Zeroes of Polynomials Over Finite Fields

James Ax

Stable URL:
http://links.jstor.org/sici?sici=0002-9327%28196404%2986%3A2%3C255%3AZOPOFF%3E2.0.CO%3B2-B

American Journal of Mathematics is currently published by The Johns Hopkins University Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/jhup.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
ZEROES OF POLYNOMIALS OVER FINITE FIELDS.*

By James Ax.

1. Introduction. Let \(F = F(X_1, \cdots, X_n) \) be a polynomial of (total) degree \(d \) over a finite field \(k \) with \(q \) elements. In section 3, making use of some ideas of B. Dwork in [2], we prove the following theorem:

If \(b \) is the largest integer (strictly) less than \(n/d \) then \(q^b \) divides the number of zeroes of \(F \).

E. Artin had conjectured that if \(F \) is homogeneous and \(n > d \) then \(F \) has a non-trivial zero. C. Chevalley proved this in [1] and even showed the hypothesis of homogeneity could be replaced by the weaker assumption of no constant term. E. Warning in [4], using a lemma of Chevalley, showed that even without this last assumption the characteristic \(p \) of \(k \) divides \(N(F) \), the number of zeroes of \(F \) (counting the trivial zero if \(F \) has no constant term). In Section 2 we give a quick proof of the Chevalley-Warning theorem independent of the Chevalley lemma. Nevertheless, there does not seem to be any simple proof of the fact that \(q \) divides \(N(F) \) if \(n > d \).

In Section 4 we exhibit, for each \(n \) and \(d \), a polynomial of degree \(d \) in \(n \) variables such that the highest power of \(p \) dividing the number of its zeroes is precisely \(q^b \) if \(b \) is the largest integer less than \(n/d \). While our result is the best possible divisibility relation in this sense, E. Warning in [4] showed that if \(n > d \) and if \(F \) has at least one zero then \(N(F) \) is at least \(q^{n-d} \).

The zeta function \(Z(H; t) \) of the hypersurface \(H \) defined by \(F \) over \(k \) is defined by

\[
Z(H; t) = \exp \left(\sum_{s=1}^{\infty} N_s t^s / s \right)
\]

where \(N_s \) is the number of zeroes of \(F \) in the field with \(q^s \) elements. Let \(\Omega \) denote the completion of the algebraic closure of the \(p \)-adic completion of the rationals, and let \(\mid \mid \) be the valuation on \(\Omega \) normed so that \(\mid p \mid = 1/p \).

The referee has shown how our result may be reformulated as the following statement, using the above notation.

Received February 15, 1963.
* Written with the partial support of NSF Grant G23834.
THEOREM. Each pole and each zero of $Z(H; t)$ has p-adic valuation at least q^b.

Indeed, it follows from the rationality of $Z(H; t)$ [2], that

$$\exp \left(\sum_{s=1}^{\infty} N_s t^s / s \right) = \prod_{i} (1 - \alpha_i t) / \prod_{j} (1 - \beta_j t)$$

where the α_i, β_j are algebraic integers, $\alpha_i \neq \beta_j$, for i and j ranging over finite sets. By logarithmic differentiations we obtain

$$\sum_{s=1}^{\infty} N_s t^{s-1} = \sum_{j} \beta_j (1 - \beta_j t)^{-1} - \sum_{i} \alpha_i (1 - \alpha_i t)^{-1}.$$

If we now assume our result, $|N_s| \leq |q^{bs}| = q^{-b s}$, so that the left side converges in Ω for $|t| < q^b$, then $|\alpha_i|, |\beta_j| \leq q^{-b}$ which verifies the referee’s statement. The converse follows from

$$N_t = \sum_{j} \beta_j - \sum_{i} \alpha_i.$$

Throughout this paper, $F, N(F), n, d, b, k, q,$ and p are above. Z denotes the integers, Z_+ the nonnegative integers. If $u = (u_1, \ldots, u_r) \in (Z_+)^r$, X^u denotes the monomial $\prod_{i=1}^{r} X_i^{u_i}$ and we define height $u = \text{degree} X^u = \sum_{i=1}^{r} u_i$.

2. Quick proof of the Chevalley-Warning theorem. Since each element of k is a $q-1$ root of unity or zero, we have for each $x \in k^n$ that $1 - F(x)^{q-1} = 1$ if $F(x) = 0$, zero otherwise. Summing over $x \in k^n$, we have (in k)

$$N(F) = \sum (1 - F(x)^{q-1}) = -\sum F(x)^{q-1}.$$

Now F^{q-1}, being of degree $d(q-1)$ is a k-linear combination of monomials of degree at most $d(q-1)$. If X^u is such a monomial, we compute

$$\sum_{x \in k^n} x^u = \prod_{i=1}^{n} \sum_{x_i \in k} x_i^{u_i} = \prod_{i=1}^{n} X(u_i)$$

where $Y(u_i) = q-1 = -1$ if u_i is positive multiple of $q-1$, zero otherwise. If $d < n$, then height $u \leq d(q-1) < n(q-1)$ which implies that the sum in (2) is zero. Hence, the sum in (1) is zero, i.e., $N(F) \equiv 0 \text{ mod } p$.

3. Proof of the theorem. Let $q = p^f$, Q_p be the p-adic completion of the rationals, and K the unique unramified extension of Q_p of degree f. Then

\[2\] This equation is the essential fact in our proof as in Warning’s. We then proceed directly to the result in a way suggestive of certain manipulations in the sequel.
the residue class field of \(K \) is \(k \). Let \(T \) denote the set of Teichmüller representatives of \(k \) in \(K \); let \(T^* = T - \{0\} \), the \(q - 1 \) roots of unity. Let \(\xi \) be a primitive \(p \)-th root of unity. If \(\alpha \) is an integer of \(\mathbb{Q}_p \), \(\xi^\alpha \) is defined to be the \(\xi^\alpha \) if \(\alpha \in \mathbb{Z}_p \) is congruent to \(\alpha \) modulo \(p \). Letting \(S \) denote the trace of \(K \) over \(\mathbb{Q}_p \) we define

\[
C = \sum_{m=0}^{q-1} c(m) U^m
\]

to be the unique polynomial of degree \(q - 1 \) with coefficients in \(K(\xi) \) such that \(C(t) = \xi^{g(t)} \) for all \(t \in T \). Summing \(C(t) t^{-j} \) over \(t \in T^* \) we find

\[
(3) \quad c(j)(q-1) = g(j) \quad \text{for} \quad 0 < j < q - 1 \quad \text{where the Gauss sum} \quad g(j) \quad \text{is defined for} \quad 0 \leq j < q - 1 \quad \text{by}
\]

\[
g(j) = \sum t^{-j} \xi^{g(t)} \quad (t \in T^*).
\]

Summing \(C(t) \) over \(t \in T^* \) and using that the trace function is not identically zero on a finite field, we find

\[-1 = g(0) = (q-1)(c(0) + c(q-1)).\]

Since

\[(3') \quad c(0) = 1,\]

we have

\[(3'') \quad c(q-1)(q-1) = -q.\]

If \(0 \leq j \leq q - 1 \), let \(j_i \) for \(i = 0, \ldots, f - 1 \) be such that \(0 \leq j_i \leq p - 1 \) and \(j = \sum_{i=0}^{f-1} j_i p^i \). We set \(\sigma(j) = \sum_{i=0}^{f-1} j_i \), \(\rho(j) = \prod_{i=0}^{f-1} j_i! \) and \(\lambda = \xi - 1 \). Then Stickelberger's congruence [3] (and [2] for further reference),

\[
g(j) \rho(j) / \lambda^{\sigma(j)} \equiv -1 \mod \lambda \quad \text{for} \quad 0 \leq j < q - 1
\]

together with (3), (3'), and (3'') certainly imply

\[(4) \quad c(j) \equiv 0 \mod \lambda^{\sigma(j)} \quad \text{for} \quad 0 \leq j \leq q - 1.\]

The map \(x \to \xi^{g(x)} \) is a non-trivial character of the additive group of the integers of \(K \), trivial on the maximal ideal of the integers of \(K \). Thus the map \(\beta \) from \(k \) to the \(p \)-th roots of unity defined by \(\beta(x) = C(t) \) for \(x \in k \) and \(t \) the Teichmüller representative of \(x \) is a non-trivial character of the additive group of \(k \). If \(u \in k \), then \(\sum \beta(x_0u) = q \) if \(u = 0 \), zero otherwise where the sum if over \(x_0 \in k \). It follows that

\[
qN(F) = \sum \beta(x_0 F(x_1, \ldots, x_n)) \quad ((x_0, \ldots, x_n) \in k^{n+1}).
\]
Let

\[F = \sum w a(w) x^w \quad (w \in W) \]

where \(W \) is the set of \(w \in (\mathbb{Z}_+)^n \) such that height \(w \leq d \). We have

\[qN(F) = \sum_{w \in W} \prod u \beta(a(w)x^w) \quad (x = (x_0, \ldots, x_n) \in k^{n+1}) \]

where if \(w = (w_1, \ldots, w_n) \in (\mathbb{Z}_+)^n \) then \(w' = (1, w_1, \ldots, w_n) \in (\mathbb{Z}_+)^{n+1} \). If \(A(w) \) is the Teichmüller representative of \(a(w) \) for each \(w \in W \), then

\[qN(F) = \sum_{w \in W} \prod (A(w)t^w) \quad (t = (t_0, \ldots, t_n) \in T^{n+1}) \]

and so

\[
qN(F) = \sum_{m \in M} \sum_{w \in W} \sum_{m=0}^{q-1} c(m) A(w)^m t^m w'
\]

where \(M \) is the set of functions on \(W \) with values from the integers \(0, 1, \ldots, q-1 \). Setting \(a(m) = \prod_{w \in W} A(w)^m w \in T, \ e(m) = \sum_{w \in W} m(w) w' \) for \(m \in M \), we may rewrite (5) as

\[(5') \quad qN(F) = \sum_{m \in M} a(m) \prod_{w \in W} c(m(w)) \sum_{t \in T^{n+1}} t^{e(m)}.
\]

If \(v \in (\mathbb{Z}_+)^r \) we write \(q-1 \mid v \) if there exists \(u \in (\mathbb{Z}_+)^r \) such that \(v = (q-1)u \) and \(q-1 \nmid v \) otherwise. Let \(m \) be an arbitrary element of \(M \). Then we easily compute

\[(6) \quad \sum_{t \in T^{n+1}} t^{e(m)} = 0 \quad \text{if} \quad q-1 \mid e(m) \]

and

\[(6') \quad \sum_{t \in T^{n+1}} t^{e(m)} = q^{n+1} \quad \text{if} \quad e(m) = (0, \ldots, 0).
\]

We now assume \(q-1 \mid e(m) \) and \(e(m) \neq (0, \ldots, 0) \), i.e., \(m(w) \neq 0 \) for some \(w \in W \). Let \(e(m) = \sum_{w \in W} m(w) w \) and let \(s \) be the number of non-zero entries in \(e(m) \), \(0 \leq s \leq n \). We have

\[(6'') \quad \sum_{t \in T^{n+1}} t^{e(m)} = (q-1)^{s+1} q^{n-s} \quad \text{if} \quad q-1 \mid e(m) \neq (0, \ldots, 0) \]

taking into account that the first entry of \(e(m) \), \(\sum_{w \in W} m(w) \), is a non-zero multiple of \(q-1 \). For each \(w \in W \), let \(m_i(w) \) for \(i = 0, \ldots, f-1 \) be such that \(m(w) = \sum_{i=0}^{f-1} m_i(w) p^i \) and \(0 \leq m_i(w) \leq p-1 \). We extend the definition of \(m_z(w) \) to all \(z \in Z \) by letting \(m_z(w) = m_r(w) \) if \(r \) is the least non-negative
residue of z modulo f and define for each $j = 0, \ldots, f - 1$ the function $m^{(j)} \in M$ by

$$m^{(j)}(w) = \sum_{t=0}^{f-1} m_{t-j}(w) p^t.$$

Using $t^a = t$ for all $t \in T$, we readily compute that the effect of substituting $m^{(j)}$ for m in the sum in (6'') is the same as if we formally substitute t^{p^j} for t, i.e., no change since $t \mapsto t^p$ is a permutation of T. We deduce from the mutually exclusive (6), (6') and (6'') that $q - 1 | e(m^{(j)})'$, and the number of non-zero entries of $e(m^{(j)})$ is again s for each $j = 0, \ldots, f - 1$. This yields the inequalities

$$s(q - 1) \leq \text{height } e(m^{(j)}) = \text{height } \sum_{w \in W} m^{(j)}(w) w \leq d \sum_{w \in W} m^{(j)}(w).$$

Since $\sum_{w \in W} m^{(j)}(w)$, the first entry of $e(m^{(j)})'$, is a multiple of $q - 1$ we conclude

$$(s/d)^*(q - 1) \leq \sum_{w \in W} m^{(j)}(w),$$

where $(y)^*$ means the smallest integer not less than y. Summing this relation over $j = 0, \ldots, f - 1$, using (7) and interchanging order of summation twice we obtain

$$f(s/d)^*(q - 1) \leq \sum_{w \in W} \sum_{t=0}^{f-1} p^t \sum_{j=0}^{f-1} m_{t-j}(w).$$

Thus with σ as used in (4)

$$f(s/d)^*(q - 1) \leq \sum_{w \in W} \sum_{t=0}^{f-1} p^t \sigma(m(w)).$$

So

$$f(p - 1)(s/d)^* \leq \sum_{w \in W} \sigma(m(w))$$

which in view of (4) and the fact that p divides λ^{p-1} implies the exponent of the highest power of q dividing $\prod_{w \in W} c(m(w))$ is at least $(s/d)^*$. Combining this with (6), (6'), and (6'') we see from (5') that

$$q^r \mid q(N(F)) \text{ if } r = \min r(s)$$

where

$$r(s) = (s/d)^* + n - s, \quad s = 0, 1, \ldots, n.$$

Now

$$h \geq (s + h)/d - (s/d)^*, \quad h \in \mathbb{Z}_+$$

since in going from h to $h + 1$ the left side increases by one while the right side increases by at most one. Substituting $h = n - s$ in the relation and
using \(b + 1 = (n/d)^* \) we see from (9) that \(r(s) \geq b + 1 \) for \(s = 0, \cdots, n \).

By (8) \(q^b \) divides \(N(F) \).

Corollary. If \(F_i \) is a polynomial in \(n \) variables of degree \(d_i \) for \(i = 1, \cdots, j \) then the number \(N \) of common zeroes of the \(F_i \) is divisible by \(q^b \) if \(n > b \sum_{i=0}^j d_i \).

Proof. A standard combinatorial argument shows

\[
N = -\sum_S (-1)^{#S} N(\prod_{i \in S} F_i)
\]

where the sum is over all non-empty subsets \(S \) of the set of integers \(1, \cdots, j \) and where \(#S \) = number of elements of \(S \). The corollary follows from the theorem since for each \(S \),

\[
\text{degree } \prod_{i \in S} F_i \leq \sum_{i=1} \sum_{i=1}^j d_i.
\]

4. **Examples.** If \(a \in \mathbb{Z}_+, a > 0 \) we define

\[
G_{a,d}(X_1, \cdots, X_{ad}) = X_1 \cdots X_d + \cdots + X_{(a-1)d+1} \cdots X_{ad}
\]

and assert that the highest power of \(p \) dividing \(N(G_{a,d}) \) is \(q^{a-1} \). Now \(N(G_{1,d}) = q^d - (q - 1)^d \). \(N(G_{a+1,d}) = N(G_{a,d}) \) times the number of zeroes of \(X_{(a-1)d+1} \cdots X_{ad} \) (in \(k^d \)) plus the number of non-zeroes of \(G_{a,d} \) (in \(k^{ad} \)) times the (constant) number of representations of a non-zero element of \(k \) by \(X_{(a-1)d+1} \cdots X_{ad} \) (in \(k^d \)), i.e.,

\[
N(G_{a+1,d}) = N(G_{a,d})N(G_{1,d}) + \left(q^{ad} - N(G_{a,d}) \right)(q-1)^{d-1}
\]

(10)

\[
= qN(G_{a,d})\left(q^{d-1} - (q-1)^{d-1}\right) + q^{ad}(q-1)^{d-1}.
\]

For \(d > 1 \) this yields our assertion recursively; for \(d = 1 \) our assertion is immediate. If \(n = bd + h \) with \(0 < h \leq d \) (so that \(b \) is largest integer less than \(n/d \)) we set

\[
F(X_1, \cdots, X_n) = G_{b,d}(X_1, \cdots, X_{bd}) \text{ if } h = 1,
\]

\[
F(X_1, \cdots, X_n) = G_{b,d}(X_1, \cdots, X_{bd}) + X_{bd+1} \cdots X_n \text{ if } h > 1.
\]

We assert that the highest power of \(p \) dividing \(N(F) \) is \(q^b \).

If \(h = 1 \) this follows from our previous assertion since in this case \(N(F) = qN(G_{b,d}) \). If \(h > 1 \) our previous assertion still yields the desired result since by reasoning similar to that used in establishing (10) we have

\[
N(F) = qN(G_{b,d})\left(q^{h-1} - (q-1)^{h-1}\right) + q^{bd}(q-1)^{h-1}.
\]
REFERENCES.

