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In this note, we define the notions of Gauss and Jacobi sums and apply them
to investigate the number of solutions of polynomial equations over finite fields.
Then using them we will verify the validity of the Weil conjectures for a class
of projective hypersurfaces defined over finite fields.

1 Trace and Norm in Finite Fields

Throughout this note, except in the course of the proof of quadratic reciprocity
law in Section 4, we assume that q is a power of prime number p, and that
Fk = Fqk is the unique finite field with qk elements containing F = Fq in a fixed
algebraic closure of Fq.

Definition 1.1 For α ∈ Fk, the trace and norm of α respect to the field
extension Fk/F are defined by

TrFk/F (α) := α+ αq + · · ·+ αqk−1
, NFk/F (α) := ααq · · ·αqk−1

respectively.

The following lemma describes the basic properties of trace and norm.

Lemma 1.2 For α, β ∈ Fk, and for a ∈ F ,

(a) TrFk/F (aα+ β) = aTrFk/F (α) + TrFk/F (β).

(b) NFk/F (αβ) = NFk/F (α)NFk/F (β).

(c) TrFk/F (a) = ka and NFk/F (a) = ak.

(d) TrFk/F and TrFk/F map Fk onto F .

Proof We only prove the last one. The fact that α ∈ F iff αq = α together
with the very definition imply that TrFk/F (α), NFk/F (α) ∈ F.

The polynomial x+xq + · · ·+xqk−1 has less roots in Fk than the polynomial
xqk − x, so there exists an α0 ∈ Fk such that TrFk/F (α0) = a0 6= 0. Now for
b ∈ F given, TrFk/F (ba−1

0 α0) = b. Thus TrFk/F : Fk −→ F is onto.
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Using the polynomial xxq · · ·xqk−1
and applying a similar argument will

establish the surjectivity of NFk/F : Fk −→ F. 2

2 Gauss Sums

This section aims to introduce the important notion of a Gauss sum and to
establish its basic properties. Before we do so, let us recall that:

The group F̂× of (multiplicative) characters of F× is a cyclic group of order
q − 1 isomorphic to F×. For any χ ∈ F̂ (abuse of notation!), we extend the
domain of definition of χ to whole F by setting

χ(0) :=
{

1 if χ = ε
0 otherwise,

where ε stands for the trivial character, i.e., ε(a) = 1 for all a ∈ F . Note that
by this convention,

1
q

∑
a∈F

χ(a) =
{

1 if χ = ε
0 otherwise.

Definition 2.1 The additive character ψ : F −→ C (see part (a) of the
following proposition) is defined by ψ(α) := ζtr(α)

p , where tr = TrF/Fp
and ζp =

e
2πi

p .

Lemma 2.2 (a) For α, β ∈ F , ψ(α+ β) = ψ(α)ψ(β).1

(b) ψ(α0) 6= 1, for some α0 ∈ F .

(c)
∑
α∈F

ψ(α) = 0.

(d)
1
q

∑
α∈F

ψ(α(x− y)) =
{

1 if x = y
0 otherwise.

Proof (a) Immediate form the definition.

(b) See the proof of Lemma 1.2.

(c) Since ψ(α0)
∑
α∈F

ψ(α) =
∑
α∈F

ψ(α+ α0) =
∑
β∈F

ψ(β), by (b) we are done.

(d) Immediate from (c). 2

Definition 2.3 For χ ∈ F̂ and α ∈ F , the Gauss sum associated to χ (and
α) is defined by

gα(χ) :=
∑
t∈F

χ(t)ψ(αt).

For brevity, we will denote g1(χ) by g(χ).
1It can be shown that for any function ψ : F −→ C× satisfying ψ(α+β) = ψ(α)ψ(β), α, β ∈

F , there exists an γ ∈ F such that ψ(x) = ζ
tr(γx)
p for all x ∈ F .
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In the following proposition we will prove the basic properties of Gauss sums.

Proposition 2.4 (a) gα(χ) =


0 if α = 0 and χ 6= ε,
0 if α 6= 0 and χ = ε,
q if α = 0 and χ = ε,

χ(α−1)g(χ) if α 6= 0 and χ 6= ε.

(b) g(χ) = g(χ−1) = χ(−1)g(χ).

(c) If χ 6= ε, then g(χ)g(χ) = χ(−1)q, or equivalently, |g(χ)| = √
q.

Remark For any function f : F −→ C, the Fourier coefficient of f at α ∈ F
is defined by

f̂(α) :=
1
q

∑
t∈F

f(t)ψ(αt),

and one has the (finite) Fourier series expansion of f , namely,

f(t) =
∑
α

f̂(α)ψ(αt).

In this terminology, the Gauss sum gα(χ) is merely the Fourier coefficient of χ
at −α up to the constant q, i.e., gα(χ) = qχ̂(−α). So, what we are doing here
can be translated completely into the language of Fourier analysis over finite
abelian groups (see [N, Chapter 4], for a comprehensive account.)

Proof of the proposition (a) Assume that α 6= 0 and χ 6= ε. Then we have

gα(χ) =
∑
t∈F

χ(t)ψ(αt) = χ(α−1)
∑
t∈F

χ(αt)ψ(αt) = χ(α−1)g(χ).

The other parts are obvious.
(b) Easy!

(c) Let S =
∑
α∈F

gα(χ)gα(χ). On the one hand

S =
∑
α6=0

χ(α−1)g(χ)χ(α−1) g(χ) = (q − 1)|g(χ)|2.

On the other hand

S =
∑
α

(∑
x

χ(x)ψ(αx)

)(∑
y

χ(y)ψ(−αy)

)

=
∑

x

∑
y

(
χ(x)χ(y)

∑
α

ψ(α(x− y))

)
= (q − 1)q.

This completes the proof. 2
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Gauss sums play crucial roles in different parts of number theory. For exam-
ple, they appear in the functional equation satisfied by the Dirichlet L-functions.

Let χ be a Dirichlet character with conductor f, let g(χ) :=
f∑

a=1

χ(a)e
2πia

f be

the (classical) Gauss sum associated to χ, and let L(s, χ) :=
∞∑

n=1

χ(n)
ns

be the

Dirichlet L-function attached to χ. Then we have(
f

π

) s
2

Γ
(
s+ δ

2

)
L(s, χ) =

g(χ)√
f iδ

(
f

π

) 1−s
2

Γ
(

1− s+ δ

2

)
L(1− s, χ),

where

δ =
{

0 if χ is even, i.e., χ(−1) = 1
1 if χ is odd, i.e., χ(−1) = −1.

Furthermore, one can show that

L(1, χ) = πi
g(χ)

f

1
f

f∑
a=1

χ(a)a, if χ(−1) = −1;

L(1, χ) = −g(χ)
f

f∑
a=1

χ(a) log |1− e
2πia

f |, if χ(−1) = 1, χ 6= χtriv..

For more information, see [K, Chapter 2] or [W, Chapter 4].

Another important example is the Stickelberger theorem about the factor-
ization of Gauss sums in the ring of cyclotomic integers Z[ζm], ζm = e

2πi
m . Let

us explain it precisely. Suppose P is an unramified prime in Z[ζm], i.e., m 6∈ P

or equivalently p - m where pZ = P ∩ Z. Let F =
Z[ζm]

P
be the (finite) residue

field, and write #F = q(= pf ). It is fairly easy to see that q ≡ 1 (mod m),
that the cosets of 1, ζm, · · · , ζm−1

m (as elements of F ) are distinct, and that
for any α ∈ Z[ζm] off P, there is an integer i, unique mod m, such that

α
q−1
m ≡ ζi

m (mod P). We define the m-th power residue symbol
(
α

P

)
m

as follows (
α

P

)
m

:=
{

0 if α ∈ P
ζi
m if α 6∈ P.

This gives rise to the following we-defined multiplicative character for F ,

χP(t) :=
(
γ

P

)−1

m

=
(
γ

P

)
m

,

where γ ∈ Z[ζm] is an arbitrary representative for t ∈ F. Corresponding to this
character we have the Gauss sum g(χP). The Stickelberger theorem asserts that
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the principal ideal generated by g(χP)m factors in Z[ζm] as

(g(χP)m) =
∏

σt∈G

σ−1
t (P)t,

where G = Gal (Q(ζm)/Q) =
{
σt : 1 ≤ t ≤ m, g.c.d(t,m) = 1, σt(ζm) = ζt

m

}
.

To see a proof of this deep relation and its substantial role in the proof of the
Eisenstein reciprocity law, consult [IR, Chapter 14] or [W, Chapter 6].

3 Jacobi Sums

Our first objective here is to investigate the number of solutions of (polynomial)
equations over finite fields. We will see that along the way the notion of a Jacobi
sum comes up naturally.

To begin with, let’s start with the simple equation xm = α. Since the
number of solutions of this equation in any finite cyclic group G is the same as
the number of solutions for the equation xd = α, where d = g.c.d(m, |G|), so
without loss of generality and from now on, we assume that m | q − 1. Also
we recall that this number is m, if α is an m-th power in G; and is 0 otherwise.

Lemma 3.1 N(xm = α), the number of solutions of the equation xm = α in F
is equal to

∑
χm=ε

χ(α).

Proof For α = 0 the assertion is trivial. So, assume that α ∈ F×. If α = βm,
then ∑

χm=ε

χ(α) =
∑

χm=ε

χm(β) = m = N(xm = α).

Now suppose that α is not m-th power. There is a character χ1 of order m such
that χ1(α) 6= 1 (for example the one that takes a given generator of F× to e

2πi
m

works.) We have ∑
χm=ε

χ(α) = χ1(α)
∑

χm=ε

χ(α),

and therefore
∑

χm=ε

χ(α) = 0 = N(xm = α). 2

Next, we wish to evaluate N(xm + ym = 1), the number of solutions of the
equation xm + ym = 1 in F . By the above lemma, we have

N(xm + ym = 1) =
∑

a+b=1

N(xm = a)N(ym = b)

=
∑

a+b=1

∑
χm

1 =ε

χ1(a)
∑

χm
2 =ε

χ2(b)


5



=
∑

χm
1 =χm

2 =ε

( ∑
a+b=1

χ1(a)χ2(b)

)

The above calculation prompts the following definition.

Definition 3.2 The Jacobi sum attached to χ1, χ2 ∈ F̂ is defined by

J(χ1, χ2) :=
∑

a+b=1

χ1(a)χ2(b).

More generally, for χ1, · · · , χl ∈ F̂ , we set

J(χ1, · · · , χl) :=
∑

a1+···+al=1

χ1(a1) · · ·χl(al).

It is also useful to introduce the following sum

J0(χ1, · · · , χl) :=
∑

a1+···+al=0

χ1(a1) · · ·χl(al).

The following summarizes all we need to know about Jacobi sums for the
purpose of this note.

Proposition 3.3 (a) If χ1 = · · · = χl = ε, then

J(χ1, · · · , χl) = J0(χ1, · · · , χl) = ql−1.

(b) If χ1, · · · , χk 6= ε, χk+1 = · · · = χl = ε, then

J(χ1, · · · , χl) = J0(χ1, · · · , χl) = 0.

(c) If χl 6= ε, then

J0(χ1, · · · , χl) = χ1 · · ·χl−1(−1)J(χ1, · · · , χl−1)
∑
s 6=0

χ1 · · ·χl(s)

=
{
χl(−1)(q − 1)J(χ1, · · · , χl−1) if χ1 · · ·χl = ε

0 otherwise.

(d) If χ1, · · · , χl, χ1 · · ·χl 6= ε, then

J(χ1, · · · , χl) =
g(χ1) · · · g(χl)
g(χ1 · · ·χl)

,

and therefore
|J(χ1, · · · , χl)| = q

l−1
2 .

(e) If χ1, · · · , χl 6= ε, χ1 · · ·χl = ε, then

J(χ1, · · · , χl) = −g(χ1) · · · g(χl)
q

= −χl(−1)J(χ1, · · · , χl−1),

and therefore |J(χ1, · · · , χl)| = q
l−2
2 .
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Proof (a) Just count the number of summands.

(b) We have

J0(χ1, · · · , χl) =
∑

a1,···,al−1

χ1(a1) · · ·χk(ak)

= ql−k−1

(∑
a1

χ1(a1)

)
· · ·

(∑
ak

χk(ak)

)
= 0.

And similar for J(χ1, · · · , χl).

(c) For the first equality, we have

J0(χ1, · · · , χl) =
∑
s 6=0

 ∑
a1+···+al−1=−s

χ1(a1) · · ·χl−1(al−1)

χl(s)

=
∑
s 6=0

 ∑
a′1+···+a′l−1=1

χ1 · · ·χl−1(−s)χ1(a′1) · · ·χl−1(a′l−1)

χl(s)

=
∑
s 6=0

(χ1 · · ·χl−1(−s)J(χ1, · · · , χl−1))χl(s)

= χ1 · · ·χl−1(−1)J(χ1, · · · , χl−1)
∑
s 6=0

χ1 · · ·χl(s).

And the second equality is immediate form the first one.

(d) First notice that

g(χ1) · · · g(χl) =

(∑
a1

χ(a1)ψ(a1)

)
· · ·

(∑
al

χ(al)ψ(al)

)

=
∑

s

( ∑
a1+···+al=s

χ1(a1) · · ·χl(al)

)
ψ(s)

= J0(χ1, · · · , χl) + J(χ1, · · · , χl)
∑
s 6=0

χ1 · · ·χl(s)ψ(s)

= J0(χ1, · · · , χl) + J(χ1, · · · , χl) (g(χ1 · · ·χl)− χ1 · · ·χl(0)) . (?)

Now (d) follows from (?) and (c).

(e) By what we just proved in (d),

g(χ1) · · · g(χl−1) = g(χ1 · · ·χl−1)J(χ1, · · · , χl−1).

Multiplying both sides of this by g(χl), using χ1 · · ·χl−1 = χ−1
l together with

the last part of Proposition 2.4 will establish the second equality of (e). Putting
now together this with (?) and (c) will result in the first equality of (e). 2

7



4 Some Applications

This section is devoted to some applications of Gauss and Jacobi sums. Histor-
ically, Gauss sums appeared in Gauss’ fourth proof of the quadratic reciprocity
law in 1811, although he had worked with them since 1801 and had found some
of their basic properties. Afterwards, Gauss sums were utilized extensively by
Jacobi, Eisenstein, kronecker and others in various proofs of quadratic reci-
procity law as well as reciprocity laws of higher degrees. Here and for the first
application, we expose an elegant proof of quadratic reciprocity law by means
of Gauss and Jacobi sums.

Let p and q be two distinct odd prime numbers, and let χ be the unique
character of order 2 on Fp, i.e., the Legendre symbol

(
p

)
. We have

J(χ, · · · , χ︸ ︷︷ ︸
q times

) =
∑

t1+···+tq=1

χ(t1) · · ·χ(tq).

If all the ti’s are equal, then the corresponding term of the sum has value

χ
(
q−1
)q

=
(
q

p

)
. And if not, then there are q different q-tuples obtained from

(t1, · · · , tq) by cyclic permutation. This implies that J(χ, · · · , χ) ≡
(
q

p

)
(mod q),

(the congruence relation to be understood in the ring of algebraic integers), and
therefore (

q

p

)
≡ J(χ, · · · , χ) (mod q)

=
1
p
(−1)

p−1
2 g(χ)q+1

=
1
p
(−1)

p−1
2
(
g(χ)2

) q+1
2

=
1
p
(−1)

p−1
2 (−1)

p−1
2

q+1
2 p

q+1
2

= (−1)
p−1
2

q−1
2 p

q−1
2

≡ (−1)
p−1
2

q−1
2

(
p

q

)
(mod q),

a fortiori
(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

In the sequel of this section we derive a formula, and through that, an
estimate for N = N(a1x

m1
1 + · · · + alx

ml

l = b), the number of solutions of the
equation

a1x
m1
1 + · · ·+ alx

ml

l = b, ai ∈ F×.
Moreover, we will find, as a by-product, the number of projective points on the
hypersurface defined by a0x

m
0 + · · · alx

m
l = 0 in Pl

F .
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As before there will be no restriction if we assume that mi | q − 1.

Theorem 4.1 (a) If b = 0, then

N = ql−1 +
∑

χ1(a−1
1 ) · · ·χl(a−1

l )J0(χ1, · · · , χl). (1)

The sum is over all l-tuples of characters χ1, · · · , χl, where χi 6= ε, χmi
i = ε,

and χ1 · · ·χl = ε. If M stands for the number of such l-tuples, then∣∣N − ql−1
∣∣ ≤M(q − 1)q

l−2
2 . (2)

(b) If b 6= 0, then

N = ql−1 +
∑

χ1 · · ·χl(b)χ1(a−1
1 ) · · ·χl(a−1

l )J(χ1, · · · , χl), (3)

where χi 6= ε, χmi
i = ε. If M1 denotes the number of such l-tuples with χ1 · · ·χl 6=

ε, then ∣∣N − ql−1
∣∣ ≤Mq

l−2
2 +M1q

l−1
2 . (4)

Proof Note that

N =
∑

a1u1+···+alul=b

N(xm1
1 = u1) · · ·N(xml

l = ul)

=
∑

χ1,···,χl
ord(χi)|mi

( ∑
a1u1+···+alul=b

χ1(u1) · · ·χl(ul)

)
.

If b = 0, the inner sum is

χ1(a−1
1 ) · · ·χl(a−1

l )J0(χ1, · · · , χl);

and if b 6= 0, it is

χ1 · · ·χl(b)χ1(a−1
1 ) · · ·χl(a−1

l )J(χ1, · · · , χl).

Now (1) and (3) will follow from parts (a), (b) and (c) of the Proposition 3.3.
Invoking parts (d) and (e) of the same proposition will establish the proof of
(2) and (4). 2

Remark In the proof of Weil conjectures, we will see that

M =
1
m

(
(m− 1)l+1 + (−1)l+1(m− 1)

)
and M1 = (m− 1)l+1 −M.

Corollary 4.2 The number of the points (in Pl
F ) on the hypersurface defined

by a0x
m
0 + · · · alx

m
l = 0 (ai ∈ F×) is equal to

ql−1 + · · ·+ q + 1 +
1
q

∑
χ0,···,χl

χ0(a−1
0 ) · · ·χl(a−1

l )g(χ0) · · · g(χl)

where χi 6= ε, χm
i = ε and χ0 · · ·χl = ε.
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Proof By previous theorem, the desired number is equal to

1
q − 1

(
ql +

∑
χ0(a−1

0 ) · · ·χl(a−1
l )J0(χ0, · · · , χl)− 1

)
.

However, by parts (c) and (d) of Proposition 3.3 and by part (c) of Proposition
2.4, we have

1
q − 1

J0(χ0, · · · , χl) = χ0(−1)J(χ1, · · · , χl)

= χ0(−1)
g(χ0)g(χ1) · · · g(χl)
g(χ0)g(χ1 · · ·χl)

=
g(χ0) · · · g(χl)

q
.

This completes the proof. 2

5 Weil Conjectures

In this section we will recover the Weil conjectures for the hypersurface H de-
fined by a0x

m
0 + · · · alx

m
l = 0. So, let us first recall the definition of Z(H/F, T ).

For any k ≥ 1, let Nk denote the number of points on H defined over Fk.
The zeta function Z(H/F, T ) of H is defined by

Z(H/F, T ) := exp

( ∞∑
k=1

Nk
T k

k

)
,

where exp(u) := 1 + u+
u2

2!
+
u3

3!
+ · · · .

Lemma 5.1 We have

Z(H/F, T ) =
(1− α1T ) · · · (1− αrT )
(1− β1T ) · · · (1− βsT )

, αi, βj ∈ C

iff
Nk = βk

1 + · · ·+ βk
s − αk

1 − · · · − αk
r

for k = 1, 2, 3, · · · .

Proof On the one hand,

logZ(H/F, T ) =
∞∑

k=1

Nk
T k

k
.
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And on the other hand,

log
(1− α1T ) · · · (1− αrT )
(1− β1T ) · · · (1− βsT )

= −
∑

j

log(1− βjT ) +
∑

i

log(1− αiT )

=
∞∑

k=1

∑
j

βk
j −

∑
i

αk
i

 T k

k
.

This completes the proof. 2

Before we proceed to state and prove of Weil conjectures, we need to inves-
tigate the relation between the characters of F with those of Fk. The key link
will be provided by the norm function NFk/F .

Let χ ∈ F×, and set χ(k) = χ o NFK/F , i.e., χ(k)(a) = χ(NFk/F (a)) for
a ∈ Fk. The following affirmations can be easily verified:

1. χ(k) ∈ F̂k.

2. χ(k)
1 = χ

(k)
2 iff χ1 = χ2.

3. ord(χ(k)) | m iff ord(χ) | m.

4. χ(k)(a) = χ(a)k for all a ∈ F .
It immediately follows from 3 that if χ runs the set of characters of order

dividing m (in F̂ ), then χ(k) will do the same in F̂k.

And finally, the following classical result–the interrelation between Gauss
sums g(χ) and g(χ(k))–will provide our last ingredient.

Theorem 5.2 (Hasse-Davenport) With the above notations,

g(χ(k)) = (−1)k+1g(χ)k.

Proof See [IR, Chapter 11], for an elegant proof. It is also outlined in [K,
Chapter 2], as a long exercise. 2

Now we have all necessary tools to prove the following special case of the
Weil conjectures.

Theorem 5.3 (Weil) The zeta function Z(H/F, T ) of the hypersurface H
defined by the equation a0x

m
0 + · · · alx

m
l = 0 has the following properties:

(a) (Rationality) Z(H/F, T ) =
P (T )(−1)l

(1− T )(1− qT ) · · · (1− ql−1T )
,

where P (T ) is the polynomial∏(
1− (−1)l+1 1

q
χ0(a−1

0 ) · · ·χl(a−1
l )g(χ0) · · · g(χl)T

)
.
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The characters χi are subject to the conditions χi 6= ε, χm
i = ε, and χ0 · · ·χl = ε.

Moreover, we claim that P (T ) ∈ Z[T ].

(b) The degree of P (T ) is equal to d =
1
m

(
(m− 1)l+1 + (−1)l+1(m− 1)

)
.

(c) (Functional Equation) The mapping α −→ 1
ql−1α

is a bijection of the
set of zeros of P (T ). Equivalently, Z(H/F, T ) satisfies the following functional
equation

Z(H/F,
1

ql−1T
) = ωT l−(−1)ldq

l−1
2 (l−2(−1)ld)Z(H/F, T ),

where

ω = (−1)d−l

 ∏
P (α)=0

α

(−1)l

.

(d) The reciprocals of zeros of P (T ) are algebraic integers.

(e) (Riemann Hypothesis) The zeros of P (T ) have absolute value q−
l−1
2 .

Proof (a) By Corollary 4.2, Nk is equal to

qk(l−1) + · · ·+ qk + 1 +
1
qk

∑
χ

(k)
0 ,···,χ(k)

l

χ
(k)
0 (a−1

0 ) · · ·χ(k)
l (a−1

l )g(χ(k)
0 ) · · · g(χ(k)

l ),

where χ(k)
i 6= ε, χ

(k)m
i = ε, χ

(k)
0 · · ·χ(k)

l = ε (we are using ε simultaneously for
the trivial character of all Fk’s.) So, by 3 and 4 of the above and by Hasse-
Davenport relation, we infer that

Nk =
l−1∑
i=0

qik +
1
qk

∑
χ0,···,χl

(
(−1)(k+1)(l+1)χ0(a−1

0 )k · · ·χl(a−1
l )kg(χ0)k · · · g(χl)k

)

=
l−1∑
i=0

(
qi
)k

+ (−1)l+1
∑

χ0,···,χl

(
(−1)l+1

q
χ0(a−1

0 ) · · ·χl(a−1
l )g(χ0) · · · g(χl)

)k

.

This proves (a), except the fact that P (T ) is in Z[T ]. We postpone its proof
until part (d).

(b) Set

Al = {(χ0, · · · , χl) : χi 6= ε, χm
i = ε, χ0 · · ·χl = ε} ,

Bl = {(χ0, · · · , χl) : χi 6= ε, χm
i = ε, χ0 · · ·χl 6= ε} .

Clearly deg P (T ) = |Al|. Since the map (χ0, · · · , χl) −→ (χ0, · · · , χl−1) is a
bijection between Al and Bl−1, we get

|Al|+ |Al+1| = |Al|+ |Bl| = (m− 1)l+1.
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Using this and the initial |A1| = m− 1, (b) will follow by a simple induction.

(c) To prove the first statement it is sufficient to show that α −→ 1
ql−1α

is

a well-defined map from the set of zeros of P (T ) to itself. So, let

α = (−1)l+1qχ0(a0) · · ·χl(al)g(χ0)−1 · · · g(χl)−1

be a zero of P (T ) corresponding to (χ0, · · · , χl) ∈ Al. We have

ql−1α = (−1)l+1qlχ0(a0) · · ·χl(al)g(χ0)−1 · · · g(χl)−1

= (−1)l+1 1
q
χ−1

0 (a−1
0 ) · · ·χ−1

l (a−1
l )

q

g(χ0)
· · · q

g(χl)

= (−1)l+1 1
q
χ−1

0 (a−1
0 ) · · ·χ−1

l (a−1
l )χ0(−1)g(χ−1

0 ) · · ·χl(−1)g(χ−1
l )

= (−1)l+1 1
q
χ−1

0 (a−1
0 ) · · ·χ−1

l (a−1
l )g(χ−1

0 ) · · · g(χ−1
l ).

and the last quantity is the reciprocal of that zero of P (T ) which is corresponding
to (χ−1

0 , · · · , χ−1
l ) ∈ Al.

Checking that Z(H/F, T ) satisfies the aforesaid functional equation is a
very straightforward but somehow tedious calculation, left to the reader.

(d) Obviously, the values of any character are algebraic integers. In fact, if
χm = ε, then every value that χ takes is a unit in Z[ζm]. Therefore, by part (e)
of Proposition 3.3, if (χ0, · · · , χl) ∈ Al, then

(−1)l+1 1
q
χ0(a−1

0 ) · · ·χl(a−1
l )g(χ0) · · · g(χl)

= (−1)l+1χ−1
0 (a0) · · ·χ−1

l (al)χl(−1)J(χ0, · · · , χl−1) ∈ Z[ζm].

Now we accomplish the proof of part (a) by showing that P (T ) ∈ Z[T ].
From the rationality of the zeta function and working inside the field Q[[T ]], it
is almost clear that

P (T ) ∈ Q[T ].

(notice it is immediate from the very definition that Z(H/F, T ) ∈ Q[[T ]].) On
the other hand, (d) implies that P (T ) ∈ A[T ], where A is the ring of algebraic
integers. Hence, the coefficients of P (T ) are in Q ∩ A = Z.

(e) Immediately from part (c) of Proposition 2.4 we deduce that∣∣∣∣(−1)l+1 1
q
χ0(a−1

0 ) · · ·χl(a−1
l )g(χ0) · · · g(χl)

∣∣∣∣ = q
l+1
2

q
= q

l−1
2 ,

which is equivalent to the desired statement. 2
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