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1. Grothendieck Topologies

We recall the definition of a Grothendieck topology (or site) from [AG03]:

Definition 1.1. A site is a category T with a notion of covering, that is, a collection
of sets {Ui → U} in T (called coverings) such that

(1) If {Ui → U} is a covering and V → U ∈ T , then the fibred product Ui×U V
exists for all i, and {Ui ×U V → V } is a covering.

(2) If {Ui → U for i ∈ A} is a covering, and for each i we have a covering
{Vij → Ui for j ∈ Bi}, then we have a covering

{Vij → U for i ∈ A and for j ∈ Bi}.
(3) If U ′ → U is an isomorphism, then {U ′ → U} is a covering.
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2 ANDREW ARCHIBALD AND DAVID SAVITT

Remark 1.2. We will often call the category by the same name as the site, even
though the extra data of the coverings is an essential part of the definition of a site.

Definition 1.3. A morphism of sites f : T → T ′ (sometimes called a “continuous
function” in the literature) is a functor f−1 : T ′ → T such that

(1) if {U ′
i → U ′} is a covering in T ′, then

{
f−1(U ′

i → U ′)
}

is a covering in T ,
and

(2) if {W ′
i → U ′} is a covering in T ′ and V ′ → U ′ is in T ′, then

f−1(V ′ ×U ′ W ′
i ) ∼= f−1(V ′)×f−1(U ′) f−1(W ′

i )

for every i.

Example 1.4. If E is a class of morphisms of schemes such that
(1) all isomorphisms are in E,
(2) composites of morphisms in E are again in E, and
(3) the base change of a morphism in E by any morphism is again in E,

then the small E site over X, denoted E/X, is the full subcategory of X-schemes
with structure morphism in E, and where

{
Ui

gi→ U
}

is a covering if and only if

each gi is in E and
∐

Ui
gi→ U is universally surjective. Note that we exclude

families of morphisms in which the coverings are not sets.
Important examples of this are
(1) the Zariski site Zar/X or XZar, where we take E to be open immersions,

and
(2) the small étale site ét/X or Xét, where we take E to be the class of étale

morphisms of finite type.
Observe that when the morphisms in E are open maps as in these two cases, a
collection

∐
Ui

gi→ U is universally surjective exactly when U =
⋃

gi(Ui), and
“universally surjective” simply reduces to the more obvious “surjective”.

Example 1.5. Morphisms of sites:
(1) There is a morphism of sites ét/X → Zar/X given by the inclusion map:

an open immersion is an étale map.
(2) If X → Y is any morphism, we get a map ét/X → ét/Y by base change:

ét/X → ét/Y
X ×Y U ′ ←[ U ′

(3) If X → Y is an étale morphism, we get a map ét/Y → ét/X by composition:

ét/Y → ét/X
Z ++WW

X ++WW
Y

←[ Z **UU
X

Example 1.6. The big E site is the full subcategory of Sch/X of schemes of locally
finite type over X and in which

{
Ui

gi→ U
}

is a covering exactly when U =
⋃

gi(Ui)
and each gi is in E. The flat site XFl is the big site for E the class of flat morphisms
locally of finite type.

Example 1.7. Let G be a (profinite) group, and let TG be the category of (con-
tinuous) G-sets. Coverings are the obvious choice, namely

{
Ui

gi→ U
}

is a covering
if U =

⋃
gi(Ui).
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2. The Category of Sheaves on a Site

Definition 2.1. A presheaf on a site T is a contravariant functor F : T → Ab.

The category of presheaves PT forms an abelian category in which F ′ → F → F ′′

is exact if and only if F ′(U)→ F (U)→ F ′′(U) is for all U ∈ T .

Proposition 2.2. The category PT is an abelian category satisfying AB5 and
AB4∗.

Recall that AB3 is the axiom that asserts that any family has a direct sum.
The axiom AB4 asserts AB3 and that a direct sum of exact sequences is exact.
The axiom AB5 asserts AB3 and that a filtered direct limit of exact sequences is
exact. Finally, for any n, the axiom ABn∗ asserts that axiom ABn holds in the
dual category. In other words, one replaces the word “sum” with “product” and
“direct” with “inverse”, so for example AB3∗ asserts that any family has a product.

Proof. By definition PT = Hom(T,Ab), and Ab satisfies AB5 and AB4∗, so PT

does. �

Example 2.3. Some simple presheaves:

(1) If M is an abelian group, set FM (U) =

{
M if U 6= ∅
0 if U = ∅

on E/X. This is

the constant presheaf associated to M on E/X.
(2) If G is a commutative group scheme, set G(U) = Hom(U,G) on E/X.

Definition 2.4. A presheaf F is a sheaf if it satisfies the additional criterion

F(U)→
∏

i

F(Ui) ⇒
∏
i,j

F(Ui ×U Uj)

is exact1 for all coverings {Ui → U}.

Remark 2.5. On ét/X and XFl the sheaf condition is equivalent to: the sheaf con-
dition is satisfied for all Zariski covers {Ui → U} and all singleton covers {U ′ → U}.

Example 2.6. Sheaves on various sites:
(1) If G is a finite group, sheaves on TG correspond to left G-modules by

F 7→ F(G)

HomG(−, A)←[ A

(2) If G is a profinite group, sheaves on TG correspond to continuous left G-
modules by

F 7→ lim−→
H

F(G/H)

HomG,cont(−, A)←[ A

1Some care should be taken when interpreting the sheaf condition, as “exactness” means something

unusual in this context. Suppose that we have a cover
n

Ui
ri→ U

o
of U and a collection of sections

si such that on Ui×U Uj we have F(p1)(si) = F(p2)(sj). Then the sheaf axiom tells us that there
exists a unique s ∈ F(U) such that F(ri)(s) = si. In particular, this diagram should in a sense be
exact not only in the middle but also on the left.
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(3) If K is a field, and G = Gal(Ksep/K), then we have an equivalence of
categories

TG → ét/(Spec K)

X(Ksep)←[ X

So an étale sheaf on Spec K corresponds to a sheaf on TG, which corre-
sponds to a continuous G-module. If F is an étale sheaf on Spec K, the
corresponding G-module is

lim−→
H

F′(G/H) = lim−→
K′/K finite

F(Spec K ′).

(4) If F is a sheaf of OX -modules (that is, a sheaf in the usual algebraic
geometry sense, which is just a sheaf on Zar/X), we can set FE(U) =
(F ⊗OX

OU )(U), giving a presheaf on E/X or XE . If F is quasi-coherent
and the site is ét/X or XFl, then F is a sheaf by Remark 2.5 combined with
the fact that if f : A→ B is faithfully flat and M is an A-module, then the
complex

0→M →M ⊗A B →M ⊗A B ⊗A B → · · ·
is exact. For example, if F = OX , we see that the presheaf Ga with Ga(U) =
OU (U) (obtained from the group scheme Ga) is a sheaf.

(5) On ét/X, if X is an S-scheme, then
(
Ω1

X/S ⊗OX
OU

)
(U) = Ω1

U/S(U), so

U 7→ Ω1
U/S(U) is an étale sheaf.

(6) If G is a group scheme on X, the presheaf associated to G on ét/X, Zar/X
or Fl/X is a sheaf. This follows from Remark 2.5 and fpqc descent (see
[Alo03]). For example, taking the group scheme Gm we obtain a sheaf for
which Gm(U) = OU (U)∗. We also denote this sheaf O∗

X .

Remark 2.7. On the fppf site (the E-site for E the class of faithfully flat of finite
presentation) sheaves are representable by schemes. That is, given any sheaf F

on the fppf site, there is some abelian group scheme G such that F is the sheaf
associated to G.

Let PT , ST be the categories of presheaves and sheaves on T respectively. There
is clearly an inclusion ι : ST ↪→ PT .

Theorem 2.8. The functor ι has a left adjoint ] : PT → ST (that is, HomST
(G],F) ∼=

HomPT
(G, ιF)), which we call the “sheafification” functor.

Sketch of proof. If G is a presheaf, set

G†(U) = lim−→
{Ui→U}

ker

∏
Ui

G(Ui) ⇒
∏

Ui,Uj

G(Ui × Uj)

,

the limit taken over the category of all covers with refinement maps (a refinement
map {Uj → U} → {Ui → U} is in fact a family of morphisms Uj → Uf(j) making
the appropriate diagrams commute).

Then G† is a presheaf with the following properties:
(1) G† is separated (that is, if {Ui → U} is a covering and s ∈ G†(U) has

s|Ui
= 0 for every Ui then s = 0).

(2) If G† is separated, the G† is a sheaf.
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So set G] = (G†)†. �

Corollary 2.9. We have
(1) ι is left-exact and preserves inverse limits,
(2) ] is exact and preserves direct limits,
(3) ι sends injectives to injectives, and
(4) if F is a sheaf, (ιF)] = F.

Proof. Statement (1) and the right exactness of (2) are automatic from the existence
of a left adjoint. If we can prove that † is left-exact, then the left-exactness of ]
will follow. The functors H0

{Ui→U}, defined to be G 7→ ker (
∏

G(Ui) ⇒ G(Ui × Uj))
are left exact (kernels are left exact). Filtered limits of abelian groups are always
exact, but this fact does not apply directly here, as two refinements may not have
a common refinement (if

{
U ′

j → U
}

is a refinement of {Ui → U}, one refinement
map may send U ′

j to Ui and another may send U ′
j to Ui′). Instead, one proves that

if
{
U ′

j → U
}

is a refinement of {Ui → U} then the induced map H0
Ui→U → H0

U ′j→U

is independent of the refinement map one uses. This is a result of the functoriality
of H0, which is a result of the functoriality of G. Thus the limit factors through
the ordered set of all covers, and is exact.

Statement (3) is automatic from statement (2) (a general fact about right ad-
joints to an exact functor). Finally, (4) is clear from the construction. �

In turn, this implies the following:

Theorem 2.10. ST is an abelian category satisfying AB5 and AB3∗. Moreover:
(1) The sequence 0→ F ′ → F → F ′′ is exact in ST if and only if it is exact in

PT , which is true if and only if 0→ F ′(U)→ F (U)→ F ′′(U) is exact for
every U .

(2) F
φ→ F ′′ → 0 is exact in ST if and only if for every s ∈ F ′′(U) there exists

a covering {Ui → U} and si ∈ F (Ui) such that φ(si) = s|Ui
.

(3) We can form inverse limits in ST (for example kernels and products) by
forming limits in PT ; the result is a sheaf.

(4) We can form direct limits in ST (for example cokernels and sums) by form-
ing limits in PT and sheafifying.

Proof. The proof is formal from Proposition 2.2 and Corollary 2.9. For example, if
F → G, we show coker(F → G) = (coker(ιF → ιG))]. Indeed,

ιF → ιG→ C → 0

implies

0→ Hom(C, ιH)→ Hom(ιG, ιH)→ Hom(ιF, ιH) for all H,

which is true if and only if

0→ Hom(C],H)→ Hom((ιG)],H)→ Hom((ιF )],H) for all H.

Since (ιG)] = G and (ιF )] = F , the result follows. �

Theorem 2.11. The categories PT and ST have enough injectives.

Remark 2.12. This is not, strictly speaking, true in this generality, because of
foundational (set-theoretic) reasons. If the isomorphism classes of objects of T do
not form a set — for example, if T is the crystalline site — one must fix a suitable
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universe U so that T is a U -site, and restrict to the category of U -valued sheaves.
See the appendix (section A) for an overview or [SGA72a, the appendix to Exposé
1] for details.

Proof. Recall that an abelian category is said to “have generators” if there is a set
A of objects such that for each monomorphism G

i
↪→ F that is not an isomorphism,

there exists F ′ ∈ A and F ′ φ→ F such that φ does not factor through i. For example,
the set {Z} is a set of generators for Ab, since if H ↪→ G is not an isomorphism,
we can construct a map taking 1 to some element x not in the image of H. A
criterion of Grothendieck ([Gro57]) guarantees that an abelian category satisfying
AB5, AB3∗, and having generators has enough injectives.

One can prove, generally, that if C and C ′ are abelian categories and C ′ satisfies
AB3 and has generators, then Hom(C,C ′) has both these properties provided C
is small. Applying this result with C = T op and C ′ = Ab, we find that PT has
generators when T is small. Sheafifying gives a set of generators in ST .

When T is not small, one gives a similar proof using U -versions of these results;
see [SGA72b, 6.7] and [SGA72b, 6.9]. �

We can be more explicit when T is small. If for each U ∈ T there is a sheaf ZU

so that Hom(ZU ,F) = F(U), then the collection of ZU are generators: indeed if

G
i

↪→ F is not an isomorphism, choose U so that G(U) ( F(U) and σ ∈ F(U)−G(U).
Then the map φ : ZU → F corresponding to σ does not factor through i. We shall
see shortly how to construct such sheaves ZU .

3. Operations on presheaves and sheaves

Suppose f : T → T ′ is a morphism of sites.
If F is a presheaf on T , define fpF (U) = F (f−1(U)) on T ′. Clearly fp is exact

and takes sheaves to sheaves.

Theorem 3.1. If T , T ′ are small, then fp has a left adjoint fp : PT ′ → PT (so
HomA(fpG, F ) = HomA′(G, fpF )). If T ′ has a final object and finite inverse limits
then fp is exact (and not just right exact). This occurs in, for example, ét/X and
Zar/X.

Proof. The existence of fp is formal, by the following result from [HS97] (or [Mil80,
Ch. I 2.2]).

Theorem 3.2. If C, C ′ are small categories, p : C → C ′ a functor, A a category
with direct limits, then the functor Hom(C ′, A) → Hom(C,A) induced by p has a
left adjoint.

Apply this with C = T , C ′ = T ′, A = Ab. �

Explicitly, we set
(fpG)(U) = lim−→

V

G(f−1(V )),

the limit taken over diagrams

U //

��?
??

??
??

? f−1(V )

{{ww
ww

ww
ww

w

X

.
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When T has a final object and finite inverse limits, the dual category to the
category of these diagrams is pseudofiltered2, and so the limit defining fp is exact.

Remark 3.3. When fp is exact, fp maps injectives to injectives.

Remark 3.4. If T , T ′ are not small, my impression is that one often considers
only morphisms such that fp exists? (Or is there a U -version here?)

Remark 3.5. If T is small, define ZU (V ) = ⊕Hom(V,U)Z. Then

HomPT
(ZU , F ) = Hom(Z, F (U) = F (U),

so we may take ZU = Z]
U as promised earlier.

If T = E/X, we may construct ZU as follows. Construct the morphism of sites
j : E/U → E/X induced by j : U → X. Then jp : PX → PU is simply the map
Hom(E/X

op
,Ab) → Hom(E/U

op
,Ab) induced by j. By Theorem 3.2, jp has a

left adjoint j!, and we set ZU = j!Z, where Z denotes the constant sheaf on U .
Then

HomPX
(j!Z, F ) = HomPU

(Z, jpF ) = F (U).

Next, we set

fs = ] ◦ fp ◦ i : ST → ST ′

fs = ] ◦ fp ◦ i : ST → ST ′ .

Since fp ◦ i is already a sheaf, fs is just the restriction of fp from PT to ST ,
We immediately have:

Theorem 3.6. The functor fs is left adjoint to fs. In particular, fs is left exact
and fs is right exact. If fp is actually exact (for example, if T has a final object
and finite inverse limits) then so is fs; if fs is exact, then fs maps injectives to
injectives.

Proof. Everything follows from the adjointness properties for fp and fP and for
i and ]. For example, if fp is exact, then since i is left exact, fs is left exact as
well. �

Example 3.7. Let U
j→ X be an E-morphism and j : E/U → E/X the corre-

sponding map of small E-sites. If F ∈ SE/X then js(F) = F|E/U . Indeed, as we
have seen, jp(iF) = (iF)|E/U . But (iF)|E/U is already a sheaf.

4. Stalks of étale sheaves; the mapping cylinder

4.1. Stalks. If F is a presheaf on ét/X and P = Spec Ω u→ X is a geometric point,
set FP = (upF )(P ).

2A category is pseudofiltered if every diagram of the form j
i

55kkk ))RR
j′

can be completed to a diagram

of the form j ((PPP
i

77ooo
''NN k
j′

77oo
, and if every diagram of the form i

u
⇒
v

j can be completed to a diagram

i
u
⇒
v

j
w→ k such that wu = wv. The category is connected if for any two objects i and j there is a

(finite) sequence i→ j1 ← i1 → · · · ← j of morphisms. A category is filtered if it is pseudofiltered

and connected.
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Remark 4.1. If F is in fact a sheaf, then FP = (usF )(P ) as well. This follows
from: if G is a presheaf on ét/ Spec Ω, for Ω separably closed, then G(Spec Ω) =
G](Spec Ω). This last fact follows from: for any cover {Ui → Spec Ω}, there is a
refinement {Spec Ω→ Spec Ω} → {Ui → Spec Ω} since Ω is a separably closed field,
and its étale covers are therefore simply disjoint unions of copies of Spec Ω.

If x ∈ X, let x be Spec k(x)sep → X.

Theorem 4.2. Exactness properties of maps of étale sheaves may be detected on
stalks:

(1) The functor F → FP is exact on Sét/X .
(2) A section s ∈ F of an étale sheaf is 0 if and only if sx = 0 for all x ∈ U .
(3) A map F → F′ of étale sheaves is an isomorphism (respectively, injection,

surjection, zero) if and only if, for all x ∈ X, Fx → F′
x is.

(4) A sequence F′′ → F → F′ is exact if and only if for all x ∈ X, F′′
x → Fx̄ →

F′
x is.

Proof. (1) F → FP is the composite of us and

Γ: Sét/ Spec Ω → Ab

G 7→ G(Spec Ω),

with Ω separably closed (see Example 2.6 part 3), so both functors are exact.
(2) If sx = 0, take an étale neighborhood

x

~~~~
~~

~~
~~

��?
??

??
??

?

Ux
// X

of x such that s|Ux
= 0. Then {Ux → X} is a cover of x, and by the sheaf condition

s = 0.
(3) and (4) follow with little difficulty from (2) and Theorem 2.10. �

The following result is useful for computing the stalks of étale sheaves.

Proposition 4.3. If G is a presheaf on ét/X, then

(G])P = lim−→
X′

G(X ′),

the limit taken over étale neighborhoods X ′ of P .

We first remark:

Lemma 4.4. If f : T ′ → T is a morphism of sites and G is a presheaf on T , then
the canonical morphism (fpG)] → fs(G]) is an isomorphism.

Proof. Let F be any sheaf on T ′. Then

Hom((fpG)],F) = Hom(fpG, iF)

= Hom(G, fp(iF))

= Hom(G, i(fsF))

= Hom(G], fsF)

= Hom(fs(G]),F)

so (fpG)] ∼−→ fs(G]). �
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Proof of proposition 4.3. Certainly

lim−→
X′

G(X ′) = (upG)(P ).

But we already know (upG)(P ) = (upG)](P ) and by the lemma this is isomorphic
to us(G])(P ). The proof follows. �

Example 4.5. If X = x = Spec K and F is any presheaf, then

Fx = lim−→
K′/K finite sep.

F (Spec K ′).

Definition 4.6. Let OX,P be the stalk of the étale sheaf OX (defined in Example 4)
at P . Then we see that

OX,P = lim−→
U

OU (U) = lim−→
U

OU,u,

where the limit is over étale neighborhoods (U, u) of x with u mapping to x, and
where OU,u denotes the usual (Zariski) stalk of the usual structure sheaf on U at u.

magic occurs
Example 4.7. If Y is a group scheme, locally of finite type over X, then Y defines
an étale sheaf on X, and

Yx = lim−→
U

Y (U).

But if Y is locally of finite type over X and (Ui) is a filtered inverse system of
X-schemes then

lim−→
Ui

Y (Ui) = Y (lim←−Ui).

Hence Yx = Y (OX,x). For example, (Gm)x = OX,x.

Recall that if A is a local ring with residue field k and k′ is an extension of k,
then the limit Ã = lim−→B over all diagrams

A
local, étale //

��@
@@

@@
@@

B

��~~
~~

~~
~

k′

is henselian with residue field k′.
If k′ = ksep, then Ã = Ash is the strict henselization of A.

Example 4.8. If OK is the ring of integers in a local field K, then Osh
K is the ring

of integers OKun of the maximal unramified extension of K.

Example 4.9.

OX,x = (OX,x)sh

Proposition 4.10. Suppose X
f→ X ′ and f(x) = x′.

(1) If F ′ is a sheaf on X ′, then (fsF ′)x = F ′
x.
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(2) If f is quasi-compact and quasi-separated, let f̃ be such that this diagram
is cartesian:

X

��

X ×X′ Spec OX′,x′
efoo

��
X ′ Spec OX′,x′

oo

Then
(fsF )x′ =

(
f̃sF

)(
X ×X′ Spec OX′,x′

)
.

Proof. (1) is clear.
To prove (2), look at

(fsF )x′ = lim−→
U

F (X ×X′ U)→ f̃sF
(
X ×X′ Spec OX′,x′

)
,

which is an isomorphism if f is quasi-compact and quasi-separated as each étale
neighborhood X ×X′ Spec OX′,x′ → U ′ factors through some X ×X′ U . �

Lemma 4.11. Let F be a sheaf on ét/X, and let f : Spec OX,P → X for a geometric
point P . Then

FP = (fsF)(OX,P ).

Proof. By definition we have P → Spec OX,P
f→ X, so by (1) we need only show

that GP = G(OX,P ) for any sheaf G on OX,P . But this is true because any étale
map to a local ring has a section. �

Corollary 4.12. Let X → X ′ be a finite morphism and let F be an étale sheaf on
X. Then

(f∗F)x′ =
∏

x∈X
x′

Fx,

where Xx′ denotes the geometric fiber X ×X′ x′.

Proof. In this situation we have

X ×X′ Spec OX′,x′ =
∐

x∈X
x′

Spec OX,x,

and now the result follows from this and the lemma. �

4.2. The mapping cylinder. Let j : U → X be an open immersion, and let
i : Z → X be any closed immersion onto the complement of U . Suppose F is a
sheaf on X. We can associate to X

• a sheaf jsF on U ,
• a sheaf isF in Z, and
• a morphism (isF)→ isjs(jsF).

This last is induced from F → jsj
sF, which comes from the identity by adjointness

of js and js.

Theorem 4.13. There is an equivalence of categories

Sét/X → triples (FU ,FZ , φ : FZ → isjsFU ),

where FU is used to mean a sheaf on U and FZ is used to mean a sheaf on Z.
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Lemma 4.14. If FZ is any sheaf on Z, then

(isFZ)x =

{
0 if x /∈ i(Z)
(FZ)x0 if x = i(x0),

and if FU is any sheaf on U , then

(jsFU )x = (FU )x0 if x = i(x0).

Proof. For i this is an application of Corollary 4.12; for j it is clear. �

Proof of theorem. Set F = isFZ ×isisjsFU
jsFU . To see that this yields an inverse

of the construction leading to Theorem 4.13, we need to verify that for any étale
sheaf F on X the diagram

F //

��

jsj
sF

��
isi

sF // isisjsj
sF

is commutative.
We check this on stalks. If x ∈ U , then (jsj

sF)x = (jsF)x0 = Fx and is(−)x = 0,
so the diagram becomes

Fx

��

// Fx

��
0 // 0,

which is obviously commutative.
If x ∈ Z then for any G on ét/X, (isisG)x = Gx so the diagram becomes

Fx

��

// (jsj
sF)x

��
Fx

// (jsj
sF)x,

which is also obviously commutative. �

Example 4.15. Suppose R is a discrete valuation ring. Let K be the field of
fractions of R, let G = Gal(Ksep/K), and let IK be the inertia group of K. Let k
be the residue field of R, and let Gk = Gal(ksep/k). Then we have an equivalence
of categories

Sét/X ↔ triples (N1, N2, φ)

where N1 is a Gk-module, N2 is a GK-module, and φ : N1 → N IK
2 .

Proof. Set Z = Spec k ↪→ Spec R, and U = Spec K. This satisfies the conditions
of Theorem 4.13, so we know we have an equivalence of categories to some kind
of triples. How can we interpret the resulting triples? We know the category of
étale sheaves on U is equivalent to the category of GK-modules, and the category
of étale sheaves on Z is equivalent to the category of Gk-modules. This leaves only
the morphism to describe.
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If N2 is a GK-module, it corresponds to the sheaf F2(Spec K ′) = N
G′

K
2 . Now

isjsF2 corresponds to the Gk-module
′

lim−→
k

(isjsF2)(Spec k′) = (isjsF2)k

= (jsF2)k

= lim−→
k′/k

F2(Spec K ×Rh),

where Rh is the Henselization of R over k′. But this last inverse limit is exactly
N IK

2 . �

The functors is, is, js, and js may be viewed as

is : (FZ ,FU , φ) 7→ FZ js : (FZ ,FU , φ) 7→ FU

is : FZ 7→ (FZ , 0, 0) js : FU 7→ (isjsFU ,FU , id).

We can produce two more functors

i! : (FZ ,FU , φ) 7→ ker φ (sections with support in Z)

j! : FU 7→ (0,FU , 0) (extension by zero).

This definition of j! is the sheafification of the j! we had on presheaves in Remark 3.5.
The following are now formal:

• The pairs (is, is), (is, j!), (j!, js), (js, js) are pairs of adjoint functors.
• The functors is, is, js and j! are exact, while js and i! are left-exact.
• The functors js, js, i! and is map injectives to injectives.
• The compositions isj!, i!j!, i!js, and jsis are zero.
• The functors is and js are fully faithful, and Fx = 0 for all x /∈ Z if and

only if F = isF
′ for some F′ on ét/Z.

5. Cohomology

On a site T we have a number of left-exact functors, namely

• ι : ST → PT ,
• ΓU : ST → Ab, where ΓU : F 7→ F(U),
• fs : ST → ST ′ , and
• for T = ét/X, we have i!.

We wish to examine the resulting derived functors.

Definition 5.1. Define
Hq(U,F) := RqΓU (F).

Proposition 5.2. Let Hq(F) = Rqι(F), a presheaf on T . Then for every open U
we have Hq(F)(U) = Hq(U,F).

Proof. The functor U 7→ Hq(U,F) is a presheaf on X and H0(−,F) = ιF. By
a universal δ-functor argument, Hq(−,F) = (Rqι)(F ): a short exact sequence of
sheaves gives a long exact sequence of Hq(U,F) for each U , which is a long exact
sequence of presheaves (U 7→ Hq(−,F)).



ETALE COHOMOLOGY - PART 2 13

Alternatively, write ΓU = ΓU,P ◦ ι, where ΓU,P : PT → Ab is the functor taking
a presheaf F 7→ F (U). Now, ΓU,P is an exact functor, and since ] is exact, ι takes
injectives to injectives. So we can apply the Grothendieck spectral sequence:

RpΓU,P (Rqι(F)) =⇒ Hp+q(U,F).

But RpΓU,P = 0 for p > 0, so Hq(U,F) = ΓU,P (Rqι(F)), that is,

Rqι(F)(U) = Hq(U,F).

�

Similarly if f : T → T ′ we have

Proposition 5.3. The functor Rqfs(F) is just the sheaf associated to

V 7→ Hq(f−1(V ),F).

Proof. By definition fs = ]◦fp ◦ ιT , and ]◦fp is exact while ιT preserves injectives,
so we obtain a spectral sequence whose Ep,q

2 term we write down:

Rp(] ◦ fp)(RqιT F) =⇒ (Rp+qfs)(F).

But Rp(] ◦ fp) is zero if p > 0, so

Rqfs(F) = (] ◦ fp)(RqιT F),

which by the above is just the sheafification of V 7→ Hq(f−1(V ),F). �

Corollary 5.4. If q > 0 then Hq(F)] = 0.

Proof. Let f be the identity function on T . Then fs is the identity functor, which
is exact, so we have Rqfs(F) = 0 for positive q. But applying the above, we see
that this is exactly Hq(F)]. �

6. Flabby sheaves and Čech cohomology

Theorem 6.1. Let A be an abelian category, and let C be a class of objects of A

such that
• every object of A is a subobject of an object of C,
• if A⊕A′ ∈ C for some A′ ∈ A then A ∈ C, and
• if we have an exact sequence 0 → A′ → A → A′′ → 0 and A′, A are in C,

then A′′ ∈ C.
Then C contains injectives, and if f : A → B is left-exact and exact on sequences
in C, then objects in C are f-acyclic (so Rqf may be computed with C-resolutions).

Proof. Let I be an injective object. If I ↪→ A, then A = I ⊕A′ so I ∈ C.
If A is any object in C, then take in injective resolution

0→ A→ I0 → I1 → · · · ;
from this we can obtain many exact sequences:

0→ A→ I0 → Z0 → 0 for some Z0 ∈ C so 0→ fA→ fI0 → fZ0 → 0 exact;
0→ Z0 → I1 → Z1 → 0 for some Z1 ∈ C so 0→ fZ0 → fI1 → fZ1 → 0 exact;

...
...

...

so the sequence
0→ f(A)→ f(I0)→ f(I1)→ · · ·
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is exact, and therefore
Rqf(A) = 0

for every q > 0. �

Definition 6.2. A sheaf F ∈ ST is flabby if Hq(U,F) = 0 for every open set U
and q > 0.

Observe that injective sheaves are flabby. We know that for any sheaves F and
G we have Hq(U,F⊕G) = Hq(U,F)⊕Hq(U,G). Finally, if A′ and A are flabby and
we have an exact sequence 0→ A′ → A→ A′′ → 0, then the long exact sequence of
cohomology shows us that A′′ is also flabby. So flabby sheaves form a class suitable
for Theorem 6.1.

If F is flabby, Hq(F)(U) = Hq(U,F) = 0 for q > 0, so (recalling the definition
of Hq), we have Rqι(F) = 0 for q > 0. Also, (Rqfs)(F) is the sheaf associated to
V 7→ Hq(f−1V,F), which is the zero presheaf.

Thus Hq), Hq(U,−) and Rqfs may all be computed using flabby sheaves.

Definition 6.3. Let F be a presheaf and {Ui → U} be a covering. Then define

H0({Ui → U}, F ) := ker

∏
F (Ui) ⇒

∏
i,j

F (Ui ×U Uj)

.

Note that this is a left-exact functor. So define

Hq({Ui → U}, F ) =
(
RqH0({Ui → U},−)

)
(F )

for q > 0.

Theorem 6.4. Let H̃q({Ui → U}, F ) denote the cohomology of the Čech complex
Cq({Ui → U}, F ) =

∏
F (Ui0 × · · ·Uiq

). Then H̃q = Hq.

Proof. From the definition it is clear that H0 = H̃0. So, using a universal δ-functor
argument, it suffices to see that H̃q({Ui → U}, I) = 0 when I is injective. This
comes down to exactness of

⊕ZUi
← ⊕ZUi×Uj

← · · · ,
which we will omit. �

Definition 6.5. Let F be a presheaf. We define

Ȟq(U,F ) := lim−→
{Ui→U}

Hq({Ui → U}, F ).

Theorem 6.6.
Ȟq(U,−) = RqȞ0(U,−).

Proof. To prove this via a universal δ-functor argument, we have to show Ȟq(U,−)
takes short exact sequences to long exact sequences of Ȟq. But Hq({Ui → U},−)
does, and this limit (as we saw for sheafification in Theorem 2.8) is exact. �

Now, if F is a sheaf, we get

ST
ι //

ΓU

33PT

Ȟ0 or H0({Ui→U},−) // Ab.
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Since ι takes injectives to injectives, we obtain a spectral sequence

Ep,q
2 := Hp({Ui → U},Hq(F))⇒ Hp+q(U,F),

and a similar spectral sequence for Ȟ.

Exercise 6.7. Let {U0 → X, U1 → X} be a Zariski cover of X in E/X. Then show
that there is an exact sequence, namely the Mayer-Vietoris sequence

· · · → Hq(X, F)→ Hq(U0,F)⊕Hq(U1,F)→ Hq(U0 ∩ U1,F)→ Hq+1(X, F)→ · · ·
(use the above spectral sequence for the cover {U0 → X, U1 → X}).

Theorem 6.8. If Hq(Ui0 × · · · × Uir
,F) = 0 for every r and every q > 0, then

Hp({Ui → U},F) = Hp(U,F).

Proof. Compute Hp({Ui → U},F) using the Čech complex. Then

Cp({Ui → U},Hq(F)) =
∏

Hq(F)(Ui0 × · · · × Uir )

=
∏

Hq(Ui0 × · · · × Uir
,F)

= 0 if q > 0

so Hp({Ui → U},Hq(F)) = 0 and the spectral sequence degenerates. �

Corollary 6.9. A sheaf F is flabby if and only if Hp({Ui → U},F) = 0 for every
q > 0 and for every cover {Ui → U}.

The forward implication is clear from the theorem. For the reverse we will need
some lemmas.

Lemma 6.10. For any sheaf F and open set U we have Ȟ1(U,F) ∼= H1(U,F), and
Ȟ2(U,F) ↪→ H2(U,F).

Proof. Recall that we have a spectral sequence (which we did not write down ex-
plicitly)

Ep,q
2 := Ȟp(U,Hq(F))⇒ Hp+q(U,F).

Taking the exact sequence of low degree, we obtain

0 // Ȟ1(U,F) // H1(U,F) // Ȟ0(U,H1(F)) // Ȟ2(U,F) // H2(U,F).

(H1(F))](U) = 0

�

Lemma 6.11. If
0→ F′ → F → F′′ → 0

is a short exact sequence of sheaves and H1({Ui → U},F′) = 0′ for every cover
{Ui → U} then

0→ ιF′ → ιF → ιF′′ → 0
is an exact sequence of presheaves.

Proof. Applying ι we get a long exact sequence

0→ ιF′ → ιF → ιF′′ → H1(F′)→ · · · ,
but by the previous lemma,

H1(F′)(U) = H1(U,F′) = Ȟ1(U,F′) = lim H1({Ui → U},F′) = 0. �
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Proof of Corollary 6.9. If 0→ F → I0 → I1 → · · · is an injective resolution of F in
ST , we want to prove 0→ F(U)→ I0(U)→ I1(U)→ · · · is exact for every U , i.e.,
is exact in PT .

But we can construct a sequence of short exact sequences

0→ F → I0 → Z0 → 0
0→ Z0 → I1 → Z1 → 0

...

We are assuming that H1({Ui → U},F) = 0 for every cover {Ui → U}. Applying
the functor H0({Ui → U},−) to each of the short exact sequences, we obtain long
exact sequences showing that Hq({Ui → U},Zi) = 0 for every q > 0 and every i.
But then using Lemma 6.11 on the short exact sequences in succession, this implies
0→ ιZi → ιIi → ιZi+1 → 0 is exact, and the result follows. �

Corollary 6.12. Let f : T → T ′. Then if F ∈ ST is flabby, the image fsF ∈ ST ′

is also flabby.

Proof. Let {Ui → U} be a cover on T ′. Then since F is flabby, the Čech complex

F(f−1U)→
∏

F(f−1Ui)→
∏

F(f−1(Ui ×U Uj))→ · · ·

is exact. But this is exactly the same complex of abelian groups as

fsF(U)→
∏

fsF(Ui)→
∏

fsF(Ui ×U Uj)→ · · · . �

Example 6.13. If U → X is an E-morphism, then if F is flabby on E/X it follows
that F|U is flabby on E/U .

To see this, note that ΓU : SE/X → Ab factors as SE/X
−|U−→ SE/U

ΓU−→ Ab,
and since restiction is exact, the Grothendieck spectral sequence gives Hq

X(U,F) =
HQ

U (U,F|U ).

Corollary 6.14 (Leray spectral sequence). If X
f→ Y

g→ Z and F ∈ SX , then

(Rpgs)(Rqfs(F))⇒ Rp+q(gf)s(F).

Proof. We need to show that fs takes injectives to acyclics. But we have seen that
fs takes injective sheaves to flabby sheaves. �

As an important special case, take Z to be the topological space on a singleton,
so gs = Γ(Y,−). Then we get

Hp(Y,Rqfs(F))⇒ Hp+q(X, F).

This by itself is often referred to as the Leray spectral sequence.

Example 6.15. If TG is the site of G-sets, SG is the category of G-modules and
Hq(G, A) is group cohomology. If we take π : G → G/H to be the canonical
morphism of sites, we get a functor πs : SG → SG/H . One can check that πs(A) =
AH , so Rqπs = Hq(H,−). So the Leray spectral sequence says

Hp(G/H, Hq(H,A))⇒ Hp+q(G, A).

The sequence of low-degree terms gives inflation-restriction.

Note also that if Ȟ(U,F) = 0 for all U then U is flabby.
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Proof. We show Hq(F) = 0 by induction on q. For q = 1, we know H1(U,F) =
Ȟ1(U,F) = 0. For q > 1, we have a spectral sequence Ȟp(U,Hq−p(F)) ⇒
Hq(U,F). For p > 0 the induction hypothesis gives Hq−p = 0. For p = 0, we
have Ȟ0(U,Hq(F)) = Hq(F)](U) = 0. �

Proposition 6.16. Let U be an affine scheme and let F quasi-coherent. Then
Hp(UZar,F) = 0 for every p > 0.

Sketch of proof. Check that Hp({Ui → U},F) = 0 for every affine cover; this im-
plies that Ȟp(U,F) = 0 (and clearly Ȟp(V,F) = 0 for any affine V ) so by Cartan’s
criterion this implies Hp(U,F) = 0 for every p > 0. �

Corollary 6.17. Let X be a separated scheme, and let F be a quasi-coherent sheaf
on X. Then

Ȟp(XZar,F) ∼= Hp(XZar,F).

Proof. Let {Ui → U} be a cover of open affines. Then by the preceding result
and Theorem 6.8, Hp(X, F) = Hp({Ui → X},F). Since the limit defining Ȟp is
cofiltered by the affine covers (that is, every cover has an affine refinement) the
result follows. �

There is an étale version of this result:

Theorem 6.18. Let X be a quasi-compact scheme, and suppose that every fi-
nite subset of X is contained in an open affine (for example, X could be a quasi-
projective or affine scheme). Let F be a sheaf on Xét. Then

Hp(Xét,F) ∼= Ȟp(Xét,F).

For the proof, see [Mil80, Theorem 2.17].
Note that we do not have any sort of theorem assuring us that a finite fine

enough cover is available to satisfy the conditions of Theorem 6.8; on the Zariski
site, for quasi-projective schemes, a finite cover {Ui → U} by affines exists and is
fine enough to allow the use of Hp({Ui → U},F) to compute Hp(XZar,F). This
computation is often feasible in practice. On the other hand, if k is a field, then
Spec k is certainly affine, but we saw in Example 2.6 that the étale cohomology of
such a space is by no means trivial.

7. Excision and cohomology with supports

Let us return to the situation of the mapping cylinder: we have a scheme X, a

(Zariski) open immersion U
j

↪→ X, and a closed immersion Z
j

↪→ X. We say that
sections of isi

!F are sections with support in Z.

Definition 7.1. Let Hp
Z(X, F) denote the right derived functors of F 7→ isi

!F, and
call these the cohomology groups with support in Z.

Proposition 7.2. There is a long exact sequence

0→ (i!F)(Z)→ F(X)→ F(U)→ · · ·

· · · → Hp(X, F)→ Hp(U,F)→ Hp+1
Z (X, F)→ · · · .
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Proof. We have a short exact sequence of sheaves 0 → j!j
sZ → Z → isi

sZ → 0.
Take the associated long exact sequence of Ext·(−,F). But

Ext0(j!jsZ,F) = Hom(j!jsZ,F) = Hom(jsZ, jsF) = F(U),

Ext0(Z,F) = Hom(Z,F) = F(X),
and

Ext0(isisZ,F) = Hom(isisZ,F) = Hom(isZ, i!F) = (i!F)(Z),
so the long exact sequence of Ext is exactly the above sequence. �

Theorem 7.3 (Excision theorem). Let Z ⊂ X and Z ′ ⊂ X ′ be closed subsets, and
let f : X ′ → X be étale such that f |Z′ : Z ′ ∼−→ Z and f(X ′ − Z ′) ⊂ X − Z. Then

Hp
Z(X, F) ∼−→ Hp

Z′(X ′, fsF)

for every p ≥ 0.

Proof. Recall that fs is exact and preserves injectives. So we need only check the
result for p = 0. Since (i!F)(Z) = (isi!F)(X) = H0

Z(X, F), we have a commutative
diagram, exact along rows:

0 // H0
Z(X, F)

φ

��

// F(X) //

��

F(X − Z)

��
0 // H0

Z′(X ′,F) // F(X ′) // F(X ′ − Z ′)

We want to show φ is an isomorphism. To show injectivity, suppose we have
γ ∈ H0

Z(X, F) with φ(γ). Then its image γ1 in F (X) must map to zero when
restricted to F(X −Z) (by the exactness of the top row) and also when mapped to
F(X ′) (by mapping via φ). But {X − Z,X ′} form an étale cover of X, so γ1 = 0
and γ = 0.

To show surjectivity, let γ′ ∈ H0
Z′(X ′,F), and consider its image γ′1 ∈ F(X ′). As

before, {X − Z,X ′} form an étale cover of X, and γ′1 agrees with 0 on X ′×X (X−
Z) ⊂ X ′−Z ′, so γ′1 comes from some γ1 ∈ F(X); since γ1|X−Z = 0, γ1 ∈ H0

Z(X, F)
and by construction γ1 maps to γ′. �

Recall now that in the topological category, cohomology with compact supports
played a role in providing a pairing on cohomology groups. We will construct an
analogue of cohomology with compact supports in our situation.

Definition 7.4. Let X be a separated variety (integral scheme of finite type over
a field). We define a functor

Γc(X, F) :=
⋃

Z complete

ker(F(X)→ F(X − Z)),

which we call sections with compact support. But we do not define Hc to be the
derived functors of Γc, as these are uninteresting (see [Mil80, the discussion leading
to Proposition III.1.29]). Instead, if j : X ↪→ X is an open immersion where X is
complete, then we set

Hp
c (X, F) := Hp(X, j!F).

Theorem 7.5. If F is torsion, Hp
c (X, F) is independent of X and satisfies Poincaré

duality.
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We omit the proof.
In any case, H0

c (X, F) = Γc(X, F), for any short exact sequence of sheaves
Hp

c (X,−) gives a long exact sequence of cohomology groups, and we have mor-
phisms Hp

Z(X,−)→ Hp
c (X,−) for any complete Z ⊂ X.

8. Comparison theorems

We will first describe a technical condition that often allows us to work with a
simpler site.

Suppose f : T → T ′ is a morphism of topologies such that
• f−1 is fully faithful (that is, injective on both objects and Hom-sets), and
• if U ′ ∈ T ′ and

{
Ui → f−1(U ′)

}
is a covering in T , then there is a cover{

U ′
j → U ′} in T ′ such that

{
f−1(U ′

i)→ f−1(U ′)
}

is a refinement of
{
Ui → f−1(U ′)

}
.

In this situation we will occasionally think of T ′ as a subcategory of T . Observe
that the first condition implies that T is a finer topology than T ′.

Proposition 8.1. Given such an f , we find F → fsf
sF is an isomorphism for any

F ∈ ST and fs is exact.

We omit the proof.

Remark 8.2. Under the stronger condition that any cover {Ui → U} in T such
that all Ui and U are in T ′ is actually a cover in T ′, and any object in T has a
cover (in T ) by objects of T ′, then fs and fs are equivalences between ST and S′

T ;
and also fsfsF ∼= F.

Corollary 8.3 (of Proposition 8.1). Under the hypotheses of Proposition 8.1, for
any U ∈ T ′ we have

Hp(U, fsF) ∼= Hp(f−1(U),F)
and

Hp(U,F) ∼= Hp(f−1(U), fsF).

Proof. The Leray spectral sequence (Corollary 6.14) gives

Ep,q
2 := Hp(U,RqfsF)⇒ Hp+q(U,F),

but Rqfs = 0 for q > 0. Then

Hp(U,F′) ∼= Hp(U, fsf
sF′) ∼= Hp(fsF′). �

Example 8.4. This applies to all of the following situations
• T is the big E-site and T ′ is the small E-site
• T = E/X for E the class of all étale maps, and T ′ = ét/X (recall ét/X

sets E to be the class of étale maps of finite type)
• T = ét/X, and T ′ = E/X for E the class of separated étale morphisms (or

affine étale morphisms)
• T = E/X where E is the class of smooth morphisms, and T ′ = ét/X
• T = Fl/X or XFl, and T ′ = E/X or T ′ = XE for E the class of morphisms

that are flat of finite type
• T = Fl/X or XFl, and T ′ = E/X or T ′ = XE for E the class of morphisms

that are quasifinite and flat

Definition 8.5. A site T is noetherian if every cover has a finite subcover.
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In this case, it is not difficult to check that it suffices to check the sheaf condition
on finite covers, since a subcover is always a refinement. If T is any site, we could
define T f to be the site T with only the finite covers. We obtain a morphism
i : T → T f . If T is noetherian, then is : ST → ST f is thus an equivalence of
categories, and Hp(U, isF) = Hp(U,F).

Corollary 8.6. If T is noetherian, then F is flabby if and only if Hq({Ui → U},F) =
0 for every finite cover.

Proof. The above shows that flabbiness in T is equivalent to flabbiness in T f . �

Proposition 8.7. In a noetherian topology, Hp(U, lim−→i
Fi) = lim−→i

Hp(U,Fi) for
pseudofiltered direct limits.

Proof. Using the previous corollary, we see that a limit of flabby resolutions is again
a flabby resolution. �

Example 8.8. The site ét/X is not noetherian, but if X is quasi-compact then
E/X is when E is the class of étale morphisms of finite presentation over X (since
finite presentation maps are quasi-compact). Moreover, if X is quasi-separated,
then Remark 8.2 applies and we have an equivalence of categories between sheaves
on these two sites.

Corollary 8.9. Let X be quasi-compact and quasi-separated. Then Hp
ét(X,−)

commutes with pseudofiltered direct limits.

8.1. Comparison of étale and Zariski cohomologies.

Theorem 8.10. If M is a quasi-coherent sheaf of OX-modules, then

Hp(XZar,M) ∼= Hp
ét(X, Mét).

Proof. Let ε : ét/X → Zar/X, so that we get a spectral sequence

Ep,q
2 = Hp

Zar(X, RqεsMét)⇒ Hp+q
ét (X, Mét).

To see that the edge map Hp(XZar,M) → Hp
ét(X, Mét) is an isomorphism, we

want (Rqεs)(Mét) = 0 for q > 0. But (Rqεs)(Mét) is the sheafification of U 7→
Hq(U,Mét), so it suffices to show Hq(U,Mét) = 0 for U affine and q > 0.

Let T be the subcategory of ét/X of affines. Corollary 8.3 then shows that
Hq

T (U,Mét) ∼= Hq
ét(U,Mét).

The result follows immediately from:

Claim. Mét is flabby on T .

By construction, T is noetherian, so it suffices to check the claim on finite covers.
Checking the claim for {Yi → Y } is equivalent to checking it for {

∐
Yi → Y }, so

we need only check Hq({Z → Y },Mét) for Z → Y affine and faithfully flat. But
the Čech complex in this case is

0→M →M ⊗A B →M ⊗A B ⊗A B → · · ·

which we know is exact. �

Corollary 8.11 (of proof). If X is affine, then Hp
ét(X, Mét) ∼= Hp

Zar(X, M) = 0
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8.2. Comparison of the étale and complex cohomologies. Suppose X is a
scheme over C and G is an abelian group. Then we can compute Hp

ét(X, G) and
Hp(X(C), G). Ideally, we would show that they were isomorphic for the group Z.
However, this does not occur. In fact, there is a profinite group π1(X), the étale
fundamental group of X, classifying étale covers of X. With this definition, it can
be shown that

H1
ét(X, Z) ∼= Homcontinuous(π1(X), Z),

which is zero since π1(X) is profinite and therefore has only finite quotients.
However, we can produce a useful comparison theorem by considering finite

groups.

Theorem 8.12. Let X be a smooth scheme over C. For any finite abelian group
M ,

Hp(X(C),M) ∼= Hp
ét(X, M).

For an overview of the proof, see [Mil80, Theorem 3.12]; for the full proof, see
[SGA73, Exposé IX]. In the case of H1, it proceeds by constructing the category of
coverings that are analytic local isomorphisms and proving it is equivalent to the
category of étale covers (the Riemann existence theorem).

We will see a special case of this theorem as a result of our computations on
curves.

9. Cohomology of Gm

We can view the étale site as a finer topology than the Zariski site. If M is a
quasi-coherent sheaf of OX -modules, we have seen that the Zariski site is already fine
enough to compute the “true” cohomology groups: Hp(XZar,M) = Hp(Xét,Mét).
In this section, we will see that the Zariski site is also fine enough to describe line
bundles up to isomorphism: we get no new non-isomorphic line bundles if we allow
them to be constructed from étale covers instead of Zariski covers.

Definition 9.1. Let F be a sheaf on E/X. Then we say F is locally free of rank
n if there is a cover {Ui → X} such that F(Ui) is a free OUi(Ui)-module of rank n
for every i.

A vector bundle of rank n on E/X is a cover {Ui → X} along with a collection
of elements gij ∈ GLn(OUi×XUj

(Ui×X Uj)) for all i and j such that when restricted
to Ui ×X Uj ×X Uk we have

gijgjk = gik. (*)

Remark 9.2. We have the usual correspondence between locally free sheaves of
rank n and vector bundles of rank n.

Proposition 9.3. Let L(E/X) denote the group (under tensor product) of vector
bundles of rank 1 on E/X. Then we have a natural isomorphism L(E/X) ∼=
Ȟ1(E/X, Gm).

Remark 9.4. With some care, we could define Ȟ1(E/X, GLn) for every n; we
would then find that it classified vector bundles of rank n.

Proof. Observe that the condition (*) is precisely the condition for the gij to form
a Čech cocycle. If they form a coboundary, then the sheaf condition will allow us to
construct a global element of O×

E/X which provides an isomorphism with the trivial
line bundle. �
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Theorem 9.5. Let X be a quasi-compact connected scheme. Then there is a natural
isomorphism

H1(XZar, Gm) ∼= H1(Xét, Gm).

Proof. We will first simplify the space X. The morphism of sites ε : ét/X → Zar/X
gives rise to the Leray spectral sequence (Corollary 6.14):

Hp(XZar, R
qεGm)⇒ Hp+q(Xét, Gm).

The exact sequence of low degree begins

0→ H1(XZar, Gm)→ H1(Xét, Gm)→ H0(XZar, R
1εGm),

so we need only show that R1εGm = 0. But (by Theorem 5.3) R1εGm is the sheaf
associated to V 7→ H1(Vét, Gm). It suffices to check that this is zero on (Zariski)
stalks, which amounts to showing that H1(Vét, Gm) = 0 for V = Spec A where A
is some local ring. In this situation, we know that H1(Vét, Gm) = Ȟ1(Vét, Gm).

Let α ∈ Ȟ1(Vét, Gm). Then there is an affine étale V -scheme U such that
α ∈ H1({U → V }, Gm), that is, we can choose a cover by a single affine étale
V -scheme. Writing U = Spec B, we know A is a local ring and B is a flat and
unramified extension. We know α is a Čech cocycle, and we need to show that it
is a coboundary. We will omit this purely algebraic proof. �

Note that in this case we have H1(XZar, Gm) ∼= Ȟ1(XZar, Gm) and H1(Xét, Gm) ∼=
Ȟ1(Xét, Gm). So using Proposition 9.3, this shows that L(XZar) ∼= L(Xét): no new
line bundles have appeared.

When X is a connected nonsingular curve, we can work out higher cohomology
groups.

Theorem 9.6. Let X be a connected nonsingular curve over an algebraically closed
field k. Then Hp(Xét, Gm) = 0 for p > 1.

Proof. Let U be a Zariski open set on X, let K be the function field of X, and let
Div(U) be the group of Weil divisors on U . Recall that we have an exact sequence

0→ OX(U)× → K× → Div(U)→ 0

called the Weil divisor exact sequence.
Let η denote the generic point of X and g be the morphism Spec K → X, and

for each closed point z on X, let ix be the closed immersion Spec k → X. Then
this exact sequence gives rise to an exact sequence of étale sheaves

0→ Gm → gsGm,η → ⊕xix,sZ→ 0.

Apply the functors H ·(Xét,−) to this exact sequence to give a long exact se-
quence. Since each x is a closed point, ix,s is exact (this can be checked on stalks), so
for p > 1 we have Hp(Xét, Gm) ∼= Hp(Xét, gsGm,η). To compute Hp(Xét, gsGm,η),
apply the Leray spectral sequence (Corollary 6.14):

Hp(Xét, R
qgsGm,η)⇒ Hp+q((Spec K)ét, Gm).

Claim. RpgsGm,η = 0.

Assuming this claim, the Leray spectral sequence therefore shows that Hp(Xét, gsGm,η) ∼=
Hp((Spec K)ét, Gm). But if G = Gal(Ksep/K), then Hp((Spec K)ét, Gm) ∼= Hp(G, K×)
and since K is a function field of dimension 1 over an algebraically closed field,
Hp(G, K×) = 0 for p > 1 by a theorem of Tsen. �



ETALE COHOMOLOGY - PART 2 23

of Claim. From Proposition 5.3, we know that RpgsGm,η = 0 is just the sheaf G

associated to V 7→ Hq(g−1(V ), Gm,η). We will evaluate this on stalks. If x is any
geometric point, then Gx = Hq(Kx, Gm), where Kx is the field of fractions of OX,x.

Let Ksep be a separable closure of K, so that Spec Ksep → Spec K is a geometric
point, giving a geometric point of X which we will call η. Since every element in
OX,η is algebraic over OX,η, we know Kη ⊂ Ksep. But if we take any finite separable
extension L of K, we can take the normalization of X in L and obtain an étale
covering of some neighborhood on X with function field L, so Kη = Ksep, and
Gη = Hq(Ksep, Gm). But Hq(Ksep, Gm) is just group cohomology for the trivial
group, so it is zero if q > 0.

Now, if x is a closed point, then Gx = Hq(Kx, Gm), where Kx is the field of
fractions of OX,x, which is Henselian and has algebraically closed residue field. By
a theorem of Lang, it follows that Hq(Kx, Gm) for q > 0. �

10. Cohomology of a curve

In this section we follow [Mil98, Chapter 14] to explicitly compute the étale
cohomology groups for a nonsingular curve over an algebraically closed field. With
a little extra work, these results can be considerably generalized. We will see
that these groups correspond quite closely to the complex cohomology groups, as
predicted by Theorem 8.12.

Let X be a connected nonsingular curve of genus g over an algebraically closed
field k.

Recall that for any scheme X, Pic(X) is defined to be the group of isomorphism
classes of invertible sheaves, which is exactly H1(XZar, Gm).

Theorem 10.1.

Hp(Xét, Gm) =


k× if p = 0
Pic(X) if p = 1
0 if p > 1.

Proof. When p = 0, we know that H0(Xét, Gm) is OX(X)×, which is just k×.
When p = 1, we apply Theorem 9.5; for p > 1, this is Theorem 9.6. �

We have a natural notion of degree for divisors, which is preserved by linear
equivalence; we define Pic0(X) to be the group of divisors of degree zero. This
group forms an abelian variety, called the Jacobian, of dimension g.

Proposition 10.2. The sequence

0→ Pic0(X)→ Pic(X)→ Z→ 0

is exact. If n is relatively prime to the characteristic of k, the map z 7→ nz from
Pic0(X) to itself is surjective. Its kernel is a free Z/nZ-module of rank 2g.

Proof. The sequence is exact by construction, since the right-hand map is exactly
the degree map. Since Pic0(X) is an abelian variety of dimension g and n is prime
to the characteristic of k, the result follows from the theory of abelian varieties. �

With these two results in hand, we are finally able to explicitly calculate some
étale cohomology groups that are genuinely new.
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Theorem 10.3. Let n be an integer coprime to the characteristic of k. Then

Hp(Xét, µn) =


µn(k) if p = 0
(Z/nZ)2g if p = 1
Z/nZ if p = 2
0 if p > 2.

Proof. We have the Kummer sequence

0→ µn → Gm
n→ Gm → 0.

Applying H ·(Xét,−), we get a long exact sequence

0→ µn(X)→ Gm(X) n→ Gm(X)

→ H1(Xét, µn)→ H1(Xét, Gm) n→ H1(Xét, Gm)

→ H2(Xét, µn)→ H2(Xét, Gm) n→ H2(Xét, Gm)→ · · ·
→ Hp−1(Xét, Gm)→ Hp(Xét, µn)→ Hp(Xét, Gm)→ · · · .

Using Theorem 10.1 this sequence becomes

0→ µn(k)→ k×
n→ k× → H1(Xét, µn)

→ Pic(X) n→ Pic(X)→ H2(Xét, µn)→ 0

and
0→ Hp(Xét, µn)→ 0.

The result is now clear from Proposition 10.2 and the surjectivity of the map
n : k× → k×. �

11. Galois module structure

So far, all our sheaves have been of abelian groups, and the resulting cohomology
groups have simply been groups. However, in many situations (for example, in the
context of the Weil conjectures) we have a natural Galois action on the variety
in question, and we are interested in a Galois module structure on the cohomol-
ogy groups. We will briefly discuss how such a Galois module structure might be
constructed.

If X is a scheme in characteristic p, then we saw in [Chê04] how to produce a
morphism which acts nontrivially on the cohomology groups of X. The situation
was rather subtle as X was not necessarily defined over Fp. We will address a
simpler situation, where we are interested only in automorphisms which preserve
the field of definition of X; as a result we can deal with a relativized situation.

Let k ↪→ k′ be a field extension. Then Spec k′ → Spec k is an étale map (not
necessarily of finite type). The automorphism group of Spec k′ as a scheme over k
is exactly the Galois group of k′ over k.

Let S′ → S be an étale map, and let G be the automorphism group of S′ as an
S-scheme. Then if X is an S-scheme, then G acts on X ×S S′, fixing X. By the
functoriality of Hp, G acts as automorphisms of Hp(E/(X ×S S′),F), where F is a
sheaf of Galois modules.
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Appendix A. Set theory and Universes

When a site is defined on a category that is not small, many set-theoretic difficul-
ties arise; direct and inverse limits can be a problem, coverings need to be carefully
defined to ensure that they are actually sets, and so forth. One must use a certain
amount of care to avoid these difficulties. This care is taken in [SGA72a], [SGA72b],
and [SGA73], but it makes them very difficult to read. The goal of this appendix is
to indicate to the reader the direction that is taken in those sources, and perhaps
to reduce the mystery associated to the many occurences of “U ” in the text above.
For further detail specifically on universes, see [SGA72a, the appendix to Exposé
1].

A.1. Universes.

Definition A.1. A nonempty set U is called a universe if:
(1) If x ∈ U and y ∈ x, then y ∈ U .
(2) If x ∈ U and y ∈ U then {x, y} ∈ U .
(3) If x ∈ U then the power set P(x) ∈ U .
(4) If {xi for i ∈ I} is a family of elements xi ∈ U indexed by I ∈ U , then⋃

i∈I

xi ∈ U .

Example A.2. Let U be the collection of all finite sets of the form ∅, {∅},
{{∅}, {{∅}}}, and so on. Then U is a universe, since only finite unions are re-
quired.

Unfortunately, the universe U just described is the only nonempty universe one
can actually describe in any reasonable way: the moment one includes an infinite
set, one is stuck with a hierarchy of increasingly huge sets.

Remark A.3. Every set x in a universe U has cardinality smaller than U itself
by property (1). If U contains a set x of cardinality equal to U , then it will also
contain P (x) which will have cardinality greater than U , which is impossible. In
particular, U /∈ U , which is reassuring.

Remark A.4. The cardinality of any universe is a strongly inaccessible cardinal,
if that clarifies matters.

Proposition A.5. Let U be a universe, and x and y be elements of U . Then
(1) the set {x} ∈ U ,
(2) if z ⊂ x, then z ∈ U ,
(3) the pair (x, y) = {{x, y}, x} ∈ U ,
(4) the union x ∪ y ∈ U ,
(5) the product x× y ∈ U , and
(6) if I ∈ U and for each i ∈ I, xi ∈ U , then∏

i∈I

xi ∈ U .

A universe therefore provides a collection of “small” sets that is nevertheless
closed under most reasonable set-theoretic operations. But is there an infinite
universe?

Theorem A.6 (Axiom UA). For any set x, there is a universe containing x.
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This axiom seems reasonable. In fact, it can be shown that it is independent of
the usual axioms of set theory. One can also substitute the axiom “every cardinal
is smaller than some strongly inaccessible cardinal”.

A second additional, technical, axiom is also taken:

Theorem A.7 (Axiom UB). Let P be a proposition. If there is an element y ∈ U
satisfying P then the set of all elements x ∈ U satisfying P is also in U .

Together, the consistency of these axioms with the rest of set theory seems to be
unproven, and perhaps unprovable. If we accept them, however, we can then move
on to defining categories that avoid many set-theoretic problems.

A.2. Constructions involving universes.

Definition A.8. A set is called U -small if it is isomorphic to an element of U .
Similar terminology will be used for rings, categories, and so on.

Definition A.9. A category C is a U -category if for each x, y in C, Hom(x, y)
is U -small.

Example A.10. The category U -Set of subsets of U is not U -small (since there
are too many objects) but it is a U -category. Note also that if C is a U -small
category, the category of functors Funct(C,U -Set) is a U -category, even though
the set of objects is not a subset of U , nor are the Hom-sets elements of U .

Proposition A.11. Let C be a U -small category, and let D be a U -small cate-
gory (respectively, a U -category). Then Funct(C,D) is again a U -small category
(respectively, a U -category).

This proposition is of interest because, in the general setting, an inverse limit of
objects in C indexed by I is constructed using elements of Funct(I, C):

Definition A.12. Let I be a U -small category and let C be a U -category. For
each x ∈ C, construct the trivial category X on x (having a single object and a
single arrow). Call the unique functor from I to X eX , and call the inclusion
functor iX . Let kX : I → C be defined by kX = iX ◦eX . Then consider the category
Funct(I, C). Let G : I → C be a functor. Define a presheaf L : C → U -Set by the
following rule:

X 7→ HomFunct(I,C)(kX , G).

We call L the inverse limit of G, and we write

L = lim←−G.

It often occurs that the functor L is representable, that is, L = Hom(−, L′) for
some object L ∈ C. If this occurs, we write

lim←−G = L′

and say that the object L′ is the inverse limit of G.

It is fairly straightforward to verify that this definition is essentially a translation
of the universal property defining an inverse limit into very general terms.
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A.3. Summary. If we fix a universe U , we can define many U -categories by
simply taking those objects and morphisms that are in U and also in some familiar
category. One must verify that the Hom sets are always U -small, but this is
guaranteed if they are functions of points.

Constructing U versions of given categories allows one to circumvent some set-
theoretic difficulties, but it does not solve them. Generally, an operation that poses
some set-theoretic difficulty in a category, poses no such difficulty in the U -version
of this category, but it does pose the problem that one must verify that the resulting
object lives inside U , or at least each isomorphism class has an element inside U .
This is generally more tractable than the problem of verifying that something is a
set, since one has the tools of set theory at one’s disposal.

To circumvent problems with limits over index categories that are too big, for
example, one generally attempts to find categories that are cofinal but U -small.
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