
Cris is for Crystalline
Marc-Hubert Nicole

1. Cristalline topology and divided powers

Goal: explain the definition of the crystalline site
There are two distinct aspects to the definition of the crystalline site: some geomet-

ric data and some algebraic data. The algebra, or rather PD-algebra (for Puissances
Divisées, or divided powers) is a remedy to the non-existence of the usual logarithm in
characteristic p. The geometry that arises is nilgeometry, the geometry of infinitesimal
thickenings.

1.1. The logarithm in characteristic p. It is a truism in the arithmetic of global
fields that function fields are easier to deal with than number fields: the existence of
additional structures (e.g. the Frobenius map x 7→ xp) gives us more handles, more
tools (e.g. the Cartier isomorphism), to prove theorems. One aspect in which positive
characteristic is more difficult than characteristic zero is the pathological behaviour
of the usual differential calculus (d(xp) = pxp−1 = 0 in char. p), or, equivalently,
the non-existence of a well-behaved logarithm function. Nonetheless, one can cook up
useful exponential and logarithm functions in characteristic p, under certain restrictive
hypotheses. I know of essentially only one way of circumventing the division by zero
problem in characteristic p, and it involves truncating a suitable infinite series giving
the logarithm. A primitive version of it comes as follows: Let A be an associative
Fp-algebra. Put

N := {z ∈ A|zp = 0},
and

U := {z ∈ A|zp = 1}.
We may define exp and log by:

exp(z) =
p−1∑

i=0

zi

i!
and log(x) = −

p−1∑

i=1

(1− z)i

i
.

Then exp : N −→ U and log : U −→ N are inverses of each other.

Remark 1.1. If α, β ∈ N such that αβ = βα, then α + β ∈ N , but in general

exp(α + β) 6= exp(α) · exp(β).

If αiβp−i = 0 whenever 1 ≤ i ≤ p− 1, then

exp(α + β) = exp(α) exp(β).

In this toy version, we avoid the difficulty of p = 0 by truncating brutally the familar
Taylor expansions at the term where the denominator is p. This trick has the virtue of
simplicity, but it reduces drastically the domain and the image of our familiar functions.
A more fruitful and supple trick is to add a convenient replacement γn(x) for every
problematic term xn

n! in the Taylor expansion of the exponential. We explore this idea
systematically in the next section.
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1.2. Divided powers. In this sequel, all rings A 3 1A are commutative.

Definition 1.2. Let A be a commutative ring and J an ideal of A. A divided
power structure on J is a family of maps γn : J −→ J,N 3 n ≥ 1 such that

(1)
γ1(x) = x for all x ∈ J,

(2)

γn(x + y) = γn(x) +
n−1∑

i=1

γn−i(x)γi(y) + γn(y) for all x ∈ J, y ∈ J,

(3)
γn(xy) = xnγn(y) for all x ∈ A, y ∈ J,

(4)

γm ◦ γn(x) =
(mn)!

(n!)mm!
γmn(x),

(5)

γm(x)γn(x) =
(m + n)!

m!n!
γm+n(x).

The first and last axiom give in particular the formula

xn = (γ1(x))n = n!γn(x).

We also write x[n] for γn(x).

Example 1.3. We discuss a few canonical examples of PD structures.
• If A is a Q-algebra, there is a unique PD-structure on any ideal J ⊂ A. If A

has characteristic zero (i.e. is not torsion), there is at most one PD-structure.
This is clear from xn = n!γn(x).

• If mA = 0, a necessary condition for a PD-structure to exist on an A-ideal I
is that for all x ∈ I, xm = 0. This is also clear from xm = m!γm(x).

• Suppose there is m ∈ N such that (m − 1)! is invertible in A, and Im = 0.
Then there exists at least one (possibly many !) PD-structure on I: define
γn(x) = (n!)−1xn for n < m, and 0 otherwise. The conditions are satisfied
if I2 = 0 or if, in characteristic p, Ip = 0. Eyal mentioned that Deligne and
Pappas ([5]) found useful to bootstrap this idea: let k be a field of characteristic
p, A = k[t]/(tp

i

), and I = (tp
i−1

), m = p, and let i = 1, 2, . . . The curious
feature is that at each step, the necessary condition that xp = 0 is a limiting
factor: one can go from k to k[t]/(tn) for 1 ≤ n ≤ p, but if n = p + 1, say, the
ideal (t) cannot have a PD-structure, one must change the ideal, and repeat
the procedure at each n that is a power of p.

• An example to see that PD-structures are not unique in general: let x ∈ Z/2iZ.
There exists a PD-structure γ on the maximal ideal 2Z/2iZ such that γ2(2) = x
iff x = 2 + a · 2i−1, a ∈ {0, 1}.

• Let R be a discrete valuation ring in characteristic 0 with residue field of
characteristic p. The ramification index e is defined by the equation

pR = me,

where m is the maximal ideal of R (for example, R = W (k) has ramification
index 1, since pW (k) is the maximal ideal). Then m admits a PD-structure iff
e ≤ p− 1.
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Proof. Since R has characteristic zero, there is at most one PD-structure.
It suffices to check that γn(x) = xn

n! lies in m. The following lemma is standard:

Lemma 1.4. Let N 3 n =
∑

aip
i, with 0 ≤ ai < p. Then

ordp(n!) =
1

p− 1

∑
ai(pi − 1).

Pick a uniformizer π ∈ m. We have:

ordπ(γn(π)) = n− ordπ(n!) = n− eordp(n!)

=
∑

aip
i− e

p− 1

∑
ai(pi−1) =

1
p− 1

∑
ai[pi(p−1−e)+e] = (

p− 1− e

p− 1
)n+e

∑
ai

(p− 1)
.

Thus, γn(π) lies in (π) for all n ≥ 1 iff e ≤ p− 1. ¤

• If J ⊂ I, j is a sub-PD-ideal of I if for all n ≥ 1, for all x ∈ J , x[n] ∈ J . For
example, if we write m = pW (k), then mn is a sub-PD-ideal, and therefore
there is a natural induced PD-structure on pWn(k). Beware: pWn(k) admits
other PD-structures.

Definition 1.5. Let A be a ring and (J, γn) a PD-ideal. We suppose that x[n]

(resp. (n− 1)!x[n]) is zero for n >> 0, for all x ∈ A. Then we can define

exp : J −→ 1 + J, exp(x) =
∑

n≥0

x[n],

log : 1 + J −→ J, log(1 + x) =
∑

n≥1

(−1)n−1(n− 1)!x[n],

One immediate advantage of this definition is that exp and log are (group) isomorphisms
and inverses of each other:

J+

exp
−→
←−
log

(1 + J)×.

Define J [n] to be the ideal generated by the monomials x
[a1]
1 x

[a2]
2 · · ·x[ar ]

r such that∑
ai ≥ n. An ideal J is PD-nilpotent if there is a n such that J [n] = 0. We can

relax this condition and still have a logarithm function: it suffices to have n such that
(n− 1)!J [n] = 0 (Berthelot’s condition).

We now address the issue of comparing PD-structures.

Definition 1.6. Let (A, J, γ) and (A′, J ′, γ′) be two PD-rings. A PD-homomorphism
φ : (A, J, γ) −→ (A′, J ′, γ′) is a ring homomorphism φ : A −→ A′ such that φ(J) ⊂ J ′

and for all x ∈ J , φ(γn(x)) = γ
′
n(φ(x)).

Definition 1.7. If (A, J, γ) is a PD-ring and if φ : A −→ B is a ring homomorphism,
we say that γ extends to B if there exists a PD-structure γ′ on JB such that:

φ : (A, J, γ) −→ (B, JB, γ′)

is a PD-homomorphism. There is at most one PD-structure satisfying this condition.

Remark 1.8. As the reader suspects, the extended PD-structure does not always
exists (see [1, 1.7, p.35]).
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We quote two results of Berthelot giving necessary conditions for PD-structures to
extend.

Proposition 1.9. ([8, p.72]) Let (A, J, γ) be a PD-ring. If J is principal, γ can
always be extended.

Proposition 1.10. ([8, p.72]) Let (A, J, γ) be a PD-ring and J ⊗A B
∼=−→ JB (e.g.

B is a flat A-algebra). Then γ extends to JB.

Example 1.11. The truncated Witt vectors Wn(k) is flat over Z/pnZ. Note that
Z/pnZ admits many different PD-structures, hence so does Wn(k).

We need a notion of compatibility of PD-structures. Let (A, I), (B, J) be two PD-
rings, and let B be an A-algebra. Then we say that a PD-structure on J is compatible
with I if

• On IB, there exist a PD-structure extending the PD-structure of I.
• The PD-structure on IB and on J coincide on the intersection J ∩ IB.

Equivalently, there exist a PD-structure on J + IB compatible with the PD-structure
of J and of I.

Definition 1.12. (The free PD-algebra A < T >) Let A be a ring. We define
the free PD-algebra A < t1, . . . , tr > as a direct sum ⊕n≥0Γn, where a basis of Γn as
an A-module is given by the symbols t

[k1]
1 · · · · · t[kr]

r with k1 + · · · kr = n and ki ∈ N.

The algebra structure is defined by the relations t
[m]
i t

[n]
i =

( m + n
n

)
t
[m+n]
i . The ideal

I = A+ < t1, . . . , tr >= ⊕n≥1Γn has a unique PD-structure such that γn(ti) = t
[n]
i for

all i ∈ {1, . . . r} and n ≥ 1.

The divided powers are the missing ingredient in many characteristic p recipes: e.g.
an integrable connexion is equivalent to the data of a so-called PD stratification, adding
divided powers yields the PD Poincaré Lemma which replaces the classical (or power
series) Poincaré Lemma (see [4]), which fails in characteristic p (try integrating xp−1dx);
etc.

Lemma 1.13. (PD Poincaré Lemma) ( [1, Lemme 2.12, p.296] ) For any ring A and
integer n, the de Rham complex of A[t1, . . . , tn]/A with coefficients in the PD algebra
A < t1, . . . , tn >, viewed as an A[t1, . . . , tn]-module, and endowed with the integrable
connexion D defined by D(γkti) = γk−1ti ⊗ dti, is a resolution of A, i.e. the sequence

0 −→ A −→ A < t1, . . . , tn >
D−→ ⊕A < t1, . . . , tn > dti −→ ⊕A < t1, · · · , tn > dti1 · · · dtir

where the differential is the natural extension of D and the first map is the natural
inclusion, is exact.

Proof. If n = 1, the complex A < t > −→ A < t > is given by:∑

k≥0

akt[k] 7→
∑

k≥1

akt[k−1]dt.

Thence the complex 0 −→ A −→ A < t > −→ A < t > dt −→ 0 is acyclic, and the
lemma follows for n = 1. Let us denote by ω•A<t1,...,tn> this complex and continue the
induction: suppose that A −→ ω•A<t1,··· ,tn−1> is a quasi-isomorphism. Thence, ω•A<tn>

is a complex whose terms are locally free modules on A, thus the morphism

A⊗ ω•A<tn> −→ ω•A<t1,··· ,tn−1> ⊗ ω•A<tn>,
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is again a quasi-isomorphism. Thus, the morphism of complexes A −→ ω•A<t1,...,tn> is
a quasi-isomorphism. ¤

Remark 1.14. You have already encountered this proof before! The idea is to
isolate the n-th variable: write a closed form ω = ω1 ∧ dtn + ω2. We write d = d′ +

δ
δtn

∧ dtn. Thus d′ω2 = 0 and d′ω1 + (−1)n−1 δ
δtn

ω2 = 0. By induction, ω2 = d′η2 and
ω1 + (−1)n−1 δ

δtn
η2 = d η1. Thus we see that ω = d(η1 ∧ dtn + η2).

Let (A, I) be a couple where A is a W (k)-algebra and I a PD-ideal of A compatible
with the canonical PD-structure on pW (k). The functor which associates to each pair
(B, J) the set of W (k)-algebra morphisms A −→ B sending I to J is represented by
a pair (DA/W (k)(I), I), where I is a PD-ideal of DA/W (k)(I), called the PD-envelope
of I relative to W (k). It satisfies the universal property that for any morphism f :
(A, I) −→ (B, J) such that IB ⊂ J , there exists a unique PD-morphism f such that

(A, I) −→ (DA/W (k)(I), I)
f−→ (B, J) coincide with f . Clearly, W (k) can be replaced

in this discussion by any PD-ring, for example Wn(k) := W (k)/pnW (k) equipped with
the canonical quotient PD-structure coming from W (k).
A basic property is that DA/W (k)(I)/I = A. If the characteristic of A is zero or I = pA,
(DA/W (k)(I), I) = (A, I), and DA/R(I) is generated as an A-algebra by the γn(x) for
x ∈ I. This construction can be sheafified. In brief, if (S, I, γ) is a PD-scheme, X an
S-scheme, and J a quasi-coherent ideal of OX , Y the closed subscheme defined by J ,
then the OX -PD-algebra D̃OX

(I) defined by DOX
(I) is quasi-coherent, and we can look

at the scheme Spec(D̃OX
(I)). This will be used later on.

1.3. The crystalline Grothendieck topology.
1.3.1. Smoothness and nil-immersions. We gather the various results around nilim-

mersions, discuss the relationship between smoothness and liftability, and try to moti-
vate the geometric ideas entering the definition of the crystalline site: i.e. why does this
all actually work ?

An ideal I in a ring A is a nil-ideal if there exists an integer m > 0 such that
xm = 0 for all x ∈ I. Observe that a nilpotent ideal is necessarily a nil-ideal, but not
reciprocally. If A is a ring killed by p (more generally, any integer n ≥ 2), then any
PD-ideal I in A is a nil-ideal (it consists of nilpotent elements), as follows from the
equality: xp = p!γn(x) = 0 for all x ∈ I.

Definition 1.15. A nilimmersion is a closed immersion of schemes whose corre-
sponding quasi-coherent sheaf of ideals is a locally a nil-ideal.

Example 1.16. Let A be a commutative ring, I a nilpotent ideal. The homomor-
phism A ³ A/I corresponds to a map of schemes Spec(A/I) ↪→ Spec(A) which is a
closed immersion. A point we want to stress is that Spec(A) and Spec(A/I) have the
same underlying topological space (this remains valid for I a nil-ideal). The reader
should keep in minde the intuitive picture suggested by the terminology of (nilpotent)
thickenings.

Remark 1.17. If f : X −→ Y is a morphism of k-schemes, a thickening of Y does
not necessarily yield a thickening of X. This is why the category of sheaves on the
cristalline site is more flexible than the site itself: using sheaves allows to consider the
sheaf on X obtained by inverse image of a thickening of Y , while this operation is not
well-behaved on thickenings themselves.
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Let X be a scheme over k. Let U, T be Zariski open subsets of X, and let i : X ↪→ Z
be a closed immersion of X in a smooth Wn(k)-scheme Z. Recall that the universal
PD-thickening (corresponding to the PD-envelope)

i : X −→ XZ → Z

consists in adding the PD-structure in an universal way to the ideal of i: it is universal
among the PD-thickenings X̃Z −→ Z such that X ↪→ X̃Z −→ Z coincides with i :
X −→ Z. If X is smooth and Z is a smooth lifting of X (N.B. there is a natural closed
immersion of the special fiber in the lifting), XZ = Z. Note that XZ and X have
the same underlying topological space. The following, I believe, is the main geometric
property which justifies the definition of the crystalline site: It is a property used in
the proof of the isomorphism between the crystalline cohomology and the de Rham
cohomology to show that the PD thickening XZ covers the final object ∗, the sheaf
associated to the presheaf whose sections over a non-empty open is the set {0} with
one element. In the case of the topos of a topological space, this sheaf is represented
by the open X, but in the cristalline case, this sheaf is not representable in general: a
section s ∈ Hom(∗, F ) is just a compatible collection sT ∈ F (T ) for all objects T . Let
us explain in geometric terms what a covering of the final object amounts to: if U ⊂ T
is a thickening whose corresponding ideal has a PD-structure, a morphism U −→ XZ

extends locally over T to a morphism T −→ XZ : from the definition of XZ , it suffices
to prove that the closed immersion U −→ Z extends locally over T to an immersion
T −→ Z, which follows from using the fact that U −→ T is a nilimmersion and Z is
smooth. This follows, with a little algebraic nonsense (that can be found in [3]), from
the definition of smoothness:

Definition 1.18. A morphism π : X −→ S is smooth if it is locally of finite pre-
sentation and formally smooth, i.e. for all affine scheme S′, any closed subscheme S

′
0 of

S′ defined by a nilpotent ideal I of OS′ , and any morphism S′ −→ S, the application:

HomS(S′, X) −→ HomS(S
′
0, X),

deduced from the canonical injection S
′
0 −→ S′ is surjective; in other words, there exists

a lifting.

N.B. An étale morphism can be characterized in the same way, by replacing “surjective”
in the definition of a smooth morphism with “bijective”; in other words, there exists a
unique lifting.
We state some basic properties of smooth (resp. étale) morphisms:

Proposition 1.19. ([12, Proposition 2.4, 2.6])
• If X −→ Y is smooth, the OX-module Ω1

X/Y is locally free of finite type.

• Suppose X
f−→ Y

g−→ S are S-morphisms. Then if f is smooth, the exact
sequence:

0 −→ f∗Ω1
X/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0

is locally split. If f is étale, then Ω1
X/Y = 0 and f∗Ω1

Y/S
∼= Ω1

X/S.
• Suppose the morphism gf is smooth. Then if the above exact sequence is locally

split, then f is smooth. If the canonical homomorphism f∗Ω1
Y/S −→ Ω1

X/S is
an isomorphism, then f is étale.

Proposition 1.20. ([12, Proposition 2.10]) Let f : X −→ Y be a morphism locally
of finite presentation. The following are equivalent:
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• f is smooth
• f is flat and the geometric fibers of f are regular schemes (i.e. all local rings
OX,x are regular).

1.3.2. Crystalline and de Rham cohomologies. The basic idea of Grothendieck for
crystalline cohomology was to lift varieties to characteristic zero and take the de Rham
cohomology. The work of Monsky-Washnitzer proving that such a procedure works in
the affine case was certainly decisive. Explicitly, let k be a perfect field in characteristic
p > 0 and let W (k) be the Witt vectors (e.g. for k = Fp,W (Fp) = Zp). A lift
of smooth, proper scheme X/k is a smooth, proper scheme Z/W (k) such that X =
Z ×Spec(W (k)) Spec(k). The algebraic de Rham cohomology of Z over W (k) is thus
defined and we can take its hypercohomology Hi

dR(Z/W ) := Hi(Z, Ω•Z/W ), as explained
in [4]. We give an heuristic explanation based on the Gauss-Manin connexion of why
this makes good sense. Let f : X −→ S = SpfW [[t1, . . . , tr]] be a universal deformation
of X/k, that is any scheme Z/W lifting X corresponds to a point x ∈ S(W (k))., i.e. a
continous morphism W (k)[[T ]] −→ W (k) such that

Z ∼= X ×S W (k) = X ⊗W [[t]] (W (k), x).

In terms of Schlessinger’s theory, I believe the obstruction to the existence of a univer-
sal deformation lies in the cohomology group H2(X, TX), TX the tangent sheaf of X.
Suppose that the relative de Rham cohomology groups Hi := Rif∗Ω•X/S are free for all
i and compatible to base change (this is true in the complex algebraic category). Then
Hi

dR(Z/W (k)) = x∗Hi = Hi ⊗W [[t]] (W (k), x). As we explain in more detail below, in
the algebraic category, the Hi are also equipped with a Gauss-Manin connexion:

∇GM : Hi −→ Hi ⊗ Ω1
S/W (k).

If Z1, Z2 are two lifts of X/k, they correspond to two morphisms x, y : W (k)[[t]] −→ W (k)
such that x = y mod p. The Gauss-Manin connexion allows to define an isomorphism
χ(x, y) : Hi ⊗ (W (k), x) −→ Hi ⊗ (W (k), y) by the explicit formula (found in [16]):

χ(x, y)(s) =
∑

|n|≥0

(x(t)− y(t))n

n!

(
∇GM

( δ

δt

)n

s
)
(y).

The convergence of this series is the so-called nilpotence of the Gauss-Manin connexion.
Moreover, χ(x, x) is the identity and χ(x, y)χ(y, z) = χ(x, z).
The second step is to try to design an algebraic cohomology theory which will give the
same cohomology group without having to assume the existence of a lift (which does not
exist in general: there are non-liftable, smooth, proper varieties in characteristic p), i.e.
that could be computed more generally for X ↪→ Z, where ↪→ is a closed immersion, and
Z is smooth (this is possible e.g. for X affine or projective). It is worthwhile to look at
what happens in characteristic zero. Let X be a variety over C. If i : X −→ Y is a closed
immersion of X into a smooth variety, let Ω•Y be the (algebraic) de Rham complex of Y .
Denote by (̂Ω•Y )/X its formal completion along X, which can be viewed as a complex of
(Zariski) sheaves on X. Then it is a theorem of Deligne (see [10] for a proof) that up to
canonical isomorphism, the hypercohomology H∗(X, (̂Ω•Y )/X) does not depend on the
immersion i. The proof of this result relies on the formal Poincaré Lemma, which says
that the continuous de Rham complex of C[[t1, . . . , tn]] is a resolution of C

A similar result holds in characteristic p with the use of PD-envelopes. This works
roughly as follows: Let X −→ XZ −→ Z be the PD-envelope of a closed immersion
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X ↪→ Z, Z a smooth Wn(k)-scheme. The scheme XZ is affine over Z, and OXZ ,
viewed as an OZ-module, has a natural integrable connexion ∇ with respect to Wn(k),
satisfying ∇x[m] = x[m−1] ⊗ dx, for x ∈ IX⊂XZ . This allows to consider the de Rham
complex OXZ

⊗ Ω•Z/Wn(k) of Z/Wn(k) with coefficients in OXZ
:

OXZ
−→ OXZ

⊗OZ
Ω1

Z/Wn(k) −→ · · · ,

a complex of OXZ
-modules with differential given by differential operators of order 1. By

the PD-Poincaré Lemma, the hypercohomology of XZ with values in OXZ
⊗ Ω•Z/Wn(k)

do not depend on the immersion i : X −→ Z and it computes H∗(X/W (k)) by taking
the inverse limit over n. In the next section, we obtain these cohomology groups as the
cohomology of a site intrinsically attached to X, which is then only assumed to be of
finite type.

1.3.3. The crystalline site. In this section we describe the crystalline site as a
Grothendieck topology.

Example 1.21. Keep in mind the following basic example: S = Spec(Wn(k)),
I = (p) with the canonical PD structure γ coming from W (k), and X a scheme over
Spec(k).

Remark 1.22. Why are the Witt vectors lurking in the background of p-adic coho-
mology theories ? The coefficients cannot always be Qp, by Serre’s argument, as explain
in [4, p.9]: a supersingular elliptic curve has a 4-dimensional endomorphism algebra,
the quaternion algebra ramified at p and ∞, so it is impossible to obtain a 2-dimension
H1 over Qp. The Witt vectors W (k) are the most natural choice after Zp, being the
complete discrete valuation ring with residue field k whose maximal ideal is generated
by p.

Let S = (S, I, γ) be a PD-scheme, i.e. I is a quasi-coherent ideal of OS and γ is a
divided powers structure on I. Let X be an S-scheme (on which γ extends).

The crystalline site Cris(X/S, I, γ) is defined as follows:
• Objects

The objects are triples (U ⊂ U ′, γU ′), where U is a Zariski open subset of
X, U ′ is a nilpotent thickening of U), and γU ′ is a divided powers structure on
the ideal of definition J in OU ′ which defines U in U ′ and which is compatible
with the structure γ on I. This notion of compatibility is local.

Example 1.23. The triple (U idU−→ U, 0), for any Zariski open U ⊂ X is an
object of the cristalline site Cris(X/S, I, γ).

• Morphisms
A morphism of (U ⊂ U ′, γU ′) into (V ⊂ V ′, γV ′) is an inclusion U ⊂ V and

a morphism of schemes U ′ −→ V ′ which makes the obvious diagram commute
and is such that γU ′ and γV ′ are compatible.

• Coverings
The coverings are families of morphisms (Ui, Vi, γi) −→ (U, V, γ) such that

Vi −→ V is an open immersion and V = ∪iVi, i.e. the family of open immersion
is surjective.

We describe sheaves (of sets) over the cristalline site. The general definition applies:
a sheaf is a presheaf which satisfies the sheaf exact sequence

0 −→ F (T ) −→
∏

i

F (Ti)
−→
−→

∏

i,j

F (Ti ∩ Tj),
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for any covering {Ti −→ T}. Let F be a sheaf and (U, V ) an object in Cris(X/S). If we
associate to an open W of V the sections of F over (U ∩W,W ), we define a sheaf over
V for the Zariski topology. A morphism g : (U, V ) −→ (U ′, V ′) in Cris(X/S) gives a
morphism g∗F : g−1F(U ′,V ′) −→ F(U,V ) satisfying the two properties: transitivity condi-
tion for morphisms (U, V ) −→ (U ′, V ′) −→ (U ′′, V ′′); if V

g−→ V ′ is an open immersion
U = U ′ ×V ′ V , then g∗F is an isomorphism. Reciprocally, any Zariski sheaf equipped
with transition morphisms satisfying the two properties defines a cristalline sheaf.

Example 1.24. Important ! The (co-)functor V 7→ OV defines a sheaf of rings
on Cris(X/S), which we call the “structure sheaf” and denoted by OX/S .

The cristalline cohomology is, by definition, the cohomology of the structure sheaf:

Hi
cris(X/S) := Hi(X/S,OX/S).

Remark 1.25. Points galore. The Zariski interpretation of the sheaves shows
that isomorphisms of sheaves can be detected at the level of stalks, since the crystalline
topology has “enough” points. It is stated in SGA 4, IV, p.389 that Deligne has a
theorem which implies that all topoi “encountered in algebraic geometry” have enough
points.

How do we get W (k)-modules in characteristic p ? Recall our typical sitation with
S = Spec(Wn(k)), I = (p). We apply our general definition to this setting: for ex-
ample, the objects are commutative diagrams U/Spec(k) ↪→ V/Spec(Wn(k)), where
U ⊂ X is a Zariski open, i : U ↪→ V is a PD-thickening of U , a closed immersion
of Wn(k)-schemes such that Ker(OV −→ OU ) is equipped with a PD-structure com-
patible with the canonical structure induced on Wn(k), etc. Then Hi(X/Wn(k)) :=
Hi((X/Wn(k))cris,OX/Wn(k)) and Hi(X/W (k)) is defined as the inverse limit of the
Hi(X/Wn(k)).

2. Examples: Crystals

“Un cristal possède deux propriétés caractéristiques: la rigidité, et la faculté de crôıtre,
dans un voisinage approprié. Il y a des cristaux de toute espéce de substance: des
cristaux de soude, de soufre, de modules, d’anneaux, de schémas relatifs, etc...” quoted
(reputedly) from ([9]).
Crystals in modules generalize modules equipped with an integrable, quasi-nilpotent
connexion in characteristic p. We explain these terms in a utilitarian manner, sending
the interested reader to [16] for more details. Sheaves of quasi-coherent OS-modules
with a connexion form a nice category: they are stable under internal Hom (when
defined) and under tensor product, behave well under smooth base change, and have
enough injectives, i.e. shows good signs of being a good category of coefficients for a
cohomology theory. More concretely, Hi

cris(X/S) are crystals in modules.

Definition 2.1. A sheaf F of OX/S-modules such that all u] : u∗F(U,U ′) −→ F(V,V ′)
are isomorphisms for all maps between objects of the cristalline site u : (V, V ′) −→ (U,U ′)
is called a crystal in modules. Here u∗ denotes the module pullback, i.e. u−1 tensored
with the structure sheaf.

Example 2.2. The sheaf OX/S is a crystal in modules.

A crystal in modules F yields canonical isomorphisms:

pr∗1(FX⊂X) ∼= FX⊂∆1X
∼= pr∗2(FX⊂X),
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and thus can be equipped with a connexion. The infinitesimal descent data aspect
of connexions is expounded in [1]; we are content with giving the descent-theoretic
definition of a connexion. Let S be a scheme, I a quasi-coherent ideal of OS and γ a
PD-system on I satisfying Berthelot’s condition (n− 1)!I [r] = 0 for n >> 0. We denote
by ∆1(X) the first infinitesimal neighborhood of X in X ×S X. The ideal I := I/I2

(where I is the ideal of ∆) defining X in ∆1(X) is nilpotent of order 2, and we define
a PD-structure by putting γ1(x) = x, and γn(x) = 0 for n ≥ 2. This yields an object
X ⊂ ∆1(X) of the cristalline site. Denote by pr1, pr2 the two projections from ∆1(X)
to X.

Definition 2.3. A connexion on an OX -module M is given by an infinitesimal
descent data :

φ : pr∗1(M) ∼= pr∗2(M),

satisfying the usual cocycle condition (p∗12 ◦ p∗23 = p∗13) for the diagram:

∆1
2(X)

−→
−→
−→

∆1(X)
−→
−→ X,

where ∆1
2 is the first infinitesimal neighborhood of X in X ×S X ×S X.

As shown in [1], this is equivalent to giving an OS-linear morphism:

∇ : M −→ Ω1
X/S ⊗OX M,

satisfying ∇(am) = da⊗m + a∇(m), for all local sections a on OX and m on M .
Briefly put, the notion of a connexion is equivalent to first order descent data, which is
equivalent to the data of a sheaf on a site made up of the first order thickenings of open
subsets of X. A stratification, or n-connexion, is the suitable generalization for higher
orders. We shall not explore this notion in detail, except for a few quick remarks.

Theorem 2.4. Let X/S be smooth and S a scheme over Spec(Q). Then a connexion
C extends to a stratification iff C is (so-called) integrable.

In characteristic p, an integrable connexion is not necessarily a stratification. The prime
example is the Gauss-Manin connexion. Again, adding PD structures saves the day: an
integrable connexion is equivalent to the data of a so-called PD stratification (see [1]).
We now define (!) and study integrable connexions. A connexion can be extended
naturally to maps ρi : Ωi

X/S ⊗ M −→ Ωi+1
X/S ⊗ M . For our purposes, we only need

ρ1 := ω⊗ 7→ dw ⊗ f − w ⊗∇f .

Definition 2.5. The curvature K is the OS-linear map:

K = ρ1 ⊗ ρ : M −→ M ⊗OX
Ω2

X/S .

Definition 2.6. A connexion is integrable (i.e. has zero curvature) if the map:

M −→ M ⊗OX
Ω2

X/S

is zero.

Remark 2.7. It can be shown that in the X/S smooth case, crystals in modules are
the same as quasi-coherent modules equipped with an integrable connexion. Moreover,
in characteristic p, the connexion is so-called quasi-nilpotent (see [8]).
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The algebraic de Rham complexH∗(X/S) associated to a smooth morphism f : X −→ S
is a crystal, and it is therefore equipped with a canonical integrable connexion, called the
Gauss-Manin connexion ∇GM ([18]). We used it above to explain why the invariance
of the de Rham cohomology of a lift sitting in a universal deformation. We follow the
crisp presentation of [15].

Since π : X −→ S is smooth, the sequence:

0 −→ π∗(ω1
S/k) −→ Ω1

X/k −→ Ω1
X/S −→ 0

is exact. The complex Ω•X/k admits a canonical filtration

Ω•X/k = F 0(Ω•X/k) ⊃ F 1(Ω•X/k) ⊃ F 2(Ω•X/k) ⊃ · · · ,

where F i = F (Ω•X/k) is the image of the map Ω•,−i
X/k⊗OX

π∗(Ωi
S/k) −→ Ω•X/k. All sheaves

Ωi
∗/∗∗ are locally free over their respective schemes, we can describe the associated graded

objects of this filtration as:

gri(Ω•X/k) = F i/F i+1 = π∗(Ωi
X/k)⊗OX

Ω•,−i
X/k .

Let R0π∗ denote the functor of complexes of abelian sheaves on X to the category
of abelian sheaves on S. The derived functors of R0π∗ are Rqπ∗. Applying the spectral
sequence for finitely filtered objects as in [7, 0III , 13.6.4], we obtain a spectral sequence
abutting to the associated graded object with respect to the filtration of Rqπ∗(Ω•X/k),
while the E1-term is Ep,q

1 = Ωp
S/k⊗OSHq

DR(X/S). Using the canonical flasque resolution
à la Godement (generalizing the procedure for constructing the cup product): we can
equipp the spectral sequence with a product structure, explicitly, for each p, q, p′, q′ and
r:

Ep,q
r × Ep′,q′

r −→ Ep+p′,q+q′
r

sending (e, e′) to e · e′ where e, e′ are sections of Ep,q
r and Ep′,q′

r respectively over an
open subset of S. This pairing satisfies the usual rules:

e · e′ = (−1)(p+q)(p′+q′)e′ · e,
and

dr(e · e′) = dr(e) · e′ + (−1)p+qe · dr(e′).
At the E1-term, since d1 has bidegree (1, 0), we obtain, for any q, the complex E ,̇q

1 ,
which is explicitly:

0 −→ Hq
DR(X/S)

d0,q
1−→ Ω1

S/k ⊗OS Hq
DR(X/S)

d1,q
1−→ Ω2

S/k ⊗OS Hq
DR(X/S) −→ · · ·

and we define the Gauss-Manin connexion to be d0,q
1 . The integrability follows from the

observation that the connecting homomorphism defining the Gauss-Manin connexion
is the differential between E1-terms of a spectral sequences, that is the curvature is
d1,q
1 · d0,q

1 = 0. Thence, we can form the hypercohomology groups Hq(Hp(X/S),∇GM )
of the de Rham complex. We obtain the associated hypercohomology spectral sequence:

Theorem 2.8. (Leray spectral sequence)

Hq(Hp(X/S),∇GM ) =⇒ Hp+q
dR (X).

The Gauss-Manin connexion has many interesting properties related to its behaviour
with respect to spectral sequences: it is compatible with the Zariski filtration, but not
compatible with the Hodge filtration: it respects it with a shift of one,

∇GMF i
Hodge ⊂ F i−1

Hodge.
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This phenomena is called Griffiths transversality, and arises naturally when studying
families of varieties varying algebraically e.g. Shimura varieties. When the Hodge-to-
de-Rham spectral sequence degenerates (E1 = E∞) (for exemple, for X −→ S proper,
smooth, E = OX and in zero characteristic), then the Gauss-Manin connexion is given
by the cup-product with the Kodaira-Spencer map

KSX/S : Derk(OS ,OS) −→ H1(X,Der(X/S)).

Remark 2.9. From the introduction of [16]. Let S/Spec(C) be a projective, con-
nected, non-singular curve over with a finite number of points {x1, . . . , xm} removed.
Let π : X −→ S be a proper, smooth morphism. The space X can be views as a locally
trivial C∞-fibre space. Fix i ≥ 0. When we let s ∈ S vary, the complex cohomology
groups Hi(Xs,C) form a local system on Sanalytic. The Gauss-Manin connexion enables
us to construct this local system in an algebraic manner. The algebraic de Rham sheaves
Hi

dR(X/S) are locally free coherent algebraic sheaves on S, with fiber at s Hi(Xs,C),
equipped with the Gauss-Manin connexion ∇GM . The local system of Hi(Xs,C) is
retrieved as the sheaf of germs of horizontal sections of Hi

dR(X/S) ⊗OS
Oanalytic

S . Dif-
ferential equations give a geometric interpretation of these structures: Hi

dR(X/S) can
be viewed as a system of algebraic differential equations on S (called the Pichard-Fuchs
equations), and the local system of Hi(Xs,C) is the local system of germs of solutions
of the Picard-Fuchs equations.

3. Crystalline cohomology is a Weil cohomology

The participants of the Seminar are familiar with the introduction of [3], which
discusses the notion of a Weil cohomology. Berthelot’s pavé ([1]) proves that for X
smooth and proper over a field, crystalline cohomology is a Weil cohomology. Katz and
Messing ([14] is in a missing Inventiones volume at Rosenthall Library) have shown that
if H∗ is any cohomology theory for projective smooth varieties over finite fields (with
coefficients in a field of characteristic zero) that satisfies:

(1) Poincaré duality;
(2) the weak Lefschetz theorem;
(3) the Lefschetz trace formula giving the zeta function as the alternating product

of the characteristic polynomials of the Frobenius acting as endomorphism on
the cohomology H∗),

then the Riemann hypothesis (!) and the hard Lefschetz theorem are true for H∗ as
well. Bloch, Deligne and Illusie have shown that one can associate a complex WΩ•X
to any smooth, proper scheme over a perfect field of characteristic p, called the de
Rham-Witt complex. It is a complex of sheaves whose hypercohomology (computed
on the Zariski site) is isomorphic to the crystalline cohomology H∗

cris(X/W (k)). This
complex has many virtues: its construction is independent of the construction of the
crystalline site (no divided powers, no topos theory), it is elementary and the proof
that crystalline cohomology is a cohomology theory à la Weil (among other properties,
checking the above three conditions) is simpler than Berthelot’s original treatment. To
be fair, Berthelot’s treatment is very thorough: he proved in his thesis the finiteness
theorems for the Hi

cris, the isomorphism with de Rham cohomology in the smooth case,
smooth base change, Künneth formula, the Lefschetz trace formula, Poincaré duality,
the existence of a Gysin morphism and the existence of a cycle class map under certain
conditions (Gillet and Messing later did it in general). He also proved the weak Lefschetz
formula in a later paper ([2]). It is impossible to treat the exciting properties of the
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Rham-Witt complex (and the associated spectral sequences) at any depth in just a few
lines, and altogether, it is best to learn more about F -crystals and Cartier-Dieudonné
modules before undertaking its study. Let us add a few (possibly unconvincing) remarks:
this complex helps us understanding better the non-degeneracy of the Hodge-to-de-
Rham spectral sequence briefly discussed by Pete (cf. [11]); it enables many comparison
theorems with other cohomology theories. Ekedahl’s book gives substance to the general
principle that a complex is a more refined object to study than its hypercohomology, in
particular it may have moduli (Ekedahl gives as an example that the hypercohomology
of the de Rham-Witt complex of supersingular K3 surfaces with Artin invariant σ only
depend on σ, while the whole complex has σ − 1 moduli).

3.1. F -crystals. Let X be a smooth projective variety defined over a field k and
let Alb(X) be its Albanese variety over k. Suppose that X has a k-rational point. Then
we have the following properties:

• There is a map:
alb : X −→ Alb(X)

such that alb(X) generates Alb(X).
• (Universality) Given any map f : X −→ A from X to an abelian variety A,

there exists a map g : Alb(X) −→ A such that f = g ◦ alb.
The map X −→ Alb(X) induces an isomorphism H1

cris(Alb(X)/W (k)) −→ H1
cris(X/W (k)).

Moreover, Oda showed that H1
cris(Alb(X)/W (k)) is the Dieudonné module of the p-

divisible group lim
−→

Alb(X)[pn]. If g = dim Alb(X)/k, it is a free W (k)-module of

rank 2g equipped with two semilinear (or σ-linear) endomorphisms F and V such that
FV = V P = p, induces by the Frobenius and Verschiebung maps on Alb(X), and where
σ is the map induced from x 7→ xp, say. The module H1(X/W (k)) is an example of an
F -crystal:

Definition 3.1. • An F -crystal M over W (k) is a free module of finite rank
over W (k) with σ-linear injective map F : M −→ M , such that M/FM is of
finite length. The homomorphisms are W (k)-module homomorphisms such
that for

f ∈ Hom((M1, F1), (M2, F2)), f ◦ F1 = F2 ◦ f.

• An F -isocrystal (V, F ) over B(k) (B(k) being the field of fractions of W (k))
is a finite dimensional vector space over B(k) with a σ-linear bijective map
F : V −→ V . The homomorphisms are vector space maps respecting the F -
structure.

When X is smooth, proper over k, Hm
cris(X/W (k))/torsion equipped with F , the action

of Frobenius, is an F -cristal. Poincaré duality insures that the map F is injective.

Theorem 3.2. (Dieudonné-Manin) Let k be an algebraically closed field. The cat-
egory of F -isocrystals over B(k) is semisimple with simple objects parameterized by Q.
To a slope λ ∈ Q corresponds the object Eλ defined as follows. If λ = r

s , with s, r ∈ Z,
s > 0, (r, s) = 1, then

Eλ = B(k)[F ]/(F s − T r).

This result allows to define the slopes of an F -cristal as the set of λ. Poincaré duality
allows to show that the slopes of Hm

cris(X/W (k))/torsion are in [0, d]. The weak Lef-
schetz theorem imply that the slopes are in [0, m], if 0 ≤ m ≤ d and in [m − d, d] if
d ≤ m ≤ 2d.
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For a proof of a generalization of the Dieudonné-Manin theorem to Cohen rings, see
[17, Theorem 5.6, p. 63]. Grothendieck, Mazur and Messing ([19]) and later de Jong,
Kedlaya and others generalized classical results about F -crystals to crystals in modules
over increasingly general base schemes, i.e. varying in families. For example, to give
a flavour of this generalization, an F -crystal over W (k)[[T ]] is a finite, locally free
W (k)[[T ]]-module equipped with a W (k)-linear connection ∇ : M −→ M ⊗ dt for r ∈
W (k)[[T ]], v ∈ M and a map F : σ∗M −→ M of W (k)[[T ]]-modules with connection,
called its “Frobenius”, whose kernel and cokernel are killed by some power of p. Note
that F induces a σ-linear map M −→ M .

It is not too surprising that the first crystalline group is well-behaved, but it is
rather striking that the definition also work give sensible Hi

cris, i > 1. We have seen that
H1

cris(X/W (k)) determines the p-divisible group of Alb(X), another way to phrase it is
to say that H1

cris(X/W (k)) uniquely determines the completion of the Picard variety.
Under certain hypotheses, there is an interpretation of H2

cris(X/W (k)) in terms of a
smooth formal group related to the Brauer group of X. I don’t know of any further
precise interpretation for i > 2.

4. Appendix: Witt vectors and a minuscule dose of semilinear algebra

We try explaining and motivating the use of Witt vectors.

Definition 4.1. Let k be a field of characteristic p. A Cohen ring is a complete
discrete valuation ring W of unequal characteristic with residue field k whose maximal
ideal is generated by p.

A Cohen ring W is unique up to non-canonical isomorphism. If k is perfect ( x 7→ xp

is bijective), then W is unique up to canonical isomorphism, and we call it the ring
of Witt vectors W (k). The quotient Wn(k) := W (k)/pnW (k) is called the truncated
Witt vectors of length n. For example, W2(k) ∼= k⊕ k as k-varieties. Wn(k) is flat over
Z/pnZ, and Wn(k)/pWn(k) ∼= k, and these two properties characterize Wn(k).

Why are the Witt vectors such an important algebraic concept ? We throw in a
couple of remarks:

• W (k) is not too hairy: it is a discrete valuation ring, hence has (Krull) dimen-
sion one: the next best thing after a field; and it has characteristic zero, with
a unique PD-structure on its maximal ideal;

• W (k) is the maximal unramified extension of W (k): this, I believe, was Witt’s
great breakthrough, as giving a systematic way of constructing unramified
extensions;

• The Witt vectors are equipped with two semi-linear operators: Frobenius (for
Frobenius) and Verschiebung (for translation) such that FV = p = V F ;

N.B. These notions are useful and powerful (cf. [17]). A difference between semi-linear
algebra and linear algebra is that the former depends on the (residue) field, but it is
still quite rigid:

Lemma 4.2. (“Fitting’s Lemma” for F -crystals) We can decompose an F -crystal
(M, F ) uniquely in a direct sum

M = Metale ⊕Mlocal

of its étale part Metale (on which Frobenius is an isomorphism) and its local part Mlocal

(on which Frobenius is topologically nilpotent, i.e. ∩i≥0F
iMlocal = 0).
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See what happens over an algebraically closed field:

Exercise 4.3. (Fitting) Let k be an algebraically closed field of characteristic p,
V/k a k-vector space of dimension n. Let q = pa, for some a ∈ Z\0 and φ : V −→ V
an additive bijection such that for all λ ∈ k, for all v ∈ V, we have φ(λv) = λqv. Then
there exists a base (e1, . . . , en) of V such that φ(ei) = ei for all i.

Moreover, the presence of a Frobenius map built-in the Witt vectors is an interesting
feature for us motivated by characteristic p geometry, where the map x 7→ xp is so
crucially used. As a matter of fact, it follows from the functoriality of the cohomology
theory that the absolute Frobenius endomorphism Fabs : X −→ X induces a semi-linear
map: F ∗abs : H∗(X/W (k)) −→ H∗(X/W (k)). This, modulo torsion, gives an F -crystal
structure to Hi(X/W (k), F ∗abs).





Bibliography

[1] Berthelot, Pierre, Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in
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