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1. Introduction

Definition 1. Let a ≥ 1. An a-th stage spectral (cohomological) sequence consists
of the following data:

• bigraded objects Er =
⊕

p,q∈Z Ep,q
r , r ≥ a

• differentials dr : Er → Er such that dr(Ep,q
r ) ⊆ Ep+r,q−r+1

r

satisfying H(Er) = Er+1, i.e.,

Ep,q
r+1 =

ker(Ep,q
r → Ep+r,q−r+1

r )
im(Ep−r,q+r−1

r → Ep,q
r )

.

We usually draw the r-th stage of a spectral sequence in a tabular format with
p increasing horizontally to the left and q increasing vertically to the right:
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2. The spectral sequence of a filtered complex

Let K · = F 0K · ⊇ F 1K · ⊇ · · · be a filtered complex (i.e., each object Kn in the
complex K · is filtered and the differentials of the complex K · respect the filtration).
We set Grp K · = F pK ·/F p+1K ·. Note that the filtration on K · induces a filtration
H(K ·) = F 0H(K ·) ⊇ F 1H(K ·) ⊇ · · · on cohomology in a natural way. Given this
setup, one may prove the following.

Theorem 2. Suppose that K · is a nonnegative filtered complex (i.e., Kn = 0 if
n < 0). Then there exists a spectral sequence Ep,q

r satisfying
1
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• Ep,q
0 = Grp Kp+q

• Ep,q
1 = Hp+q(Grp K ·)

• Ep,q
r = Grp Hp+q(K ·) for r = r(p, q)� 0.

Sketch of proof. Set Ep,q
0 = Grp Kp+q. As differential of the complex K · respects

the filtration, it induces a map d0 : Ep,q
0 → Ep,q+1

0 . To realize Ep,q
r , r ≥ 1, one

defines the set
Zp,q

r = {x ∈ F pKp+q | dx ∈ F p+rKp+q+1}
of ‘cocycles modulo F p+rKp+q+1’ and sets

Ep,q
r = Zp,q

r /(appropriate coboundaries).

The differential d then induces the map dr : Er → Er (it is at least evident from
the above that we get a map Zp,q

r → Zp+r,q−r+1
r ). It remains to check the desired

properties of these object. We omit this; for details see [3, Ch. XX, Proposition
9.1]. �

The spectral sequence whose existence is asserted in the above theorem is an
example of a first quadrant spectral sequance, by definition a spectral sequence such
that Ep,q

r is zero unless p, q ≥ 0. It is easy to see that in a first quadrant spectral
sequence, Ep,q

r = Ep,q
r+1 = · · · if r > max(p, q + 1). In the situation of the theorem,

this stable value is Grp Hp+q(K ·).

3. Convergence of spectral sequences

Let Ep,q
r be a spectral sequence, and suppose that for every pair (p, q), the term

Ep,q
r stabilizes as r →∞ (a first quadrant spectral sequence, for example). Denote

this stable value by Ep,q
∞ . Let Hn be a collection of objects with finite filtrations

0 ⊆ F sHn ⊆ · · · ⊆ F tHn = Hn.

We say that Ep,q
r converges to H ·, and write Ep,q

r ⇒ Hp+q, if

Ep,q
∞ = F pHp+q/F p+1Hp+q = Grp Hp+q.

Example 3. Suppose K · is a nonnegative filtered complex. Then by Theorem 2, we
have a convergent spectral sequence

Ep,q
1 = Hp+q(Grp K ·)⇒ Hp+q(K ·).

Given this definition of convergence, one is led immediately to ask to what extent
the limit of a spectral sequence is determined by the sequence itself. The next two
lemmas give some basic though useful results in this direction.

Lemma 4. Suppose Ep,q
r ⇒ Hp+q.

(1) If Ep,q
∞ = 0 unless q = q0, then Hn = En−q0,q0

∞ .
(2) If Ep,q

∞ = 0 unless p = p0, then Hn = Ep0,n−p0
∞ .

Proof. We prove (1), the proof of (2) being similar. Consider the filtration

0 ⊆ · · · ⊆ Fn−q0+1Hn ⊆ Fn−q0Hn ⊆ Fn−q0−1Hn ⊆ · · · ⊆ Hn.

Since Ep,q
∞ = 0 unless q = q0, the only nonzero quotient of this filtration is

Fn−q0Hn/Fn−q0+1Hn = En−q0,q0
∞ . Thus, Fn−q0+1Hn = 0 and Fn−q0Hn = Hn,

implying
Hn = Fn−q0Hn = Hn/Fn−q0+1Hn = En−q0,q0

∞ .

�
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The next result shows that in certain cases the form of the filtration on the limit
object is determined by the spectral sequence.

Lemma 5. Suppose Ep,q
r ⇒ Hp+q.

(1) If Ep,q
r is a first quarter spectral sequence, then Hn has a filtration of the

form

0 = Fn+1Hn ⊆ FnHn ⊆ · · · ⊆ F 1Hn ⊆ F 0Hn = Hn.

(2) If Ep,q
r is a third quarter spectral sequence, then H−n has a filtration of the

form

0 = F 1H−n ⊆ F 0H−n ⊆ · · · ⊆ F−n+1H−n ⊆ F−nH−n = H−n.

A third quarter spectral sequence Ep,q
r is one in which Ep,q

r = 0 unless p, q ≤ 0.

Proof. Again we only prove (1), the proof of (2) being similar. We must show that
Fn+kHn = 0 if k > 0 and F kHn = Hn if k ≤ 0. Consider the “left tail” of the
(finite!) filtration of Hn,

0 ⊆ · · · ⊆ Fn+2Hn ⊆ Fn+1Hn ⊆ FnHn.

As Ep,q
r is a first quarter spectral sequence,

Fn+kHn/Fn+k+1Hn =

{
En+k,−k
∞ = 0 if k > 0

En,0
∞ if k = 0.

Therefore, Fn+kHn = 0 if k > 0. One shows that F kHn = Hn if k ≤ 0 in a similar
fashion by considering the “right tail” of the filtration. �

4. The spectral sequence of a double complex

In this section, we treat one of the most common ways spectral sequences arise
– from a double complex.

Definition 6. A double complex M consists of a bigraded object M =
⊕

p,q∈Z Mp,q

together with differentials d : Mp,q → Mp+1,q and δ : Mp,q → Mp,q+1 satisfying
d2 = δ2 = dδ + δd = 0.

Example 7. Let R be a ring (P ·, dP ) and (Q·, dQ) be complexes of R-modules.
Define a double complex M = P · ⊗R Q· by Mp,q = P p ⊗R Qq, d = dP , and
δ = (−1)pdQ : P p ⊗R Qq → P p ⊗R Qq+1.

To each double complex M , we attach a (single) complex TotM called its total
complex defined by

Totn M =
⊕

p+q=n

Mp,q.

The differential D on this total complex is given by D = d + δ. Notice that
D2 = (d + δ)2 = d2 + δ2 + dδ + δd = 0, i.e., (Tot M,D) is a complex.

There are two canonical filtrations on the total complex Tot M of a double com-
plex M given by

′F p Totn M =
⊕

r+s=n
r≥p

Mr,s and ′′F q Totn M =
⊕

r+s=n
s≥q

Mr,s.

By the theorem of Section 2, the filtrations ′F p Totn M and ′′F p Totn M determine
spectral sequcences ′Ep,q

r and ′′Ep,q
r , respectively. One observes easily that ′Ep,q

0 =
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Mp,q and checks (perhaps not so easily) that the differential ′Ep,q
0 → ′Ep,q+1

0 arising
from the construction of the spectral sequence of a filtration is simply given by δ.
Thus, ′Ep,q

1 = Hq
δ (Mp,·). The differential ′Ep,q

1 → ′Ep+1,q
1 is induced by d, viewed as

a homomorphism of complexes Mp,· →Mp+1,·, implying that ′Ep,q
2 is equal to the p-

th homology group of the complex (Hq
δ (Mp,·), d). We will write this simply (though

slightly ambiguously) as Hp
d (Hq

δ (M)). One may obtain similar expressions for ′′Ep,q
r ,

r = 0, 1, 2. We summarize these important results in the following theorem.

Theorem 8. Let M be a double complex with total complex TotM . Then there
exist two spectral sequences ′Ep,q

r and ′′Ep,q
r (corresponding to the two canonical

filtrations on TotM) such that
′Ep,q

0 = Mp,q, ′Ep,q
1 = Hq

δ (Mp,·), ′Ep,q
2 = Hp

d (Hq
δ (M)),

′′Ep,q
0 = Mq,p, ′′Ep,q

1 = Hq
d(M ·,p), ′′Ep,q

2 = Hp
δ (Hq

d(M)).

Further, if M is a first or third quadrant double complex, then both ′Ep,q
r and ′′Ep,q

r

converge to Hp+q(TotM).

Example 9. Let R be a ring. In what all follows, all tensor products are taken over
R. We shall use the spectral sequences attached to a double complex to show that
for R-modules A and B, we have equality of left derived functors Lp(−⊗B)(A) =
Lp(A⊗−)(B). Let

· · · d→ P−2 d→ P−1 d→ P 0 → A and · · · δ→ Q−2 δ→ Q−1 δ→ Q0 → B

be projective resolutions of A and B, respectively, and consider the double complex
P ·⊗Q·. We use negative indexing on these spectral sequences in order to stay in a
cohomological, as opposed to a homological, situation. Then ′Ep,q

1 = Hq
δ (P p ⊗Q·).

Since P p is a projective and hence flat R-module, one can show in an elementary
fashion that Hq

δ (P p⊗Q·) = P p⊗Hq
δ (Q·). Since Q· is a projective resolution of B,

we have

′Ep,q
1 =

{
P p ⊗B if q = 0,

0 otherwise.

Therefore,

′Ep,q
2 =

{
L−p(−⊗B)(A) if q = 0,
0 otherwise.

In like manner, one computes

′′Ep,q
2 =

{
L−p(A⊗−)(B) if q = 0,

0 otherwise.

Using Lemma 4 and the fact that both of these (third quadrant!) spectral sequences
converge to Hp+q(TotP · ⊗Q·), we have

L−p(−⊗B)(A) = ′Ep,0
2 = ′Ep,0

∞ = Hp(TotP · ⊗Q·)

= ′′Ep,0
∞ = ′′Ep,0

2 = L−p(A⊗−)(B).

Example 10. Let M be an R-module and P · be a nonpositive complex of flat R-
modules (i.e., P p = 0 if p > 0). Again, all tensor products and Tor’s are taken over
R. The relation between H∗(P · ⊗M) and H∗(P ·) ⊗M is encoded by a spectral
sequence.
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Proposition 11. Let M and P · be as above. Then there exists a third quadrant
spectral sequence

Ep,q
2 = Tor−p(Hq(P ·),M)⇒ Hp+q(P ⊗M).

Proof. Take a projective resolution · · · δ→ Q−2 δ→ Q−1 δ→ Q0 → M of M . We
consider the double complex P · ⊗Q· and its associated spectral sequences. By the
same argument as in the previous example,

′Ep,q
2 =

{
Hp(P · ⊗M) if q = 0,
0 otherwise.

Here, we have used the flatness of P ·. Therefore, by Lemma 4,

Hp+q(TotP · ⊗Q·) = ′Ep,q
∞ = ′Ep+q,0

2 = Hp+q(P · ⊗M),

and we have identified the limit term of the spectral sequence whose existence the
proposition asserts. Now let us consider the spectral sequence ′′Ep,q

r . We have
′′Ep,q

1 = Hq(P · ⊗Qp) = Hq(P ·)⊗Qp,

as Qp is projective and hence flat. Therefore,
′′Ep,q

2 = Hp
δ (Hq(P ·)⊗Qp) = L−p(Hq(P ·)⊗−)(M) = Tor−p(Hq(P ·),M).

Since ′′Ep,q
r ⇒ Hp+q(TotP · ⊗Q·) = Hp+q(P · ⊗M), we are done. �

This spectral sequence contains much useful information, the extraction of which
is the topic of the next section.

5. Getting information out of spectral sequences

5.1. A universal coefficients theorem. Consider again the situation of Example
10 in the special case where the ring R is a principal ideal domain. In this case,
Ep,q

2 = 0 unless p = 0, 1. In such a situation, one may apply the following lemma
to obtain an exact sequence from the spectral sequence of Proposition 11.

Lemma 12. Suppose Ep,q
2 ⇒ Hp+q is a third quarter spectral sequence, and that

Ep,q
2 = 0 unless p = 0,−1. Then we have an exact sequence

0→ E0,−n
2 → H−n → E−1,−n+1

2 → 0,

for all n ≥ 0.

Proof. By Lemma 5, the filtration on H−n has the form

0 = F 1H−n ⊆ F 0H−n ⊆ · · · ⊆ F−n+1H−n ⊆ F−nH−n = H−n.

Combining this with the fact that

F−kH−n/F−k+1 = E−k,−n+k
∞ = E−k,−n+k

2 = 0

for 2 ≤ k ≤ n, it follows that F−1H−n = H−n and F 0H−n = E0,−n
2 . Now

substitute these values in the exact sequence

0→ F 0H−n → F−1H−n → E−1,−n+1
2 → 0.

�

Proposition 11 and Lemma 12 yield the universal coefficients theorem for homol-
ogy.
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Corollary 13. Let R be a principal ideal domain, and let M , and P · be as in
proposition 11. Then for all n ≥ 0, we have an exact sequence

0→ H−n(P ·)⊗R M → H−n(P · ⊗R M)→ TorR
1 (H−n+1(P ·),M)→ 0.

5.2. Edge maps and terms of low degree. Let Ep,q
2 ⇒ Hp+q be a first quadrant

spectral sequence. By Lemma 5, Fn+1Hn = 0, implying

En,0
∞ = FnHn/Fn+1Hn = FnHn ↪→ Hn.

For each r ≥ 2, the differential leaving En,0
r is the zero map. Therefore, we have

surjections En,0
r � En,0

r+1 � · · ·� En,0
∞ . The composition

En,0
r � En,0

∞ ↪→ Hn

is called an edge map, as the terms En,0
r lie along the bottom edge of the r-th

stage diagram. Similarly, E0,n
∞ = F 0Hn/F 1Hn = Hn/F 1Hn by Lemma 5, giving a

surjection Hn � E0,n
∞ . As the differentials mapping into E0,n

r are all zero, we have
inclusions E0,n

r ←↩ E0,n
r+1 ←↩ · · · ←↩ E0,n

∞ . The composition

Hn � E0,n
∞ ↪→ E0,n

r

is also called an edge map. When r = 2 and n is small, we can be more specific
about the kernels and images of these edge maps.

Proposition 14 (Exact sequence of terms of low degree). Let Ep,q
2 ⇒ Hp+q be a

first quadrant spectral sequence. Then the sequence

0→ E1,0
2

e→ H1 e→ E0,1
2

d→ E2,0
2

e→ H2

is exact, where d is the E2-stage differential and the arrows labelled e are the edge
maps described above.

Proof. By Lemma 5, F 2H1 = 0. Therefore,

E1,0
2 = E1,0

∞ = F 1H1/F 2H1 = F 1H1 ↪→ H1,

and the edge map E1,0
2 → H1 is injective with image F 1H1. The edge map H1 →

E0,1
2 is the composition H1 → E0,1

3 = E0,1
∞ ↪→ E0,1

2 . Therefore, ker(H1 → E0,1
2 ) =

ker(H1 → E0,1
∞ ) = F 1H1, proving exactness at H1. Also, the image of H1 in E0,1

2

is precisely E0,1
3 = ker(E0,1

2
d→ E2,0

2 ), proving exactness at E0,1
2 . As

E2,0
3 = F 2H2/F 3H2 = F 2H2 ↪→ H2,

we have ker(E2,0
2 → H2) = ker(E2,0

2 → E2,0
3 ) = im(E0,1

2 → E2,0
2 ), completing the

verification. �

6. The Grothendieck spectral sequence

Let A, B, and C be abelian categories with enough injectives and let A G→ B F→ C
left exact covariant functors (so we may form their right derived functors). It is
natural to ask if there is a relationship between right derived functors of FG and
those of F and G. Under a certain technical hypothesis, this relationship exists and
is encoded in the Grothendieck spectral sequence.
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Theorem 15 (The Grothendieck spectral sequence). Suppose that GI is F -acyclic
for each injective object I of A (i.e., RpF (GI) = 0 if p > 0). Then for each object
A of A, there exists a spectral sequence

Ep,q
2 = (RpF )(RqG)(A)⇒ Rp+q(FG)(A).

Let C · be a complex and let C · → I ·,0 → I ·,1 → · · · be an injective resolution
(i.e., each term of each complex I ·,j is injective).

I0,1 −−−−→ I1,1 −−−−→ I2,1 −−−−→ · · ·x x x
I0,0 −−−−→ I1,0 −−−−→ I2,0 −−−−→ · · ·x x x
C0 −−−−→ C1 −−−−→ C2 −−−−→ · · ·

From this array, we can extract complexes

Zp(C ·)→ Zp(I ·,0)→ Zp(I ·,1)→ · · · ,
Bp(C ·)→ Bp(I ·,0)→ Bp(I ·,1)→ · · · , and

Hp(C ·)→ Hp(I ·,0)→ Hp(I ·,1)→ · · · .

We shall say that I ·,· is a fully injective resolution of C · if the above complexes
are injective resolutions of Zp(C ·), Bp(C ·), and Hp(C ·), respectively. Such things
exist:

Lemma 16. Suppose A has enough injectives. Then any complex in A has a fully
injective resolution.

Proof. [3, Ch. 20, Lemma 9.5] �

Sketch of proof of Theorem 15. Let A be an object of A, and let 0→ A→ C · be an
injective resolution of A. Let I ·,· be a fully injective resolution of GC ·. We examine
the spectral sequences associated to the double complex FI ·,·. We have

′Ep,q
1 = Hq(FIp,·) = RqF (GCp) =

{
(FG)Cp if q = 0,
0 otherwise,

as GCp is F -acyclic. Therefore,

′Ep,q
2 =

{
Hp((FG)C ·) = Rp(FG)(A) if q = 0,
0 otherwise,

and consequently, ′′Ep,q
2 ⇒ Hp+q(TotFI ·,·) = Rp(FG)(A), by Lemma 4.

To complete the proof, it suffices to show that ′′Ep,q
2 = (RpF )(RqG)(A). Evi-

dently, ′′Ep,q
1 = Hq(FI ·,p). Using the fact that everything in sight is injective, one

may show that Hq(FI ·,p) = FHq(I ·,p). Therefore, ′′Ep,q
2 = Hp(FHq(I ·,p)). Now

Hq(I ·,p) is an injective resolution of Hq(GC ·) = RqG(A) by the full injectivity of
I ·,·. Therefore,

′′Ep,q
2 = Hp(FHq(I ·,p)) = (RpF )(RqG)(A),

as desired. �
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Example 17 (Base change for Ext). Let R→ S be a ring homomorphism (endowing
S with an R-module structure) and let A be an S-module. Let G = HomR(S,−)
and F = HomS(A,−), and consider the diagram

R-modules G→ S-modules F→ Abelian Groups.

F and G are left exact, covariant functors, and

FG(B) = HomS(A,HomR(S, B)) = HomR(A⊗S S, B) = HomR(A,B),

i.e., FG = HomR(A,−). If I be an injective R-module, then

HomS(−,HomR(S, I)) = HomR(−⊗S S, I) = HomR(−, I).

So HomS(−,HomR(S, I)) is exact and HomR(S,−) sends injectives to injectives.
Therefore, Theorem 15 implies that there exists a spectral sequence

Ep,q
2 = Extp

S(A,Extq
R(S, B))⇒ Extp+q

R (A,B).

Now suppose S is a projective R module. In this case, HomR(S,−) is exact,
implying Extq

R(S, B) = Rq HomR(S,−)(B) = 0 if q > 0. That is, the above
spectral sequence collapses at the E2-stage. Therefore, by Lemma 4, we obtain the
identity

Extp
S(A,HomR(S, B)) = Extp

R(A,B)

for any S-module A and R-module B.

7. The Leray spectral sequence

In this section, we construct the Leray spectral sequence, an essential tool in
modern algebraic geometry. Its construction is an application of Theorem 15. Let
f : X → Y be a continuous map of topological spaces. Then we have a commutative
diagram

SheavesX
f∗ //

Γ(X,−) $$JJJJJJJJJ SheavesY

Γ(Y,−)zzttttttttt

Ab

where Ab, f∗ and Γ denote the category of abelian groups, sheaf pushforward, and
the sections functor, respectively. It is well known that the category of sheaves of
abelian groups on a topological space has enough injectives. Also, f∗ and Γ(Y,−)
are left exact, covariant functors. We claim that f∗ sends injectives to injectives
(and thus, to Γ(Y,−)-acyclics). To see this, we shall use the following useful lemma.

Lemma 18. Let G : A → B and F : B → A be covariant functors. Further
suppose that F is right adjoint to G and that G is exact. Then F sends injectives
to injectives.

Proof. Let I be an injective object of B. We must show that Hom(FI,−) is exact.
Let 0 → A′ → A → A′′ → 0 be an exact sequence in A. The the by the exactness
of G, the sequence 0 → GA′ → GA → GA′′ → 0 is exact. By the injectivity of I,
the sequence 0→ Hom(GA′′, I)→ Hom(GA, I)→ Hom(GA′, I)→ 0 is exact. The
adjointness property of F and G completes the argument. �
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If is a fact that f∗ is right adjoint to the sheaf inverse image functor f−1 – an
exact functor (see [2, Ch. 2, Exercise 1.18]). Therefore, by the lemma, f∗ sends
injectives to injectives, and by Theorem 15, for any sheaf F on X, there exists a
spectral sequence

Ep,q
2 = Hp(Y,Rqf∗F)⇒ Hp+q(X,F)

with exact sequence of terms of low degree

0→ H1(Y, f∗F)→ H1(X,F)→ Γ(Y, R1f∗F)→ H2(Y, f∗F)→ H2(X,F).

The above spectral sequence is called the Leray spectral sequence. For a nice
application of this spectral sequence to geometry, see [1], where it is used to analyze
certain birational isomorphisms between surfaces.

8. Group cohomology and the Hochschild-Serre spectral sequence

Let G be a finite group and let A be a G-module (equivalently, a Z[G]-module).
Let G-mod and Ab denot the categories of G-modules and abelian groups, respec-
tively. We consider the G-invariants functor

invG : G-mod→ Ab, A 7→ AG

which to a G-module A associates its subgroup of elements invariant invariant under
the action of G. It is easy to see that invG is a left exact, covariant functor, so
we may take its right derived functors. We define Hn(G, A) = RninvG(A) and call
this the n-th cohomology group of G with coefficients in A.

If H is a normal subgroup of G and A is a G-module (and thus, also an H-module,
then AH naturally has the structure of a G/H-module. In fact, the diagram

G-mod
invH //

invG ##GGGGGGGGG G/H-mod

invG/Hyyttttttttt

Ab

is easily seen to be commutative. In order to apply Theorem 15 to this situation,
we shall verify that invH sends injectives to injectives. Every G/H-module is also
a G-module in a natural way. Let ρ : G/H-mod → G-mod be this functor, easily
checked to be exact. It follows trivially that invH is right adjoint to ρ and therefore,
by Lemma 18, the functor invH preserves injectives. Thus, by Theorem 15, there
exists a spectral sequence

Ep,q
2 = Hp(G/H, Hq(H,A))⇒ Hp+q(G, A)

with exact sequence of terms of low degree

0→ H1(G/H, AH) inf→ H1(G, A) res→ H1(H,A)G/H t→

H2(G/H, AH) inf→ H2(G, A) res→ H2(H,A)G/H .

The maps inf, res, and t are called ‘inflation’, ‘restriction’, and ‘transgression’,
respectively. Working with a more down-to-earth description of these cohomology
groups in terms of certain cocycles and coboundaries, one may explicitly describe
these maps; see [3, Ch. XX, Exercise 6].
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