8)(1—qt)(1 = ¢*)(1 = ¢*)*(1 — ¢*t)(1 — ¢°t)(1 — ¢°t)

Theorem 2.17. The Zeta function of the Lagrangian Grassmannian L(n,2n) is given

Z(L(3,6) @ Fy, t) =

by
1

(L=1)(1 —gt) (1 —g*)b... (1 — gmt)bm’

where b; 1s equal to the number of strict partitions of i whose parts do not exceed n

Z(L(n,2n) @ F,,t) =

n(n+1)

and m = 3

Proof. By Proposition 2.14 we get,

n

|L(n.2n)(Fy)| = [ (1 +47).

i=1
For simplicity set ¢" = [. Then

n

N, = [L(n,2n)(Fp)| = [JO+1) = Q+DA+P)...1+1") = Zb g

i=1
where the coefficient b; is equal to the number of strict partitions of i whose parts do

n(n+1)

5 S0 the coefficients b; can be calculated precisely and

not exceed n and m =

one observes that the Zeta function in the general case is given by
1
(L =) (L —qt) (1 —g*)>>... (1 —gmt)bm

where b; and m are described as above. ]

Z(L(n,2n) ® Fy,t) =

We observe that the odd Betti numbers of the Lagrangian Grassmannian are zero.

2.3.2 Euler characteristic of the Lagrangian Grassmannian

Consider the Lagrangian Grassmannian L(n,2n). Referring to the last section the
odd Betti numbers of the Lagrangian Grassmannian are zero and the even Betti

numbers satisfy
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n(n+1

where m = =5 ) is the dimension of L(n, 2n). Putting [ = 1 in the above expression

we immediately get the Euler characteristic of the Lagrangian Grassmannian as

E:Zm:bi:ﬁ(lJrli):Q”.

=0 =1
2.4  Schubert calculus for Lagrangian Grassman-
nian

Definition 2.18. We denote a partition by A = (A1, \a, ..., A;). Thus \; are integers
and we agree that Ay > Xy > --- > A\ > 0. Hence Ais strict if \; > Ay > --- > A\, > 0.
We define the length of A by [(A\) = Card {p | A\, # 0} and the weight of \ by
Al = Z;Zl Ap. By p(n) we mean the partition (n,n —1,---,2,1). We denote by D,

the set of all strict partitions A with \; < n.

Definition 2.19. Let 7 : 0 C F; C F;, C --- C F, C V be a fixed flag of isotropic
subspaces of V' such that dim F; = ¢, Vi = 1,2,--- ;n. Such a flag is called a

complete isotropic flag of V.

Here F,, is an isotropic subspace of V' of dimension n, so it is Lagrangian. In other
words, a complete isotropic flag is nothing but a Lagrangian subspace F), together
with a complete flag of subspaces of F,.

Note that any isotropic flag F : 0 C F; C Fy C --- C F,, C V can be completed

to a complete flag in V by setting F,,; = F-, for 1 <i < n.

Definition 2.20. Let A € D,,, ie., let A = (A > Ay > -+ > \; > 0) be any strict
partition with \y <n. Let F: 0 C F} C F5, C --- C F,, CV be a complete isotropic
flag of V. With respect to this flag and partition we define the Schubert variety

in the Lagrangian case as

Xy = X\(F) :={L € L(n,2n) | dim(L N Fy1_y,) > i, 1 <i <A}
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It can be shown that X, actually defines a complex projective variety of codi-
mension |\| in L(n,2n). The variety X determines a Schubert class Q(\) = [X,]
in the cohomology group H?*(L(n,2n);Z). The Schubert classes Q(i) = o(i) for
i=1,2,---,n (i.e. =1, \ =1) are called special (they parametrize isotropic n-
planes such that dim(L()F,11-;) > 1. For the details of the subject our main
reference is [22, p.1 —4]. As before we define the cohomology ring H*(L(n,2n),Z) of
the Lagrangian Grassmannian as the direct sum @, H'(L(n,2n);Z).

Theorem 2.21. [22, p.2] The cohomology group H*(L(n,2n),Z) is a free abelian
group and the Schubert classes Q(N), A € D,,, form an additive basis for the cohomol-
ogy ring H*(L(n,2n),7Z). We have an isomorphism of abelian groups

H*(L(n,2n),Z) = @ z-Q(N),
AeD,,
where the sum varies over all strict partitions X\ = (Ay > Ay > -+ > N > 0) with

Algn.

2.4.1 Cohomology groups of the Lagrangian Grasmannian

We now calculate the dimensions of the cohomology groups of some Lagrangian Grass-
mannians. Using Theorem 2.21 and definition 2.20 we see that the codimension k
classes of the Lagrangian Grassmannian are indexed by strict partitions of the form
A (A1 > Ay > -+ >0) with A\; < n and weight of A equal to k. So the k-th Betti

number of L(n,2n) is equal to the number of such strict partitions.

Example 2.22. The Lagrangian Grassmannian L(2,4). The dimension of the coho-
mology group H?*(L(2,4);Z) equals the number of strict partitions \ such that 2 > X\
and |\ =k fork=0,---,3.
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Codimension k | admissible partitions | dim(H?**(L(2,4);7Z))
0 {0} 1
1 {1} 1
2 2 |
3 (21 1

Example 2.23. The Lagrangian Grassmannian L(3,6). The dimension of the coho-
mology group H?*(L(3,6);Z) equals the number of strict partitions \ such that 3 > X\
and |\| =k for k=0,---,6.

Codimension k | admissible partitions | dim(H2*(L(3,6); Z))
0 {0} 1
1 {1} 1
2 {2} 1
3 {(2,1),3} 2
4 {3, 1)} 1
5 {(3,2)} 1
6 ((3,2,1)} |

Example 2.24. The Lagrangian Grassmannian L(4,8): The dimension of the coho-
mology group H?*(L(4,8);7Z) equals the number of strict partitions \ such that 4 > )\
and |\ =k for k=0,---,10.
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Codimension k | admissible partitions | dim(H?**(L(4,8);7Z))
0 {0} 1
1 {1} 1
2 {2} 1
3 {(2,1),3} 2
4 {4,(3,1)} 2
5 {(4,1),(3,2)} 2
6 {(4,2),(3,2,1)} 2
7 {(4,3), (4,2,1)} 2
8 {4,3,1} 1
9 {4,3,2} 1
10 {4,3,2,1} 1

By these examples we see that the dimensions of the cohomology groups match

with the Betti numbers of the Lagrangian Grassmannians calculated before.

2.5 Representability of Lagrangian Grassmann func-
tor

Let n be any positive integer. For a ring T' consider the standard symplectic form
on the T-module 7?". We call a submodule K of T?" isotropic if the standard
symplectic form vanishes on it. The Lagrangian Grassmann functor is a functor

[ : (rings) — (sets) is given by
I(T) = {isotropic T-submodules K C T*" that are rank n direct summands of T%"}

We will use theorem 1.51 to show that [ is representable. We need to show that

1. [ is a sheaf in the Zariski topology.
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2. There exist rings R; and elements W; € I(R;) such that for every field F, [(F')

is the union of images of hg,(F') under the maps W; : hg, — .

We first show that [ is a sheaf in the Zariski topology. The proof proceeds as in the
case of the classical Grasmann functor except for a few modifications. If f : Ry — Ry

is a ring homomorphism the corresponding morphism f : [(R;) — I(Ry) is given by

f(V) — V ®R1 RQ.

Note that if V' is an isotropic rank n summand of R?" then V ®p, Ry is isotropic rank

n summand of R3". Suppose that we have a nondegenerate alternate pairing
<,>: R™x R™ — R,.

Then f extends linearly and we get a pairing
<,>,: R2" x R — R,.

If V C R is isotropic, (v,v") = 0 for all v, € V. Then for v;,v, € V and r;, 7} € Ry

we have

<Zvl ®ri,2v;- ® T;> = Zrir;- <vi,v;> =0.

i j i\j
Therefore, V ®p, Ry is an isotropic summand of R3".

We now show that [ is a sheaf in the Zariski topology. Let R be a ring. Let
X = Spec R. Consider the open covering of X by distinguished open affine sets
U; = Spec Ry,. Suppose that for every collection of elements W; € [(Ry,), W; and W;

map to the same element in [(Ry,y,). So in [(Ry,y,) let
Wi ®r, Bpig; = Wi @ry, Ry

We wish to show that there exists a unique element W € [(R) that maps to each

of the W;. We can construct the required isotropic direct summand W exactly as in
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the classical case (for details refer to section 1.4.1). Such a W exists uniquely and is
defined by
W={weR"|we R}, weW,;forall i}

Since W; € l(Ry,) are isotropic for all 4 and W is contained in W; for all i we see that
the summand W is also isotropic. Thus, [ is a sheaf in the Zariski topology. Now we
have to show that there exist rings R; and elements W; € [(R;) such that for every
field F', [(F) is the union of images of hg,(F') under the maps W; : hg, — [. Let
r=(>) —1. Let g(n,2n) := g : (rings) — (sets) be the Grassmann functor given by

g(T) = {T-submodules K C T*" that are rank n direct summands of 7%"}.

Let P, = Proj[..., Xy,...] be the projective space with homogeneous coordinates
X corresponding to the subsets of cardinality n in {1,2,...,2n}. Recall that the

projective scheme P7, comes from the functor

he; (T) = Mor (SpecT,P7)

= {T-submodules K C T""! that are rank r direct summands of 7"}

We now refer to the section 1.4.2. With the same notations of section 1.4.2, replacing

d by n and n by 2n we get,

r+1
U(T)Nu(g(T)) = { rank n summands K C T*" such that e; generates W}
={K CT*|K =Sp{vi,..., v, }with (v; A--- Awp,es) € T*}.

Thus we see that U;(T) N (I(T')) is given by
r+1
{ isotropic rank n summands K C 7" such that e; generates W} ,

which is equal to

{K Cc T*"| K isotropic spanned by vy, ..., v,, (01 A--- Avy,er) € T}
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By Lemma 1.57 we see that for a direct summand K C T?" spanned by vy, ..., v,,
(v A+ Ay, ery € T* if and only if the image of K via the Pliicker map i.e. P(K)
is in Ur. Let U be the complemetary subspace of K. If further K is isotropic then

we see from section 2.2 that the affine neighbourhood U of K is isomorphic to

n(n+1)

{p: K - U|¢=y}=Hom™"(K,U) = Ay

n(n+1)

Therefore Uy () (1) is represented by affine scheme A2~ = Spec Z[(z;),i = 1, - -- , Mot

Then taking R; as Z[z;] we see that for any field F

g(F) = JWr ni@)(F).

Therefore the second condition in Theorem 1.51 is satisfied by the Lagrangian Grass-

mann functor. Thus the Lagrangian Grassmann functor is representable.

Computation of the Zeta function of L(n,2n) using Schubert calculus

Note that the Zeta function of L(n,2n) can also be computed using Schubert calculus.
The Lagrangian Grassmannian can be considered over fields of characteristic zero
namely @Q, C and also over finite field IF,. Exactly following section 1.4.3 we have for

X = L(n,2n) the following isomorphisms
Hy (X @ Q; Qi) = Hy (X @ C;Qu) = Hpoi(X @ C; Qi) = Hps (X @ G Z) @2 Q.

Then with the Basis Theorem of the Schubert calculus in Lagrangian case (Theorem
2.21), the Zeta function of L(n,2n) can be computed as in section 1.4.3 which comes

out to be
1

(1 — pit)>”

where m is the dimension of the Lagrangian Grassmannian and by; denotes the rank of

Z(L(n,2n),t) =

H?(L(n,2n);Z) over Z. This agrees with the calculations done before in section 2.3.1.
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2.5.1 The Zeta function of the Lagrangian Grassmann Scheme

Theorem 2.25. The Zeta function of the Lagrangian Grassmann scheme Lz(d,n) is

a product of Riemann Zeta functions given by

m

((Lz(n,2n),s) = [J ¢"(s = ),

=0

where m is the dimension of L(n,2n).

Proof. Consider the Lagrangian Grassmann scheme Lyz(d,n). Let us assume that
m = dim L(n, 2n) = w The Z(Lz(n,2n) @ F,, t) is given by

1
(1 —t)o(1 —pt)br... (1 —pmt)bm’

Z(Lz(n,2n) @ F,,t) =

where the Betti number b; equals the number of strict partitions of ¢ whose parts do

not exceed n. Then referring to section 1.4.4, ((Lz(n,2n), s) is given by

C((Lz(n,2n),s) = H((Lz(n, 2n) @ F,, s) = H Z(Lz(n,2n) @ F,, p—°)

1
(1 —0)%(1—pt)r ... (1 — pot)om

where t=p°

Chi(s — ).

'SS @z S

I
o

Thus, we see that ((Lz(d,n), s) can be expressed as a product of the Riemann Zeta

functions. O
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Chapter 3

Other subschemes of the

Grassmannian

In Chapter 1 we saw that the usual Grassmannian G(d,n) can be considered as a
scheme over SpecZ. The Grassmann scheme G = Gz(d, n) represents the Grassmann

functor g : (rings) — (sets) given by
g(T) = {T-submodules K C T" that are rank d direct summands of T"}.

By the results of Chapter 1 the Grassmann scheme G = Gz(d, n) is a closed subscheme

n

d) — 1. It is a smooth projective variety over

of the projective space Py, where r = (
SpecZ of relative dimension d(n — d). Moreover the Grassmannian G(d,n) has a
covering by spaces each isomorphic to affine space A=),

In Chapter 2 we saw that the Lagrangian Grassmann scheme L = Lz(n,2n)

represents the Lagrangian Grassmann functor [ : (rings) — (sets) given by
I(T) = {isotropic T-submodules K C T*" that are rank n direct summands of 7%"}.

The Lagrangian Grassmann scheme L is a closed subscheme of P}, where r is given

by r = (2:) — 1. It is a smooth projective variety over SpecZ of relative dimension
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n(n+1)

2
. : n(n+1)
isomorphic to affine space A=z .

Moreover the Lagrangian Grassmannian has a covering by spaces each

Now fix a ring R C M, (Z) and an integer, 0 < d < n. Let fr : (rings) — (sets)
be the functor such that fg(7T) is

{T-submodules K C T" that are R-invariant rank d direct summands of 7"},

where we say that a summand K C T™ is R-invariant if r.a € K for all » in R and
for all @ € K. In this Chapter we prove that fr is represented by a closed scheme
Fr C Gz(d,n). Moreover we provide an explicit affine covering of FFg.

We focus on the following case. Let R be the ring of integers of a number field Q.
Let [@ : Q] = d and n = 2d. The embedding R C May4(Z) can be chosen as follows.
The ring R acts diagonally on R ® R by r(ry,r) = (rri,rra) . If R = @?:1 Zv; as
groups then R @ R = Z??. We study below the local structure of Fr and its Zeta
function in some particular cases. Our motivation is the following.

Suppose k is an algebraically closed field and A is an abelian variety over Spec k
of dimension d. Let C denote the category of local Artinian rings (B, m) such that

B/m = k. Let § : C;, — (sets) be the deformation functor given by
5(B) = {(A, ¢)|.A/Spec B an abelian scheme, ¢ : A ®@p (B/m) =2 A }/ =

Theorem 3.1. (Grothendieck, de Jong, Deligne - Pappas, others) There exists a com-
plete local noetherian ring D with residue field k that pro-represents §; for any ring B
in C,8(B) = Home,, (D, B). Moreover there is a k- rational point, say x, of the

Grassmannian G(n,2n) such that
D = @va = Spec W (k)[[z1, x2, . . ., Tan—a))]

(if k has characteristic 0 we can replace W (k) by k).
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In general, deformations of abelian varieties possibly provided with extra data such
as an embedding R C End(A) or a principal polarization are related to completed
local rings on the Grassmannian Fr or L. In particular we have the following theorem.
Theorem 3.1.(continued) Let R be a ring of integers. Let (A, i) be an abelian variety
over k with an embedding i : R — Endy(A). Let 0g : Cr, — (sets) be the deformation

functor given by

(A, I,¢) | A/ SpecB is an abelian scheme,

or(B) =
I:R— Endg(A), ¢: A®p (B/m) = A, I induces i

Then 6r is represented by a complete local noetherian ring Dgr with residue field k
and moreover Dg =2 @FR,,I: the completion of the local ring of the Grassmannian Fg

at a suitable point x.

3.1 Representability of the functor f
Recall that for a fixed ring R C M,,(Z) and an integer 0 < d < n, fgr(T) is given by
{T-submodules K C T" that are R-invariant rank d direct summands of 7"}.

Let W be a free rank d submodule of 7™ which is R-invariant. We first show that fg
is a sheaf in the Zariski topology. Let 7" be a ring. Let X = SpecT. Consider the
open covering of X by distinguished open affine sets U; = Spec TY,. Suppose for every
collection of elements W € fr(TY,), W; and W; map to the same element in fr(T},y, ).
So in fr(TY,s,) we have

Wi @1, Trp; = W &y, Ty

We wish to show that there exists a unique element W € fr(T') that maps to each
of the W;. The existence and uniqueness part follows from the case of the Grass-

mann functor. We have to verify that if W; are R-invariant for all ¢ then the direct
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summand W as obtained in the section 1.4.2 is also R-invariant. Referring to section

1.4.2 we get a rank d direct summand W of T™ as
W=T(X,F)={weT" |weTf,weW, for all i}.

Now if r € R and w € W we see that w € W; for all ¢ and as each W, is R-invariant,
r-w € W;. It follows that r - w € W. Thus W is R-invariant.

Now let W be a rank d summand of T™. Suppose we have a splitting of 7™ as
T" =W & U where U is a rank (n —d) free submodule of 7". Then we have an affine
neighbourhood of W namely, Hom!™ (W, U') ¢ Hom(W, U) given by

Hom™(W,U) = {p: W — U | T', is R- invariant}.
Lemma 3.2. The subset Hom™ (W, U) ¢ Hom (W, U) = A"~ s closed.
Proof. We have Hom!® (W, U) = MNrer Hom!" (W, U) where by definition

Hom"(W,U) = {¢: W — U | T, is r-invariant}.

Let {e1,...,eq} be a basis for W. Then a basis for the graph of ¢, I'y, is given by
{(e;,p(e;)) | 1 < i < d}. Extend the basis {ej,...,eq} of W to a basis of T". We

have

d
Hom!™\(W, U) = (") (| Hom!" (W, U)

reRi=1
d
= ﬂ ﬂ{(p W = U | r(e;,ple) € Ty}

reRi=1
Let M; be a n x (d 4+ 1) matrix with the first d colums given by e; + ¢(e;) for
i=1,---,d and the (d+ 1)-th column given by r(e; + ¢(e;)). Then r(e;, ¢(e;)) € 'y
if and only if all the (d + 1) x (d + 1) determinants of the matrix M; vanish. This
defines a closed condition. Thus each Hom!"™™ (W, U) is a closed set in Hom(W, U) and
Hom!® (W, U) is a closed subset of Hom(W, U) being a intersection of closed sets. [
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Corollary 3.3. The functor fgr is representable.

Proof. By the above discussion we see that the functor fr is a sheaf in the Zariski
topology. Also by Lemma 3.2, given W a rank d summand which is R-invariant and

complementary submodule U, we have a neighbourhood of W, namely
Hom!™ (W, U) ¢ Hom (W, U) = A%"=9)
Then referring to Theorem 1.51 it follows that the functor fg is representable. O

Now, let V' be a vector space of dimension n over an algebraically closed field k.
Suppose a ring R acts on V. Let W be a rank d direct summand of V' that is R-
invariant. Suppose we have a splitting V' = W @ U. Then U = V/W has a R-module
structure. Note that U as a subspace of V' may not be R-invariant. In general, the
set

{Ty | ¢: W = U, ¢is a k-linear map with I', R-invariant}

is not same as the set Hompg, (W, U). However we will see that Hompgex (W, U) is in

natural bijection with the tangent space to the scheme Fg at W.

3.2 Properties of Fj

In this section we will give a description of the Zariski tangent space to the Gras-
mannian G(d,n) at a k-valued point. Hence we will describe the tangent space to the
scheme Fgr at a k-valued point W. Recall that if X is any scheme, then for any k-
rational point z € X the Zariski tangent space T}, to X at x is Hom(m/m? k), where
m = my, is the maximal ideal in the local ring of X at z and k is the residue field
of X at x. Now suppose that X is a scheme over field k. Then to give a £ morphism
of Speckle]/(¢?) to X is equivalent to giving a point x € X, rational over k (i.e.
k(x) = k), and an element of T,.. For the details refer to [6, p.256-257].
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Proposition 3.4. The Zariski tangent space to the Grassmannian G(d,n) at a k-
valued point W is isomorphic to Homy (W, k™ /W).

Proof. 1f W is a k-valued point of the Grassmannian G(d, n) it is a rank d summand
of k™. Let k[e] = k(e)/(¢?). By the above discussion, to give a tangent vector to
G(d,n)(k) at W is to giving a k-morphism k[e] — G(d,n)(k), i.e. by section 1.4.2 of
Chapter 1, giving a rank d direct summand of k[e]” which reduces to W mod e. Thus,
the Zariski tangent space to G(d,n)(k) at W is the set of all rank d summands M of
k[e]™ which reduce to W modulo e. We now show that the collection of all such M
can be identified with Homy (W, k™ /W). Let first M be a rank d summand of k[e]”
that is W modulo €. Then M ®yq k = W, and we get an exact sequence

O—eM - M—-W —0

We have eM = eW, and for all w € W there is a p(w) € k™, such that w+p(w)e € M.
Using this and the fact that the above sequence is exact, the module M has the form

M={w+p(w)e | we W} + eW.
Then ¢ gives a map W — k™ /W. Moreover, if wy, ws € W, we have
([w1 + p(wi)e] + (w2 + p(w2)e] — [wi + w2 + (w1 + w2)e]) € eW.

Therefore, we have

p(wr) + (wa) — p(wy +wy) € W,

which implies ¢(w1) + p(w2) — (w1 + wy) is zero in k™ /W. Similarly, one finds that
plaw) —ap(w) € W for allw € W and a € k. Thus, the map ¢ defines a k-linear map
W — k" /W. Also, if ¢ : W — k™/W is another function such that for all w € W,
(w+ ¢Y(w)e) € M then

pw)e — P(w)e € M = p(w) —p(w) € W.
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Thus p(w) — ¥ (w) is zero in k" /W and ¢ = . So, given a rank d summand M of
k[e]™ that is W modulo € we get a well defined map in Homg (W, k" /W). Now let
¢ : W — k" /W be a k-linear map. We want to define a rank d summand M of k[e]”
that is W modulo €. Lift ¢ to a map ¢ : W — k™. Define M by

M={w+g(w)e | weW}+eW.

Then M is closed under addition, closed under multiplication by elements in k[e] and
is independent of the choice of . So M is a k[e] module that is W modulo € and has
rank d as W has rank d, and M is the required summand. O

Corollary 3.5. The Zariski tangent space to the scheme Fr at a k-valued point W
is isomorphic to Hompey (W, k™ /W).

Proof. If W is a k-valued point of Fj it is an R- invariant rank d summand of k™.
By the above proposition the Zariski tangent space to Fr at W is the set of all R-
invariant rank d summands M of k[e]” that reduce to W modulo €. Suppose first
that M is R-invariant. So we get a k linear map ¢ € Homy (W, k™/W). Then for

re€ R, we W we have
r(w+@(w)e) € M and rw+ p(rw)e € M.

Therefore,

(re(w) — (rw))e € M = ro(w) — p(rw) € W.

Thus r¢(w) — @(rw) is zero in k" /W and we get that ¢ is R-linear. Conversely if we
have a R-linear map ¢ : W — k" /W then for r € R, p(rw) = r(¢(w)). So for the
corresponding lift ¢ : W — k", ¢(rw) = r(¢(w)) modulo W. Therefore the module

M ={w+ @g(w)e | w e W} + eW,

as defined in the above theorem, is R-invariant. O
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Example 3.6. Suppose k is an algebraically closed field. Let R ® k = kle]. Suppose
V =kle]>, W =kle], U=kle] and V=W @ U. Then

Homper (W, U) = Homy(kle], kle]) = kle],

which is 2-dimensional over k. However, if W = (€) & (¢), then V/W = (¢) & (€) as

kle] modules and the tangent space to W as a point on Fg is given by
Homk[e](VV, U) = HOIIlk(VV, U),
which is four dimensional. Thus W, as a point on Fg, is singular.

Proposition 3.7. Let V' be a vector space over an algebraically closed field k. Suppose
a ring R acts on V. Assume that V. =W @& U where W and U are R-invariant. Let
¢ : W — U be a k-linear homomorphism. Then the graph of ¢, I', is R-invariant
if and only if ¢ is R-equivariant. Thus an affine neighbourhood of Fr s given by
Homggr (W, U).

Proof. Let I', be R-invariant. Let r € R, w € W. Then (w,p(w)) € I', implies
(rw,rp(w)) and (rw,¢(rw)) belong to I',. Thus r(p(w)) = ¢(rw) and so ¢ is R-
equivariant. Conversely suppose that ¢ is R-equivariant. Let (w, ¢(w)) € I',. Then

forr € R
r(w,p(w)) = (rw,r(e(w))) = (rw, p(rw)) € Ly
Hence, I', is R-invariant. O

Let T be any algebraically closed field. Let R be the ring of integers of a number
field Q(R) with [Q(R) : Q] = d. Assume that R ® T is a sum of fields, say

R@ZT:@TgTd,

where the sum varies over all ring homomorphisms o : R — T'. To give a T-submodule
M C T?? of rank d that is R-invariant is same as giving a R ® T invariant submodule

of (R®z T)? of rank d over T.
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Lemma 3.8. Let R and T be as above. Let M C (R®T)* be a submodule of rank
d over T'. Then M is R ® T invariant if and only if M = @?:1 M;, where M; is a
T-submodule of T? of rank r; and Z?zl r; = d.

Proof. Note that R and T are commutative rings with unity. Every submodule M of
(R® T)? can be written as

d d
M=EPeM =P M,
=1 i=1

where e; are the idempotents corresponding to the decomposition R®@ T = @, T.
Each M; is a T module of T2. If M has rank d and M; has rank r; then Y r; =d. [

The invariants (rqy,--- ,rq) are discrete invariants of the module M. We see that
the Grassmann variety Frgr is a disjoint union Hr:(rl,---,rd) V., where the union is
over vectors (71, -+ ,74) such that each 0 < r; <2 and ) r; = d. The component V.
parametrizes modules M with invariant r.

Now let M C (R ® T)* be an R-invariant rank d summand of 72¢ as a T-module.
Suppose T% = M @ U where U is also R-invariant. Write M = ®M,; and U = @U;
where each M; and U; is a T-module. An affine neighbourhood of M in Fgrgr is given
by

Hompgr(M,U) ={I', | ¢ : M — U such that I, is R ® T-invariant}.

But, we have

Hom per (M, U) = @ Homy (M;, Uy).

Thus, for ¢ : W — U, the graph of ¢, I',,, has the form

d

F‘P = @F@m

i=1
where each 'y, has rank r;. We see that V, equals j copies of P! where j is number
of 7 such that r; = 1.

In the case when d = 2 we have following possibilities :
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1. M; is 0 and U; has rank 2.
2. U; is 0 and M; has rank 2.

3. Both M; and U; have rank 1

3.3 Example : Quadratic field

We now consider the following example of a quadratic field. Suppose L = Q(\/E) is
a quadratic extension of Q where D is a squarefree integer. We have [L : Q] = 2. Let

R be the ring of integers in L. Then

" Z[VD] if D=2,3 (mod 4);
Z[*YP] if D=1 (mod 4).

The discriminant dy, of R is

4D if D=2,3 (mod 4);
dr, =

D ifD=1 (mod4).
Let k& = Fp and Ry = R® k. Consider R? = R; @ R;. It has two structures, namely:

1. R? is an Ry- module. For ry,ro, 7 € Ry define r(ry,79) = (rry, rrs).

2. R?is a k-vector space of dimension 4 i.e. R? = k*.

We are interested in a subscheme Fpg, (2,4)(k) C G(2,4)(k) which is the collection of
all 2-dimensional subspaces of R} that are R;- invariant. We concentrate on the case

when D = 2,3 (mod 4). We have

F,®F,, F, characteristic p,(p) inert in L;

Ri=R®k={F,®F, T, characteristic p,(p) split in L ;

F,[t]/t?, T, characteristic p, (p) ramified in L.
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First two cases: If (p) is inert or spilt in L, R, = F,®F,, R? = (F,0F,)®(F,&F,).
We are interested in 2- dimensional subspaces of R} that are R;-invariant. Note that

U is such a subspace if and only if U is preserved under (1,0) and (0,1). But

(0,1) = (1,1) — (1,0).
So it is enough to consider the subspaces of R? that are invariant under (1,0). Let
er = (1,0,0,0), e = (0,1,0,0), e3 = (0,0,1,0), e; = (0,0,0,1) be the standard
basis for k*. Let t : R — R? be the linear transformation given by

(%)

Then we are interested in 2-dimensional subspaces of R? that are preserved under t.
The basis {e1, €2, €3, e4} of R} has the property that ¢ acts as identity on ey, e3 and acts
as zero on ey, e4. Let My = span{es, es}, My = span{e;,e3}. Then R = M, ® M,. If
N is a submodule of Rf of dimension 2 by Lemma 3.8 we can write it as N = N; @ Ns
where N7, Ny are submodules of M7, M, respectively. If N has dimension 2 we have

the following three possibilities.
1. N = M; = span{es, e4};
2. N = M, = span{ey,e3} ;
3. N= span {ages + aseq,are; + ages | az # 0 or ay # 0, and a; # 0 or ag # 0}.

We now analyse these three cases. Let x19, T3, X14, T23, To4, 34 be the Pliicker coor-
dinates corresponding to the canonical basis of /\2 k*. Then, referring to section 1.12

in Chapter 1, we see that the Grassmann relation satisfied by G(2,4) is given by
T14T23 — Toa®13 + T12234 = 0.

1. When N = span{ey, e4} its image under the Pliicker map is the point in P°
given by (0:0:0:0:1:0). This is a closed subset of P> defined by

Zy = V{3312,331373314,9523,3334}-
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2. When N = span{ey, e3} its image in P5is (0:1:0:0:0:0) . This is a closed

subset of P° defined by

Ly = V{$12,Q31473€23; T24, 5534}-

. Assume we are in the third case. Let v; = ases + aseq, v2 = areq + azes. Then

v1 Avg = (—ajag)er Aeg+ (0)eg Aes + (—ajaq)er A ey
+ (agaz)ea N es+ (0)eg A eg + (—asay)es A ey.
So the Pliicker coordinates of such N are
(—araz : 0: —ajay : asaz : 0 : —agay).
In addition to the Pliicker relations these points in P® satisfy the following
relations in the coordinates
T12%34 + T1a23 = 0, w13 =10, w24 =0.

Moreover, one checks that every point on the closed set of G(2,4) defined by
those relations comes from some N. In fact the collection of all such points is

isomorphic to a quadratic surface in P? defined by
Zy = V{r12T34 + T14T03}

and so is isomorphic to P' x P! over F,. This agrees with the discussion in the
previous section. However, since the isomorphism Z3 = P! x P! is only over F,,

we will use explicit equations below to compute the Zeta function.

We now compute the Zeta function of this Grassmannian Fpg,(2,4)(k) contained

in G(2,4)(k). Let o : A} — Af{ be the Frobenius morphism. The Galois group
Gal(F,/F,) acts on R, = (R®T,) by

o(l@N) =1l®a(N).

This action induces the action of the Galois group on R?. We want to see the action

of the Galois group on the Pliicker coordinates.
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3.3.1 The Zeta function : (p) inert in L

Assume that (p) is inert in L. Then

which is a field with p? elements. There exist two embeddings 7,7 : F — Fp and
R®F, = Ff) by the map f : 1 ® X — (7 (D)X, 72(1)A). Note that R = Z -1 @ Z[\V/ D]

as a group and
fAe1) =(@1,1), fVD®1l)=(VD,-VD).

The elements (1,1), (v/D,v/—D) form a basis to Fi and the Frobenius morphism o
acts on (1,1) and (v/D, 1) as the identity.

Let M = (} 7‘@%) . Then M™! = #15 (—P —\1/5>. The matrix M~! changes
coordinates from the standard basis of F; to the basis {(1,1),(vV'D,v/=D)}. Let

a = (aq,ay) be any general element of F;. Suppose

At Y aq
)\2 (6%)
/\1 Q1 +an
Then = 2 are the coordiantes of v in the basis {(1,1), (v/d,v—d)}.
Az WD
Therefore, we get
A\ B 0(061)-;7@2) B U(al);-cr(aﬂ
V] T Leenon | T | slen-ote)
2 20(v/D) —2vD
Now,
o A 1 {1 VD o(ay) + o(az) o(as)
g = MO' —_ - —
(67) )\2 2 1 —\/E %\/%(ag) 0'(0(1)
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So o acts on (ay,ay) € k? by

Thus, o acts on k* by
o(a1, az, a3, as) = (0(az), 0(a1), 0(as), o(as)),
and it acts on the Pliicker coordinates by
U($12) = —T12, 0(57513) = T24, 0(96’14) = T23,
0(1’23) = T14, 0(1324) = T13, 0(1’34) = —T34-
Now we come back to the subvariety of G(2,4) defined by
T12T34 + T1aToz = 0, x93 = x9q = 0.

The points on this subvariety have Pliicker coordinates (cig : 0 : ¢14 @ co3 1 0 @ c34)

satisfying the relation cioc34 + c14c03 = 0. The Frobenius morphism o acts on

(c12:0:c1q:co3:0:caq) by

o(c12:0:c1g:c93:0:c34) = (—0(c12) 1 0:0(ca3) : 0(crq) 1 0: —(e34)).
One has

0%(cra:0:crgicas:0:esg) = (0%(c12) 1 0: 0%(cra) s 02(ca3) 1 0: 0(c34)).
In fact we see that if r is any even positive integer then ¢” acts by

0"(c12:0:c1g:c3:0:¢34) = (0" (c12) : 0:0"(c14) 1 0" (c23) : 0: 0" (c34)).

This action of ¢” is usual componentwise action as in case of projective spaces. So the
number of subspaces invariant under the action of ¢” is simply equal to the number
of solutions to x19234 + 14223 = 0 over F, with ¢ = p”. To count those we distinguish

two cases.
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1. Suppose z15 # 0. Each of x4 and x93 can be chosen arbitrarily. Hence each

T14X
14723 G5 the total

of them has ¢ choices and x34 is determined by x34 = —
L12

number of solutions in this case is ¢.
2. Suppose x15 = 0. Then either 14 = 0 or x93 = 0 or both of them are zero. The

total number of solutions in this case is (¢+ 1) + (¢+ 1) — 1 =2¢ + 1.

Adding the number of solutions in both the cases we get the number of subspaces
invariant under the action of o”, for r even, is p*" + 2p” 4+ 1. Also if r is even, the
points (0:1:0:0:0:0) and (0:0:0:0:1:0) are preserved under o".

To see how o acts if r is odd, first note that the set of points in P® given by
(12 : 0 : c1q 2 €3 1 0 c34) satisfying ciacsy + 1423 = 0 can be identified with the set
of points (a: b: c: d) in P? satisfying ad + bc = 0. First consider the case r = 1. We

consider 2 cases
1. Assume a # 0. Let a = 1. So we have
o(1:b:c:d)=(—0(1):0(c):0(b): —o(d)) = (—=1:0(c):0(b): —o(d)).

These are proportional if and only if the multiplication factor is —1. Therefore
we get, b = —o(c) and ¢ = —o(b) which implies that b, c € F,2. Also d € F, as
o(d) = d. The relation b- o(b) = —d gives b - b* = —d. So we have to find the
number of b € F» satisfying v»™! € F,. But bP*! = Normeg , /r, (b) and so any

b € . satisfies b?™! € F,. Thus the number of such b is p?.
2. Now let a =0, b = 0.
00:0:¢:d)=(0:0:0(0):—0(d))=(0:0:0:—0c(d)).

There is only one solution in this case. We note that one gets the same solution

when a = 0,c = 0.
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Adding the total number of solutions in both the cases we get that the number of
points invariant under the action of ¢ is p> + 1. We can do similar calculations for

all odd powers of o and get that the number of points invariant under the action of

o1 is equal to p>>r—1) 4 1.

The Grassmannian Fpg, (IF ) that we have is the union of two sets X; and Xy,
X;={(0:1:0:0:0:0),(0:0:0:0:1:0)},

Xo = {(012 :0:cigie3:0: 034) | C12C34 + C14C23 = 0}-
The Zeta function of Fg, (F,) is given by
Z(FR1<FP)7 t) = Z(Xla t) ' Z(X27 t)'

We have

r=1

e t27‘ e t2r 1
Z(Xq,t) =exp (232?) = exp <Z 7) L
r=1

The Zeta function of X5 is given by

e 2r e t2r71
. 2r 27" 1
Z(Xa,t) = exp (Z(p +1)? Z 5 1)

r=1 r=1

o0 t27’71
_ exp<2(p4’"+2p2’"+1 Z 20r=1) 4 ) T_1>.

r=1

Combining proper terms together we get

o0 tr o0 t27‘ o0 tT‘
Z(Xy,t) = r_ o2 i
1
(I—1)(1—p2)(1 —p?2)

Therefore we get

1
S =001 —pP)(1 -
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3.3.2 The Zeta function : (p) split in L

Let (p) be split in L. Then R ® F, = F, & F, and it follows that the Galois action

on R® Fp = Fp &) Fp and hence on the Pliicker coordinates, is componentwise in this

case. The Grassmann subvariety Fpg, (F,) is the union of two sets X; and X,
X;={(0:1:0:0:0:0),(0:0:0:0:1:0)},
Xy = {(012 :0:cig:003:0: C34) | C12C34 + C14C23 = 0}-
The Zeta function of Fg, (F,) is given by
Z(FRl(F}D)v t) = Z(Xla t) ' Z(X27 t)
The Zeta function of X; is given by
Z(X1,t) =ex f:QK _
b= e —~r N

Since the Galois action is natural, for a even positive integer r, ¢” acts by

0"(c12:0:c1q:co3:0:c34) = (0"(c12) : 0:0"(c1a) 1 0"(ca3) : 0: 0" (c34)).

This action of ¢" is the usual componentwise action as in case of projective spaces.
So the number of subspaces invariant under the action of ¢” is simply equal to the

number of solutions to x12234 + 14723 = 0 over F,. We have the following cases.

1. Suppose z15 # 0. Assume that x5 = 1. Each of x4 and x93 can be chosen

arbitrarily. Hence each of them has p choices and x34 is determined by the
L14223
T12

. So the total number of solutions in this case is p?.

relation z34 = —

2. Suppose x15 = 0. Then either 14 = 0 or x93 = 0 or both of them are zero. The

total number of solutions in this case is (p+ 1)+ (p+1) — 1 =2p+ 1.
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Adding the solutions in both the cases we get the number of F, rational points as

p?" + 2p" + 1 and the Zeta function of X, is given by

o0 t,r.
Z(Xs,t) = exp (;(p% +2p" + 1);)

1
(1—¢)(1—pt)>(1 —pt)’

It follows that
1

(1 —1)3(1 —pt)2(1 — p%t)’

Z<FR1 (Fp>7 t) =

3.3.3 The Zeta function : (p) ramified in L

The case when (p) is ramified in L. As before Ry = R ® k = k[t]/t>. Consider the
nilpotent linear transformation ¢t : R? — R2. We are interested in the set Fg, (F,)
which is the set of 2-dimensional subspaces of R? that are Rj-invariant i.e. the
subspaces that are preserved by the action of t. The vectors w; = e; = (1,0),

wy = te; = (t,0),ws = e = (0,1), wy = tey = (0,t) form a basis for R?. We see
that ker(t) is the space spanned by te; and tey as t2 = 0. Now let U be any two
dimensional subspace of V. Then tU is a subspace of V' of dimension less than 2. If
U = ker(t) = span{te;, tes}, it is zero dimensional, otherwise tU is one dimensional.
And in that case if {v1,v2} is a basis of U, either tv; # 0 or tvy # 0. If tv; # 0 since
vy, tvy are linearly independent, they form a basis for U. Conversely if v; € V such
that tv; # 0 then {v,tv;} span a 2 dimensional subspace of R? which is ¢ invariant.

Thus every U € Fg(F,) with U # ker(t) can be written as the span of {vy, tv; } where

vy € U is not in the ker(?).
V1 = a1€e1 + aste; + ases + agtes = awy + asws + azws + agwy.

Then we get

tUl = a1t61 + a3t62 = QW2 + A3Wy.
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The set Fg, (2,4)(F,) C G(2,4)(F,) can be embedded in P° via the Pliicker map. If
{vi,tv1} is a basis for U its image in P° via the Pliicker map is the element in P°

determined by v; A tv;. Now
v1 Atoy = (a2) wy A wy + (0) wy A ws + (ayas) wy Awy
+ (—ayaz) wy A ws + (azaz — araq) wo A wy + (a3) wz A wy.
If we set x;; as the Pliicker coordinates as before then we have the relations
213 =0, T14+ To3 =0, 2}, — T1oa34 =0
in addition to the Grassmann relation
T14T23 — T24%13 + 12234 = 0.

Thus Fg, (F,) can be described as the zero set of {3, 714+ 793, 22, — 119734} in P°.
Note that
Fr,(F,) 2 V{(a:b:c:d) € P*| b = ad},

with the Galois action on V' being the usual one. We now find number of solutions

over .
1. Let a = 0. Therefore b = 0. The number of solutions in this case is p” + 1.

2. Let a # 0. Suppose a = 1. So, b*> = d. The number of solutions in this case is

p2r )

Adding the number of solutions in both the cases we get the number of F, rational

points is p?* + p” + 1. Therefore the Zeta function of F, (F,) in this case is given by

r=1

1
(I—=t)(1—pt)(1 —p*)

Z(Fg,(Fp),t) = exp (Z(p” +p"+ 1)%)
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3.4 Zeta function of Fr as a scheme over Z

In the above example of quadratic field, the scheme F is of finite type over the ring
of integers Z. The global Zeta function in this case is obtained by combining the Zeta

functions in (p) inert, split and ramified cases.

Proposition 3.9. The Zeta function of Fr as a scheme over Z is given by

C(Fr,5) = Culs) - Culs = 1) - C(s = 2) - Ca, (s),

where C(s) is the Dedekind Zeta function, ((s — 2) is Riemann Zeta function and

Car () =TT, ﬁ is the Euler factor at dj,.

Proof. We recall from the last section, the computation of the Zeta function in all

three cases.

1. The Zeta function when (p) is inert in L is

1

Z(FPq (Fp)at) = (1 — t)(l _ t2)(1 — p2t)(1 _ p2t2)’

2. The Zeta function when (p) is split in L is

1
(1—1)3(1 —pt)2(1 — pt)’

Z(Fr, (Fp),t) =

3. The Zeta function when (p) is ramified in L is

1
(1—t)(1—pt)(1 —p*)

Z(Fr, (Fy),t) =

The global Zeta function ((Fg,s) is given by the product of the following three

functions (where t = p~)

1 1 1
o= o= aom (3:1)

all p
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(H (1—1“) 11 (12))'(

1 1
Il 7 11 <1—pt>>’ 32

p spilt p inert p spilt p inert
1 1
: 3.3
H(l—t) H (1—1) (3:3)
p spilt p inert

Let x be the quadratic Dirichlet character (Z/d.Z)* — {£1}. We conclude that

1
(1—-1)

((Fros)=C(s)-C(s —2)-C(s = 1) - Lx, ) - L, s — 1) - |
ptdr

= Cr(s) - Cols = 1) - Cls = 2) - Ca (9),
where (;(s) is the Dedekind Zeta function, ((s — 2) is Riemann Zeta function and

Car () =TT, ﬁ is the Euler factor at d,. O
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Conclusion

In this text we studied in detail the classical Grassmannian and the Lagrangian
Grassmannian. After studying the local properties and the Zeta function of these
varieties we introduced Schubert calculus. As one of its applications we noticed that
the information of the cohomology groups of the Grassmannian in characteristic zero
gives the information of the cohomology groups in characteristic p and vice versa. It
remains an interesting problem to determine the ring structure of the cohomology
using point counting in characteristic p.

Schubert calculus, essentially founded by H. Schubert in 1874, helps understand
questions in enumerative geometry i.e. to find number of points, lines, planes etc
satisfying certain geometric conditions. The subject was then connected with the
branch of combinatorics which deals with symmetric functions, Young tableaux, plane
partitions etc. An excellent account of this subject can be found in a survey article by
Kleiman and Laksov [12]. In Chapter 1 we computed the products of Schubert cycles
using the Basis Theorem, Giambelli’s Formula and Pieri’s Formula. A further step
in this direction could be to understand the literature dealing with the connection
between the multiplication of Schur-S polynomials (defined by Schur in his 1901
thesis) and the cohomology ring of the Grassmannian. This connection was first
observed by Lesieur [13]. In the classical case, the multiplication of Schubert cycles
agrees with the corresponding product of Schur-S polynomials.

The Schubert calculus for Lagrangian Grassmannian is also quite interesting and
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only a few pieces are introduced in this thesis. Further step in this direction could
be to understand the literature dealing with the multiplicative structure of the co-
homology ring of the Lagrangian Grassmannian. In [16], Pragacz showed that the
product of Schubert cycles in Lagrangian case agrees with the corresponding product
of Schur-Q polynomials.

In Chapter 1, following [6] we showed the representability of the Grassmann func-
tor. In the next Chapter, we modified the same definition and used isotropic sum-
mands to define the Lagrangian Grassmann functor. The Grassmannians can also be
viewed as Hilbert schemes. The Grassmannian Gg(d,n) parametrizes subschemes X
of degree one and dimension d in the projective space P%. We computed the Euler
characteristic and the Zeta functions of Grassmannians. It would be interesting to
compute their Hilbert polynomials and realise them as Hilbert schemes.

We then remark that the above Grassmann varieties come under a large class of
generalized Grassmann varieties. For a field k, integers 0 < d < n, a generalized
Grassmann variety G(R;d,n) is the set of all d-dimensional subspaces of k™ that are
preserved under a subring R C End(k"). The case R = {0} leads to the classical
Grassmannian G(d,n)(k). If further we define an alternating pairing on k%" and con-
centrate only on isotropic subspaces of dimension n, we get Lagrangian Grassmannian
L(n,2n)(k). We agree to denote the generalized Grassmann variety G(R; d,n) simply
by G(d,n) when R = {0}. In the last Chapter we fixed a ring R C M, (Z) and an
integer, 0 < d < n. We defined the functor fg : (rings) — (sets) which sends ring 7'

to
{T-submodules K C T™ that are R-invariant rank d direct summands of 7"},

and showed that fr is represented by the generalized Grassmann scheme denoted
by Fr = G(R;d,n). We studied in detail the Zariski tangent space to the scheme
Fr at a k-valued point W. In the case of the classical Grassmannian G(d,n)(k), an

affine neighbourhood of W is in natural bijection with Homg (W, k" /W). However it
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is noticed that this is not true in the case of the scheme Fg. Instead we saw that the
tangent space to W as a point on Fp is in bijection with Hompgg, (W, k™ /W). It still
remains to understand the local structure of the scheme Fr more closely and compute
the dimension of the scheme Fr. We analysed the scheme Fi when R is the ring of
integers of a number field L = Q[v/D] when D is a squarefree integer with D = 2,3
(mod 4). We computed the Zeta function of Fg in this case as a product of some
Dedekind Zeta functions and Riemann Zeta functions with some Euler factor.

It is an interesting problem to develop Schubert calculus in this setting and calcu-
late the Zeta function in characteristic p using cohomology, base change and vanishing

cycles.
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