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1. The number of zeroes of a polynomial over a finite field

In 1935 E. Artin conjectured the following theorem, which was proved almost immediately by

Chevalley [4]:

Theorem 1.0.1. Let f(x) ∈ F[x1, . . . , xn] be a polynomial of (maximal) degree d, where F is

a field with q = pa elements. If f(0, . . . , 0) = 0 and d < n then f has an additional zero. In

particular, if f is a homogenous polynomial and X the corresponding projective hypersurface then

X(F) 6= ∅.

Let us denote by N(f) the number of zeroes of f . Then the theorem says that

N(f) > 0 ⇒ N(f) > 1.

The theorem was generalized by Warning [23] (in the same volume of the Journal) who proved
1
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Theorem 1.0.2. In the notation above

N(f) ≡ 0 (mod p).

The theorem was then generalized by Ax [2] in 1964 who proved:

Theorem 1.0.3. Let µ be the minimal non-negative integer greater or equal to (n− d)/d. Then

N(f) ≡ 0 (mod qµ).

We remark that by inclusion-exclusion1 one can get the following generalization:

Theorem 1.0.4. Let fi ∈ F[x1, . . . , xn] be polynomials of degree di, i = 1, . . . , j. Let N({f1, . . . , fj})
be the number of common zeroes of f1, . . . , fj in the field F. Let µ be the minimal non-negative

integer greater or equal to (n−∑j
i=1 di)/

∑j
i=1 di then

N({f1, . . . , fj}) ≡ 0 (mod qµ).

The theorem was yet generalized by Katz [11] in 1971 who proved the following

Theorem 1.0.5. Let d be the maximum of d1, . . . , dj. Let µ be the minimal non-negative integer

greater or equal to (n−∑j
i=1 di)/d then

N({f1, . . . , fj}) ≡ 0 (mod qµ).

Ax gave a simple proof of Theorem 1.0.2: We have

N(f) =
∑

a∈Fn

(1− f(a)q−1) = −
∑

a∈Fn

f(a)q−1,

where the last equality is in F. The polynomial f(x1, . . . , xn) is a sum of monomials xu :=

xu1
1 · · ·xun

n , each of degree at most d(q − 1) and so one of the ui, say ui0 is less than q − 1. It

is enough to prove that for every such monomial
∑

a∈Fn xu(a) = 0 in F. But
∑

a∈Fn xu(a) =
∏n

i=1(
∑

a∈F aui). Let b be a generator of F×. Note that for i0 we get the factor 0: if ui0 = 0 it

follows from 00 = 1 and if ui0 6= 0,

1 + [bui0 ] + [bui0 ]2 + · · ·+ [bui0 ]q−2 =
[bui0 ]q−1 − 1

[bui0 ]− 1
= 0.

1For example: N({f1, f2}) = N(f1) + N(f2)−N(f1f2).
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2. Interpretation in terms of zeta functions

Let X be a scheme of finite type over F. Recall the definition of the zeta function Z(X/F, t):

Z(X/F, t) = exp

( ∞∑

r=1

Nr
tr

r

)
.

Here Nr is the cardinality of X(Fqr). It was proven by Dwork [7] to be a rational function lying

in 1 + tZ[[t]]. In fact:

Z(X/F, t) =
2 dim(X)∏

i=0

det(1− t · Fr|H i
c(X,Q`))(−1)i+1

,

where H i
c stands for étale cohomology with compact support. Further, Deligne proved in Weil II

[6] that the eigenvalues of Frobenius on H i
c(X,Q`) are pure of weight ≤ i and are pure of weight i

if X is smooth and projective.2 One has

Lemma 2.0.6. Let µ be a positive integer. The following are equivalent:

(1) The reciprocal of every root of Z(X/F, t) is of the form qµ×(an algebraic integer);

(2) For each r we have Nr ≡ 0 (mod qrµ);

(3) Z(X/F, t) ∈ Z[[qµt]].

For example, writing Z(X/F, t) =
Q

i(1−αit)Q
j(1−βjt) and taking the logarithmic derivative we obtain

∞∑

r=1

Nrt
r−1 =

∑

j

βj

1− βjt
+

∑

i

−αi

1− αit

=
∞∑

r=1

(
∑

βr
i −

∑
αr

i )t
r−1.

(2.1)

Assume for example that Nr ≡ 0 (mod qrµ), that is, under suitable normalization, |Nr| ≤ q−rµ.

Then the left hand side converges in Cp for |t| < qµ. This gives |αi|, |βj | ≤ q−µ. The converse

follows from Nr =
∑

βr
i −

∑
αr

i , using the expansion into Taylor series provided in (2.1).

Remark 2.0.7. Note that, in fact, any p-adic estimate for Nr provides one on the roots and

vice-versa.

2An algebraic integer is pure of weight r if under every complex embedding it has absolute value qr/2.
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2.1. Eigenvalues in the smooth case. Let us assume now that X is smooth and proper of

dimension n. A good case to keep in mind is X a projective non-singular variety in PN defined

by a homogenous ideal with generators being polynomials with Fq coefficients. In this case, for

every Weil cohomology theory H∗(X) (see [15]) we have

Z(X/Fq, t) =
2n∏

i=0

det(1− t · Fr|H i(X))(−1)i+1
=

P1(t) · P3(t) · · ·P2n−1(t)
P0(t) · P2(t) · · ·P2n(t)

.

Remark 2.1.1. Note that because of this expression, for a projective variety X, Lemma 2.0.6

as given is of little interest because we always have the factor 1
1−t from the 0-th cohomology.

However, if we denote by Xaff the affine cone over X (defined by the same equations but in

the affine space AN+1 used to get the projective space PN ) then it is elementary to check (see

Example 2.2.2) that the following two statements are equivalent:

• For all r, ]Xaff(Fqr) ≡ 0 (mod qrµ);

• For all r, ]X(Fqr) ≡ 1
1−qr (mod qrµ).

Important special cases of Weil cohomology are:

`-adic cohomology: In this case H∗(X) = H∗
ét(X,Q`) and we have

Pi(t) =
bi∏

j=1

(1− αijt) ∈ 1 + tZ[t]

(not just in Z`[t]). This polynomial is independent of `; bi = dimH i
ét(X,Q`) and agrees with the

classical Betti number bi if X has a lifting to characteristic zero.

Crystalline cohomology: In this case H∗(X) = H∗
crys(X/W (Fq)) and we have

Pi(t) =
bi∏

j=1

(1− αijt) ∈ 1 + tZ[t]

(not just in W (Fq)[t]). This polynomial is independent of `; bi = rankH i
crys(X/W (Fq)) and agrees

with the classical Betti number bi if X has a lifting to characteristic zero.

In both cases the additional information on the Pi follows from the Riemann hypothesis for a

good generalized Weil cohomology theory (see [13]) that asserts

|αij |complex = qi/2.

Again, for a Weil cohomology we have a functional equation

Z(X/Fq,
1

qnt
) = ±tχ · qnχ/2 · Z(X/Fq, t),
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where χ =
∑2n

i=0(−1)ibi is the Euler characteristic (equal to the topological Euler characteristic

if we have a lifting to characteristic zero). We deduce that for all i, j both αij and qn/αij are

algebraic integers, being reciprocals of roots of the polynomials Pi, P2n−i. Therefore we obtain:

Corollary 2.1.2. For every ` 6= p the algebraic numbers αij are `-adic units. They have valuation

≤ valp(qn) at p.

This result and theorems like Chevalley-Warning-Ax-Katz’s motivate the study of the p-adic

valuations of the αij - the reciprocals of the roots of the zeta function of a, say, smooth proper

variety X/Fq.

2.2. Some easy examples.

Example 2.2.1. The projective space Pn
Fq

.

The stratification of the projective space Pn = An ∪ An−1 ∪ · · · ∪ A0 gives that for every r

Nr = ]Pn(Fqr) = 1 + qr + q2r + · · ·+ qnr =
1− qn(r+1)

1− qr
.

Notice, incidentally, that the number of Fqr -points on the affine cone over Pn, equal to An+1, is

qr(n+1). This easily gives the same formula.

The zeta function of Pn
Fq

is

exp

( ∞∑

r=1

(1 + qr + q2r + · · ·+ qnr)tr/r

)
=

n∏

i=0

exp

( ∞∑

r=1

(qit)r/r

)

=
n∏

i=0

1
1− qit

.

(2.2)

This actually tells us that the cohomology groups H i
ét(Pn,Q`) are zero for i odd and one dimen-

sional for i even, with Frobenius Frq acting by qi.

Conversely, suppose that one knows by some means the dimension of the cohomology groups of

Pn (e.g., by base change - see a forthcoming lecture by Kolhatkar). There is a general cycle map: If

X is a smooth projective variety of dimension n, say, over Fq and Y ⊂ X is a projective subvariety

of X of dimension r defined over a finite extension L/Fq, we can associate to Y a cohomology

class [Y ] ∈ H2n−2r(X,Q`) with the property that Frq[Y ] = qn−r[Frq(Y )]. For example, taking

X = Pn and Yr = Pr ⊂ Pn for every r, we get a cohomology class [Yr] ∈ H2n−2r(X,Q`) ∼= Q`

on which Frq acts by qn−r. It is known that the classes Yr are non-trivial3 and hence span the

cohomology. One re-derives the expression of the zeta function of Pn.

3This can be deduced from the compatibility of the cycle map with intersections and the non-triviality for r = 0.
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Example 2.2.2. If we go back to the case of a projective variety X/Fq and the cone over it Xaff

we have the following easy relationship

]Xaff(Fqr) = (qr − 1)]X(Fqr) + 1.

It follows that if Z(X, t) = exp(
∑

Nrt
r/r) = P1(t)·P3(t)···P2n−1(t)

P0(t)·P2(t)···P2n(t) then

Z(Xaff, t) = exp(
∑

((qr − 1)Nr + 1)tr/r)

=
exp(

∑
qrNrt

r/r) exp(
∑

tr/r)
exp(

∑
Nrtr/r)

=
Z(X, qt)

Z(X, t)(1− t)

=
1

P1(t)
· P1(qt) · P3(qt) · · ·P2n−1(qt)

P3(t) · P5(t) · · ·P2n−1(t)
· P2(t) · P4(t) · · ·P2n(t)
P0(qt) · P2(qt) · · ·P2n−2(qt)

· 1
P2n(qt)

.

(2.3)

From this perspective it is not clear what is the cohomology (with compact support) of Xaff.

If there is cancellation, it can only be between P2j(qt) and P2j+2(t) (because of the valuations of

the eigenvalues).

To illustrate, for X = Pn we get perfect cancellation

Z(Xaff, t) =
1

1− qn+1t

(for An+1 we have ]An+1(Fqr) = q(n+1)r and so Z(An+1/Fq, t) = exp(
∑

r q(n+1)rtr/r) = 1
1−qn+1t

).4

If X/Fq is an elliptic curve with zeta function (1−αt)(1−βt)
(1−t)(1−qt) , with α = q/β and complex absolute

value q1/2, then the zeta function of the affine cone is (1−αqt)(1−βqt)
(1−qt)(1−q2t)

(1−t)(1−qt)
(1−αt)(1−βt)

1
1−t , equal to

Z(Xaff, t) =
(1− αqt)(1− βqt)

(1− αt)(1− βt)(1− q2t)
.

Note that no cancellation is possible. 5

4Note that the usual étale cohomology of An is 1 dimensional in dimension zero and zero otherwise. Indeed,
using Künneth it is enough to prove that for A1. For A1 we use excision: If Z is a closed non-singular subset of
pure codimension c of a non-singular variety X then Hr(X,Z`) ∼= Hr(X \ Z,Z`) for 0 ≤ r ≤ 2c− 1 (cf. [18, Cor.
16.2]). This gives that H0(A1,Z`) ∼= Z`, H1(A1,Z`) = 0, where we used the information on the cohomology groups
of Pn, deduced easily from the zeta function. To show H2(A1,Z`) = 0 one can use a general theorem saying that
the étale cohomology of an affine variety is zero in dimensions greater than the dimension of the variety (loc. cit.
Thm. 15.1).
On the other hand, the cohomology with compact support of A1 can be determined as follows: for U a non-singular
variety of dimension d we have a duality (loc. cit. Aside 16.5 and Thm. 24.1)

Hr
c (U,Z`)×H2d−r(U,Z`(2d)) −→ H2d

c (U,Z`(2d)) ∼= Z`.

In particular, we get that Hi
c(An,Z`) is zero in dimensions i < 2n and one dimensional for i = 2n with Frobenius

acting by qn.
5Because Xaff is affine of dimension 2, we have Hi

c(Xaff,Z`) = 0 for i = 0, 1 by [22]. Also, because qα, qβ are
pure of weight 3, it is probable that we have Hi

c(Xaff,Z`) = Z2
` for i = 2, 3. Finally, H4

c (Xaff,Z`) = Z`. The only
issue remaining is to show there is cancellation between H2 and H3. Namely, that H3 (and hence H2) is pure of
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3. The Newton polygon

Let P (t) =
∏b

j=1(1− αjt) = 1 + a1t + · · ·+ abt
b ∈ Zp[t]. Construct the lower convex polygon on

the vertices

(0, 0), (1, vq(a1)), . . . , (b, vq(ab)),

where vq(q) = 1. If λ is a slope of multiplicity m then there are precisely m reciprocal roots αj

such that vq(αj) = λ. See Figure 3.1.

slope λ

multipl = m(0, 0)

Figure 3.1. A Newton polygon. The slope λ has multiplicity m.

Example 3.0.3. Consider P1 for the first étale cohomology of an elliptic curve over Fq. The

functional equation gives that if α is a root so is q/α. Furthermore, the relation

H i
ét(X,Q`) = ∧iH1

ét(X,Q`)

holding for any abelian variety, and the fact that Fr = Frq acts by qn on H2n
ét (X,Q`) for any

smooth projective variety X/Fq, tell us that the two roots, say α, β of P1 satisfy αβ = q. We

see that in any case β = q/α. Note also that since α is roots of a quadratic polynomial we have

valq(α) ∈ 1
2Z and the same for β. Write

P1(t) = 1− (α + β)t + qt2.

weight 3 (resp. 2). Let X+ be the projective closure of Xaff. The Gysin map [9, Thm. 2.1 ] applied to X+ with
the hyperplane section at infinity (which is just X) gives a surjective map H1(X,Q`(−2)) −→ H3(X+,Q`) and
that shows that H3(X+,Q`) is pure and of dimension at most 2.
In general, if U ⊂ T is open with complement Z then we have a long exact sequence (cf. [14]):

. . . −→ Hi
c(U ⊗k k̄,Z`) −→ Hi(T ⊗k k̄,Z`) −→ Hi(Z ⊗k k̄,Z`) −→ Hi+1

c (U ⊗k k̄,Z`) −→ . . .

Apply that to U = Xaff, T = X+, Z = X. A similar calculation of the zeta function for X+ gives that it is
(1−qαt)(1−qβt)

(1−q2t)(1−qt)(1−t)
. One deduces that H3(X+,Q`) is pure and of dimension 2, that H1(X+,Q`) = 0 and that

H2(X+,Q`) = Q`; cf. [9, 7.5]. Writing the long exact sequence in cohomology the only possibility for non-pure
Hi(Xaff,Q`), i = 2, 3 is if the factor (1− qt) appears in both H2 and H3. I couldn’t rule this out so far.
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We see that the Newton polygon is one of those appearing in Figure 3.2. The ordinary case

happens iff one of α, β is a p-adic unit.

1

0 1 2

1

0 1 2

Figure 3.2. A supersingular (left) and ordinary (right) Newton polygon

3.1. Newton polygons in families. Given a family f : X −→ S over a characteristic p base,

f a smooth proper morphism with geometrically connected fibers, we would like to study the

p-adic variation of Z(Xs/k(s), t) where s ∈ S is a closed point with residue field k(s) and Xs is

the fibre product. This makes sense a priori only for s with finite residue field k(s). However, if

our interest is only in the Newton polygon then via crystalline cohomology we can make sense of

it for every geometric point s : Spec(k) −→ S.

Let Y = Xs, a scheme over k; let Y (p) be its base change with respect to the absolute Frobenius

morphism Fabs : Spec(k) −→ Spec(k) (induced by the Frobenius homomorphism on k). Let

FrY : Y −→ Y (p) be the Frobenius morphism. This is described by the following diagram:

Y

ÁÁ

FrY

##G
G

G
G

G

''
Y (p) //

²²
2

Y

²²
Spec(k)

Frabs // Spec(k)

Note that FrY is a morphism of schemes over k. It induces by functoriality a W (k)-algebras

homomorphism Fr∗ : H∗
crys(Y

(p)/W (k)) −→ H∗
crys(Y/W (k)). Since

H i
crys(Y

(p)/W (k)) = H i
crys(Y/W (k))⊗W (k),σi W (k)

(σ is the Frobenius automorphism of W (k)) we obtain a σi-linear map

Fr : H i
crys(Y/W (k)) −→ H i

crys(Y/W (k)), Fr(x) = Fr∗(x⊗ 1).
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Fix an index i. One can define a Newton polygon for

Fr : H i
crys(Y/W (k)) −→ H i

crys(Y/W (k)).

This polygon agrees with the Newton polygon of Pi when Y is a variety over Fq and thus will

generalize the notion of the Newton polygons coming from the zeta functions. The construction

of the Newton polygon is given below as a limit of “abstract Hodge polygons”. We first provide

the main result due to Grothendieck and Katz [12].

Theorem 3.1.1. For every geometric point s let Newtoni(Xs) be the Newton polygon of the

operator Fr : H i
crys(Xs/W (k)) −→ H i

crys(Xs/W (k)). There is a partition S =
∐

Sβ, β running

over Newton polygons, such that each Sβ is a locally closed set and such that for all geometric

points s : Spec(k) −→ S such that Newtoni(Xs) = β we have that s factors through Sβ. If Sγ

intersect that closure of Sβ then γ lies over β.

4. Abstract Hodge polygons and Newton polygons

Let k be a perfect field of characteristic p, W (k) its Witt vectors and σ : W (k) −→ W (k) the lift

of the absolute Frobenius automorphism k −→ k. Let M be a free W (k) module of finite rank r

and let

F : M −→ M

be a σ-linear morphism with no kernel, that is F : M ⊗ Q −→ M ⊗ Q is an isomorphism. One

can show that

M ⊗Q ∼= ⊕i[M(ai, bi)⊗Q]ni

where ai, bi are relatively prime positive integers, or ai = 1, bi = 0. Here M(ai, bi) is a free W (k)

module of rank ai, and on each M(ai, bi) the map F satisfies on a certain basis F ai = pbi . One

then associates to M the Newton polygon Newton(M) with slopes bi/ai with multiplicity aini.

This polygon depends only on M . We define the Hodge numbers hi(M) to be the multiplicity of

the elementary divisor pi in M/F (M).

On the other hand, assume M to be torsion free of rank r and consider M/F (M) - a torsion

W (k)-module. Let pa1 , pa2 , . . . , par be the elementary divisors, 0 ≤ a1 ≤ a2 ≤ · · · ≤ ar. One

construct a lower convex polygon starting at (0, 0) and having segments with slopes ai. The

same can be done for F a and one can normalize the polygons to always have the same end point

(r,
∑

ai). We get a normalized polygon for every a, that we call the Hodge polygon of F a and

denote Hodge(a,M). The following theorem was proved by Katz [12]:
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Theorem 4.0.2. The abstract Hodge polygons Hodge(a,M) converge as a tends to infinity to the

Newton polygon Newton(M) of M (in particular, they have the same end point).6 Moreover, the

Newton polygon always lies over the Hodge polygons Hodge(a,M).

This is now applied to M = H i
crys(X/W (k)) modulo torsion to define its Newton and Hodge

polygons. As such, the slopes of the polygon Hodge(a,H i
crys(X/W (k))/Torsion) serve as a lower

bound to the p-adic valuations of the roots of the polynomial Pi – the characteristic polynomials

of Fr acting on the i-th cohomology group H i
ét(X̄,Q`).

5. Results of Deligne, Katz, Mazur and Ogus

Theorem 5.0.3. (Mazur [17], Ogus [3]) Let X be a smooth proper variety over k - a perfect field

of characteristic p. Let Hodgej(X) be the lower convex polygon starting at (0, 0) and having slope

i with multiplicity dimHj−i(X, Ωi
X/k) = hi,j−i.

(1) The Newton polygon of Hj
crys(X/W (k)) always lies above Hodgej(X).

(2) Assume that Hj
crys(X/W (k)) are torsion free for all j and that the Hodge to de Rham spec-

tral sequence Ei,j−i
1 = Hj−i(X, Ωi

X/k) ⇒ Hj
dR(X/k) degenerates at E1. Then the abstract

Hodge number hi(Hj
crys(X/W (k))) is equal to the Hodge number hi,j−i = dimHj−i(X, Ωi

X/k).

An application of (1) to the number of point on X is provided by the following:

Corollary 5.0.4. Assume that X/Fq is a smooth complete intersection in Pn+j
Fq

of dimension n

and multi-degree (a1, . . . , aj). Then

Nr(X/Fq) = Nr(Pn
Fq

/Fq) (mod qrµ),

where µ is the minimal non-negative integer such that hµ,n−µ − δµ,n−µ 6= 0 ( Kronecker’s δ).

Moreover, if max ai > 1 (i.e., X is not linear) then one has µ = [(n + j + 1)−∑
ai]/ max ai by

[11, Prop. 2.7], [5].

To derive this corollary, one notes that the assumptions only control what happens in the

middle cohomology Hn
crys(X/W (Fq)). The other cohomologies of X agree with those of Pn+j

in dimensions smaller than n (using a version of Weak Lefschetz, cf. [13]; this is also true for

X a complete intersection, which is not necessarily smooth - see [22]) and are determined by

duality (using smoothness) in dimensions higher than d (hard Lefschetz). This yields for a Weil

cohomology:

H∗(X) = H∗(Pn) + Hn(X)′,

6We remark that the convergence need not be monotone. See [12].
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where the Hn(X)′ are the so called primitive cohomology classes. The modified Hodge numbers

hµ,n−µ− δµ,n−µ are the Hodge numbers of the Hodge decomposition of the primitive part. There

are closed formulas for the dimension of Hn(X)′. For example, if we have one equation only, say

of degree a, then

dimHn(X)′ =
(a− 1)n+2 + (−1)n(a− 1)

a
.

On the other hand, the differences Nr(X)−Nr(Pn) have a generating series

(5.1) exp(
∑

[Nr(X)−Nr(Pn)]tr/r) = Z(X/F, t)/Z(Pn/F, t) = det(1− tFr|Hn(X)′)(−1)(n+1).

Thus, the point is to have a lower bound of the minimal slope of the Newton polygon for Hn(X)′

and such is derived from the Hodge polygon with the modified Hodge numbers.

In a similar vain one can get for a complete intersection that

|](X(Fq))− ](Pd(Fq))| ≤ Cqm/2,

where C = dimHn(X)′ ≤ dimHn
ét(X,Q`). For elliptic curves we get C = 2. See also Milne’s

lecture notes pp. 99 ff., [11, 10, 1, 22, 9] for estimates and information on the zeta functions of

not necessarily smooth complete intersections.

6. Some special cases

In some special cases the analysis of the Newton polygon and hence, to an extent, of the zeta

function, reduces to the examination of a single cohomology group. We have seen above the case

of complete intersections; we indicate two more.

6.1. Abelian varieties. Let X/Fq be an abelian variety. Then for every i we have

H i
ét(X,Q`) = ∧iH1

ét(X,Q`),

as Galois modules. Thus, all the interesting information lies in H1
ét(X,Q`). In this case, one

has the symmetry condition: a slope λ appears if and only if 1 − λ appears and with the same

multiplicity. The polygon has integral breaking points and ends at (2g, g). It is known that every

polygon β satisfying this condition appears for some principally polarized abelian variety.

The set of Newton polygons appearing for a g dimensional principally polarized abelian variety

is a partially ordered set under the relation of “lying above”. The minimal element is the ordinary

Newton polygon N-ord and the maximal element is the supersingular polygon N-ss. Let
∐

Sβ be

the stratification of the moduli space Ag of principally polarized abelian varieties in characteristic
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p induced by the Newton polygons. The variety Ag is irreducible of dimension g(g + 1)/2. The

Sβ are equi-dimensional and we have

codim(Sβ) = dist(β, N-ord).

There is much known on this stratification: see [19].

6.2. Curves. Let C/Fq be a smooth curve. The étale cohomology group H0
ét(X,Q`) (resp.

H2
ét(X,Q`)) is one dimensional with Frobenius acting by multiplication by 1 (resp. p). Thus, the

only interest is in the first cohomology. We have the canonical isomorphism (“unramified class

field theory”)

H1
ét(X,Q`) = H1

ét(Jac(X),Q`)

(the same with crystalline cohomology) and thus the Newton polygons satisfy the same restriction

as those of g dimensional abelian varieties. Note, however, that the moduli space of curves is of

dimension 3g−3 for g > 1 while the number of Newton polygons that are possible is much larger

(at least g2/4). It is thus not clear whether to expect that every Newton polygon appears or not.

Opinions among the expert differ.

There are very little results in this direction. It is known that the generic curve is ordinary [16].

It is also known that the generic hyperelliptic curve is ordinary.7 Most of the results have to do

with showing the existence of supersingular curves. I remark that even the study of the variation

of the Newton polygon along the moduli space of hyperelliptic curves seems very difficult. A

striking recent result of Scholten and Zhu [20] is that there are no supersingular hyperelliptic

curves in characteristic 2 of genus of the form 2n− 1. On the other hand, there are supersingular

curves of any genus in characteristic 2 [8].

7This implies that the generic curve is ordinary, because ordinary is an open condition and the moduli space of
curves is irreducible. I could not find a reference for this fact. Rachel Pries (in a letter) explained to me how the
theory of formal patchings, deformations of admissible covers allow one to show inductively on the genus g that
for every f ≤ g there is a hyperelliptic curve having slope 0 with multiplicity f . The idea is to glue a suitable
hyperelliptic of genus g − 1 with an elliptic curve and deform that to a hyperelliptic curve.
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