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1. The work of Weil and his followers: Dwork, Artin, Grothendieck,
Deligne, etc.

1.1. Weil conjectures. Let X be a smooth, proper variety over Fq. We define
the zeta function of X by the formula:

Z(X/Fq, T ) = exp(
∑

n≥1

NnTn/n),

where Nn is the number of points of X with coordinates in the field Fqn . Weil proved
the following properties of Z(X/Fq, T ) in some special cases (X a curve, an abelian
variety, or a Fermat hypersurface):

• Z(X/Fq, T ) is a rational function of T , i.e.

Z(X/Fq, T ) =
P1(T )P3(T ) · · ·P2n−1(T )
P0(T )P2(T ) · · ·P2n(T )

,

where the Pi’s have integer coefficients, and Pi(T ) =
∏bi

j=1(1 − αijT ), for
algebraic integers αij such that |αij | = qi/2, the so-called Riemann hypothesis.

• The functional equation: the αi,j are carried bijectively to the α2n−i,j under
T 7→ 1

Tqn .
• The Betti numbers, defined to be the degrees of the polynomials Pi(T ), match

the topological Betti numbers of a lift of X in characteristic zero.
Weil also observed that most of these properties would follow formally for general va-
rieties X from the existence of a good cohomology theory, what is now called a Weil
cohomology theory.

1.2. Definition of a Weil cohomology theory. Let X be a smooth, proper
variety over Fq.

Definition 1.1. A cohomology functor is a contravariant functor

X 7→ H∗(X)

from the category of irreducible, smooth, proper varieties X over finite fields to the cat-
egory of graded anticommutative algebras H∗ over a coefficient field K of characteristic
zero.

Definition 1.2. A cohomology functor is a Weil cohomology ([5]) if it satisfies the
following list of properties:

• Finiteness: the Hi(X) are finite dimensional vector spaces over K. They are
zero except in the range [0, 2n], where n = dim(X).

• Poincaré duality. The cup-product pairing

Hi(X)×H2n−i(X) −→ H2n(X),

is a perfect pairing for each i, 0 ≤ i ≤ 2n; moreover, H2n(X) is 1-dimensional.
• Künneth formula: For each X and Y , the projections induce an isomorphism:

H∗(X)⊗H∗(Y )
∼=−→ H∗(X × Y ).
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• Cohomology class of a cycle: for each X, let Ci(X) denote the group of alge-
braic cycles of codimension i. Then there is a group homomorphism

λX : Ci(X) −→ H2i(X),

called the “cycle map” that is functorial, multiplicative (i.e. compatible with
the Künneth formula) and sends a 0-cycle to its degree.

• Weak Lefschetz theorem: Given X, there is an integer d0 = d0(X) such that
if f : Y ↪→ X is any smooth hypersurface section of X of degree d ≥ d0, then
f∗ : Hi(X) −→ Hi(Y ) is an isomorphism for i ≤ n − 2, and is injective for
i = n− 1.

• Hard Lefschetz theorem: Let L ∈ H2(X) denote the class of a hyperplane.
Then for i ≤ n, the map Li : Hn−i(X) −→ Hn+i(X), a 7→ a ⊗ L⊗i is an
isomorphism.

• Lefschetz trace formula: Let f : X −→ X be a morphism with isolated fixed
points, and for each fixed point x ∈ X, assume that the action of 1 − df on
Ω1

X is injective (i.e. has multiplicity one). Let L(f, X) be the number of fixed
points of f . Then

L(f, X) =
∑

i

(−1)iTr(f∗; Hi(X)),

where f∗ is the induced map on cohomology.
• Riemann hypothesis: The polynomial P i(X/Fq, T ) = det(1− TF |Hi(X)) lies

in Z[T ], and its reciprocal zeroes, the eigenvalues of Frobenius, all have complex
absolute value qi/2.

Example 1.3. The `-adic, cristalline, rigid cohomologies are Weil cohomologies,
e.g. Hi(X,Q`) := lim

←−
Hi

et(X ⊗Fq Fq,Z/`rZ)⊗Z`
Q` is a Weil cohomology.

1.3. Some formal properties.
1.3.1. Where we give the formula for the zeta function. Some parts of the Weil

conjectures follow formally from properties of Weil cohomologies: the Lefschetz trace
formula implies the rationality of the zeta function, and using this, Poincaré duality
implies the functional equation. On the other hand, the proof of the statement about
Betti numbers requires a smooth base change theorem and a comparison theorem. We
prove in this subsection that the Lefschetz trace formula applied to the Frobenius op-
erator gives the formula of the zeta function (see [2, Appendic C]). Among all elements
of the algebraic closure of Fp, the elements of Fq are singled out as the fixed points of
the Frobenius morphism x 7→ xq. The analogous statement is true for points on X: a
point of X := X ⊗ Fq is defined over Fr

q iff it is fixed under Frobr
q. Thus F := Frobq is

an endomorphism of X over Fq, and Nr = Fix(F r); thus

Z(X/Fq, T ) = exp(
∑

(T r/r)Fix(F r)).

The Lefschetz fixed point formula then gives us

Nr =
2g∑

i=0

(−1)iTr(F r∗;Hi(X)),

substituted in the zeta function formula, this gives:

Z(X/Fq, T ) =
2g∏

i=0

(
exp(

∞∑
r=1

Tr(fr∗; Hi(X)
T r

r
)
)(−1)i

.
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Lemma 1.4. ([2, Lemma 4.1]) Let φ be an endomorphism of a finite-dimensional
vector space V over a field K. Then we have an identity of formal power series in t,
with coefficients in K,

exp(
∞∑

r=1

Tr(φr; V )
T r

r
) = det(1− φT ;V )−1.

Proof. If dim(V ) = 1, then φ is multiplication by a scalar λ ∈ K, and it says that

exp(
∞∑

r=1

λr T r

r
) =

1
1− λT

.

In general, we use induction on dim(V ). We may assume that K is algebraically closed.
Hence φ has an eigenvector, so we have an invariant subspace V ′ ⊆ V . We use the exact
sequence:

0 −→ V ′ −→ V −→ V/V ′ −→ 0

and the fact that both sides of the above equation are multiplicative for short exact
sequences of vector spaces. By induction, this gives the result.

Theorem 1.5. Let X be smooth, proper over Fq of dimension n. Then

Z(X/Fq, T ) =
P1(T )P3(T ) · · ·P2n−1(T )
P0(T )P2(T ) · · ·P2n(T )

,

where Pi(T ) = det(1 − f∗T ; Hi(X,Q`)) and f∗ is the map on cohomology induced by
the Frobenius f : X −→ X.

As Hartshorne notes, this shows that Z(T ) is a quotient of polynomials with Q` coeffi-
cients. Since we know by definition that it is a power series in Q[[T ]], thence it follows
that Z(T ) is a rational function (by the equality Q[[T ]] ∩Q`(T ) = Q(T )). ¤

1.3.2. Where we see that some properties of Weil cohomologies follow automatically
from others. Katz and Messing have proven, assuming the existence of a Weil cohomol-
ogy defined as we did above, that if a cohomology theory satisfies Poincaré duality, the
weak Lefschetz theorem and the formula for the zeta function, it automatically satisfies
the hard Lefschetz theorem and the Riemann hypothesis.
We explain what they mean by a cohomology theory, and refer to their 4 pages paper
([4] for the proof. A cohomology theory à la Katz-Messing is a cohomology functor H
in our sense, such that the following hold:

• Poincaré duality. Let X/Fq be as above, with n = dim(X). Then H2n(X)
is one-dimensional, Hi(X) ⊗ H2n−i(X) −→ H2n(X) is a perfect pairing, and
Frobenius F relative to Fq acts as multiplication by qn (this implies that F is
an automorphism of each Hi(X)).

• Weak Lefschetz Theorem.
• The zeta-function formula: let Pi(X/Fq, T ) = det(1 − TF |Hi(X)). Then the

zeta function Z(X, T ) is given by the formula:

Z(X/Fq, T ) =
2n∏

i=0

(Pi(X/Fq, T ))(−1)i+1
.

Deligne had shown earlier that the Hard Lefschetz Theorem and the Riemann hypothesis
hold for `-adic (` 6= p) étale cohomology using his sophisticated monodromy techniques.
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2. Cohomology of an abelian variety

The Riemann hypothesis implies that the polynomials appearing in the zeta function
formula are defined over Z and are independent of `. We can therefore compute them
with any cohomology theory we like (e.g. `-adic, cristalline) satisfying the axioms Katz
and Messing singled out. We shall use the cristalline cohomology, but the same theorems
hold for the `-adic cohomology.

The Dieudonné module D(A(p)) of the p-divisible group of A can be identified with
the first crystalline cohomology group H1

cris(A); it is a free W (k)-module of rank 2g.
Moreover, H∗(A/W (k)) is torsionfree: the canonical arrow

∧H1(A/W (k)) −→ H∗(A/W (k))

is an isomorphism.

Theorem 2.1. Let A be an abelian variety. Then Hi
cris(A) = ∧iH1

cris(A).

Proof. An abelian variety A lifts to characteristic zero to a formal scheme A/W (k).
By [3, III, 7.1] (see also Pete’s notes),

∧H1
DR(A/W (k))

∼=−→ H∗
DR(A/W (k)),

and by the comparison theorem between de Rham and cristalline cohomology, we get
the result.

¤
2.1. The zeta function of a curve and its Jacobian. There is a canonical

way to associated to a smooth, proper curve C of genus g an abelian variety Jac(C)
of dimension g called the Jacobian of the curve. The cohomology of an abelian variety
is entirely determined by its first cohomology group. Moreover, the first cohomology
group of a curve and its Jacobian are isomorphic:

Theorem 2.2. Let C be a smooth proper curve. Let Jac(C) be its Jacobian variety.
Then H1(C)

∼=−→ H1(Jac(C)).

Proof. See [3, 3.11.2] for crystalline cohomology. ¤
This allows us to compute the zeta function of a Jacobian variety. Note, though, that it
is not true in general that any abelian variety is the Jacobian of a curve. The locus T 0

g of
Jacobian varieties of algebraic curves of genus g in the moduli space Ag,1 of (principally
polarized) abelian varieties of dimension g is called the Torelli locus. If Tg is the Zariski
closure of T 0

g in Ag,1⊗C, then for g ≤ 3, Tg = Ag,1.If g ≥ 4, then Tg 6= Ag,1. This follows
essentially from the dimensions: the Torelli theorem indicates that the dimension of Tg

is 3g − 3; the dimension of Ag,1 is g(g+1)
2 (these two numbers are equal if and only if

g ≤ 3). Suppose that C is a curve of genus g over a finite field. Computing N1, . . . , Ng is
enough to determine Nr, for all r ≥ 1, and we can in theory compute the zeta function
of C if we are given an explicit formula. Suppose that Z(C, T ) = P1(T )

(1−T )(1−qT ) , where

P1(T ) =
∏2g

i=1(1 − aiT ) is a polynomial of degree 2g = H1(C) with coefficients in Z,
the characteristic polynomial.

Proposition 2.3. ([7, Section 14]) The number of points of A over Fqm is
2g∏

i=1

(1− am
i ).
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Proof. Replace Frob (resp. q, resp. ai) by Frobm (resp. qm, resp. am
i ) in the

formula :
|A(Fq)| = deg(F − id) = PFrob(T ) =

∏
(1− ai).

¤
Corollary 2.4. Define Pr(T ) as the characteristic polynomial of Frobenius acting

on ∧iHi(Jac(C)). We can write Pr(T ) =
∏

(1− ai,rT ), where the ai,r run through the
products ai1ai2 . . . air

, 0 < i1 < · · · ir ≤ 2g, ai a (reciprocal) root of P1(T ). Then

Z(Jac(C), T ) =
P1(T ) · · ·P2g−1(T )

P0(T )P2(T ) · · ·P2g−2(T )P2g(T )
.

Proof. Take the logarithm on each side, and use the identity:

−log(1− T ) = T +
T 2

2
+

T 3

3
+ · · · .

¤
Remark 2.5. The computation in the proof relies on the fact that the endomor-

phisms induced by Frobenius are semisimple. This is true for curves, abelian varieties,
and a few other varieties, but still unknown in general; it is implied by the so-called
standard conjectures.
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