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Abstract

In this thesis we study the simplest types of generalized Grassmann varieties. The

study involves defining those varieties, understanding their local structures, calculat-

ing their Zeta functions, defining cycles on those varieties and studying their coho-

mology groups.

We begin with the classical Grassmannian G(d, n) and then study a special type

of the Grassmannian, namely the Lagrangian Grassmannian. For a field k and a

subring R ⊂ End(kn) we study the generalized Grassmann variety G(R; d, n) which

is the set of all d-dimensional subspaces of kn that are preserved under R. We study

the local structure of the generalized Grassmann scheme FR := G(R; d, n) and its

zeta function in some particular cases. We study closely the example of a quadratic

field when R is the ring of integers.
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Résumé

Dans cette thèse, nous étudions les plus simples variétés de Grassmann genéralisées.

Cette étude consiste à définir ces variétés, à comprendre leur structure locale, à cal-

culer leurs fonctions Zêta, à définir des cycles sur ces variétés et à étudier leurs groupes

de cohomologie.

Nous commençons avec la variété de Grassmann classique G(d, n) et ensuite, nous

étudions spécialement la variété de Grassmann Lagrangienne. Pour un corps k donné

et un sous-anneau R ⊂ End(kn), nous étudions la variété de Grassmann généralisée

G(R; d, n), c’est-à-dire l’ensemble de tous les sous-espaces de kn de dimension d qui

sont préservés par R. Nous étudions la structure locale du schéma de Grassmann

généralisé FR := G(R; d, n) et, dans quelques cas particuliers, sa fonction Zêta. Nous

étudions en détail l’exemple d’un corps quadratique lorsque R est l’anneau des en-

tiers.
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1

Introduction

Let us start with the classical Grassmann variety G(d, n), which is the set of all

d-dimensional subspaces of a vector space V of dimension n. The same set can be

considered as the set of all (d−1)-dimensional linear subspaces of the projective space

Pn−1(V ). In that case we denote it by GP(d− 1, n− 1).

In Chapter 1 we see that G(d, n) defines a smooth projective variety of dimension

d(n−d). It is quite interesting to note that the number of Fq-rational points of G(d, n)

equals the standard q-binomial coefficient
(

n
d

)
q

that can be expressed as a polynomial

in powers of q. Consequently, the Zeta function of G(d, n) is easy to calculate and we

see that all odd Betti numbers of the Grassmannian are zero. The Euler characteristic

of G(d, n) comes out to be the usual binomial coefficient
(

n
d

)
.

The Schubert calculus is introduced thereafter to understand the cohomology ring

of the Grassmannian, namely H∗(GP(d, n)(C); Z). Schubert calculus helps us solve

many enumerative problems such as : How many lines in 3-space in general intersect

4 given lines? The subject is studied quite intensively in [7, 11, 17, 12, 20]. We mainly

follow [12] to develop the basic notions of the subject and state without proof many

results like the Basis Theorem, Giambelli’s formula and Pieri’s formula. Then we

study the cohomology ring H∗(GP(1, 3)(C); Z) in detail.

In the last few sections of Chapter 1 we see that the construction of the classical

Grassmannian has a natural extension to the category of schemes. Indeed the Grass-

mann scheme GZ(d, n) represents the Grasmann functor g : (rings) → (sets) given
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by

g(T ) = {T -submodules K ⊂ T n that are rank d direct summands of T n }.

We show the representability of the Grasmann functor following [6]. The Basis Theo-

rem of the Schubert calculus states that the Schubert cycles generate the cohomology

ring H∗(GP(d, n)(C); Z). As one of its applications we compute the Zeta function of

the Grassmannian using the information of cohomology groups in characteristic zero

and get the information of the cohomology groups in characteristic p. Finally, we

compute the Zeta function of the Grassmann scheme GZ(d, n) which comes out to be

a product of Riemann Zeta functions.

In Chapter 2 we discuss a special type of Grassmannian, L(n, 2n), called the La-

grangian Grassmannian; it parametrizes all n-dimensional isotropic subspaces of a

2n-dimensional symplectic space. A lot of symplectic geometry can be found in [14]

and [2]. The Lagrangian Grassmannian L(n, 2n) is a smooth projective variety of di-

mension
n(n+ 1)

2
. We then give a similar treatment to the Lagrangian Grassmannian

as to the classical Grassmannian and compute its Zeta function, Euler characteristic

etc.

The Schubert calculus for Lagrangian Grassmannians is discussed for example

in [17, 22]. We mostly follow [22]. Using the Basis Theorem for the Lagrangian

Garssmannian we compute the dimensions of the cohomology groups H i(L(n, 2n); Z).

We then study the representability of the Lagrangian Grassmann functor, which is a

functor l : (rings) → (sets) given by

l(T ) = {isotropic T -submodules K ⊂ T 2n that are rank n direct summands of T 2n}.

Finally we compute the Zeta function of the Lagrangian Grassmann scheme LZ(n, 2n).

In Chapter 3 we begin with the following set up. Let 0 < d < n be integers,

R ⊆Mn(Z) be a ring, and consider the functor fR : (rings) → (sets) given by

fR(T ) = {T -submodules K ⊂ T n that are R-invariant rank d direct summands of T n}
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We show that fR is representable by a scheme FR. We study the local structure of

the scheme FR and its Zeta function in some examples.

We consider in detail the example of a quadratic field L = Q(
√
D) where D is

a squarefree integer. Let R be the ring of integers in L. Let R1 = R ⊗ Fp. We

concentrate on the case D ≡ 2, 3 (mod 4), study the scheme FR1(Fp) and compute

its Zeta function.
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Chapter 1

Grassmann Varieties

In Chapter 1 we discuss in detail the classical Grasssmannian, first as a variety and

then as a scheme. In section 1.1 we discuss the construction of the Grassmannian as

an algebraic variety. We also study an affine cover of the Grassmannian. Section 1.2

discusses the Zeta function of these varieties. In section 1.3 we give an introduction

to the Schubert calculus. This leads us to understand the cohomology ring of the

complex Grassmannian G(d, n)(C) with integer coefficients. In section 1.4 we describe

how the construction of the classical Grassmannian has a natural extension to the

category of schemes. We will also talk on the representability of the Grassmann

functor and the Zeta function of the Grassmann scheme.

1.1 Grassmann varieties

1.1.1 The Grassmannian, basic notions

Recall the construction of a projective space over field k. The projective space Pn(k)

is defined as the collection of all lines in kn+1. Equivalently, it is the set of all

hyperplanes in kn+1. This construction gives rise to a natural question : Why not



6 Grassmann Varieties

consider the set of subspaces in kn+1 of arbitrary dimension? The construction of

Grassmannians has its origin in answering this question. Classically we define the

Grassmannian as follows.

Definition 1.1. Let V be a vector space of dimension n ≥ 2 over field k. Let

0 < d < n be an integer. Then the Grassmannian G(d, n) over k is defined as the set

of all d-dimensional subspaces of V i.e.

G(d, n)(k) = {W | W is a k-subspace of V of dimension d}.

Alternately, G(d, n) can be considered as the set of all (d− 1)-dimensional linear

subspaces of the projective space Pn−1(k). If we think of the Grassmannian this way,

we denote it by GP(d−1, n−1). The simplest example of the Grassmannian is G(1, n)

which is the set of all 1-dimensional subspaces of the vector space V which is nothing

but the projective space on V .

1.1.2 Review of some exterior algebra

Let R be a commutative ring with unity and let M be an R- module. For each natural

number r let

T r(M) =

R if r = 0,

M ⊗R T
r−1(M) otherwise.

Thus T r(M) = M ⊗R · · · ⊗R M︸ ︷︷ ︸
r times

. The tensor product is assosiative and we have a

bilinear map T r(M)×T s(M) → T r+s(M) by which we can define a ring structure on

the direct sum

T (M) :=
∞⊕

r=0

T r(M).

In fact, T (M) is an R-algebra. It is called the tensor algebra of M over R. Let

us denote by An(M) the submodule in T n(M) generated by the elements of the type



1.1 Grassmann varieties 7

x1 ⊗ · · · ⊗ xn where xi = xj for some i 6= j. We define

n∧
M := T n(M)/An(M).

Also define the exterior algebra of M as the direct sum∧
M :=

∞⊕
n=0

n∧
M.

Let I be the ideal in T (M) generated by {x⊗ x | x ∈M}. Then we have∧
M = T (M)/I.

If w ∈
∧r M with, w = u+Ar(M) and w′ ∈

∧sM , with w′ = u′ +As(M), we define

w ∧ w′ = u⊗ u′ +Ar+s(M)

as an element of
∧r+sM .

Notation : Let u1, . . . , un ∈ M. The element u1 ⊗ · · · ⊗ un +An(M) is denoted by

u1 ∧ · · · ∧ un.

One has the following Lemma.

Lemma 1.2. [9, Corollary 10.16] Let {u1, . . . , un} and {v1, . . . , vn} be two families

of vectors of M related by a matrix A = (aij)n×n of coordinate change, which means,

(v1, . . . , vn) = (u1, . . . , un)(aij)n×n. Then,

v1 ∧ · · · ∧ vn = det(A) · u1 ∧ · · · ∧ un.

1.1.3 The Plücker map and coordinates

We can embed G(d, n) in the projective space P(
∧d V ) as follows. Let U be a subspace

of V of dimension d with a basis {u1, · · · , ud}. Define P (U) as the point of the

projective space P(
∧d V ) which is determined by u1 ∧ · · · ∧ ud. The map P ,

P : G(d, n) → P(
d∧
V ),
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is called the Plücker map. By Lemma 1.2, P is a well defined map. Since the wedge

product u1 ∧ · · · ∧ud ∧u = 0 if and only if u ∈ U , it follows that P is injective. Thus,

via P , we may consider G(d, n) as a subset of P(
∧d V ). Let {e1, . . . , en} be a basis

for V . Then the canonical basis for
∧d V is given by

{ei1 ∧ · · · ∧ eid | 1 ≤ i1 < · · · < id ≤ n}.

Let U be a d-dimensional subspace of V with a basis {u1, . . . , ud}. For 1 ≤ i ≤ d, let

uj =
∑n

i=1 aijei. Then the coordinates of P (U) = u1∧· · ·∧ud are called the Plücker

coordinates. These are nothing but the
(

n
d

)
minors of the matrix (aij)1≤i≤n

1≤j≤d
.

1.1.4 Examples

Example 1.3. The Grassmannian G(1, n) : Let U be the space spanned by the vector

u1 = a1e1 + · · ·+anen. The Plücker coordinates are the maximal minors of the matrix

(a1, · · · , an). Therefore the Grassmannian G(1, n) ∼= Pn−1 and the Plücker map P

sends U to (a1 : · · · : an).

Example 1.4. The Grassmannian G(2, 4) : Let {e1, e2, e3, e4} be a basis for V . The

canonical basis for
∧2 V is given by

{e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}.

Let {u1, u2} be a basis for U ∈ G(2, 4) with

u1 = a11e1 + a21e2 + a31e3 + a41e4, u2 = a12e1 + a22e2 + a32e3 + a42e4.

Then,

u1 ∧ u2 = (a11a22 − a12a21)e1 ∧ e2 + (a11a32 − a31a12)e1 ∧ e3

+ (a11a42 − a41a12)e1 ∧ e4 + (a21a32 − a31a22)e2 ∧ e3

+ (a21a42 − a41a22)e2 ∧ e4 + (a31a42 − a41a32)e3 ∧ e4.

So the Plücker coordinates are
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(a11a22 − a12a21, a11a32 − a31a12, a11a42 − a41a12, a21a32 − a31a22,

a21a42 − a41a22, a31a42 − a41a32).

We will denote these coordinates by x12, x13, x14, x23, x24, x34 respectively. One ob-

serves that these are indeed the 2× 2 minors of the matrix
a11 a12

a21 a22

a31 a32

a41 a42

 .

1.1.5 The Grassmannian as an algebraic variety

We observed that G(d, n) can be embedded in the projective space P(
∧d V ) via the

Plücker map P . The goal of this section is to show that the image is a closed subset

of PN where N =
(

n
d

)
− 1.

Definition 1.5. Let w ∈
∧d V . Let v ∈ V, v 6= 0. We say that v divides w if there

exists u ∈
∧d−1 V such that w = v ∧ u.

We have the following Lemma.

Lemma 1.6. Let w ∈
∧d V . Let v ∈ V, v 6= 0. Then v divides w if and only if the

wedge product w ∧ v = 0.

Proof. Clearly if v divides w, say w = u ∧ v, then w ∧ v = u ∧ v ∧ v = 0. To see the

other direction let {e1, e2, . . . , en} be a basis of V with e1 = v. The canonical basis

for
∧d V is given by:

{ei1 ∧ · · · ∧ eid | 1 ≤ i1 < · · · < id ≤ n}.

Let ei1 ∧ · · · ∧ eid = ei1,i2,...,id . Any w ∈
∧d V can be written as

w =
∑

1≤i1<···<id≤n

ai1,...,idei1,i2,...,id .
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Then

v ∧ w =
∑

i1<···<id

ai1,...,ide1 ∧ ei1,i2,...,id .

So we see that v ∧ w = 0 if and only if ai1,...,id = 0 for every i1, . . . , id with 1 < i1 i.e.

the vector e1 = v divides w.

Using above lemma we can show that the collection of all vectors v ∈ V dividing

a fixed vector w ∈
∧d V is a subspace of V . Indeed, if v1, v2 divide w then

(v1 + v2) ∧ w = v1 ∧ w + v2 ∧ w = 0,

which implies that v1 + v2 divides w. And also v ∧w = 0 implies that av ∧w = 0 for

any scalar a.

Definition 1.7. We say that w ∈
∧d V is totally decomposable if there exist

linearly independent vectors v1, . . . , vd ∈ V so that w = v1 ∧ · · · ∧ vd.

Lemma 1.8. Let w ∈
∧d V . Then w is totally decomposable if and only if the space

of vectors dividing it is d-dimensional.

Proof. Let w ∈
∧d V be a totally decomposable vector. Let w = v1 ∧ · · · ∧ vd for

some linearly independent vi ∈ V . Then by lemma 1.6 the space of vectors dividing w

is given by

U = {v ∈ V | v1 ∧ · · · ∧ vd ∧ v = 0}.

Thus v ∈ U if and only if it is linearly dependent with the vectors v1, . . . , vd , i.e. U

has a basis {v1, . . . , vd}. Conversely let U be d-dimensional subspace of V with a

basis {v1, . . . , vd}. Extend this to a basis {v1, . . . , vd, vd+1, . . . , vn} for V . Then we

can write w ∈
∧d V as

w =
∑

1≤i1<···<id≤n

ai1,...,idvi1,i2,...,id .
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For all j = 1, . . . , d we have vj ∧ w = 0. Then,

vj ∧ w =
∑

1≤i1<···<id≤n

ai1,...,idvj ∧ vi1,i2,...,id

=
∑

1≤i1<···<id≤n

ir 6=j

ai1,...,idvj ∧ vi1,i2,...,id .

The right hand side of the above equation is zero if and only if ai1,...,id = 0 unless

some ir = j. Thus,

v1 ∧ w = · · · = vd ∧ w = 0

if and only if ai1,...,id = 0 unless {1, . . . , d} ⊂ {i1, . . . , id}. Then we have

w = ai1,...,idv1 ∧ · · · ∧ vd.

Lemma 1.9. Let w ∈
∧d V . Let

ϕw : V →
d+1∧

V

be the linear map given by

ϕw(v) = w ∧ v.

Then w is totally decomposable if and only if Ker(ϕw) has dimension d.

Proof. The proof of this lemma follows from the last two lemmas. Note that the

kernel of ϕw is given by Ker(ϕw) = {v ∈ V | ϕw(v) = w∧v = 0}. This by Lemma 1.6

is the space of vectors dividing w. And by Lamma 1.8, w is totally decomposable if

and only if this space has dimension d.

Theorem 1.10. The image of G(d, n) via the Plücker map P is an algebraic set of

the projective space PN = P(
∧d V ).
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Proof. We observe that P (G(d, n)) is the set of all totally decomposable vectors w in∧d V . By the Lamma 1.9, it can be identified with the set of vectors w ∈
∧d V such

that dim (Ker(ϕw)) = d. Equivalently the rank of the map ϕw is n− d. Now the map∧d V → Hom(V,
∧d+1 V ) sending w to ϕw is linear, that is, the entries of the matrix

ϕw ∈ Hom(V,
∧d+1 V ) are homogeneous coordinates on P(

∧d V ). Thus the subset

P (G(d, n)) ⊂ P(
∧d V ) can be considered as the subvariety defined by the vanishing

of (n− d+ 1)× (n− d+ 1) minors of this matrix.

Unfortunately the equations we get by the above method do not generate the

homogeneous ideal of the Grassmannian. To work out this ideal we have to work a

bit further.

Lemma 1.11. [9, p.18-19] Let V be a vector space over k of dimension n with V ∗ as

the dual space. Let 0 < d < n be an integer. We have a nondegenerate pairing

d∧
V ×

n−d∧
V →

n∧
V ∼= k,

inducing an isomorphism

n−d∧
V ∼= (

d∧
V )∗ =

d∧
V ∗.

Thus, we can identify
∧d V naturally (up to scalar multiplication) with the exterior

power
∧n−d V ∗ of the dual space.

Now given w ∈ (
∧d V ) let w∗ be the corresponding vector in

∧n−d V ∗. This gives

us a linear map

ψw : V ∗ →
n−d+1∧

V ∗,

which sends v∗ tow∗ ∧ v∗. By the same argument w ∈
∧d V is totally decomposable

if and only if the map ψw has rank d.
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Moreover the kernel of ϕw is precisely the annihilator of the kernel of ψw. Take

the transpose maps

ϕt
w :

d+1∧
V ∗ → V ∗ and ψt

w :
n−d+1∧

V → V,

whose images annihilate each other. Thus, a vector w ∈ G(d, n) if and only if for

every pair α ∈
∧d+1 V ∗ and β ∈

∧n−d+1 V ,

Ξα,β(w) :=
〈
ϕt

w(α) , ψt
w(β)

〉
= ϕt

w(α)[ψt
w(β)] = 0.

The Ξα,β(w) are quadratic polynomials and they are called the Plücker relations.

It turns out that they do generate the homogeneous ideal of the Grassmannian. This

ideal is called the Plücker ideal.

Example 1.12. The ideal defining the Grassmannian G(2, 4).

As before let {e1, e2, e3, e4} be a basis for V . The canonical basis for
∧2 V is given

by:

B = {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}.

Also the natural basis for
∧3 V is given by

B1 = {e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4}.

If w =
∑
aijei ∧ ej, then ϕw : V →

∧3 V sending v to v ∧w is given by the following

matrix 
a23 −a13 a12 0

a24 −a14 0 a12

a34 0 −a14 a13

0 a34 −a24 a23

 .

Thus, the variety G(2, 4) is defined by the ideal I generated by all 3× 3 subdeter-

minants of the above matrix, namely by the entries of the matrix of the adjoint of the

above matrix.
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To find the homogeneous ideal defining G(2, 4) one observes that w ∈
∧2 V

where V is a vector space over field k, char (k) 6= 2, is totally decomposable if and

only if w ∧w = 0 and in the case when V ∼= k4 we get exactly one quadratic Plücker

relation.

Lemma 1.13. Let k be a field, char (k) 6= 2. Let V be a 4-dimensional vector space

over the field k. Then a vector w ∈
∧2 V is totally decomposable if and only if the

corresponding Plücker coordinates satisfy the relation x12x34 − x13x24 + x14x23 = 0.

Proof. Let w ∈
∧2 V be totally decomposable. Let w = v1 ∧ v2. Then

w ∧ w = v1 ∧ v2 ∧ v1 ∧ v2 = −v1 ∧ v2 ∧ v2 ∧ v1 = 0.

We can write w as

w = a12e1 ∧ e2 + a13e1 ∧ e3 + a14e1 ∧ e4 + a23e2 ∧ e3 + a24e2 ∧ e4 + a34e3 ∧ e4.

Then by simple computation we get

w ∧ w = 2(a12a34 − a13a24 + a14a23)e1 ∧ e2 ∧ e3 ∧ e4.

Thus w ∧ w = 0 implies that a12a34 − a13a24 + a14a23 = 0. Therefore, if w is totally

decomposable then it satisfies x12x34 − x13x24 + x14x23 = 0. Conversely, let

w = a12e1 ∧ e2 + a13e1 ∧ e3 + a14e1 ∧ e4 + a23e2 ∧ e3 + a24e2 ∧ e4 + a34e3 ∧ e4

be a vector satisfying

a12a34 − a13a24 + a14a23 = 0. (1.1)

Then w ∧ w = 0. Now we want to show that w is totally decomposable. For this we

consider the following different cases.

1. Suppose first that a12 6= 0, a13 6= 0. Then using equation 1.1 we can show that

w =

(
a12e1 +

a23a12

a13

e2 +
a23a14 − a13a24

a13

e4

)
∧
(
e2 +

a13

a12

e3 +
a14

a12

e4

)
.
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2. Let a12 = 0 = a13. Then equation 1.1 yields a14a23 = 0. So we have a14 = 0 or

a23 = 0 or both are zero. If in this case a14 = 0 = a23 we can write w as

w = a24e2 ∧ e4 + a34e3 ∧ e4 = (a24e2 + a34e3) ∧ e4.

If a14 = 0, a23 6= 0 then we can decompose w as

w = (a23e2 − a34e4) ∧
(
e3 +

a24

a23

e4

)
.

If a14 6= 0, a23 = 0, w can be written as

w = (a14e1 + a24e2 + a34e3) ∧ e4.

So w is totally decomposable.

3. If a12 = 0, a13 6= 0, equation 1.1 gives us that a13a24 = a14a23 and w can be

decomposed as

w = (a13e1 + a23e2 − a34e4) ∧
(
e3 +

a14

a13

e4

)
.

4. If a13 = 0, a12 6= 0, equation 1.1 gives us that a12a34 = −a14a23 and w in this

case can be decomposed as

w = (a12e1 − a23e3 − a24e4) ∧
(
e2 +

a14

a12

e4

)
.

Thus we see that in all the cases w is totally decomposable.

1.1.6 An affine covering of the Grassmannian

Abstractly the Grassmannian G(d, n) can be considered as a union of open sets each

isomorphic to the affine space Ad(n−d). To see this, let Γ ⊂ V be a fixed subspace of V

of dimension n−d. Let {ei1 , . . . , ein−d
} be a basis for Γ. Let λ = P (Γ) = ei1∧· · ·∧ein−d

be the image of Γ via the Plücker map P . We can view λ as a linear form on
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P(
∧d V ) as follows. For v ∈

∧d V define λ(v) := v ∧ λ ∈
∧n V ∼= k. We can check

that whether λ(v) is zero or not is well defined and writing everything in terms of

coordinates we get that λ is a homogeneous polynomial of degree 1. We then get the

affine variety

UΓ = [P(
d∧
V )− Z(λ)] ∩G(d, n)

= {P (K) |K ∈ G(d, n), P (K) ∧ λ 6= 0 }.

Now P (K) ∧ λ 6= 0 means that K is spanned by d elements none of which is linearly

dependent with ei1 , . . . , ein−d
. So we can find a basis of V with first d elements span-

ning K and the remaining elements spanning Γ. Therefore V = K
⊕

Γ. Conversely

suppose that V = K
⊕

Γ. Then we have such a basis for K as these basis vectors

together with ei1 , . . . , ein−d
are linearly independent. So, P (K) ∧ λ 6= 0.

Proposition 1.14. Let Γ ⊂ V be a fixed subspace of dimension n − d. Fix a sub-

space K0 of V such that V = Γ ⊕ K0. Then in the above notations, UΓ is given

by

UΓ
∼= Hom (K0,Γ) ∼= kd(n−d).

Proof. For ϕ ∈ Hom(K0,Γ) we associate to it its graph {(t, ϕ(t)) | t ∈ K0} which is

a d-dimensional subspace of V . Also given K ∈ G(d, n) such that K ⊕Γ = V we can

see that K arises as a graph of some ϕ ∈ Hom(K0,Γ). If w ∈ K0 there exists unique

u ∈ Γ such that (w, u) ∈ K. Then we define ϕ(w) = u. Thus we can identify the

set UΓ with Hom (K0,Γ). Moreover, the identification UΓ
∼= Hom (K0,Γ) ∼= kd(n−d)

respects the Zariski topology, i.e.,

UΓ
∼= Hom (K0,Γ) ∼= Ad(n−d).

We now see this condition in terms of coordinates. Let {e1, e2, . . . , en} be a basis

for V ∼= kn and let Γ be spanned by {ed+1, . . . , en}. Then if K ∈ UΓ and if K has basis
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{v1, . . . , vd} with vj =
∑n

i=1 aijej, then the first d × d minors of the matrix (aij) are

nonzero. As P (K) does not depend on the choice of the basis, the basis {v1, . . . , vd}

may be chosen so that the matrix (aij) has the form

(aij) =



1

1
. . .

1

b1,1 . . . b1,d

...
...

...

bn−d,1 . . . bn−d,d


.

Thus, any K ∈ UΓ can be represented as the column space of the unique matrix of the

above form, the entries bi,j of this matrix give the bijection between UΓ and kd(n−d).

Corollary 1.15. The dimension of the Grassmannian G(d, n) is d(n− d).

Proof. Since the Grassmannian G(d, n) can be covered by open sets isomorphic to

the affine space Ad(n−d), an immediate consequence is that

dim(G(d, n)) = d(n− d).

1.2 The number of points in G(d, n)(Fq)

Let k be a perfect field. The Galois Group Γ = Gal(k/k) acts on the projective space

Pn(k) as follows. For σ ∈ Γ and (a0 : a1 : · · · : an) ∈ Pn(k), we define

σ(a0 : · · · : an) = (σ(a0) : · · · : σ(an)).
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The action is well defined since ∀λ ∈ k∗ we have

σ(λa0 : · · · : λan) = (σ(λa0) : · · · : σ(λan))

= (σ(λ)σ(a0) : · · · : σ(λ)σ(an))

= σ(a0 : · · · : an).

One can easily verify that

1. Id(a0 : · · · : an) = (a0 : · · · : an),

2. σ1σ2(a0 : · · · : an) = σ1(σ2(a0 : · · · : an)).

Lemma 1.16. The Galois group Γ = Gal(k/k) acts on Pn(k) and the fixed points are

precisely the points in Pn(k) i.e.

{u = (a0 : · · · : an) ∈ Pn(k̄) | σ(u) = u, ∀ σ ∈ Γ} = Pn(k).

Proof. Suppose that for σ ∈ Γ,

σ(a0 : · · · : an) = (a0 : · · · : an).

Then for every σ there is a λσ such that

σ(ai) = λσai, i = 0, · · · , n.

Without loss of generality let a0 6= 0. Then for σ ∈ Γ we have

σ(ai) =
σ(a0) · ai

a0

for i = 0, 1, · · · , n.

Therefore, we have
ai

a0

= σ

(
ai

a0

)
,∀σ ∈ Γ,

that is,
ai

a0

∈ k ∀i = 0, · · · , n.
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So we get

(a0 : a1 : · · · : an) = (1 : a1/a0 : · · · : an/a0) ∈ Pn(k).

Thus, the Galois group Γ = Gal(k̄/k) acts on Pn(k̄) and the fixed points are

precisely the points in Pn(k).

On similar lines we will now consider the action of the Galois group on the Grass-

mannian G(d, n) and use that to calculate the number of points of G(d, n)(Fq).

1.2.1 Action of the Galois group on the Grassmannian

Without loss of generality suppose that the n-dimensional vector space V is (k)n.

Then G(d, n) is the collection of all d-dimensional subspaces of (k̄)n and Γ = Gal(k̄/k)

acts on it as follows. For U ∈ G(d, n) and σ ∈ Γ define

σ(U) = {σ(x1, x2, . . . , xn) | (x1, . . . , xn) ∈ U},

where,

σ(x1, x2, . . . , xn) = (σ(x1), . . . , σ(xn)).

It is easy to verify that if U has a basis {v1, v2, . . . , vd} then σ(U) is again a d-

dimensional subspace of (k̄)n with a basis {σ(v1), . . . , σ(vd)}. We therefore get an

action of Γ on G(d, n)(k̄). We can also think of G(d, n) as embedded in the projective

space PN = P(
∧d V ) via the Plücker map P : G(d, n) → PN and we may consider the

action of Γ on it as induced by the action on the projective space. Note that the two

actions of Γ on G(d, n) are compatible, this means, for σ ∈ Γ, U ∈ G(d, n), we have,

σ(P (U)) = P (σ(U)).

Definition 1.17. We say that U ∈ G(d, n) is Γ-invariant if σ(U) = U for all σ ∈ Γ.

Lemma 1.18. A subspace U ∈ G(d, n)(k̄) is Γ-invariant if and only if U has a

basis {w1, w2, . . . , wd} with each wi ∈ kn.
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Proof. Clearly if the subspace U has a basis {w1, w2, . . . , wd} with each wi ∈ kn

then U is Γ-invariant. Now let U be a d- dimensional subspace of V spanned by the

vectors {v1, v2, · · · , vd} such that σ(U) = U, ∀ σ ∈ Γ. We prove that there is a basis

{w1, w2, . . . , wd} of U such that

∀σ ∈ Γ , σ(wi) = wi, i = 1, 2, · · · , d.

As σ(U) = U, ∃A(σ) ∈ GL(d, k̄) such that

σ

( v1
v2

...
vd

)
= A(σ)

( v1
v2

...
vd

)
.

Then we have,

A(στ)

( v1
v2

...
vd

)
= σ

[
τ

( v1
v2

...
vd

)]
= σ

[
A(τ)

( v1
v2

...
vd

)]

= σ[A(τ)]σ

( v1
v2

...
vd

)
= σ[A(τ)]A(σ)

( v1
v2

...
vd

)
.

So we have A(σ τ) = [σA(τ)]A(σ), i.e., {A(σ)} is a 1-cocycle and using the result that

H1(Γ, GL(n, k)) is the identity [18, p.159] we get that the 1-cocycle {A(σ)} splits.

Therefore, there exists B ∈ GL(d, k̄) such that B = (σB)A(σ). Now let( w1
w2

...
wd

)
= B

( v1
v2

...
vd

)
.

Then we have( w1
w2

...
wd

)
= B

( v1
v2

...
vd

)
= (σB) ·A(σ)

( v1
v2

...
vd

)
= (σB) ·σ

( v1
v2

...
vd

)
= σ

[
B

( v1
v2

...
vd

)]
= σ

( w1
w2

...
wd

)
.

So for all σ ∈ Γ , σ(wi) = wi , i = 1, 2, · · · d, which implies that U has a basis

{w1, w2, · · · , wd} with wi ∈ kn ( as (k̄)Γ = k).

We now use these results to calculate the cardinality of G(d, n)(Fq).
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Proposition 1.19. The number of points of G(d, n)(Fq) is given by

|G(d, n)(Fq)| =
f(n)

f(d) · f(n− d) · qd(n−d)
.

where f(n) = (qn − 1)(qn − q) · · · (qn − qn−1).

Proof. Let k = Fq. Then we have | G(d, n)(k) | = | [G(d, n)(k)]
Γ | which is the

number of d-dimensional subspaces of (k)n that are Γ- invariant. Let J denote the

collection of all ordered bases {v1, v2, . . . , vd} with each vi ∈ kn. Then J defines

an open subset of (kn)d. By Lemma 1.18 it follows that to compute the number of

subspaces which are Γ-invariant one can compute the number of elements of J and

take into account how many different ordered bases give rise to the same element of

G(d, n). Let U ∈ G(d, n). The cardinality of G(d, n)(Fq) is given by

number of points of J

number of ordered bases for each U
.

The number of ordered bases for each U is |GL(d, k)|. So we get

|G(d, n)(Fq)| =
|J |

|GL(d, k)|
.

Now we find |J |. The general linear group GL(n, k) = Aut(kn) acts naturally on J

and the action is transitive. The stabilizer of X = {e1, . . . , ed} has the block matrix

of the form Id ∗

0 GL(n− d, k)

 .

Hence,

|J | = |GL(n, k)|
|stabilizer(X)|

=
1

qd(n−d)
· |GL(n, k)|
|GL(n− d, k)|

.

Then we have

|G(d, n)(Fq)| =
|GL(n,Fq)|

|GL(d,Fq)| · |GL(n− d,Fq)| · qd(n−d)
=

f(n)

f(d) · f(n− d) · qd(n−d)
,

where f(n) = (qn − 1)(qn − q) · · · (qn − qn−1).
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1.2.2 The Zeta function of the Grassmannian

Let X be a smooth projective variety over k = Fq. The Zeta function of X is defined

by

Z(X, t) := exp

(
∞∑

r=1

Nr.
tr

r

)
∈ Q[[t]],

where Nr is the number of points of X defined over Fqr . Let X be a non-singular

projective variety of dimension n. Then the Weil conjectures [8, Appendix C], proven

by Deligne and Dwork, concerning Z(X, t) are:

1. Rationality : Z(X, t) is a rational function in t.

2. Functional equation : Z(X, t) satisfies the functional equation namely,

Z

(
X,

1

qnt

)
= ±q

nE
2 tEZ(X, t),

where E is the Euler characteristic of X which can be defined as the self inter-

section number of the diagonal 4 ⊂ X ×X.

3. Riemann hypothesis : We can write

Z(X, t) =
P1(t) · P3(t) · · ·P2n−1(t)

P0(t) · P2(t) · · ·P2n(t)
,

where P0(t) = 1 − t, P2n(t) = 1 − qnt and for each 1 ≤ i ≤ 2n − 1, Pi(t) is a

polynomial with integer coefficients which can be written as

Pi(t) =

bi∏
j=1

(1− ωijt),

where ωij are algebraic integers with |ωij| = qi/2. Given Z(X, t), these condi-

tions uniquely determine the polynomials Pi(t).

4. Cohomological interpretation: Define the i-th Betti number bi of X as

the degree of the polynomial Pi(t) where Pi(t) is as in 3. Then we have the
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Euler characteristic, E =
∑

(−1)ibi. Suppose now that X is obtained from a

variety Y defined over an algebraic number ring R, by reduction modulo a prime

ideal p of R. Then bi is equal to the i-th Betti number of the topological space

Yh = Y ⊗R C, i.e., bi is the rank of the singular cohomology group H i(Yh; Z).

As seen before, the Grassmannian G(d, n) can be embedded into the projective

space P(
∧d V ) via the Plücker map. Recall that G(d, n) can be covered by open affine

spaces of dimension d(n−d), so it is a smooth projective variety of dimension d(n−d)

which may be considered over any finite field Fq. We now calculate the Zeta function

of some Grassmannians over Fq. We will also see the rationality of the Zeta function

and the functional equation in a few examples.

Example 1.20. Projective space G(1, n+ 1) = Pn. One has

|Pn(Fq)| = 1 + q + q2 + · · ·+ qn,

and so,

Nr = |Pn(Fqr)| = 1 + qr + q2r + · · ·+ qnr,

Z(t) := Z(Pn
Z ⊗ Fq, t) = exp

(
∞∑

r=1

(1 + qr + · · ·+ qnr)
tr

r

)
.

Taking logarithm on both sides and using the formula : ln(1−t) = −t−t2/2−t3/3−. . . ,

we get,

ln[Z(t)] =
∞∑

r=1

(1 + qr + ....+ qnr)
tr

r

= − ln(1− t)− ln(1− qt)− · · · − ln(1− qnt).

= − ln[(1− t) · · · (1− qnt)].

It follows that

Z(Pn
Z ⊗ Fq, t) =

1

(1− t)(1− qt) · · · (1− qnt)
.
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We see that Pi(t) = 1 for all odd i and P2i(t) = 1 − qit for i = 0, 1, 2, · · · , n. The

degree of Pi(t) is zero for i odd and 1 for i even; odd Betti numbers are zero and the

even Betti numbers are equal to 1. The Euler characteristic is E =
∑
bi = n+1. We

now verify the functional equation

Z

(
Pn

Z ⊗ Fq,
1

qnt

)
=

1

(1− 1/qnt)(1− q/qnt) · · · (1− qn/qnt)

=
qnt · qn−1t · · · qt · t

(1− t)(1− qt) · · · (1− qnt)

= qn(n+1)/2 · tn+1

= qn·E/2 · tE · Z(Pn ⊗ Fq, t).

Thus, the functional equation is verified. Also note that the numbers b0, b1, · · · bn
match with the Betti numbers of the complex projective space Pn(C) and the number

E = n+ 1 matches with the Euler characteristic of Pn(C).

Example 1.21. The Grassmannian G(2, 4)⊗Fq. By the general formula, the dimen-

sion of G(2, 4) is 4. We first calculate Nr. By Proposition 1.19,

|G(2, 4)(Fq)| =
(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)

(q2 − 1)2(q2 − q)2q4

= (q2 + 1)(q2 + q + 1) = 1 + q + 2q2 + q3 + q4,

and so

Nr = 1 + qr + 2q2r + q3r + q4r.

It follows that

Z(G(2, 4)⊗ Fq, t) = exp

(
∞∑

r=1

(1 + qr + 2q2r + q3r + q4r)
tr

r

)
=

1

(1− t)(1− qt)(1− q2t)2(1− q3t)(1− q4t)
.

We see that Z(t) is a rational function in t. The polynomial Pi(t) = 1 for all odd i. We

have, P0(t) = 1−t, P2(t) = 1−qt, P4(t) = (1−q2t)2, P6(t) = 1−q3t, P8(t) = 1−q4t.
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The Betti numbers bi are zero for all odd i and b0 = 1, b2 = 1, b4 = 2, b6 = 1, b8 = 1.

The Euler characteristic E =
∑
bi = 6. We now verify the functional equation for

X = G(2, 4)⊗ Fq

Z

(
X,

1

q4t

)
=

1

(1− 1/q4t)(1− q/q4t)(1− q2/q4t)2(1− q3/q4t)(1− q4/q4t)

= q4t · q3t · (q2t)2 · qt · t · Z(X, t)

= q12 · t6 · Z(X, t)

= qnE/2tE · Z(X, t),

and the functional equation is verified.

Example 1.22. The Grassmannian G(2, 5)⊗ Fq. We have

|G(2, 5)(Fq)| =
(q5 − 1)(q5 − q)(q5 − q2)(q5 − q3)(q5 − q4)

(q2 − 1)(q2 − q)(q3 − 1)(q3 − q)(q3 − q2)q6

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6,

and so,

Nr = 1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r.

It follows that

Z(G(2, 5)⊗ Fq, t) = exp

(
∞∑

r=1

(1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r)
tr

r

)
,

and by similar calculations we get

Z(G(2, 5)⊗ Fq, t) =
1

(1− t)(1− qt)(1− q2t)2(1− q3t)2(1− q4t)2(1− q5t)(1− q6t)
.

1.2.3 The general case G(d, n)⊗ Fq

By proposition 1.19 we get

Nr = |G(d, n)(Fqr)|

=
(qnr − 1)(qnr − qr) · · · (qnr − q(n−1)r)

(qdr − 1) · · · (qdr − q(d−1)r) · (q(n−d)r − 1) · · · (q(n−d)r − q(n−d−1)r) · qrd(n−d)
.
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For simplicity set qr = l. So we have

Nr =
(ln − 1)(ln − l) · · · (ln − ln−1)

(ld − 1) · · · (ld − ld−1) · (ln−d − 1) · · · (ln−d − ln−d−1) · ld(n−d)

Multiplying and dividing by ld(n−d) and simplifying we get

Nr =
(ln − 1)(ln−1 − 1) · · · (ln−d+1 − 1)

(ld − 1)(ld−1 − 1) · · · (l − 1)
.

This is the usual Gaussian binomial coefficient or l-binomial coefficient
(

n
d

)
l

and it can be interpreted as a polynomial in l. To be more precise(
n

d

)
l

=

d(n−d)∑
i=0

bil
i.

where the coefficient bi of li is the number of distinct partitions of i elements that

fit inside a rectangle of size d × (n− d). For a detailed discussion on the Gaussian

binomial coefficient refer to [1, section 13.5]. We illustrate this with examples.

Example 1.23. Find the Gaussian binomial coefficient
(
4
2

)
l
.

Suppose
(
4
2

)
l
= b0 + b1l + b2l

2 + b3l
3 + b4l

4. We summarize the number of partitions

of i for i = 0, 1, 2, 3, 4 in the following table.

i admissible partitions of i bi = number of admissible partitions

0 { } 1

1 {1} 1

2 {{2}, {1, 1}} 2

3 {2, 1} 1

4 {2, 2} 1

Hence we get (
4

2

)
l

= 1 + l + 2l2 + l3 + l4,

i.e., Nr = 1+qr+2q2r+q3r+q4r. Note that this calculation matches with the calculation

done before while calculating the Zeta function of G(2, 4)⊗ Fq.
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Example 1.24. Find the Gaussian binomial coefficient
(
5
2

)
l
.

Suppose
(
5
2

)
l
= b0 + b1l+ b2l

2 + b3l
3 + b4l

4 + b5l
5. We summarize the number of allowed

partitions of i for i = 0, 1, 2, 3, 4, 5, 6 in the following table

i admissible partitions of i bi = number of admissible partitions

0 {} 1

1 {1} 1

2 {{2}, {1, 1}} 2

3 {{2, 1}, {1, 1, 1}} 2

4 {{2, 2}, {2, 1, 1}} 2

5 {{2, 2, 1}} 1

6 {{2, 2, 2}} 1

Hence we have

(
5

2

)
l

= 1 + l + 2l2 + 2l3 + 2l4 + l5 + l6,

i.e., Nr = 1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r. Again this calculation matches with

the calculation done before while calculating the Zeta function of G(2, 5)⊗ Fq.

Example 1.25. Find the Gaussian binomial coefficient
(
6
3

)
l
.

Suppose

(
6

3

)
l

= b0 + b1l + b2l
2 + b3l

3 + b4l
4 + b5l

5 + b6l
6 + b7l

7 + b8l
8 + b9l

9.

We summarize the number of allowed partitions of i for i = 0, 1, . . . , 9 in the following

table
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i admissible partitions of i bi = number of admissible partitions

0 {} 1

1 {1} 1

2 {{2}, {1, 1}} 2

3 {{3}, {2, 1}, {1, 1, 1}} 3

4 {{3, 1}, {2, 2}, {2, 1, 1}} 3

5 {{2, 2, 1}, {3, 2}, {3, 1, 1}} 3

6 {{2, 2, 2}, {3, 2, 1}, {3, 3}} 3

7 {{3, 2, 2}, {3, 3, 1}} 2

8 {{3, 3, 2}} 1

9 {{3, 3, 3}} 1

Hence we get(
6

3

)
l

= 1 + l + 2l2 + 3l3 + 3l4 + 3l5 + 3l6 + 2l7 + l8 + l9,

i.e., Nr = 1 + qr + 2q2r + 3q3r + 3q4r + 3q5r + 3q6r + 2q7r + q8r + q9r.

Now we consider the general case. Regarding l as a formal variable, it is possible

to express the coefficient Nr of any Grassmannian G(d, n)⊗ Fq as

Nr =

d(n−d)∑
i=0

bil
i.

where bi = bi(d, n, l) can be found as explained before and the Zeta function of the

Grassmannian then comes out to be

Z(G(d, n)⊗ Fq, t) =
1

(1− t)b0(1− qt)b1 · · · (1− qd(n−d)t)bd(n−d)
.

From this we observe that all the odd Betti numbers of the Grassmannians are zero.

As we shall see in section 1.4.3, the numbers bi here are the even topological Betti num-

bers of the complex Grassmannian X(C) = G(d, n)(C) , i.e., bi = dim H2i(X(C),Z).

The odd Betti numbers of X(C) are zero.
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1.2.4 Euler characteristic of the Grassmannian

Consider the Grassmannian G(d, n). As seen in the last section, the odd Betti num-

bers of the Grassmannian are zero and the even Betti numbers are related to the

Gaussian binomial coefficient by (
n

d

)
l

=

d(n−d)∑
i=0

bil
i.

Putting l = 1 in the above expression we immediately get the Euler characteristic of

the Grassmannian as

E =

d(n−d)∑
i=0

bi =

(
n

d

)
1

.

Referring to [1] section 13.5, Theorem 1, the Gaussian binomial coefficient
(

n
d

)
1

is the

usual binomial coefficient
(

n
d

)
. Hence the Euler characteristic of G(d, n) is

(
n
d

)
.

1.3 Schubert calculus

Let GP(d, n) be the set of all d-dimensional subspaces (or d-planes) of the n dimen-

sional complex projective space Pn i.e. in our old notation, GP(d, n) = G(d+1, n+1).

Now onwards we always refer to the projective space Pn over the complex numbers C.

Let N =
(

n+1
d+1

)
− 1. As seen before there is a natural way of associating a point of PN

to a d-plane L ∈ GP(d, n) and the coordinates of L regarded as elements of PN are

called the Plücker coordinates. This embedding of GP(d, n) into PN makes it into a

manifold of dimension (d+ 1)(n− d). The Schubert Calculus describes the cohomol-

ogy ring of GP(d, n) say with integer coefficients when the base field is C. The subject

started with a typical enumerative problem: How many lines in 3-space in general,

intersect 4 given lines? The answer to this question lies in finding the degree of some

Schubert cycles. The fundamental theorem of Schubert calculus also helps under-

stand the generalization of Bézout’s theorem. We now develop important notions of

the subject.
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1.3.1 Schubert conditions and Schubert varieties.

We are interested in finding a necessary and sufficient condition for a d-plane in the

projective space Pn to intersect a given sequence of linear spaces of Pn in a prescribed

way. Let A : A0 ⊂ A1 ⊂ · · · ⊂ Ad be a strictly increasing sequence of d + 1 linear

spaces of Pn. Such a sequence is called a flag. Let dimAi = ai for each i. If we take Ai

to be consisting of all points in Pn of the form (x0 : x1 : · · · : xi : 0 : 0 : 0 : · · · : 0) then

we call A the standard flag.

Definition 1.26. A d-plane L in Pn is said to satisfy the Schubert condition

defined by the flag A if dim(Ai

⋂
L) ≥ i for all i = 0, 1, · · · , d.

Thus a d-plane satisfying the Schubert conditions with respect to the flag A in-

tersects A0 at least in a point, A1 at least in a line etc., and it lies in Ad. It can be

seen that the condition dim(Ai

⋂
L) ≥ i for i = 0, · · · , d is satisfied if and only if the

Plücker coordinates of the d-plane L satisfy certain linear relations in addition to the

quadratic relations. Indeed the collection of all such planes defines a variety. For the

proof of this refer to [12, p.1066-1070].

Definition 1.27. The collection of all d-planes in GP(d, n) satisfying the Schubert

condition with respect to a given flag A defines a projective variety. It is known as

the Schubert variety Ω(A) corresponding to the flag A.

In fact this variety is the intersection of a linear subspace of Pn with GP(d, n).

The dimension of the Schubert variety Ω(A) with A as above is
∑d

i=0(ai− i). For the

proof of this fact refer to [12, p.1071].

Example 1.28. Let A0 be a line in P3. Let A1 = P3. Let A : A0 ⊂ A1 = P3 be a

flag in P3. Then Ω(A) is the set of all lines L in P3 such that dim(L ∩ A0) ≥ 0 and

dim(L ∩ P3) ≥ 1. As L ∩ P3 = L, the second condition is automatically satisfied and

Ω(A) is the set of all lines L in P3 that intersect the line A0.
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Example 1.29. Suppose that dim(Ai) = i ∀i = 0, 1, · · · , d. Then Ω(A) consists of

the single d-plane Ad.

Example 1.30. Suppose that dim(Ai) = i ∀i = 0, 1, · · · , d−1. Let dim(Ad) = d+r.

Then Ω(A) consists of all d-dimensional subspaces of GP(d, n) which contain Ad−1 and

which are contained in Ad and such a set is isomorphic to Pr.

Example 1.31. Suppose that dim(Ai) = n−d+i ∀i = 0, 1, · · · , d. Then, the Schubert

variety Ω(A) is GP(d, n).

1.3.2 Some cohomology theory for a topological space and

Schubert cycles

We recall some singular homology theory. For the details of the subject one can refer

to [10, Chapters 2 and 3]. An n-simplex is the smallest convex set in Rm containing

n + 1 points v0, v1, . . . , vn that do not lie in a hyperplane of dimension less than n.

The points vi are the vertices of the simplex, and the simplex itself will be denoted

by [v0, · · · , vn]. The standard n simplex is given by

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑

i

ti = 1, ti ≥ 0 ∀ i}.

A singular n-simplex in a topological space X is a continuous map σ : ∆n → X.

Let Cn(X) be the free abelian group with basis consisting of the set of all singu-

lar n-simplices in X. Elements of Cn(X) are called singular n-chains. These are

formal sums
∑

i ni σi, ni ∈ Z, almost all zero and σi : ∆n → X. The boundary

of the n-simplex [v0, · · · , vn] consists of the various (n − 1)-dimensional simplices

[v0, . . . , v̂i, . . . , vn], where the symbol hat over vi indicates that this vertex is deleted

from the sequence v0, · · · , vn. The boundary map ∂n : Cn(X) → Cn−1(X) is defined

by

∂n(σ) =
∑

i

(−1)i σ| [v0, . . . , v̂i, . . . , vn].
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We have ∂n · ∂n+1 = 0 and we define the n-th homology group of X by

Hn(X) = Ker ∂n/Im ∂n+1.

We now define the cohomology of a space.

Definition 1.32. Let X be a topological space and G be an abelian group. We

define the group Cn(X;G) of singular n-cochains with coefficients in G to be the dual

group Hom(Cn(X);G) of the singular chain group Cn(X). The coboundary map

δn : Cn(X;G) → Cn+1(X;G) is the dual of the map between n chains and we have

δn · δn−1 = 0. Elements of Ker δn are called n-cocycles and the elements of Im δn are

called n-coboundaries. We define the cohomology group Hn(X;G) as the quotient

Ker δn/Im δn−1.

Definition 1.33. Cup product: We consider the cohomology with coefficients in a

ring R (e.g. in Z). For cochains φ ∈ Ck(X;R), ψ ∈ C l(X,R), the cup product

φ ∪ ψ ∈ Ck+l(X;R) is the cochain whose value on a singular simplex σ : ∆k+l → X

is given by

(φ ∪ ψ)(σ) = φ(σ|[v0, . . . , vk]) ψ(σ|[vk . . . vk+l]).

The cup product of cochains is bilinear and associative. It can be shown that the cup

product of cochains induces a cup product of cohomology classes namely

Hk(X;R)×H l(X;R) → Hk+l(X;R).

This product is bilinear, associative and distributive since at the level of cochains the

product has these properties. If R has an identity element, there is an identity element

for the cup product. Note that the cup product is, in general, not commutative.

Instead it is anti-commutative. If φ ∈ Ck(X;R), ψ ∈ C l(X,R) then one has (in

cohomology)

φ ∪ ψ = (−1)klψ ∪ φ.
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Definition 1.34. Cap product: LetX be a topological space. Let R be the coefficient

ring. For for σ : ∆k → X and φ ∈ C l(X;R), k ≥ l, define an R-bilinear cap product

∩ : Ck(X;R)× C l(X;R) → Ck−l(X;R) by

σ ∩ φ = φ(σ|[v0, . . . , vl])σ|[vl, . . . , vk].

This induces a cap product in homology and cohomology namely

Hk(X;R)×H l(X;R) → Hk−l(X;R),

which is R-linear in each variable.

Definition 1.35. The cohomology ring: Define the cohomology ring H∗(X;R) as

the graded ring H∗(X;R) :=
⊕

n≥0H
n(X;R). Elements of H∗(X;R) are finite sums∑

i αi with αi ∈ H i(X;R). We define the product (
∑

i αi).(
∑

i βi) =
∑

i,j αi ∪ βj.

This makes H∗(X,R) into a ring with identity if R has identity.

Poincaré Duality: The Poincaré duality relates the homology and the cohomology

groups of a compact oriented triangulated n-manifold X in dimension k and n − k.

The cohomology groups form a graded ring with respect to cup product and the

homology groups form a module over the cohomology ring by means of cap product.

The canonical map H i(X;R) → Hn−i(X;R) taking α to α ∩ [X] is an isomorphism.

This map is called the Poincaré duality map. When X is a non-singular complex

projective variety of dimension n, it is an oriented real 2n-manifold and the group

H2n(X;R) has a canonical generator [X]. A closed subvariety V of dimension k of a

projective variety X determines a class [V ] in H2k(X;R) and, by Poincaré duality, we

have the class in H2c(X;R) = H2k(X;R), where c is codimension of V in X. Thus, if

X is smooth proper over C and V is a subvariety of codimension k then, there exists

associated to V a cohomology class η(Y ) ∈ H2k(X; Z). This map extends by linearity

to cycles.



34 Grassmann Varieties

Applying this to Schubert varieties we see that Ω(A) defines a cohomology class in

the cohomology ringH∗(GP(d, n); Z). The cohomology class of Ω(A) inH∗(GP(d, n); Z)

is called a Schubert cycle. Although the variety Ω(A) depends on the choice of the

flag A, it can be shown that [12, p. 1070] the cohomology class of Ω(A) depends only

on the integers ai = dimAi. So we denote the class of Ω(A) by Ω(a0, . . . , ad) = Ω(a)

where a is defined by integers ai = dimAi, 0 ≤ a0 < a1 < · · · < ad ≤ n.

We now state the fundamental theorem of Schubert calculus which asserts that

the Schubert cycles completely determine the cohomology of GP(d, n).

Theorem 1.36. The Basis Theorem (as stated in [12, p. 1071]) Considered addi-

tively, H∗(GP(d, n); Z) is a free abelian group and the Schubert cycles Ω(a0, . . . , ad)

form a basis. Each integral cohomology group H2p(GP(d, n); Z) is a free abelian group

and the Schubert cycles Ω(a) with [(d + 1)(n − d) −
∑d

i=0(ai − i)] = p form a basis.

Each cohomology group Hr(GP(d, n); Z), with r odd, is zero.

The Basis Theorem determines the additive structure of the cohomology ring

H∗(GP(d, n); Z). Since each odd cohomology group is zero we observe that the cup

product is commutative and the ring H∗(GP(d, n); Z) is a commutative ring.

To determine the multiplicative structure we need some combinatorics. Let bi

denote the i-th Betti number of GP(d, n), i.e. bi = rank
(
H i(GP(d, n); Z)

)
. By the

Basis Theorem, b2p is equal to the number of solutions in integers ai to the equation

[(d+ 1)(n− d)−
d∑

i=0

(ai − i)] = p where 0 ≤ a0 < a1 < · · · < ad ≤ n.

We now calculate the cohomology groups of some Grassmannians and find their

dimensions.

Example 1.37. The projective space Pn= GP(0, n). The dimension of Pn is n. Using

the Basis Theorem for p = 0, 1, . . . , n, H2p(Pn; Z) is one dimensional generated by the

Schubert cycle Ω(a0) such that n− a0 = p. In fact, Ω(a0) is a hyperplane of complex
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codimension n − a0. The cohomology group Hr(Pn; Z) is 0 for r odd. So all the odd

Betti numbers are zero and the even Betti numbers are equal to 1.

Example 1.38. The Grassmannian G(2, 4) = GP(1, 3). The dimension of G(2, 4)

is 4. For 0 ≤ p ≤ 4, H2p(GP(1, 3); Z) is generated by the Schubert cycle Ω(a0, a1)

such that 4 − [a0 + (a1 − 1)] = p i.e. a0 + a1 = 5 − p. For p = 0, the only integer

solution to a0 +a1 = 5 with a0 and a1 as in Schubert conditions is a0 = 2 and a1 = 3.

Hence, H0(GP(1, 3); Z) is generated by Ω(2, 3) and has dimension 1. We summarize

the calculations for the other cohomology groups in the following table.

p dim(H2p(GP(1, 3); Z)) generators

0 1 Ω(2, 3)

1 1 Ω(1, 3)

2 2 Ω(0, 3), Ω(1, 2)

3 1 Ω(0, 2)

4 1 Ω(0, 1)

Example 1.39. The Grassmannian G(2, 5) = GP(1, 4). The dimension of G(2, 5) is

6. For 0 ≤ p ≤ 6, H2p(GP(1, 4); Z) is generated by the cohomology class of Ω(a0, a1)

with 6− [a0 + (a1 − 1)] = p i.e. a0 + a1 = 7− p. For p = 0, the only integer solution

to a0 + a1 = 7 with a0 and a1 as in Schubert conditions is a0 = 3 and a1 = 4. We

summarize the calculations for other cohomology groups in the following table.
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p dim(H2p(GP(1, 4); Z)) generators

0 1 Ω(3, 4)

1 1 Ω(2, 4)

2 2 Ω(1, 4),Ω(2, 3)

3 2 Ω(0, 4),Ω(1, 3)

4 2 Ω(0, 3),Ω(1, 2)

5 1 Ω(0, 2)

6 1 Ω(0, 1)

Example 1.40. The Grassmannian G(3, 6) = GP(2, 5). The dimension of G(3, 6)

is 9. For 0 ≤ p ≤ 9, H2p(GP(1, 4); Z) is generated by the cohomology classes of

Ω(a0, a1, a2) with 9 − [a0 + (a1 − 1) + (a2 − 2)] = p i.e. a0 + a1 + a2 = 12 − p. For

p = 0, the only integer solution to a0 + a1 + a2 = 12 with a0, a1 and a2 as in Schubert

conditions is a0 = 3, a1 = 4 and a2 = 5. We summarize the calculations for other

cohomology groups in the following table.

p dim(H2p(GP(2, 5); Z)) generators

0 1 Ω(3, 4, 5)

1 1 Ω(2, 4, 5)

2 2 Ω(1, 4, 5),Ω(2, 3, 5)

3 3 Ω(0, 4, 5),Ω(1, 3, 5),Ω(2, 3, 4)

4 3 Ω(0, 3, 5),Ω(1, 2, 5),Ω(1, 3, 4)

5 3 Ω(0, 2, 5),Ω(0, 3, 4),Ω(1, 2, 4)

6 3 Ω(0, 1, 5),Ω(0, 2, 4),Ω(1, 2, 3)

7 2 Ω(0, 1, 4),Ω(0, 2, 3)

8 1 Ω(0, 1, 3)

9 1 Ω(0, 1, 2)
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1.3.3 Intersection theory of Schubert cycles

We now state without proof some important results for computing the products of

Schubert cycles. The Basis Theorem says that the Schubert cycles, i.e. the coho-

mology classes of Schubert varieties, form an additive basis for the cohomology ring.

Moreover the product of any two Schubert cycles can be uniquely expressed as a

linear combination of Schubert cycles with integer coefficients.

Proposition 1.41. [12, p.1071] Let m = dimGP(d, n) = (d + 1)(n − d). The basis

{Ω(a0, . . . , ad) | m− dim Ω(a0, . . . , ad) = p } of H2p(GP(d, n); Z) and the basis

{Ω(n− ad, . . . , n− a0) | m− dim Ω(n− ad, . . . , n− a0) = n− p}

of H2(m−p)(GP(d, n); Z) are dual under the Poincaré duality pairing (v, w) → deg(v.w).

The Schubert cycles Ω(a0, · · · , ad) and Ω(n − ad, · · · , n − a0) are called dual

cycles.

Corollary 1.42. [12, p.1071] Let v ∈ H2p(GP(d, n); Z). Then v can be written

uniquely as

v =
∑

δ(n− ad, . . . , n− a0)Ω(a0, . . . , ad),

where δ(n− ad, . . . , n− a0) = deg(v.Ω(n− ad, . . . , n− a0)) is an integer.

Definition 1.43. The special Schubert cycles of the Grassmannian GP(d, n) are

defined by

σ(h) = Ω(h, n− d+ 1, . . . , n), for h = 0, . . . , (n− d).

Example 1.44. The special Schubert cycles of GP(1, 3) are

σ(0) = Ω(0, 3), σ(1) = Ω(1, 3), σ(2) = Ω(2, 3).
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Example 1.45. The special Schubert cycles of GP(2, 5) are

σ(0) = Ω(0, 4, 5), σ(1) = Ω(1, 4, 5), σ(2) = Ω(2, 4, 5), σ(3) = Ω(3, 4, 5).

Giambelli’s Formula (Determinantal Formula) [12, p.1073] : Suppose that

0 ≤ a0 < · · · < ad ≤ n is a sequence of integers. Then the following formula holds in

H∗(GP(d, n); Z):

Ω(a0, . . . , ad) =

∣∣∣∣∣∣∣∣∣
σ(a0) . . . σ(a0 − d)

...
...

...

σ(ad) . . . σ(ad − d)

∣∣∣∣∣∣∣∣∣ ,

where σ(h) = 0 for h /∈ [0, (n− d)].

Example 1.46. In GP(1, 3) consider the Schubert cycle Ω(1, 2). Using Giambelli’s

Formula we have

Ω(1, 2) =

∣∣∣∣∣∣ σ(1) σ(0)

σ(2) σ(1)

∣∣∣∣∣∣ = σ(1)2 − σ(2) · σ(0).

Giambelli’s Formula together with the Basis Theorem implies that every coho-

mology class is equal to a linear combination of products of special Schubert cycles

i.e. the special Schubert cycles generate the cohomology ring H∗(GP(d, n); Z) as a

Z-algebra. Moreover, Giambelli’s Formula reduces the problem of determining the

product of arbitrary Schubert cycles to finding the product of special Schubert cycles.

Pieri’s Formula [12, p.1073] : Let 0 ≤ a0 < · · · < ad ≤ n be any sequence of inte-

gers. Then for h = 0, . . . , (n − d) we have the following formula for the product in

the cohomology ring H∗(GP(d, n); Z) :

Ω(a0, . . . , ad) . σ(h) =
∑

Ω(b0, . . . , bd),

where the sum ranges over all sequences of integers b0 < · · · < bd satisfying conditions

0 ≤ b0 ≤ a0, a0 < b1 ≤ a1, · · · , ad−1 < bd ≤ ad and
∑d

i=0 bi =
∑d

i=0 ai− (n−d−h).
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Example 1.47. We compute the product of Schubert cycles in GP(1, 3) and hence

describe the cohomology ring H∗(GP(1, 3); Z) as a Z- algebra. By Giambelli’s Formula

and the Basis Theorem we know that H∗(GP(1, 3); Z) is generated by special Schubert

cycles {σ(0), σ(1), σ(2)} as a Z-algebra. One observes that σ(2) acts as identity. So

we can express H∗(GP(1, 3); Z) as Z[σ(0), σ(1)] with some relations. To find these

relations we first compute the products of special Schubert cycles.

1. σ(0)2 = Ω(0, 3) · σ(0). By Pieri’s formula we have σ(0)2 =
∑

Ω(b0, b1) where

b0 < b1 are distinct integers satisfying, 0 ≤ b0 ≤ 0, 0 < b1 ≤ 3 and we have

b0 + b1 = 3− (2− 0) = 1. Therefore σ(0)2 = Ω(0, 1).

2. σ(1)2 = Ω(1, 3) · σ(1). By Pieri’s formula we have σ(1)2 =
∑

Ω(b0, b1) where

b0 < b1 are distinct integers satisfying, 0 ≤ b0 ≤ 1, 1 < b1 ≤ 3 and we have

b0 + b1 = 4− (2− 1) = 3. So σ(1)2 = Ω(0, 3) + Ω(1, 2).

3. σ(0) · σ(1) = Ω(0, 3) · σ(1) =
∑

Ω(b0, b1) where b0 < b1 are distinct integers

satisfying 0 ≤ b0 ≤ 0, 0 < b1 ≤ 3, b0 + b1 = 3 − (2 − 1) = 2. Therefore the

product σ(0) · σ(1) = Ω(0, 2).

4. Ω(1, 2) · σ(1) =
∑

Ω(b0, b1) where b0 < b1 are distinct integers satisfying the

relations 0 ≤ b0 ≤ 1, 1 < b1 ≤ 2, b0 + b1 = 3 − (2 − 1) = 2. Therefore the

product Ω(1, 2).σ(1) = Ω(0, 2).

Computing in a similar way we can summarize the products of special Schubert cycles

in GP(1, 3) in the following table

• σ(0) σ(1) σ(2)

σ(0) Ω(0, 1) Ω(0, 2) Ω(0, 3)

σ(1) Ω(0, 2) Ω(0, 3) + Ω(1, 2) Ω(1, 3)

σ(2) Ω(0, 3) Ω(1, 3) Ω(2, 3)
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We compute some more products

1. Ω(1, 2) · σ(0) =
∑

Ω(b0, b1) where b0 < b1 are distinct integers satisfying the

conditions 0 ≤ b0 ≤ 1, 1 < b1 ≤ 2, b0 + b1 = 3 − (2 − 0) = 1. We can’t find

integers b0, b1 satisfying these conditions. Hence the product Ω(1, 2) · σ(0) = 0.

2. Ω(1, 2) · Ω(1, 2). By Giambelli’s formula we have Ω(1, 2) = σ(1)2 − σ(2) · σ(0).

So Ω(1, 2) · Ω(1, 2) = Ω(1, 2)[σ(1)2 − σ(0)].

Again using Pieri’s formula we get

Ω(1, 2) · Ω(1, 2) = Ω(0, 2) · σ(1)− Ω(1, 2) · σ(0) = Ω(0, 1)− 0 = Ω(0, 1).

We have now enough information to describe the relations between the generators.

By the Basis Theorem we can write

H∗(GP(1, 3); Z) = H0 ⊕H2 ⊕H4 ⊕H6 ⊕H8

= Zw0 ⊕ Zw2 ⊕ (Zw4 ⊕ Zw4′)⊕ Zw6 ⊕ Zw8

where w0 = Ω(2, 3) = σ(2), w2 = Ω(1, 3) = σ(1), w4 = Ω(0, 3) = σ(0),

w4′ = Ω(1, 2) = σ(1)2−σ(0)·σ(2), w6 = Ω(0, 2) = σ(1)σ(0), w8 = Ω(0, 1) = σ(0)2. In

this new notation each wi is of weight i i.e. each wi is a class in H i. In order to find

all possible relations we have to compute the products in all weights. So we have to

compute the products w2
2, w

3
2, w

4
2, w2w4, w2w4′ , w2w6, w

2
4, w4w4′ , w4w

2
2, w

2
4′ , w4′w

2
2.

Also we have relations wiwj = 0 for i + j > 8. Then referring to the computation

done above, we have the following relations

w2
2 = w4 + w4′ , w2w4 = w6, w2w4′ = w6, w2

4 = w8. (1.2)

w2w6 = w8, w4w4′ = w8, w2
4′ = 0. (1.3)

The relations w3
2 = 2w6, w4

2 = 2w8 can be obtained from the above set of relations.

Also note that the relations w4w
2
2 = w8, w4′w

2
2 = w8 are redundant. They can be
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obtained by the relations above. The equations arising from wiwj = 0 for i + j > 8

are

w2w8, w4w6, w4w8 w4′w6, w4′w8, w6w8. (1.4)

We have considered all possible weights. So these are enough relations. Hence as a

Z- algebra we can write

H∗(GP(1, 3); Z) = Z[σ(0), σ(1)] = Z[w4, w2]

with the relations given in equations 1.2,1.3 and 1.4.

Example 1.48. [12, p.1073] Compute the number of lines L ∈ P3 which (simultane-

ously) intersect four given lines L1, L2, L3 and L4.

As seen in Example 1.28, the lines which (simultaneously) intersect a given line A0

in P3 are represented by the Schubert variety Ω(A0,P3) defined by the flag

A : A0 ⊂ A1 = P3.

Therefore the lines which intersect (simultaneously) four given lines are represented

by the intersection of the Schubert varieties

Q =
4⋂

i=1

Ω(Li,P3)

Assume that the set of lines intersecting four given lines is finite. Then this set has

cardinality equal to the degree of the Schubert cycle Ω(1, 3)4. Using the computations

in Example 1.47, we have

Ω(1, 3)4 = w4
2 = 2w8.

Now w8 = Ω(0, 1) is the class of a single point its degree is one. So the degree of the

Schubert cycle Ω(1, 3)4 is two. So the number of lines in P3 interesecting four given

lines is either infinity or 2 or one (counted twice), with 2 being the ”common case”.
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1.4 The Grassmannian as a scheme

Very interestingly Grassmannians exist in the category of schemes and can be con-

sidered as natural generalizations of the notion of classical Grassmannians over alge-

braically closed fields. For a detailed discussion on this refer to [6], III 2.7. Let S be

any scheme and let 1 ≤ d < n be integers. There exists a scheme GS(d, n), called the

Grassmannian over S with the following properties.

1. If T → S is any morphism of schemes, then GT (d, n) = GS(d, n) ×S T . In

particular there exists a scheme GZ(d, n) the Grassmannian over Spec Z and

any Grassmannian GS(d, n) can be realized as the fiber product GZ(d, n)× S.

2. If S = Spec (k), k an algebraically closed field, then the scheme GS(d, n) is the

classical Grassmann variety G(d, n) over k.

To construct Grassmannians over a general scheme, we begin by constructing them

over affine schemes. Then given any scheme S we can cover S by affine open schemes

say {Uα} and glue together the Grassmannians {GUα}.

To motivate our discussion we recall that in the classical setting Grassmannians

are over an algebraically closed field k. There are at least two ways of construct-

ing Gk(d, n). We may consider Gk(d, n) as a non-disjoint union of open sets each

isomorphic to the affine space Ad(n−d)
k . Alternatively we may consider it as a closed

subvariety of PN
k defined by the Plücker relations. Each of these constructions has

an immediate extension to the category of schemes. Recall the following glueing con-

struction of Gk(d, n). The Grassmannian Gk(d, n) over k, i.e. the set of d-dimensional

subspaces of the vector space kn, can be viewed as the set of d × n matrices M of

rank d, modulo the multiplication on the left by invertible d × d matrices. For each

subset I ⊂ {1, 2, . . . , n} of cardinality d we can multiply any matrix M whose I-th

minor is nonzero by the inverse of its I-th submatrix MI , to obtain a matrix M ′
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whose I-th submatrix is the identity. Thus the set of all d-planes Λ complementary

to the subspace of kn spanned by the basis vectors {ei}i/∈I can be identified with the

affine space Ad(n−d) whose coordinates are the remaining entries of the matrix M ′.

Now let W ∼= Adn
k be the space of d×n matrices. For each subset I ⊂ {1, 2, . . . , n}

of cardinality d consider the closed subset WI ⊂ W defined by the matrices with

I-th submatrix equal to identity. For each I and J 6= I, let WI,J ⊂ WI be the

open subset of matrices whose J-th minor is nonzero. Define φI,J : WI,J → WJ,I by

multiplication on the left by MI .M
−1
J . Then φ is an isomorphism. Thus we can define

the Grassmannian Gk(d, n) as an abstract variety which is the union of affine spaces

WI
∼= Ad(n−d)

k modulo the identifications of WI,J with WJ,I given by φI,J .

This construction has a natural extension to the Grassmannian over any affine

scheme GS(d, n). Let S = SpecA be any affine scheme. Let

W = SpecA[. . . , xi,j, . . . ] ∼= Adn
S .

For each set {i1, . . . , id} ⊂ {1, 2, . . . , n} let WI ⊂ W be the closed subscheme cor-

responding to the matrices whose I-th d × d matrix is identity. This subscheme is

the zero locus of the ideal (. . . , xα,iβ − δα,β, . . . ). For each I and J 6= I define WI,J

and φI,J as before. Then we glue all affine spaces WI
∼= Ad(n−d)

S along φI,J to get the

scheme GS(d, n).

The other classical approach to Grassmannians is via the Plücker coordinates. Let

N =
(

n
d

)
− 1. If S = SpecA is any affine scheme, we consider the polynomial ring

A[. . . , XI , . . . ] in
(

n
d

)
variables over A where the variables are indexed by the subsets

I = (i1 < i2 < · · · < id) ⊂ {1, 2, . . . , n}. We can describe the Plücker ideal J as

follows. Let ϕ be the map

A[· · · , XI , · · · ] → A[x1,1, · · · , xd,n]
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XI 7→

∣∣∣∣∣∣∣∣∣
x1,i1 . . . x1,id

...
...

xd,i1 . . . xd,id

∣∣∣∣∣∣∣∣∣
sending each generator XI of A[· · · , XI , · · · ] to the corresponding minor of the matrix

(xi,j), and we let J = Kerϕ. Then the Grassmannian GS(d, n) is defined to be the

projective scheme

GS(d, n) = Proj A[. . . , XI , . . . ]/J ⊂ ProjA[. . . , XI , . . . ] = P(n
d)−1

S .

To see how the whole construction works we refer to [6, p.121− 122].

1.4.1 Schemes and functors

One of the useful ways to describe schemes is through the notion of functor of points.

The category of schemes can be embedded into the category of contravariant functors.

The category of contravariant functors is a very large category and only some of these

functors come from schemes. A scheme can be described via its functor of points.

The functor of points of a scheme X is a functor

hX : (schemes)o → (sets)

where (schemes)o and (sets) represent the category of schemes with arrows reversed

and the category of sets. If Y is any scheme, we define

hX(Y ) = Mor(Y,X).

Also for every morphism f : Y → Z we define the map of sets hX(Z) → hX(Y ) by

sending g ∈ hX(Z) = Mor(Z,X) to the composition g ◦ f ∈ Mor(Y,X). A functor

F : (schemes)o → (sets) is said to be representable if it comes from a scheme, i.e. if

F = hX for some scheme X. By Yoneda’s Lemma below, such a scheme is unique if

it exists.
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For any scheme X the set hX(Y ) is called the set of Y -valued points of X. If

Y = SpecT is an affine scheme we write hX(T ) instead of hX(SpecT ) and call it the

set of T -valued points of X. Also we have the functor

h : (schemes) → Fun((schemes)o, (sets))

(where the morphisms in the category of functors are natural transformations) sending

X → hX

and associating a morphism f : X → X ′ the natural transformation hX → hX′ that

for any scheme Y sends g ∈ hX(Y ) to the composition f ◦ g ∈ hX′(Y ).

Lemma 1.49. (Yoneda’s Lemma)[6, p.252− 253] Let C be a category and let X

and X ′ be objects of C.

1. If F is any contravariant functor from C to the category of sets, the natural

transformations from Mor(−, X) to F are in natural correspondence with the

elements of F (X).

2. If the functors Mor(−, X) and Mor(−, X ′) from C to the category of sets are iso-

morphic, then X ∼= X ′. More generally, the maps of functors from Mor(−, X)

to Mor(−, X ′) are the same as the maps from X to X ′; that is, the functor

h : C → Fun(Co, (sets)),

sending X to hX , is an equivalence of C with a full subcategory of the category

of functors.

Viewing a scheme as its functor of points is often much easier than actually con-

structing a scheme. To show the existence of a certain scheme it is enough to define

a functor from the category of schemes to the category of sets and then to prove an

existence theorem asserting that there is a scheme of which it is the functor of points.
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Definition 1.50. [6, p.259] A functor F : (rings) → (sets) is said to be a sheaf in

the Zariski topology if for each ring R and each open covering of X = SpecR by

distinguished open affines Ui = SpecRfi
, the functor F satisfies the sheaf axiom for

the open covering {Ui} of X. To be more precise, for every collection of elements

αi ∈ F (Rfi
) such that αi and αj map to the same element in F (Rfifj

) there is a

unique element α ∈ F (R) mapping to each of the αi.

Theorem 1.51. [6, Theorem VI− 14] A functor F : (rings) → (sets) is of the form

hY for some scheme Y if :

1. F is a sheaf in the Zariski topology

2. There exist rings Ri and elements αi ∈ F (Ri) - that is, by Lemma 1.49 the

maps

αi : hRi
→ F,

such that for each field K, F (K) is the union of the images hRi
(K) under the

maps αi.

The goal of the next section is to show the representability of the Grassmann

functor using above theorem. Before that we first see that the projective space Pn
Z

comes from the functor p : (rings) → (sets) given by

p(T ) = {T -submodules K ⊂ T n+1 that are locally rank n direct summands of T n+1}.

To see how it works we refer to the following theorems.

Theorem 1.52. [6, Proposition III-40] If T is any ring, then

Mor(SpecT,Pn
Z) ={T -submodules K ⊂ T n+1 that are locally

rank n direct summands of T n+1}
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Theorem 1.53. [6, Theorem III-37] For any scheme X, we have the natural bijec-

tions

Mor(X,Pn
Z) = {OX-subsheaves K ⊂ On+1

X that are locally direct summands of rank n}

Remark 1.54. In general, we see that if K is a submodule of T n which is locally a

rank d direct summand of T n then the quotient module T n/K is a locally free module

of rank n− d and it is projective. We get that the following sequence splits:

0 → K → T n → T n/K → 0

So K is a rank d direct summand of T n. Indeed a submodule of a finitely gener-

ated free module that is locally a direct summand is a direct summand. Thus in the

above theorems one can consider direct summands of T n+1 instead of locally direct

summands.

1.4.2 Representability of the Grassmann functor

Let 0 < d < n be integers. The Grasmann scheme GZ(d, n) is a closed subscheme of

the projective space Pr
Z where r =

(
n
d

)
− 1. Let g : (rings) → (sets) be the functor

defined by

g(T ) = {submodules K ⊂ T n that are rank d direct summands of T n}.

This functor is called the Grasmann functor. We now use Theorem 1.51 to show

that the scheme GZ(d, n) indeed represents the Grassmann functor.

We first show that g is a sheaf in the Zariski topology. Let R be a ring. Let

X = SpecR. Consider the open covering of X by distinguished open affine sets

Ui = SpecRfi
. Suppose that for every collection of elements Wi ∈ g(Rfi

), Wi and Wj

map to the same element in g(Rfifj
). So in g(Rfifj

) we have

Wi ⊗Rfi
Rfifj

= Wj ⊗Rfj
Rfifj

.
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We wish to show that there exists a unique element W ∈ g(R) that maps to each of

the Wi. Let us first show the existence part. We want a rank d direct summand W

of Rn such that

W ⊗R Rfi
= Wi.

For each i we have an Rfi
module Wi which is a rank d direct summand of Rn

fi
. For

every i let Fi = W̃i be the sheaf associated to Wi on SpecRfi
. Now X is the union of

distinguished open affine sets Ui = SpecRfi
and in g(Rfifj

) we have

Wi ⊗Rfi
Rfifj

= Wj ⊗Rfj
Rfifj

.

So for each i, j we get the isomorphisms ϕij : Fi|Ui∩Uj
→ Fj|Ui∩Uj

. Then by using

the glueing lemma of sheaves [8, p.69] there exists a unique sheaf F on X which

is obtained by glueing the sheaves Fi and we have F|Ui
= Fi for every i. Indeed

the sheaf F on X is a coherent sheaf as X is covered by open affines Ui with the

property that for each i we have a finitely generated Rfi
module Wi and F|Ui

∼= W̃i.

Then by using Lemma 5.3 and Proposition 5.4 of [8], we see that there exists a finitely

generated R module W such that F = W̃ . Going through the proof of [8, Proposition

5.4], it follows that this R module W is given by

W = Γ(X,F) = {w ∈ Rn |w ∈ Rn
fi
, w ∈ Wi for all i}.

Moreover, we have

F(Ui) ∼= Wi = Wfi
= W ⊗R Rfi

.

Since each Wi is a rank d direct summand of Rn
fi
, by the above construction it follows

that W is a rank d direct summand of Rn. To prove the uniqueness part let W1 and

W2 be two elements of g(R) such that

W1 ⊗R Rfi
= W2 ⊗R Rfi

.

So we get (W1)fi
= (W2)fi

in g(Rfi
). We wish to show that W1 = W2. For this we

use the following result.
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Lemma 1.55. Let A,B be R-modules. Let π : A→ B be a morphism. Suppose that

SpecR =
⋃

SpecRfi
. If πfi

: Afi
→ Bfi

is an isomorphism for all i then π is an

isomorphism.

Proof. The space SpecR =
⋃

SpecRfi
implies that fi generate unit ideal. The map

πfi
is an isomorphism for all i. For each maximal ideal m the map Am → Bm is an

isomorphism. Then we use [5, Corollary 2.9] to show that π is an isomorphism.

Now we have the inclusion map π : W1 ∩W2 ↪→ W1 such that

(W1 ∩W2)fi
= (W1)fi

∩ (W2)fi
= (W1)fi

, for all i.

So πfi
is an isomorphism for all i. Therefore by the above lemma π is an isomorphism

i.e. W1 ∩W2 = W1 which implies that W1 = W2.

Having verified g is a sheaf in the Zariski topology, we next have to show that

there exist rings Ri and elements Wi ∈ g(Ri) such that for every field F , g(F ) is the

union of images hRi
(F ) under the maps Wi : hRi

→ g.

Let Pr
Z = Proj [. . . , XI , . . . ] be the projective space with homogeneous coordi-

nates XI corresponding to the subsets of cardinality d in {1, 2, . . . , n}. Recall that

the projective scheme Pr
Z comes from the functor hPr

Z
: (rings) → (sets) given by

hPr
Z
(T ) = Mor (SpecT,Pr

Z)

= {T -submodules K ⊂ T r+1 that are rank r direct summands of T r+1}

We have a pairing

< , > : T r+1 × T r+1 → T

defined by

〈(x0, x1, . . . , xr), (y0, y1, . . . , yr)〉 =
r∑

i=0

xiyi.

In general, one can prove that if M ⊂ T r+1 is a rank 1 direct summand of T r+1 then

M⊥ ⊂ T r+1 is a rank r direct summand of T r+1. If {e1, . . . , en} is the standard basis
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for T n then {eI | i1 < · · · < id} is a basis to T r+1 =
∧d T n. We would like to build a

functor ι : g → hPr
Z

that sends

(K ⊂ T n) → ((
d∧
K)⊥ ⊂ T r+1).

Cover Pr
Z by usual open affine subschemes UI

∼= Ar
Z. Referring to [6, p.261], these

subschemes represent the subfunctors

UI(T ) =

 rank r summands of T r+1 such that the I-th

basis vector eI of T r+1 generates the cokernel

 .

The pairing < , > allows us to associate a subspace to its annihilator. If K is a rank d

direct summand of T n spanned by {v1, v2, . . . , vd}, we have the corresponding perfect

pairing
d∧
K ×

(
T r+1/(

d∧
K)⊥

)
→ T.

We get

UI(T )
⋂

ι(g(T )) =

 rank d summands of T n such

that eI generates T r+1/(
∧dK)⊥

 .

Lemma 1.56. Let K be a rank d direct summand of T r+1 spanned by the vectors

v1, v2, · · · , vd. Then w generates T r+1/(
∧dK)⊥ if and only if 〈v1 ∧ · · · ∧ vd, w〉 is a

unit of T .

Proof. As before have a pairing

< , > : T r+1 × T r+1 → T,

which gives rise to a perfect pairing

d∧
K ×

(
T r+1/(

d∧
K)⊥

)
→ T.
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Suppose first that w generates T r+1/(
∧dK)⊥. Now

∧dK is a rank 1 direct summand

of T r+1. We can find t1, t2 ∈ T such that

〈t1v1 ∧ · · · ∧ vd, t2w〉 = 1.

So we have,

t1t2 〈v1 ∧ · · · ∧ vd, w〉 = 1.

Therefore 〈v1 ∧ · · · ∧ vd, w〉 is a unit of T . Conversely let 〈v1 ∧ · · · ∧ vd, w〉 be a unit

of T . Without loss of generality let us assume that 〈v1 ∧ · · · ∧ vd, w〉 = 1. We need

to show that w generates T r+1/(
∧dK)⊥. For any v ∈ T r+1/(

∧dK)⊥ let

〈v1 ∧ · · · ∧ vd, v〉 = t.

Then for all s we have,

〈sv1 ∧ · · · ∧ vd, tw − v〉 = st 〈v1 ∧ · · · ∧ vd, w〉 − s 〈v1 ∧ · · · ∧ vd〉 = 0,

and the pairing is perfect implies that tw = v.

By the above discussion we see that

UI(T ) ∩ ι(g(T )) =

{
rank d summands K of T n such that eI generates

T r+1

(
∧dK)⊥

}
= {K ⊂ T n |K = Sp{v1, . . . , vd}with 〈v1 ∧ · · · ∧ vd, eI〉 ∈ T ∗}.

So it is enough to understand for a subspace K = Span < ei1 , . . . , eid >, when is

〈ei1 ∧ · · · ∧ eid , eI〉 a unit of T .

Lemma 1.57. Let r =
(

n
d

)
− 1. Let K be a rank d direct summand of T n spanned

by the set {v1, · · · , vd}. Then in the above notations 〈v1 ∧ · · · ∧ vd, eI〉 ∈ T ∗ if and

only if the image P (K) of K via the Plücker map P belongs to the basic open set

UI
∼= Ad(n−d) of Pr defined by eI 6= 0.
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Proof. We first understand the classical case when T is a field k. Let V be a vector

space over field k of dimension n. Let I = (i1 < · · · < id). Let U be spanned by

{ei1 , . . . , ein−d
}. Let λ = P (U) = ei1 ∧ · · · ∧ ein−d

be the image of U via the Plücker

map P . We can view λ as a linear form on P(
∧d V ) as follows. For v ∈

∧d V define

λ(v) := v ∧ λ ∈
∧n V ∼= k. Referring to the section 1.1.6, we see that UI , the basic

open set of Pr defined by eI 6= 0 is given by

UI = {Λ ∈ G(d, n) | the I-th Pluc̈ker coordinate of P (Λ) is nonzero (unit) }

= [P(
d∧
V )− Z(λ)] ∩G(d, n)

= {P (K) | K ∈ G(d, n), P (K) ∧ λ 6= 0}

= {P (K) | K ∈ G(d, n), V = K ⊕ U}.

We now fix some splitting V = K0 ⊕ U of V . We can then identify UI with

Hom(K0, U). Therefore, the set of d-dimensional subspacesK spanned by {e1, . . . , ed}

with the property that < e1 ∧ · · · ∧ ed, eI >6= 0 is same as the set of all K ∈ G(d, n)

with P (K) ∈ UI and hence is isomorphic to the affine space Ad(n−d)
k .

Let us now work in the the general case. Let U ⊂ V = T n be a free rank n − d

summand of V . Let U = Span{vd+1, . . . , vn}. Let λ = P (U) = vd+1 ∧ · · · ∧ vn be the

image of U via the Plücker map P . Then we can view λ as a linear form on P(
∧d V ).

As before let UI be the basic open set of Pr defined by eI 6= 0. Then

UI = [P(
d∧
V )− Z(λ)] ∩G(d, n)

= {P (K) | K ∈ G(d, n), P (K) ∧ λ ∈ T ∗}.

Here P (K) ∧ λ ∈ T ∗ means as follows. If {e1, . . . , en} is a basis for V ,
∧n V is one

dimensional with the canonical basis given by eJ = e1 ∧ · · · ∧ en and P (K) ∧ λ ∈ T ∗

means that if P (K) ∧ λ = teJ then t ∈ T ∗. Now we wish to identify the set UI with

{P (K) |K ∈ G(d, n), V = K ⊕ U}.
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To see this identification let first K ∈ G(d, n) such that P (K)∧ λ = teJ with t ∈ T ∗.

Let K = Span{v1, . . . , vd}. Then

v1 ∧ · · · ∧ vd ∧ vd+1 ∧ · · · ∧ vn = teJ , t ∈ T ∗.

But we have

v1 ∧ · · · ∧ vd ∧ vd+1 ∧ · · · ∧ vn = detA · eJ , t ∈ T ∗,

where the matrix A has v1, . . . , vn as its columns. Since det A = t ∈ T ∗ and

{e1, . . . , en} is a basis for V the vectors v1, . . . , vn form a basis for V . Therefore

V = K ⊕ U , the vectors v1 . . . , vd span K and the vectors vd+1, . . . , vn span U . Con-

versely suppose that V = K ⊕ U for some K = Span{v1, . . . , vd}. Let

(v1, . . . , vn) = (e1, . . . , en) · P and (e1, . . . , en) = (v1, . . . , vn) ·Q,

where P,Q ∈ GL(n, T ). Then PQ = Id and det (P ) is a unit of T . Therefore,

P (K) ∧ λ = det (P ) · eJ = teJ ,

and t is a unit of t. To summarize we have

UI = {P (K) |K ∈ G(d, n), V = K ⊕ U}.

Then fixing some splitting K0 ⊕ U = V of V , we can identify the set Hom(K0, U)

with the set

{P (K) | K ∈ G(d, n), V = K ⊕ U}

by associating to ϕ : K0 → U its graph Γϕ = {(w,ϕ(w)) | w ∈ K0}. Note that

Γϕ ∩ U = {(w,ϕ(w)) | w = 0} = {0}

and given v ∈ V, v = (w, u) for w ∈ K0, u ∈ U we can write

v = (w,ϕ(w)) + (0, u− ϕ(w)) ∈ Γϕ ⊕ U.

In this way we can identify UI with Hom (K0, U) ∼= Ad(n−d)
T and we have that for K

spanned by v1, . . . , vd, 〈v1 ∧ · · · ∧ vd, eI〉 ∈ T ∗ if and only if P (K) ∈ UI
∼= Ad(n−d)

T .
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By this lemma, UI

⋂
ι(g) is represented by affine scheme Ad(n−d) = Spec Z[(xij)]

where 1 ≤ i ≤ d, 1 ≤ j ≤ (n − d). Then taking the rings Ri in Theorem 1.51 as

Z[xij], we have for any field F ,

g(F ) =
⋃

(UI ∩ i(g))(F ).

Hence, the second condition in Theorem 1.51 is satisfied by the Grassmann functor.

It follows that the Grassmann functor is represented by the Grassmann scheme.

1.4.3 Computation of the Zeta function of G(d, n) using Schu-

bert calculus

In section 1.2.3 we computed the Zeta function of G(d, n) by simple combinatorics.

It is noticed that by the knowledge of the cohomology groups of the Grassmannian in

the characteristic p we can get the information of the cohomology in the characteristic

zero. As an application of the Schubert Calculus we now compute the Zeta function

with the Basis Theorem without actually going through the computations as in section

1.2.3 and we recover the information of the cohomology groups in characteristic p.

First recall a few notions of the morphisms of schemes and Galois actions on étale

cohomology groups. The best reference for this is [15]. If X → Spec Z(p) is a smooth

and proper morphism of schemes then the cohomology of X ⊗ Q with the Galois

action gives the information of the cohomology of X ⊗ Fp with its Galois action.

Let O be the ring of integers of Q. Suppose p is a prime and m is a maximal ideal

containing p. Then Om is a local ring with unique maximal ideal mOm. The residue

field k = Om/mOm
∼= Fp. Let X̃ = X ⊗ Om. If X̃ → SpecOm is a smooth and

proper morphism of schemes the cohomology of X̃ ⊗ Q with Galois action gives the

cohomology of X̃⊗k with its Galois action. Now let X = G(d, n) be the Grassmannn

variety. Let m = dimG(d, n) = d(n − d). The equations defining the Grassmannian

i.e. the Plücker relations are relations with integer coefficients. So we can consider
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G(d, n) over fields of characteristic zero namely Q, C and also over finite field Fq. Let

G(d, n) ⊗Om Q denote the Grassmann variety G(d, n) over Q and let G(d, n) ⊗Om k

denote the Grassmann varietyG(d, n) over Fp. Since over any algebraically closed field

L, G(d, n) is smooth and proper, the morphism G(d, n) → SpecOm is a smooth and

proper morphism of schemes. Let l be a prime other than p. We have an isomorphism

of étale cohomology groups [15, section 20.4] namely,

f : H i
ét(G(d, n)⊗Q; Ql) → H i

ét(G(d, n)⊗ k; Ql),

which is Galois equivariant. The Galois group Gal(Q /Q) contains the decomposition

group Dm and the inertia group Im as its subgroups. We have

Im ⊂ Dm ⊂ Gal(Q /Q).

To say f is Galois equivariant means that, if τ ∈ Dm then, τ ∈ Gal(Fp /Fp) and for

a class c ∈ H2i
ét (G(d, n)⊗Q; Ql) one has

f(τc) = τ · f(c).

This implies that the inertia group Im acts trivially on H i
ét(G(d, n) ⊗ Q; Ql). The

Frobenius morphism F : G(d, n) ⊗ Fp → G(d, n)⊗ Fp induces linear map F ∗ on

cohomology. Let α in Gal(Fp /Fp) be the geometric Frobenius morphism x 7→ x1/p.

Let us also denote the induced linear map on cohomology by α. Then α = F ∗. Also

there exists β ∈ Dm such that β = α. We now use all this information to simplify

the expression of the Zeta function of G(d, n). Referring to [8, Appendix C], the Zeta

function of G(d, n) is given by

Z(G(d, n), t) =
2m∏
i=0

det[1− tF ∗ | H i
ét(G(d, n)⊗ Fp; Ql)]

(−1)i+1

=
2m∏
i=0

det[1− tα | H i
ét(G(d, n)⊗ Fp; Ql)]

(−1)i+1

=
2m∏
i=0

det[1− tβ | H i
ét(G(d, n)⊗Q; Ql)]

(−1)i+1

.
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We use 3.6 and 3.7 of [8] Appendix C for X = G(d, n) and get,

H i
ét(X ⊗Q; Ql) ∼= H i

ét(X ⊗ C; Ql) ∼= H i
Betti(X ⊗ C; Ql) ∼= H i

Betti(X ⊗ C; Z)⊗Z Ql.

By the Basis theorem of the Schubert calculus (Theorem 1.36), we know that the

Schubert cycles generate H∗(G(d, n) ⊗ C; Z). Now if Y is a subvariety of G(d, n)

of codimension i, it gives a class [Y ] ∈ H2i
ét (G(d, n)⊗Q; Ql) on which β acts by

β[Y ] = pi[β(Y )]. Since the Schubert cycles are defined over Q, we have a simpler

formula for the Zeta function for G(d, n) as

Z(G(d, n), t) =
1∏m

i=0(1− pit)b2i
,

where b2i denotes the rank of H2i(G(d, n); Z) over Z. Thus, the Zeta function of the

Grassmann variety G(d, n) of dimension m is given by

Z(G(d, n), t) =
1

(1− t)(1− pt)b2(1− p2t)b4 . . . (1− pmt)b2m
,

which agrees with the calculations done before in section 1.2.3. One observes that

with the knowledge of the cohomology in characteristic p, we have the information of

the cohomology in characteristic zero and vice versa.

1.4.4 The Zeta function of the Grassmann scheme

For an exposition of the Zeta function of schemes we refer to the paper by Serre

[19]. Let X be a scheme of finite type over Spec Z. Such a scheme has a well defined

dimension denoted by dimX. Let max (X) denote the set of closed points of X. It

can be shown that {x} in X is closed in X if and only if the residue field k(x) of x is

finite. For x ∈ max(X), the norm N(x) of x is defined as the number of elements of

k(x). Then the Zeta function of the scheme X is defined by a Eulerian product

ζ(X, s) =
∏

x∈max (X)

1

1− [N(x)]−s .
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It can be seen that the product ζ(X, s) converges absolutely for Re(s) > dimX.

In the case when X = SpecA, where A is the ring of integers of a number field K,

ζ(X, s) coincides with the classical Dedekind Zeta function attached to K and thus

is the same as the Riemann Zeta function when A = Z. The Riemann Zeta function

is defined by a Eulerian product

ζ(s) =
∏

p

1

1− p−s
,

the product being taken over all positive integer primes p.

Now letX be a scheme of finite type over Fq. If x ∈ max (X), the residue field k(x)

of x is a finite extension of Fq; let deg(x) be its degree. Then we have N(x) = qdeg(x)

and

ζ(X, s) =
∏

x∈max (X)

1

1− [qdeg(x)]
−s .

Recall the definition of the Zeta function of a smooth projective varietyX over k = Fq.

The Zeta function is given by

Z(X, t) := exp

(
∞∑

r=1

Nr.
tr

r

)
∈ Q[[t]],

where Nr is the number of points of X defined over Fqr . This can also be written as

Z(X, t) =
∏

x∈max (X)

1

1− tdeg(x)
,

where the product is taken over the closed points of X. Therefore, we have

ζ(X, s) = Z(X, q−s).

If X is a disjoint union of subschemes Xi we have

ζ(X, s) =
∏

ζ(Xi, s).
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Example 1.58. Consider the projective scheme Pn
Z. The Zeta function ζ(Pn

Z, s) is

given by

ζ(Pn
Z, s) =

∏
p

ζ(Pn
Fp
, s) =

∏
p

Z(Pn
Fp
, p−s)

=
∏

p

n∏
m=0

1

[1− p−(s−m)]
=

n∏
m=0

ζ(s−m).

Proposition 1.59. The Zeta function of the Grassmann scheme GZ(d, n) is a product

of the Riemann zeta functions. If bi denote the i-th Betti number of the Grassmannian

G(d, n), we have

ζ(GZ(d, n), s) =

d(n−d)∏
i=0

ζbi(s− i).

Proof. Letm = dimGZ(d, n) = d(n−d). Referring to the section 1.2.3, Z(GFp(d, n), t)

is given by

Z(GZ(d, n)⊗ Fp, t) =
1

(1− t)b0(1− pt)b1 . . . (1− pmt)bm
,

where the Betti numbers bi are given by the Gaussian binomial coefficients. Then the

Zeta function ζ(GZ(d, n), s) is given by

ζ(GZ(d, n), s) =
∏

p

ζ(GZ(d, n)⊗ Fp, s) =
∏

p

Z(GZ(d, n)⊗ Fp, p
−s)

=
∏

p

1

(1− t)b0(1− pt)b1 . . . (1− pmt)bm
, where t = p−s

=
m∏

i=0

ζbi(s− i).

We conclude that ζ(GZ(d, n), s) can be expressed as a product of the Riemann Zeta

functions.
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Chapter 2

Lagrangian Grassmannian

In this Chapter we discuss the Lagrangian Grassmannian L(n, 2n), which parametrizes

n-dimensional isotropic subspaces of a 2n-dimensional vector space V endowed with

a symplectic form 〈 , 〉. In section 2.1 we discuss general notions of symplectic spaces

and the Lagrangian Grassmannian. Section 2.2 discusses the Lagrangian Grassman-

nian as an algebraic variety and its covering by affine neighbourhoods. In section 2.3

we calculate the Zeta function and the Euler characteristic of the Lagrangian Grass-

mannian. In section 2.4 we discuss without proofs the Schubert calculus for the

Lagrangian Grassmannian and using the Basis Theorem we compute the dimensions

of the cohomology groups of the Lagrangian Grassmannian. Section 2.5 discusses

the representability of the Lagrangian Grassmannn functor. Finally in section 2.6 we

compute the Zeta function of the Lagrangian Grassmann scheme.

2.1 Lagrangian Grassmannian

First recall the notion of a symplectic space.

Definition 2.1. Let V be a vector space over field k. A symplectic form

〈 , 〉 : V × V → k
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is an antisymmetric and non-degenerate bilinear form i.e. it satisfies

〈v, v〉 = 0 for all v ∈ V,

and if

〈v, w〉 = 0 for all v ∈ V,

then w = 0. A vector space V is called a symplectic vector space if it is equipped

with a symplectic form.

One has the following theorem.

Theorem 2.2. [14, Theorem 2.3] or [2, p. 10− 11] A symplectic vector space V is

necessarily of even dimension and there exists a basis u1, . . . , un, v1, . . . , vn of V such

that

〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij.

Such a basis for a symplectic vector space V is called a standard basis. With

such choice a symplectic form can be described for v = (x1, . . . , xn, y1, . . . , yn) and

v′ = (x′1, . . . , x
′
n, y

′
1, . . . , y

′
n) by

〈v, v′〉 =
n∑

i=1

(xiy
′
i − x′iyi).

It is easy to verify that the above pairing is a non-degenerate alternating pairing on

the vector space V . The above form on V is called the standard symplectic form.

Definition 2.3. Let V be a symplectic vector space of dimension 2n. Two vectors

v, w ∈ V are called orthogonal if 〈v, w〉 = 0. This is denoted by v ⊥ w. If W is a

m-dimensional subspace of V , we define the orthogonal space of W , W⊥ by

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈ W}.

Definition 2.4. Let V be a symplectic space of dimension 2n.
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1. A subspace U ⊂ V is isotropic if 〈u, u′〉 = 0 for all u, u′ ∈ U .

2. A subspace W ⊂ V is a symplectic subspace of V if the symplectic form on

V when restricted to W remains symplectic.

3. A subspace W ⊂ V is coisotropic if W⊥ is isotropic.

4. A subspace L ⊂ V is Lagrangian if it is both isotropic and coisotropic (thus

L = L⊥ and dimL = n).

Definition 2.5. Let V be a symplectic vector space of dimension 2n. Let L(n, 2n)

denote the collection of all Lagrangian subspaces of V . One can prove that L(n, 2n)

is a subvariety of the Grassmannian G(n, 2n), called the Lagrangian Grassmann

variety or the Lagrangian Grassmannian.

Definition 2.6. Let V1, V2 be two symplectic vector spaces. Let φ : V1 → V2 be a

linear map. Then we call φ a symplectic map if for all v, w ∈ V1

〈φ(v), φ(w)〉 = 〈v, w〉 .

Suppose now V1 = V2 = V with the same symplectic form. If φ : V → V is any

symplectic map then it is an automorphism of V . The collection of all symplectic

automorphisms of V is a group under composition called the symplectic group of

(V, 〈 , 〉) denoted by Sp(V ). If V = k2n with the standard symplectic form, we write

this group as Sp2n(k) ⊂ GL(2n, k). If we define

J =

 0 In

−In 0

 ,

we can verify that [2, p.15] a matrix A ∈ GL(2n, k) leaves the standard form invariant

if and only if AtJA = J where, At denotes the transpose of the matrix A. Thus,

Sp2n(k) = {A ∈ GL(2n, k) | AtJA = J}.
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Lemma 2.7. Let W be an n-dimensional k vector space. Let W ∗ be the dual space.

Then V = W ⊕W ∗ is a symplectic space with

〈 , 〉 : V × V → k

given by

〈(w1, f1), (w2, f2)〉 = f1(w2)− f2(w1)

for w1, w2 ∈ W and f1, f2 ∈ W ∗.

Proof. Clearly for w ∈ W and f ∈ W ∗ we have

〈(w, f), (w, f)〉 = f(w)− f(w) = 0.

Also, if

〈(w1, f1), (w2, f2)〉 = f1(w2)− f2(w1) = 0

for all w1 ∈ W , f1 ∈ W ∗, then f1(w2) = f2(w1), ∀w1 ∈ W , ∀f1 ∈ W ∗. Hence, w2 = 0

and f2 = 0.

2.2 The Lagrangian Grassmannian as an algebraic

variety

Let V be a symplectic vector space of dimension 2n. We now see that the Lagrangian

Grassmannian over V , i.e. L(n, 2n), is actually a closed subset of the Grassmannian

G(n, 2n). Let U be an n-dimensional isotropic subspace in G(n, 2n). Since U is

isotropic, by a result of linear algebra [3, section 1.5] there exists an isotropic linear

subspace W such that

U ⊕W = V.

It follows that W ∼= U∗ the isomorphism being given by w 7→ (〈w, ·〉 : U → k). Fix a

splitting V = U ⊕ U∗ of V . Then we observe that the standard symplectic structure
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on V is same as the symplectic structure on V defined in Lemma 2.7. Recall that in

case of the classical Grassmannian G(d, n), an affine neighbourhood of U ∈ G(d, n)

is given by Hom(U,Γ) where Γ is a complementary subspace to U . To find the affine

neighbourhood in the Lagrangian case we need the following Lemma.

Lemma 2.8. Let ϕ : U → U∗ be a linear map. Then ϕ = ϕ∗ if and only if the graph

of ϕ, Γϕ ⊂ U ⊕ U∗ is a Lagrangian subspace with respect to the structure defined in

the Lemma 2.7.

Proof. Suppose that ϕ = ϕ∗. In general [4, p.414] the matrix of ϕ, M(ϕ), is related

to M(ϕ∗) by M(ϕ) = (M(ϕ∗))t. Consider two elements in the graph of ϕ namely,

(u1, ϕu1), (u2, ϕu2) ∈ U ⊕ U∗. We have

〈(u1, ϕu1), (u2, ϕu2)〉 = ϕu1(u2)− ϕu2(u1)

= 〈ϕ(u1), u2〉 − 〈ϕ(u2), u1〉

= 0

as the matrix of ϕ is symmetric. Conversely if Γϕ is a Lagrangian subspace of U⊕U∗,

then for all u1, u2 ∈ U we have

〈ϕ(u1), u2〉 = 〈ϕ(u2), u1〉 .

It follows that M(ϕ) is symmetric and ϕ = ϕ∗.

By this lemma we have a neighbourhood of U namely,

Hom(U,W )Sym ⊂ Hom(U,W ),

where

Hom(U,W )Sym = {f : U → W | f = f ∗}.

We have Hom(U,W ) ∼= Mn(k) ∼= An2
and Hom (U,W )Sym ∼= A

n(n+1)
2 . So if xij are

the coordinates, the Lagrangian Grassmannian can be defined locally by xij = xji.

Thus L(n, 2n) is closed in every open set and hence defines a closed subvariety of

G(n, 2n) of dimension
n(n+ 1)

2
.



64 Lagrangian Grassmannian

2.2.1 Examples

Example 2.9. The Lagrangian Grassmannian L(2, 4) is the collection of all 2 di-

mensional isotropic subspaces of G(2, 4). Now U ∈ G(2, 4) is isotropic if and only if

〈u, v〉 is zero for all u, v ∈ U . We express this condition explicitly in terms of the

Plücker coordinates. Let {e1, e2, e3, e4} be the basis for V . Then the canonical basis

for
∧2 V is given by

B = {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}.

Let {u1, u2} be a basis for U ∈ G(2, 4) with

u1 = a11e1 + a21e2 + a31e3 + a41e4, u2 = a12e1 + a22e2 + a32e3 + a42e4.

Then we get

〈u1, u2〉 = (a11a32 − a31a12) + (a21a42 − a41a22).

If x12, x13, x14, x23, x24, x34 are the Plücker coordinates corresponding to the canonical

basis, referring to Example 1.12 the Grassmannian G(2, 4) is defined by the relation

x14x23 − x24x13 + x12x34 = 0.

If further U is isotropic then 〈u, u′〉 = 0 for all u, u′ ∈ U . This condition in the

Plücker coordinates translates to

x13 + x24 = 0.

Imposing this additional condition on the Grassmann condition we have that L(2, 4)

is a 3-dimensional variety of P4 defined by

x13
2 = −(x14x23 + x12x34).
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2.3 The number of points in L(n, 2n)(Fq)

Lemma 2.10. The symplectic group Sp2n(k) acts transitively on the set of all isotropic

subspaces of G(n, 2n)(k), i.e. on the Lagrangian Grassmannian. In other words given

L1, L2 in L(n, 2n) there exists φ ∈ Sp(V ) such that

φ(V1) = V2.

Proof. This is a consequence of a special case of a theorem of Witt. For the details

refer to [2, Theorem 1.26 and Corollary 1.27].

By the above theorem we have

|L(n, 2n)(Fq)| =
|Sp2n(Fq)|

|Stabilizer of X|
for X ∈ L(n, 2n).

To find |Sp(2n)(Fq)| we use the following result from linear algebra.

Lemma 2.11. [21, p. 373− 374] If f is a symplectic form on a 2n-dimensional vector

space V over a field of q elements then the number of pairs {u, v} such that f(u, v) =

〈u, v〉 = 1 is (q2n − 1)q2n−1.

Proposition 2.12. The number of points of Sp2n(Fq) is given by

|Sp2n(Fq)| = qn2
n∏

i=1

(qi − 1)(qi + 1).

Proof. Given a symplectic form f on vector space V of dimension 2n by standard

results there exists a symplectic basis {v1, v2, · · · , v2n} for V such that

〈vi, vi+n〉 = 1 for i = 1, · · · , n and 〈vi, vj〉 = 0 for |i− j| 6= n.

If {vi} is a symplectic basis of V then θ ∈ Sp(V ) if and only if {θvi} is also a symplectic

basis for V [21, p.336]. Therefore we have

〈θvi, θvi+n〉 = 1 for i = 1, . . . , n and 〈θvi, θvj〉 = 0 for |i− j| 6= n.
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Using Lemma 2.11 the number of pairs {θv1, θv1+n} such that 〈θv1, θv1+n〉 = 1 is

(q2n − 1)q2n−1. Once we choose {θv1, θv1+n} for {θvi} to be a symplectic basis the

number of pairs {θv2, θv2+n} such that 〈θv2, θv2+n〉 = 1 is equal to q(2n−2)−1(q2n−2−1),

and so on. Finally, the number of pairs {θvn, θv2n} such that 〈θvn, θv2n〉 = 1 is

q(q2 − 1). Thus we get

|Sp(2n)(Fq)| =
n∏

i=1

(q2i − 1)q2i−1

= qn2
n∏

i=1

(q2i − 1)

= qn2
n∏

i=1

(qi − 1)(qi + 1).

Lemma 2.13. Let V be a symplectic space of dimension 2n. Let u1, . . . , un, v1, . . . , vn

be the standard basis of V such that

〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij.

The symplectic group Sp2n(Fq) acts transitively on L(n, 2n)(Fq) and the number of

elements in the Stabilizer X for X = Span{u1, u2, · · · , un} is given by

|Stab (X)(Fq)| = q
n(n+1)

2 q
n(n−1)

2

n∏
i=1

(qi − 1).

Proof. First note that if

A B

D C

 ∈ Stab(X) then D has to be zero.

Let M =

A B

0 C

 ∈ Stab(X). If it has to be in Sp(2n) we must have

A B

0 C

t 0 In

−In 0

A B

0 C

 =

 0 In

−In 0

 ,
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that is  0 AtC

−CtA BtC − CtB

 =

 0 In

−In 0

 .

Thus we get, C = (A−1)
t
and BtC = CtB, i.e., CtB is a symmetric matrix. So M is

of the form

M =

A AS

0 (A−1)t


for some symmetric n × n matrix S. Let MSym

n be the group of symmetric n × n

matrices. Consider the maps Φ1 : GL(n) → Sp(2n) and Φ2 : MSym
n → Sp(2n) given

by

Φ1(A) =

A 0

0 (A−1)t

 and Φ2(S) =

I S

0 I

 .

Then Φ1 and Φ2 are homomorphisms and

Φ1(A).Φ2(S) =

A 0

0 (A−1)t

In S

0 In

 =

A AS

0 (A−1)t

 .

We have Im (φ1)∩ Im (φ2) = {I}. It can be checked that Stab (X) is the semidi-

rect product of GL(n), the general linear n × n group, and M sym
n , the group of

symmetric n× n matrices. Therefore, we get

|Stab (X)(Fq)| = |M sym
n (Fq)| · |GL(n)(Fq)| = q

n(n+1)
2

n−1∏
i=0

(qn − qi)

= q
n(n+1)

2 q
n(n−1)

2

n∏
i=1

(qi − 1).
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Proposition 2.14. The number of points in L(n, 2n)(Fq) is given by

|L(n, 2n)(Fq)| =
n∏

i=1

(1 + qi).

Proof. The proof follows immediately from Proposition 2.12 and Lemma 2.13. We

have

|L(n, 2n)(Fq)| =
|Sp2n(Fq)|

|GL(n)(Fq)|.|Sn(Fq)|
=

qn2 ∏n
i=1(q

i − 1)(qi + 1)

q
n(n+1)

2 q
n(n−1)

2

∏n
i=1(q

i − 1)

=
n∏

i=1

(1 + qi).

2.3.1 The Zeta function of the Lagrangian Grassmannian

The Lagrangian Grassmannian L(n, 2n) is a smooth projective subvariety of the

Grassmannian G(n, 2n) and we may consider it over any finite field Fq. By using

Proposition 2.14, the number of points in L(n, 2n)(Fq) is given by

|L(n, 2n)(Fq)| =
n∏

i=1

(1 + qi).

As there are no terms in the denominator, Nr is a polynomial in powers of qr and the

Zeta function of such Grassmannians is easy to calculate.

Example 2.15. The Lagrangian Grassmannian L(2, 4)⊗Fq. By Proposition 2.14 we

have |L(2, 4)(Fq)| = (1+ q)(1+ q2) and so, Nr = 1+ qr + q2r + q3r = 1+ qr + q2r + q3r.

We get,

Z(L(2, 4)⊗ Fq, t) =
1

(1− t)(1− qt)(1− q2t)(1− q3t)
.

Example 2.16. The Lagrangian Grassmannian L(3, 6)⊗ Fq. We have

|L(3, 6)(Fq)| = (1 + q)(1 + q2)(1 + q3),
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therefore we get, Nr = 1 + qr + q2r + 2q3r + q4r + q5r + q6r, and

Z(L(3, 6)⊗ Fq, t) =
1

(1− t)(1− qt)(1− q2t)(1− q3t)2(1− q4t)(1− q5t)(1− q6t)
.

Theorem 2.17. The Zeta function of the Lagrangian Grassmannian L(n, 2n) is given

by

Z(L(n, 2n)⊗ Fq, t) =
1

(1− t)(1− qt)b1(1− q2t)b2 . . . (1− qmt)bm
,

where bi is equal to the number of strict partitions of i whose parts do not exceed n

and m = n(n+1)
2

.

Proof. By Proposition 2.14 we get,

|L(n, 2n)(Fqr)| =
n∏

i=1

(1 + qir).

For simplicity set qr = l. Then

Nr = |L(n, 2n)(Fqr)| =
n∏

i=1

(1 + li) = (1 + l)(1 + l2) . . . (1 + ln) =
m∑

i=0

bil
i

where the coefficient bi is equal to the number of strict partitions of i whose parts do

not exceed n and m = n(n+1)
2

. So the coefficients bi can be calculated precisely and

one observes that the Zeta function in the general case is given by

Z(L(n, 2n)⊗ Fq, t) =
1

(1− t)(1− qt)b1(1− q2t)b2 . . . (1− qmt)bm
,

where bi and m are described as above.

We observe that the odd Betti numbers of the Lagrangian Grassmannian are zero.

2.3.2 Euler characteristic of the Lagrangian Grassmannian

Consider the Lagrangian Grassmannian L(n, 2n). Referring to the last section the

odd Betti numbers of the Lagrangian Grassmannian are zero and the even Betti

numbers satisfy
n∏

i=1

(1 + li) =
m∑

i=0

bil
i
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where m = n(n+1)
2

is the dimension of L(n, 2n). Putting l = 1 in the above expression

we immediately get the Euler characteristic of the Lagrangian Grassmannian as

E =
m∑

i=0

bi =
m∏

i=1

(1 + 1i) = 2n.

2.4 Schubert calculus for Lagrangian Grassman-

nian

Definition 2.18. We denote a partition by λ = (λ1, λ2, . . . , λl). Thus λi are integers

and we agree that λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. Hence λ is strict if λ1 > λ2 > · · · > λl > 0.

We define the length of λ by l(λ) = Card { p | λp 6= 0} and the weight of λ by

|λ| =
∑l

p=1 λp. By ρ(n) we mean the partition (n, n− 1, · · · , 2, 1). We denote by Dn

the set of all strict partitions λ with λ1 ≤ n.

Definition 2.19. Let F : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ V be a fixed flag of isotropic

subspaces of V such that dim Fi = i, ∀i = 1, 2, · · · , n. Such a flag is called a

complete isotropic flag of V .

Here Fn is an isotropic subspace of V of dimension n, so it is Lagrangian. In other

words, a complete isotropic flag is nothing but a Lagrangian subspace Fn together

with a complete flag of subspaces of Fn.

Note that any isotropic flag F : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ V can be completed

to a complete flag in V by setting Fn+i = F⊥
n−i for 1 ≤ i ≤ n.

Definition 2.20. Let λ ∈ Dn, i.e., let λ = (λ1 > λ2 > · · · > λl > 0) be any strict

partition with λ1 ≤ n. Let F : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ V be a complete isotropic

flag of V . With respect to this flag and partition we define the Schubert variety

in the Lagrangian case as

Xλ = Xλ(F) := {L ∈ L(n, 2n) | dim(L ∩ Fn+1−λi
) ≥ i, 1 ≤ i ≤ l(λ)}.
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It can be shown that Xλ actually defines a complex projective variety of codi-

mension |λ| in L(n, 2n). The variety Xλ determines a Schubert class Ω(λ) = [Xλ]

in the cohomology group H2|λ|(L(n, 2n); Z). The Schubert classes Ω(i) = σ(i) for

i = 1, 2, · · · , n (i.e. l = 1, λ1 = i) are called special (they parametrize isotropic n-

planes such that dim(L
⋂
Fn+1−i) ≥ 1. For the details of the subject our main

reference is [22, p.1− 4]. As before we define the cohomology ring H∗(L(n, 2n),Z) of

the Lagrangian Grassmannian as the direct sum
⊕

i≥0H
i(L(n, 2n); Z).

Theorem 2.21. [22, p.2] The cohomology group H∗(L(n, 2n),Z) is a free abelian

group and the Schubert classes Ω(λ), λ ∈ Dn, form an additive basis for the cohomol-

ogy ring H∗(L(n, 2n),Z). We have an isomorphism of abelian groups

H∗(L(n, 2n),Z) =
⊕
λ∈Dn

Z · Ω(λ),

where the sum varies over all strict partitions λ = (λ1 > λ2 > · · · > λl > 0) with

λ1 ≤ n.

2.4.1 Cohomology groups of the Lagrangian Grasmannian

We now calculate the dimensions of the cohomology groups of some Lagrangian Grass-

mannians. Using Theorem 2.21 and definition 2.20 we see that the codimension k

classes of the Lagrangian Grassmannian are indexed by strict partitions of the form

λ : (λ1 > λ2 > · · · ≥ 0) with λ1 ≤ n and weight of λ equal to k. So the k-th Betti

number of L(n, 2n) is equal to the number of such strict partitions.

Example 2.22. The Lagrangian Grassmannian L(2, 4). The dimension of the coho-

mology group H2k(L(2, 4); Z) equals the number of strict partitions λ such that 2 ≥ λ1

and |λ| = k for k = 0, · · · , 3.
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Codimension k admissible partitions dim(H2k(L(2, 4); Z))

0 {0} 1

1 {1} 1

2 {2} 1

3 {(2, 1)} 1

Example 2.23. The Lagrangian Grassmannian L(3, 6). The dimension of the coho-

mology group H2k(L(3, 6); Z) equals the number of strict partitions λ such that 3 ≥ λ1

and |λ| = k for k = 0, · · · , 6.

Codimension k admissible partitions dim(H2k(L(3, 6); Z))

0 {0} 1

1 {1} 1

2 {2} 1

3 {(2, 1), 3} 2

4 {(3, 1)} 1

5 {(3, 2)} 1

6 {(3, 2, 1)} 1

Example 2.24. The Lagrangian Grassmannian L(4, 8): The dimension of the coho-

mology group H2k(L(4, 8); Z) equals the number of strict partitions λ such that 4 ≥ λ1

and |λ| = k for k = 0, · · · , 10.



2.5 Representability of Lagrangian Grassmann functor 73

Codimension k admissible partitions dim(H2k(L(4, 8); Z))

0 {0} 1

1 {1} 1

2 {2} 1

3 {(2, 1), 3} 2

4 {4, (3, 1)} 2

5 {(4, 1), (3, 2)} 2

6 {(4, 2), (3, 2, 1)} 2

7 {(4, 3), (4, 2, 1)} 2

8 {4, 3, 1} 1

9 {4, 3, 2} 1

10 {4, 3, 2, 1} 1

By these examples we see that the dimensions of the cohomology groups match

with the Betti numbers of the Lagrangian Grassmannians calculated before.

2.5 Representability of Lagrangian Grassmann func-

tor

Let n be any positive integer. For a ring T consider the standard symplectic form

on the T -module T 2n. We call a submodule K of T 2n isotropic if the standard

symplectic form vanishes on it. The Lagrangian Grassmann functor is a functor

l : (rings) → (sets) is given by

l(T ) = {isotropic T -submodules K ⊂ T 2n that are rank n direct summands of T 2n}

We will use theorem 1.51 to show that l is representable. We need to show that

1. l is a sheaf in the Zariski topology.
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2. There exist rings Ri and elements Wi ∈ l(Ri) such that for every field F , l(F )

is the union of images of hRi
(F ) under the maps Wi : hRi

→ l.

We first show that l is a sheaf in the Zariski topology. The proof proceeds as in the

case of the classical Grasmann functor except for a few modifications. If f : R1 → R2

is a ring homomorphism the corresponding morphism f : l(R1) → l(R2) is given by

f(V ) = V ⊗R1 R2.

Note that if V is an isotropic rank n summand of R2n
1 then V ⊗R1 R2 is isotropic rank

n summand of R2n
2 . Suppose that we have a nondegenerate alternate pairing

< , > : R2n
1 ×R2n

1 → R1.

Then f extends linearly and we get a pairing

< , > , : R2n
2 ×R2n

2 → R2.

If V ⊂ R2n
1 is isotropic, 〈v, v′〉 = 0 for all v, v′ ∈ V . Then for vi, v

′
i ∈ V and ri, r

′
i ∈ R2

we have 〈∑
i

v1 ⊗ ri,
∑

j

v′j ⊗ r′j

〉
=
∑
i,j

rir
′
j

〈
vi, v

′
j

〉
= 0.

Therefore, V ⊗R1 R2 is an isotropic summand of R2n
2 .

We now show that l is a sheaf in the Zariski topology. Let R be a ring. Let

X = SpecR. Consider the open covering of X by distinguished open affine sets

Ui = SpecRfi
. Suppose that for every collection of elements Wi ∈ l(Rfi

), Wi and Wj

map to the same element in l(Rfifj
). So in l(Rfifj

) let

Wi ⊗Rfi
Rfifj

= Wj ⊗Rfj
Rfifj

.

We wish to show that there exists a unique element W ∈ l(R) that maps to each

of the Wi. We can construct the required isotropic direct summand W exactly as in
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the classical case (for details refer to section 1.4.1). Such a W exists uniquely and is

defined by

W = {w ∈ Rn | w ∈ Rn
fi
, w ∈ Wi for all i}.

Since Wi ∈ l(Rfi
) are isotropic for all i and W is contained in Wi for all i we see that

the summand W is also isotropic. Thus, l is a sheaf in the Zariski topology. Now we

have to show that there exist rings Ri and elements Wi ∈ l(Ri) such that for every

field F , l(F ) is the union of images of hRi
(F ) under the maps Wi : hRi

→ l. Let

r =
(
2n
n

)
− 1. Let g(n, 2n) := g : (rings) → (sets) be the Grassmann functor given by

g(T ) = {T -submodules K ⊂ T 2n that are rank n direct summands of T 2n}.

Let Pr
Z = Proj [. . . , XI , . . . ] be the projective space with homogeneous coordinates

XI corresponding to the subsets of cardinality n in {1, 2, . . . , 2n}. Recall that the

projective scheme Pr
Z comes from the functor

hPr
Z
(T ) = Mor (SpecT,Pr

Z)

= {T -submodules K ⊂ T r+1 that are rank r direct summands of T r+1}

We now refer to the section 1.4.2. With the same notations of section 1.4.2, replacing

d by n and n by 2n we get,

UI(T ) ∩ ι(g(T )) =

{
rank n summands K ⊂ T 2n such that eI generates

T r+1

(
∧nK)⊥

}
= {K ⊂ T 2n |K = Sp{v1, . . . , vn}with 〈v1 ∧ · · · ∧ vn, eI〉 ∈ T ∗}.

Thus we see that UI(T ) ∩ ι(l(T )) is given by{
isotropic rank n summands K ⊂ T 2n such that eI generates

T r+1

(
∧nK)⊥

}
,

which is equal to

{K ⊂ T 2n | K isotropic spanned by v1, . . . , vn, 〈v1 ∧ · · · ∧ vn, eI〉 ∈ T ∗}.
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By Lemma 1.57 we see that for a direct summand K ⊂ T 2n spanned by v1, . . . , vn,

〈v1 ∧ · · · ∧ vn, eI〉 ∈ T ∗ if and only if the image of K via the Plücker map i.e. P (K)

is in UI . Let U be the complemetary subspace of K. If further K is isotropic then

we see from section 2.2 that the affine neighbourhood UI of K is isomorphic to

{ϕ : K → U | ϕ = ϕ∗} = HomSym(K,U) ∼= A
n(n+1)

2
T .

Therefore UI

⋂
ι(l) is represented by affine scheme A

n(n+1)
2 = Spec Z[(xi), i = 1, · · · , n(n+1)

2
].

Then taking Ri as Z[xi] we see that for any field F

g(F ) =
⋃

(UI ∩ i(l))(F ).

Therefore the second condition in Theorem 1.51 is satisfied by the Lagrangian Grass-

mann functor. Thus the Lagrangian Grassmann functor is representable.

Computation of the Zeta function of L(n, 2n) using Schubert calculus

Note that the Zeta function of L(n, 2n) can also be computed using Schubert calculus.

The Lagrangian Grassmannian can be considered over fields of characteristic zero

namely Q, C and also over finite field Fq. Exactly following section 1.4.3 we have for

X = L(n, 2n) the following isomorphisms

H i
ét(X ⊗Q; Ql) ∼= H i

ét(X ⊗ C; Ql) ∼= H i
Betti(X ⊗ C; Ql) ∼= H i

Betti(X ⊗ C; Z)⊗Z Ql.

Then with the Basis Theorem of the Schubert calculus in Lagrangian case (Theorem

2.21), the Zeta function of L(n, 2n) can be computed as in section 1.4.3 which comes

out to be

Z(L(n, 2n), t) =
1∏m

i=0(1− pit)b2i
,

where m is the dimension of the Lagrangian Grassmannian and b2i denotes the rank of

H2i(L(n, 2n); Z) over Z. This agrees with the calculations done before in section 2.3.1.
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2.5.1 The Zeta function of the Lagrangian Grassmann Scheme

Theorem 2.25. The Zeta function of the Lagrangian Grassmann scheme LZ(d, n) is

a product of Riemann Zeta functions given by

ζ(LZ(n, 2n), s) =
m∏

i=0

ζbi(s− i),

where m is the dimension of L(n, 2n).

Proof. Consider the Lagrangian Grassmann scheme LZ(d, n). Let us assume that

m = dimL(n, 2n) = n(n+1)
2

. The Z(LZ(n, 2n)⊗ Fp, t) is given by

Z(LZ(n, 2n)⊗ Fp, t) =
1

(1− t)b0(1− pt)b1 . . . (1− pmt)bm
,

where the Betti number bi equals the number of strict partitions of i whose parts do

not exceed n. Then referring to section 1.4.4, ζ(LZ(n, 2n), s) is given by

ζ(LZ(n, 2n), s) =
∏

p

ζ(LZ(n, 2n)⊗ Fp, s) =
∏

p

Z(LZ(n, 2n)⊗ Fp, p
−s)

=
∏

p

1

(1− t)b0(1− pt)b1 . . . (1− pmt)bm
where t = p−s

=
m∏

i=0

ζbi(s− i).

Thus, we see that ζ(LZ(d, n), s) can be expressed as a product of the Riemann Zeta

functions.
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Chapter 3

Other subschemes of the

Grassmannian

In Chapter 1 we saw that the usual Grassmannian G(d, n) can be considered as a

scheme over Spec Z. The Grassmann scheme G = GZ(d, n) represents the Grassmann

functor g : (rings) → (sets) given by

g(T ) = {T -submodules K ⊂ T n that are rank d direct summands of T n}.

By the results of Chapter 1 the Grassmann schemeG = GZ(d, n) is a closed subscheme

of the projective space Pr
Z where r =

(
n
d

)
− 1. It is a smooth projective variety over

Spec Z of relative dimension d(n − d). Moreover the Grassmannian G(d, n) has a

covering by spaces each isomorphic to affine space Ad(n−d).

In Chapter 2 we saw that the Lagrangian Grassmann scheme L = LZ(n, 2n)

represents the Lagrangian Grassmann functor l : (rings) → (sets) given by

l(T ) = {isotropic T -submodules K ⊂ T 2n that are rank n direct summands of T 2n}.

The Lagrangian Grassmann scheme L is a closed subscheme of Pr
Z where r is given

by r =
(
2n
n

)
− 1. It is a smooth projective variety over Spec Z of relative dimension
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n(n+ 1)

2
. Moreover the Lagrangian Grassmannian has a covering by spaces each

isomorphic to affine space A
n(n+1)

2 .

Now fix a ring R ⊂ Mn(Z) and an integer, 0 < d < n. Let fR : (rings) → (sets)

be the functor such that fR(T ) is

{T -submodules K ⊂ T n that are R-invariant rank d direct summands of T n},

where we say that a summand K ⊂ T n is R-invariant if r.a ∈ K for all r in R and

for all a ∈ K. In this Chapter we prove that fR is represented by a closed scheme

FR ⊂ GZ(d, n). Moreover we provide an explicit affine covering of FR.

We focus on the following case. Let R be the ring of integers of a number field Q.

Let [Q : Q] = d and n = 2d. The embedding R ⊂ M2d(Z) can be chosen as follows.

The ring R acts diagonally on R ⊕ R by r(r1, r2) = (rr1, rr2) . If R =
⊕d

i=1 Zvi as

groups then R ⊕ R ∼= Z2d. We study below the local structure of FR and its Zeta

function in some particular cases. Our motivation is the following.

Suppose k is an algebraically closed field and A is an abelian variety over Spec k

of dimension d. Let Ck denote the category of local Artinian rings (B,m) such that

B/m = k. Let δ : Ck → (sets) be the deformation functor given by

δ(B) = {(A, φ) | A/SpecB an abelian scheme,φ : A⊗B (B/m) ∼= A }/ ∼=

Theorem 3.1. (Grothendieck, de Jong, Deligne - Pappas, others) There exists a com-

plete local noetherian ring D with residue field k that pro-represents δ; for any ringB

in Ck, δ(B) = Homcont(D,B). Moreover there is a k- rational point, say x, of the

Grassmannian G(n, 2n) such that

D ∼= ÔG,x
∼= SpecW (k)[[x1, x2, . . . , xd(n−d)]]

(if k has characteristic 0 we can replace W (k) by k).
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In general, deformations of abelian varieties possibly provided with extra data such

as an embedding R ⊂ End(A) or a principal polarization are related to completed

local rings on the Grassmannian FR or L. In particular we have the following theorem.

Theorem 3.1.(continued) Let R be a ring of integers. Let (A, i) be an abelian variety

over k with an embedding i : R → Endk(A). Let δR : Ck → (sets) be the deformation

functor given by

δR(B) =

 (A, I, φ) | A/ SpecB is an abelian scheme,

I : R→ EndB(A), φ : A⊗B (B/m) ∼= A, I induces i

 .

Then δR is represented by a complete local noetherian ring DR with residue field k

and moreover DR
∼= ÔFR,x, the completion of the local ring of the Grassmannian FR

at a suitable point x.

3.1 Representability of the functor fR

Recall that for a fixed ring R ⊂Mn(Z) and an integer 0 < d < n, fR(T ) is given by

{T -submodules K ⊂ T n that are R-invariant rank d direct summands of T n}.

Let W be a free rank d submodule of T n which is R-invariant. We first show that fR

is a sheaf in the Zariski topology. Let T be a ring. Let X = SpecT . Consider the

open covering of X by distinguished open affine sets Ui = SpecTfi
. Suppose for every

collection of elements Wi ∈ fR(Tfi
), Wi and Wj map to the same element in fR(Tfifj

).

So in fR(Tfifj
) we have

Wi ⊗Tfi
Tfifj

= Wj ⊗Tfj
Tfifj

.

We wish to show that there exists a unique element W ∈ fR(T ) that maps to each

of the Wi. The existence and uniqueness part follows from the case of the Grass-

mann functor. We have to verify that if Wi are R-invariant for all i then the direct
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summand W as obtained in the section 1.4.2 is also R-invariant. Referring to section

1.4.2 we get a rank d direct summand W of T n as

W = Γ(X,F) = {w ∈ T n | w ∈ T n
fi
, w ∈ Wi for all i}.

Now if r ∈ R and w ∈ W we see that w ∈ Wi for all i and as each Wi is R-invariant,

r · w ∈ Wi. It follows that r · w ∈ W . Thus W is R-invariant.

Now let W be a rank d summand of T n. Suppose we have a splitting of T n as

T n = W ⊕U where U is a rank (n−d) free submodule of T n. Then we have an affine

neighbourhood of W namely, Hom[R](W,U) ⊂ Hom(W,U) given by

Hom[R](W,U) = {ϕ : W → U | Γϕ is R- invariant}.

Lemma 3.2. The subset Hom[R](W,U) ⊂ Hom (W,U) ∼= Ad(n−d) is closed.

Proof. We have Hom[R](W,U) =
⋂

r∈R Hom[r](W,U) where by definition

Hom[r](W,U) = {ϕ : W → U | Γϕ is r-invariant}.

Let {e1, . . . , ed} be a basis for W . Then a basis for the graph of ϕ, Γϕ is given by

{(ei, ϕ(ei)) | 1 ≤ i ≤ d}. Extend the basis {e1, . . . , ed} of W to a basis of T n. We

have

Hom[R](W,U) =
⋂
r∈R

d⋂
i=1

Hom[r],i(W,U)

=
⋂
r∈R

d⋂
i=1

{ϕ : W → U | r(ei, ϕ(ei)) ∈ Γϕ}.

Let Mi be a n × (d + 1) matrix with the first d colums given by ei + ϕ(ei) for

i = 1, · · · , d and the (d+ 1)-th column given by r(ei + ϕ(ei)). Then r(ei, ϕ(ei)) ∈ Γϕ

if and only if all the (d + 1) × (d + 1) determinants of the matrix Mi vanish. This

defines a closed condition. Thus each Hom[r],i(W,U) is a closed set in Hom(W,U) and

Hom[R](W,U) is a closed subset of Hom(W,U) being a intersection of closed sets.
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Corollary 3.3. The functor fR is representable.

Proof. By the above discussion we see that the functor fR is a sheaf in the Zariski

topology. Also by Lemma 3.2, given W a rank d summand which is R-invariant and

complementary submodule U , we have a neighbourhood of W , namely

Hom[R](W,U) ⊂ Hom (W,U) ∼= Ad(n−d).

Then referring to Theorem 1.51 it follows that the functor fR is representable.

Now, let V be a vector space of dimension n over an algebraically closed field k.

Suppose a ring R acts on V . Let W be a rank d direct summand of V that is R-

invariant. Suppose we have a splitting V = W ⊕U . Then U = V/W has a R-module

structure. Note that U as a subspace of V may not be R-invariant. In general, the

set

{Γϕ | ϕ : W → U , ϕ is a k-linear map with Γϕ R-invariant}

is not same as the set HomR⊗k(W,U). However we will see that HomR⊗k(W,U) is in

natural bijection with the tangent space to the scheme FR at W .

3.2 Properties of FR

In this section we will give a description of the Zariski tangent space to the Gras-

mannian G(d, n) at a k-valued point. Hence we will describe the tangent space to the

scheme FR at a k-valued point W . Recall that if X is any scheme, then for any k-

rational point x ∈ X the Zariski tangent space Tx to X at x is Hom(m/m2, k), where

m = mX,x is the maximal ideal in the local ring of X at x and k is the residue field

of X at x. Now suppose that X is a scheme over field k. Then to give a k morphism

of Spec k[ε]/(ε2) to X is equivalent to giving a point x ∈ X, rational over k (i.e.

k(x) = k), and an element of Tx. For the details refer to [6, p.256-257].
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Proposition 3.4. The Zariski tangent space to the Grassmannian G(d, n) at a k-

valued point W is isomorphic to Homk(W, k
n/W ).

Proof. If W is a k-valued point of the Grassmannian G(d, n) it is a rank d summand

of kn. Let k[ε] = k(ε)/(ε2). By the above discussion, to give a tangent vector to

G(d, n)(k) at W is to giving a k-morphism k[ε] → G(d, n)(k), i.e. by section 1.4.2 of

Chapter 1, giving a rank d direct summand of k[ε]n which reduces to W mod ε. Thus,

the Zariski tangent space to G(d, n)(k) at W is the set of all rank d summands M of

k[ε]n which reduce to W modulo ε. We now show that the collection of all such M

can be identified with Homk(W, k
n/W ). Let first M be a rank d summand of k[ε]n

that is W modulo ε. Then M ⊗k[ε] k = W , and we get an exact sequence

0 → εM →M → W → 0

We have εM = εW , and for all w ∈ W there is a ϕ(w) ∈ kn, such that w+ϕ(w)ε ∈M .

Using this and the fact that the above sequence is exact, the module M has the form

M = {w + ϕ(w)ε | w ∈ W}+ εW.

Then ϕ gives a map W → kn/W . Moreover, if w1, w2 ∈ W , we have

([w1 + ϕ(w1)ε] + [w2 + ϕ(w2)ε]− [w1 + w2 + ϕ(w1 + w2)ε]) ∈ εW.

Therefore, we have

ϕ(w1) + ϕ(w2)− ϕ(w1 + w2) ∈ W,

which implies ϕ(w1) + ϕ(w2)− ϕ(w1 +w2) is zero in kn/W . Similarly, one finds that

ϕ(aw)−aϕ(w) ∈ W for all w ∈ W and a ∈ k. Thus, the map ϕ defines a k-linear map

W → kn/W . Also, if ψ : W → kn/W is another function such that for all w ∈ W ,

(w + ψ(w)ε) ∈M then

ϕ(w)ε− ψ(w)ε ∈M ⇒ ϕ(w)− ψ(w) ∈ W.
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Thus ϕ(w) − ψ(w) is zero in kn/W and ϕ = ψ. So, given a rank d summand M of

k[ε]n that is W modulo ε we get a well defined map in Homk(W, k
n/W ). Now let

ϕ : W → kn/W be a k-linear map. We want to define a rank d summand M of k[ε]n

that is W modulo ε. Lift ϕ to a map ϕ̃ : W → kn. Define M by

M = {w + ϕ̃(w)ε | w ∈ W}+ εW.

Then M is closed under addition, closed under multiplication by elements in k[ε] and

is independent of the choice of ϕ̃. So M is a k[ε] module that is W modulo ε and has

rank d as W has rank d, and M is the required summand.

Corollary 3.5. The Zariski tangent space to the scheme FR at a k-valued point W

is isomorphic to HomR⊗k(W, k
n/W ).

Proof. If W is a k-valued point of FR it is an R- invariant rank d summand of kn.

By the above proposition the Zariski tangent space to FR at W is the set of all R-

invariant rank d summands M of k[ε]n that reduce to W modulo ε. Suppose first

that M is R-invariant. So we get a k linear map ϕ ∈ Homk(W, k
n/W ). Then for

r ∈ R, w ∈ W we have

r(w + ϕ(w)ε) ∈M and rw + ϕ(rw)ε ∈M.

Therefore,

(rϕ(w)− ϕ(rw))ε ∈M ⇒ rϕ(w)− ϕ(rw) ∈ W.

Thus rϕ(w)−ϕ(rw) is zero in kn/W and we get that ϕ is R-linear. Conversely if we

have a R-linear map ϕ : W → kn/W then for r ∈ R, ϕ(rw) = r(ϕ(w)). So for the

corresponding lift ϕ̃ : W → kn, ϕ̃(rw) = r(ϕ̃(w)) modulo W . Therefore the module

M = {w + ϕ̃(w)ε | w ∈ W}+ εW,

as defined in the above theorem, is R-invariant.
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Example 3.6. Suppose k is an algebraically closed field. Let R ⊗ k = k[ε]. Suppose

V = k[ε]2, W = k[ε], U = k[ε] and V = W ⊕ U . Then

HomR⊗k(W,U) = Homk[ε](k[ε], k[ε]) ∼= k[ε],

which is 2-dimensional over k. However, if W = (ε)⊕ (ε), then V/W ∼= (ε)⊕ (ε) as

k[ε] modules and the tangent space to W as a point on FR is given by

Homk[ε](W,U) = Homk(W,U),

which is four dimensional. Thus W , as a point on FR, is singular.

Proposition 3.7. Let V be a vector space over an algebraically closed field k. Suppose

a ring R acts on V . Assume that V = W ⊕ U where W and U are R-invariant. Let

ϕ : W → U be a k-linear homomorphism. Then the graph of ϕ, Γϕ is R-invariant

if and only if ϕ is R-equivariant. Thus an affine neighbourhood of FR is given by

HomR⊗k(W,U).

Proof. Let Γϕ be R-invariant. Let r ∈ R, w ∈ W . Then (w,ϕ(w)) ∈ Γϕ implies

(rw, rϕ(w)) and (rw, ϕ(rw)) belong to Γϕ. Thus r(ϕ(w)) = ϕ(rw) and so ϕ is R-

equivariant. Conversely suppose that ϕ is R-equivariant. Let (w,ϕ(w)) ∈ Γϕ. Then

for r ∈ R

r(w,ϕ(w)) = (rw, r(ϕ(w))) = (rw, ϕ(rw)) ∈ Γϕ.

Hence, Γϕ is R-invariant.

Let T be any algebraically closed field. Let R be the ring of integers of a number

field Q(R) with [Q(R) : Q] = d. Assume that R⊗ T is a sum of fields, say

R⊗Z T =
⊕

α

T ∼= T d,

where the sum varies over all ring homomorphisms α : R→ T . To give a T -submodule

M ⊂ T 2d of rank d that is R-invariant is same as giving a R⊗T invariant submodule

of (R⊗Z T )2 of rank d over T .
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Lemma 3.8. Let R and T be as above. Let M ⊂ (R⊗ T )2 be a submodule of rank

d over T . Then M is R ⊗ T invariant if and only if M =
⊕d

i=1Mi, where Mi is a

T -submodule of T 2 of rank ri and
∑d

i=1 ri = d.

Proof. Note that R and T are commutative rings with unity. Every submodule M of

(R⊗ T )2 can be written as

M =
d⊕

i=1

eiM =
d⊕

i=1

Mi,

where ei are the idempotents corresponding to the decomposition R ⊗ T =
⊕

α T .

Each Mi is a T module of T 2. If M has rank d and Mi has rank ri then
∑
ri = d.

The invariants (r1, · · · , rd) are discrete invariants of the module M . We see that

the Grassmann variety FR⊗T is a disjoint union
∐

r=(r1,··· ,rd) Vr, where the union is

over vectors (r1, · · · , rd) such that each 0 ≤ ri ≤ 2 and
∑
ri = d. The component Vr

parametrizes modules M with invariant r.

Now let M ⊂ (R⊗ T )2 be an R-invariant rank d summand of T 2d as a T -module.

Suppose T 2d = M ⊕ U where U is also R-invariant. Write M = ⊕Mi and U = ⊕Ui

where each Mi and Ui is a T -module. An affine neighbourhood of M in FR⊗T is given

by

HomR⊗T (M,U) = {Γϕ | ϕ : M → U such that Γϕ is R⊗ T -invariant}.

But, we have

HomR⊗T (M,U) =
⊕

i

HomT (Mi, Ui).

Thus, for ϕ : W → U , the graph of ϕ, Γϕ, has the form

Γϕ =
d⊕

i=1

Γϕi
,

where each Γϕi
has rank ri. We see that Vr equals j copies of P1 where j is number

of i such that ri = 1.

In the case when d = 2 we have following possibilities :



88 Other subschemes of the Grassmannian

1. Mi is 0 and Ui has rank 2.

2. Ui is 0 and Mi has rank 2.

3. Both Mi and Ui have rank 1

3.3 Example : Quadratic field

We now consider the following example of a quadratic field. Suppose L = Q(
√
D) is

a quadratic extension of Q where D is a squarefree integer. We have [L : Q] = 2. Let

R be the ring of integers in L. Then

R =

Z[
√
D] if D ≡ 2, 3 (mod 4);

Z[1+
√

D
2

] if D ≡ 1 (mod 4).

The discriminant dL of R is

dL =

4D if D ≡ 2, 3 (mod 4);

D if D ≡ 1 (mod 4).

Let k = Fp and R1 = R⊗ k. Consider R2
1 = R1 ⊕R1. It has two structures, namely:

1. R2
1 is an R1- module. For r1, r2, r ∈ R1 define r(r1, r2) = (rr1, rr2).

2. R2
1 is a k-vector space of dimension 4 i.e. R2

1
∼= k4.

We are interested in a subscheme FR1(2, 4)(k) ⊂ G(2, 4)(k) which is the collection of

all 2-dimensional subspaces of R2
1 that are R1- invariant. We concentrate on the case

when D ≡ 2, 3 (mod 4). We have

R1 = R⊗ k =


Fp ⊕ Fp, Fp characteristic p, (p) inert in L;

Fp ⊕ Fp, Fp characteristic p, (p) split in L ;

Fp[t]/t
2, Fp characteristic p, (p) ramified in L.
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First two cases: If (p) is inert or spilt in L, R1 = Fp⊕Fp, R
2
1 = (Fp⊕Fp)⊕(Fp⊕Fp).

We are interested in 2- dimensional subspaces of R2
1 that are R1-invariant. Note that

U is such a subspace if and only if U is preserved under (1, 0) and (0, 1). But

(0, 1) = (1, 1)− (1, 0).

So it is enough to consider the subspaces of R2
1 that are invariant under (1, 0). Let

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1) be the standard

basis for k4. Let t : R2
1 → R2

1 be the linear transformation given by

t =

(
1

0
1

0

)
Then we are interested in 2-dimensional subspaces of R2

1 that are preserved under t.

The basis {e1, e2, e3, e4} of R2
1 has the property that t acts as identity on e1, e3 and acts

as zero on e2, e4. Let M1 = span{e2, e4}, M2 = span{e1, e3}. Then R2
1 = M1⊕M2. If

N is a submodule of R2
1 of dimension 2 by Lemma 3.8 we can write it as N = N1⊕N2

where N1, N2 are submodules of M1,M2 respectively. If N has dimension 2 we have

the following three possibilities.

1. N = M1 = span{e2, e4};

2. N = M2 = span{e1, e3} ;

3. N= span {a2e2 + a4e4, a1e1 + a3e3 | a2 6= 0 or a4 6= 0, and a1 6= 0 or a3 6= 0}.

We now analyse these three cases. Let x12, x13, x14, x23, x24, x34 be the Plücker coor-

dinates corresponding to the canonical basis of
∧2 k4. Then, referring to section 1.12

in Chapter 1, we see that the Grassmann relation satisfied by G(2, 4) is given by

x14x23 − x24x13 + x12x34 = 0.

1. When N = span{e2, e4} its image under the Plücker map is the point in P5

given by (0 : 0 : 0 : 0 : 1 : 0). This is a closed subset of P5 defined by

Z1 = V {x12, x13, x14, x23, x34}.
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2. When N = span{e1, e3} its image in P5 is (0 : 1 : 0 : 0 : 0 : 0) . This is a closed

subset of P5 defined by

Z2 = V {x12, x14, x23, x24, x34}.

3. Assume we are in the third case. Let v1 = a2e2 + a4e4, v2 = a1e1 + a3e3. Then

v1 ∧ v2 = (−a1a2)e1 ∧ e2 + (0)e1 ∧ e3 + (−a1a4)e1 ∧ e4

+ (a2a3)e2 ∧ e3 + (0)e2 ∧ e4 + (−a3a4)e3 ∧ e4.

So the Plücker coordinates of such N are

(−a1a2 : 0 : −a1a4 : a2a3 : 0 : −a3a4).

In addition to the Plücker relations these points in P5 satisfy the following

relations in the coordinates

x12x34 + x14x23 = 0, x13 = 0, x24 = 0.

Moreover, one checks that every point on the closed set of G(2, 4) defined by

those relations comes from some N . In fact the collection of all such points is

isomorphic to a quadratic surface in P3 defined by

Z3 = V {x12x34 + x14x23}

and so is isomorphic to P1 × P1 over Fp. This agrees with the discussion in the

previous section. However, since the isomorphism Z3
∼= P1 × P1 is only over Fp,

we will use explicit equations below to compute the Zeta function.

We now compute the Zeta function of this Grassmannian FR1(2, 4)(k) contained

in G(2, 4)(k). Let σ : A4
k → A4

k be the Frobenius morphism. The Galois group

Gal(Fp/Fp) acts on R1 = (R⊗ Fp) by

σ(l ⊗ λ) = l ⊗ σ(λ).

This action induces the action of the Galois group on R2
1. We want to see the action

of the Galois group on the Plücker coordinates.
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3.3.1 The Zeta function : (p) inert in L

Assume that (p) is inert in L. Then

Z[
√
D]/(p) ∼= Fp[x]/(x

2 −D) =: F,

which is a field with p2 elements. There exist two embeddings τ1, τ2 : F → Fp and

R ⊗ Fp
∼= F2

p by the map f : l ⊗ λ 7→ (τ1(l)λ, τ2(l)λ). Note that R = Z · 1 ⊕ Z[
√
D]

as a group and

f(1⊗ 1) = (1, 1), f(
√
D ⊗ 1) = (

√
D,−

√
D).

The elements (1, 1), (
√
D,
√
−D) form a basis to F2

p and the Frobenius morphism σ

acts on (1, 1) and (
√
D, 1) as the identity.

Let M =
(

1
√

D

1 −
√

D

)
. Then M−1 = −1

2
√

D

(
−
√

D −
√

D
−1 1

)
. The matrix M−1 changes

coordinates from the standard basis of F2

p to the basis {(1, 1), (
√
D,
√
−D)}. Let

α = (α1, α2) be any general element of F2

p. Supposeλ1

λ2

 = M−1

α1

α2

 .

Then

λ1

λ2

 =

α1+α2

2

α1−α2

2
√

D

 are the coordiantes of α in the basis {(1, 1), (
√
d,
√
−d)}.

Therefore, we get

σ

λ1

λ2

 =

σ(α1)+σ(α2)
2

σ(α1)−σ(α2)

2σ(
√

D)

 =

σ(α1)+σ(α2)
2

σ(α1)−σ(α2)

−2
√

D

 .

Now,

σ

α1

α2

 = Mσ

λ1

λ2

 =
1

2

1
√
D

1 −
√
D

σ(α1) + σ(α2)

σ(α1)−σ(α2)

−
√

D

 =

σ(α2)

σ(α1)

 .
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So σ acts on (α1, α2) ∈ k2 by

σ

α1

α2

 =

σ(α2)

σ(α1)

 .

Thus, σ acts on k4 by

σ(a1, a2, a3, a4) = (σ(a2), σ(a1), σ(a4), σ(a3)),

and it acts on the Plücker coordinates by

σ(x12) = −x12, σ(x13) = x24, σ(x14) = x23,

σ(x23) = x14, σ(x24) = x13, σ(x34) = −x34.

Now we come back to the subvariety of G(2, 4) defined by

x12x34 + x14x23 = 0, x13 = x24 = 0.

The points on this subvariety have Plücker coordinates (c12 : 0 : c14 : c23 : 0 : c34)

satisfying the relation c12c34 + c14c23 = 0. The Frobenius morphism σ acts on

(c12 : 0 : c14 : c23 : 0 : c34) by

σ(c12 : 0 : c14 : c23 : 0 : c34) = (−σ(c12) : 0 : σ(c23) : σ(c14) : 0 : −σ(c34)).

One has

σ2(c12 : 0 : c14 : c23 : 0 : c34) = (σ2(c12) : 0 : σ2(c14) : σ2(c23) : 0 : σ2(c34)).

In fact we see that if r is any even positive integer then σr acts by

σr(c12 : 0 : c14 : c23 : 0 : c34) = (σr(c12) : 0 : σr(c14) : σr(c23) : 0 : σr(c34)).

This action of σr is usual componentwise action as in case of projective spaces. So the

number of subspaces invariant under the action of σr is simply equal to the number

of solutions to x12x34 +x14x23 = 0 over Fq with q = pr. To count those we distinguish

two cases.
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1. Suppose x12 6= 0. Each of x14 and x23 can be chosen arbitrarily. Hence each

of them has q choices and x34 is determined by x34 = −x14x23

x12

. So the total

number of solutions in this case is q2.

2. Suppose x12 = 0. Then either x14 = 0 or x23 = 0 or both of them are zero. The

total number of solutions in this case is (q + 1) + (q + 1)− 1 = 2q + 1.

Adding the number of solutions in both the cases we get the number of subspaces

invariant under the action of σr, for r even, is p2r + 2pr + 1. Also if r is even, the

points (0 : 1 : 0 : 0 : 0 : 0) and (0 : 0 : 0 : 0 : 1 : 0) are preserved under σr.

To see how σr acts if r is odd, first note that the set of points in P5 given by

(c12 : 0 : c14 : c23 : 0 : c34) satisfying c12c34 + c14c23 = 0 can be identified with the set

of points (a : b : c : d) in P3 satisfying ad+ bc = 0. First consider the case r = 1. We

consider 2 cases

1. Assume a 6= 0. Let a = 1. So we have

σ(1 : b : c : d) = (−σ(1) : σ(c) : σ(b) : −σ(d)) = (−1 : σ(c) : σ(b) : −σ(d)).

These are proportional if and only if the multiplication factor is −1. Therefore

we get, b = −σ(c) and c = −σ(b) which implies that b, c ∈ Fp2 . Also d ∈ Fp as

σ(d) = d. The relation b · σ(b) = −d gives b · bp = −d. So we have to find the

number of b ∈ Fp2 satisfying bp+1 ∈ Fp. But bp+1 = NormFp2/Fp(b) and so any

b ∈ Fp2 satisfies bp+1 ∈ Fp. Thus the number of such b is p2.

2. Now let a = 0, b = 0.

σ(0 : 0 : c : d) = (0 : 0 : σ(0) : −σ(d)) = (0 : 0 : 0 : −σ(d)).

There is only one solution in this case. We note that one gets the same solution

when a = 0, c = 0.
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Adding the total number of solutions in both the cases we get that the number of

points invariant under the action of σ is p2 + 1. We can do similar calculations for

all odd powers of σ and get that the number of points invariant under the action of

σ2r−1 is equal to p2(2r−1) + 1.

The Grassmannian FR1(Fp) that we have is the union of two sets X1 and X2,

X1 = {(0 : 1 : 0 : 0 : 0 : 0), (0 : 0 : 0 : 0 : 1 : 0)},

X2 = {(c12 : 0 : c14 : c23 : 0 : c34) | c12c34 + c14c23 = 0}.

The Zeta function of FR1(Fp) is given by

Z(FR1(Fp), t) = Z(X1, t) · Z(X2, t).

We have

Z(X1, t) = exp

(
∞∑

r=1

2
t2r

2r

)
= exp

(
∞∑

r=1

t2r

r

)
=

1

1− t2
.

The Zeta function of X2 is given by

Z(X2, t) = exp

(
∞∑

r=1

(p2r + 1)2 t
2r

2r
+

∞∑
r=1

(p2(2r−1) + 1)
t2r−1

2r − 1

)

= exp

(
∞∑

r=1

(p4r + 2p2r + 1)
t2r

2r
+

∞∑
r=1

(p2(2r−1) + 1)
t2r−1

2r − 1

)
.

Combining proper terms together we get

Z(X2, t) = exp

(
∞∑

r=1

p2r t
r

r
+

∞∑
r=1

2p2r t
2r

2r
+

∞∑
r=1

tr

r

)
=

1

(1− t)(1− p2t)(1− p2t2)
.

Therefore we get

Z(FR1(Fp), t) =
1

(1− t)(1− t2)(1− p2t)(1− p2t2)
.
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3.3.2 The Zeta function : (p) split in L

Let (p) be split in L. Then R ⊗ Fp = Fp ⊕ Fp and it follows that the Galois action

on R⊗ Fp = Fp ⊕ Fp and hence on the Plücker coordinates, is componentwise in this

case. The Grassmann subvariety FR1(Fp) is the union of two sets X1 and X2,

X1 = {(0 : 1 : 0 : 0 : 0 : 0), (0 : 0 : 0 : 0 : 1 : 0)},

X2 = {(c12 : 0 : c14 : c23 : 0 : c34) | c12c34 + c14c23 = 0}.

The Zeta function of FR1(Fp) is given by

Z(FR1(Fp), t) = Z(X1, t) · Z(X2, t).

The Zeta function of X1 is given by

Z(X1, t) = exp

(
∞∑

r=1

2
tr

r

)
=

1

(1− t)2
.

Since the Galois action is natural, for a even positive integer r, σr acts by

σr(c12 : 0 : c14 : c23 : 0 : c34) = (σr(c12) : 0 : σr(c14) : σr(c23) : 0 : σr(c34)).

This action of σr is the usual componentwise action as in case of projective spaces.

So the number of subspaces invariant under the action of σr is simply equal to the

number of solutions to x12x34 + x14x23 = 0 over Fp. We have the following cases.

1. Suppose x12 6= 0. Assume that x12 = 1. Each of x14 and x23 can be chosen

arbitrarily. Hence each of them has p choices and x34 is determined by the

relation x34 = −x14x23

x12

. So the total number of solutions in this case is p2.

2. Suppose x12 = 0. Then either x14 = 0 or x23 = 0 or both of them are zero. The

total number of solutions in this case is (p+ 1) + (p+ 1)− 1 = 2p+ 1.
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Adding the solutions in both the cases we get the number of Fpr rational points as

p2r + 2pr + 1 and the Zeta function of X2 is given by

Z(X2, t) = exp

(
∞∑

r=1

(p2r + 2pr + 1)
tr

r

)
=

1

(1− t)(1− pt)2(1− p2t)
.

It follows that

Z(FR1(Fp), t) =
1

(1− t)3(1− pt)2(1− p2t)
.

3.3.3 The Zeta function : (p) ramified in L

The case when (p) is ramified in L. As before R1 = R ⊗ k = k[t]/t2. Consider the

nilpotent linear transformation t : R2
1 → R2

1. We are interested in the set FR1(Fp)

which is the set of 2-dimensional subspaces of R2
1 that are R1-invariant i.e. the

subspaces that are preserved by the action of t. The vectors w1 = e1 = (1, 0),

w2 = te1 = (t, 0), w3 = e2 = (0, 1), w4 = te2 = (0, t) form a basis for R2
1. We see

that ker(t) is the space spanned by te1 and te2 as t2 = 0. Now let U be any two

dimensional subspace of V . Then tU is a subspace of V of dimension less than 2. If

U = ker(t) = span{te1, te2}, it is zero dimensional, otherwise tU is one dimensional.

And in that case if {v1, v2} is a basis of U , either tv1 6= 0 or tv2 6= 0. If tv1 6= 0 since

v1, tv1 are linearly independent, they form a basis for U . Conversely if v1 ∈ V such

that tv1 6= 0 then {v1, tv1} span a 2 dimensional subspace of R2
1 which is t invariant.

Thus every U ∈ FR(Fp) with U 6= ker(t) can be written as the span of {v1, tv1} where

v1 ∈ U is not in the ker(t).

v1 = a1e1 + a2te1 + a3e2 + a4te2 = a1w1 + a2w2 + a3w3 + a4w4.

Then we get

tv1 = a1te1 + a3te2 = a1w2 + a3w4.
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The set FR1(2, 4)(Fp) ⊂ G(2, 4)(Fp) can be embedded in P5 via the Plücker map. If

{v1, tv1} is a basis for U its image in P5 via the Plücker map is the element in P5

determined by v1 ∧ tv1. Now

v1 ∧ tv1 = (a2
1)w1 ∧ w2 + (0)w1 ∧ w3 + (a1a3)w1 ∧ w4

+ (−a1a3)w2 ∧ w3 + (a2a3 − a1a4)w2 ∧ w4 + (a2
3)w3 ∧ w4.

If we set xij as the Plücker coordinates as before then we have the relations

x13 = 0, x14 + x23 = 0, x2
14 − x12x34 = 0

in addition to the Grassmann relation

x14x23 − x24x13 + x12x34 = 0.

Thus FR1(Fp) can be described as the zero set of {x13, x14 +x23, x
2
14−x12x34} in P5.

Note that

FR1(Fp) ∼= V {(a : b : c : d) ∈ P3 | b2 = ad},

with the Galois action on V being the usual one. We now find number of solutions

over Fpr .

1. Let a = 0. Therefore b = 0. The number of solutions in this case is pr + 1.

2. Let a 6= 0. Suppose a = 1. So, b2 = d. The number of solutions in this case is

p2r.

Adding the number of solutions in both the cases we get the number of Fpr rational

points is p2r + pr + 1. Therefore the Zeta function of FR1(Fp) in this case is given by

Z(FR1(Fp), t) = exp

(
∞∑

r=1

(p2r + pr + 1)
tr

r

)
=

1

(1− t)(1− pt)(1− p2t)
.
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3.4 Zeta function of FR as a scheme over Z

In the above example of quadratic field, the scheme FR is of finite type over the ring

of integers Z. The global Zeta function in this case is obtained by combining the Zeta

functions in (p) inert, split and ramified cases.

Proposition 3.9. The Zeta function of FR as a scheme over Z is given by

ζ(FR, s) = ζL(s) · ζL(s− 1) · ζ(s− 2) · ζdL
(s),

where ζL(s) is the Dedekind Zeta function, ζ(s − 2) is Riemann Zeta function and

ζdL
(s) =

∏
p-dL

1
(1−t)

is the Euler factor at dL.

Proof. We recall from the last section, the computation of the Zeta function in all

three cases.

1. The Zeta function when (p) is inert in L is

Z(FR1(Fp), t) =
1

(1− t)(1− t2)(1− p2t)(1− p2t2)
,

2. The Zeta function when (p) is split in L is

Z(FR1(Fp), t) =
1

(1− t)3(1− pt)2(1− p2t)
,

3. The Zeta function when (p) is ramified in L is

Z(FR1(Fp), t) =
1

(1− t)(1− pt)(1− p2t)
.

The global Zeta function ζ(FR, s) is given by the product of the following three

functions (where t = p−s)

∏
all p

1

(1− t)
· 1

(1− p2t)
· 1

(1− pt)
, (3.1)
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( ∏
p spilt

1

(1 + t)

∏
p inert

1

(1− t)

)
·

( ∏
p spilt

1

(1 + pt)

∏
p inert

1

(1− pt)

)
, (3.2)

∏
p spilt

1

(1− t)

∏
p inert

1

(1− t)
. (3.3)

Let χ be the quadratic Dirichlet character (Z/dLZ)∗ → {±1}. We conclude that

ζ(FR, s) = ζ(s) · ζ(s− 2) · ζ(s− 1) · L(χ, s) · L(χ, s− 1) ·
∏
p-dL

1

(1− t)

= ζL(s) · ζL(s− 1) · ζ(s− 2) · ζdL
(s),

where ζL(s) is the Dedekind Zeta function, ζ(s − 2) is Riemann Zeta function and

ζdL
(s) =

∏
p-dL

1
(1−t)

is the Euler factor at dL.
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Conclusion

In this text we studied in detail the classical Grassmannian and the Lagrangian

Grassmannian. After studying the local properties and the Zeta function of these

varieties we introduced Schubert calculus. As one of its applications we noticed that

the information of the cohomology groups of the Grassmannian in characteristic zero

gives the information of the cohomology groups in characteristic p and vice versa. It

remains an interesting problem to determine the ring structure of the cohomology

using point counting in characteristic p.

Schubert calculus, essentially founded by H. Schubert in 1874, helps understand

questions in enumerative geometry i.e. to find number of points, lines, planes etc

satisfying certain geometric conditions. The subject was then connected with the

branch of combinatorics which deals with symmetric functions, Young tableaux, plane

partitions etc. An excellent account of this subject can be found in a survey article by

Kleiman and Laksov [12]. In Chapter 1 we computed the products of Schubert cycles

using the Basis Theorem, Giambelli’s Formula and Pieri’s Formula. A further step

in this direction could be to understand the literature dealing with the connection

between the multiplication of Schur-S polynomials (defined by Schur in his 1901

thesis) and the cohomology ring of the Grassmannian. This connection was first

observed by Lesieur [13]. In the classical case, the multiplication of Schubert cycles

agrees with the corresponding product of Schur-S polynomials.

The Schubert calculus for Lagrangian Grassmannian is also quite interesting and
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only a few pieces are introduced in this thesis. Further step in this direction could

be to understand the literature dealing with the multiplicative structure of the co-

homology ring of the Lagrangian Grassmannian. In [16], Pragacz showed that the

product of Schubert cycles in Lagrangian case agrees with the corresponding product

of Schur-Q polynomials.

In Chapter 1, following [6] we showed the representability of the Grassmann func-

tor. In the next Chapter, we modified the same definition and used isotropic sum-

mands to define the Lagrangian Grassmann functor. The Grassmannians can also be

viewed as Hilbert schemes. The Grassmannian GS(d, n) parametrizes subschemes X

of degree one and dimension d in the projective space Pn
S. We computed the Euler

characteristic and the Zeta functions of Grassmannians. It would be interesting to

compute their Hilbert polynomials and realise them as Hilbert schemes.

We then remark that the above Grassmann varieties come under a large class of

generalized Grassmann varieties. For a field k, integers 0 < d < n, a generalized

Grassmann variety G(R; d, n) is the set of all d-dimensional subspaces of kn that are

preserved under a subring R ⊆ End(kn). The case R = {0} leads to the classical

Grassmannian G(d, n)(k). If further we define an alternating pairing on k2n and con-

centrate only on isotropic subspaces of dimension n, we get Lagrangian Grassmannian

L(n, 2n)(k). We agree to denote the generalized Grassmann variety G(R; d, n) simply

by G(d, n) when R = {0}. In the last Chapter we fixed a ring R ⊂ Mn(Z) and an

integer, 0 < d < n. We defined the functor fR : (rings) → (sets) which sends ring T

to

{T -submodules K ⊂ T n that are R-invariant rank d direct summands of T n},

and showed that fR is represented by the generalized Grassmann scheme denoted

by FR = G(R; d, n). We studied in detail the Zariski tangent space to the scheme

FR at a k-valued point W . In the case of the classical Grassmannian G(d, n)(k), an

affine neighbourhood of W is in natural bijection with Homk(W, k
n/W ). However it
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is noticed that this is not true in the case of the scheme FR. Instead we saw that the

tangent space to W as a point on FR is in bijection with HomR⊗k(W, k
n/W ). It still

remains to understand the local structure of the scheme FR more closely and compute

the dimension of the scheme FR. We analysed the scheme FR when R is the ring of

integers of a number field L = Q[
√
D] when D is a squarefree integer with D ≡ 2, 3

(mod 4). We computed the Zeta function of FR in this case as a product of some

Dedekind Zeta functions and Riemann Zeta functions with some Euler factor.

It is an interesting problem to develop Schubert calculus in this setting and calcu-

late the Zeta function in characteristic p using cohomology, base change and vanishing

cycles.
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