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ZEROES OF POLYNOMIALS OVER FINITE FIELDS.*

By JamEs Ax.

1. Introduction. Let F=F(X,,- - -,X,) be a polynomial of (total)
degree d over a finite field ¥ with ¢ elements. In section 3, making use of
some ideas of B. Dwork in [2], we prove the following theorem :

If b is the largest integer (strictly) less than n/d then qv divides the
number of zeroes of F.

E. Artin had conjectured that if F is homogeneous and n > d then F
has a non-trivial zero. C. Chevalley proved this in [1] and even showed
the hypothecis of homogeneity could be replaced by the weaker assumption of
no constant term. K. Warning in [4], using a lemma of Chevalley, showed
that even without this last assumption the characteristic p of % divides N (F),
the number of zeroes of F' (counting the trivial zero if F has no constant term).
In Section 2 we give a quick proof of the Chevalley-Warning theorem inde-
pendent of the Chevalley lemma. Nevertheless, there does not seem to be any
simple proof of the fact that ¢ divides N (F) if n > d.

In Section 4 we exhibit, for each n and d, a polynomial of degree d in n
variables such that the highest power of p dividing the number of its zeroes
is precisely ¢ if b is the largest integer less than n/d. While our result is
the best possible divisibility relation in this sense, B. Warning in [4] showed
that if n > d and if F' has at least one zero then N (F) is at least gn-d.

The zeta function Z (H ;t) of the hypersurface H defined by F over k is
defined by

Z(H; 1) = exp( S Not/s)

where N is the number of zeroes of F in the field with ¢¢ elements. Let Q
denote the completion of the algebraic closure of the p-adic completion of
the rationals, and let | | be the valutation on Q normed so that | p | —1/p.

The referee has shown how our result may be reformulated as the following
statement, using the above notation.
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TaEOREM. Fach pole and each zero of Z(H ;t) has p-adic valuation at
least qP.
Indeed, it follows from the rationality of Z(H ;t) [2], that

exp (3 Nott/s) — TT(1—at) /LT (1 — 1)

where the «;, 8; are algebraic integers, a; 5% 8;, for ¢ and j ranging over finite
sets. By logarithmic differentiations we obtain

:SletS'l — 3801 —ph =Sl —ad) .

If we now assume our result, | N, | = | ¢** | = ¢, so that the left side
converges in Q for | ¢| < ¢, then ||, | Bj| = ¢ which verifies the referee’s
statement. The converse follows from

N, =2p—2X
j i
Throughout this paper, ¥, N (F), n, d, b, k, ¢, and p are above. Z denotes
the integers, Z, the nonnegative integers. If w= (uy,- - -,u,) €(Z,)", X*®

’ .
denotes the monomial J] X;#:+ and we define height u = degree X“=Zrui.
=1

=1

2. Quick proof of the Chevalley-Warning theorem. Since each element
of k is a ¢—1 root of unity or zero, we have for each z € k» that 1 — F(2)e?
=1 if F(z) =0, zero otherwise. Summing over z € k", we have (in %)

(1)? N(F) =S(1—F(2)+*) =— SF(z)

Now Fa-*) being of degree d(g—1) is a k-linear combination of monomials
of degree at most d(¢—1). If X% is such a monomial, we compute

(2) Sor =TI 3 oo =T17 ()
zekr i=1 i€k i=1
where Y (u;) = ¢ —1 =—1 if w; is positive multiple of ¢— 1, zero otherwise.

If d < n, then height v =d(¢—1) <n(g¢—1) which implies that the sum
in (R) is zero. Hence, the sum in (1) is zero, i.e., N (F)=0mod p.

3. Proof of the theorem. XLet g= p’; @, be the p-adic completion of
the rationals, and K the unique unramified extension of @, of degree f. Then

2 This equation is the essential fact in our proof as in Warning’s. We then proceed
directly to the result in a way suggestive of certain manipulations in the sequel.
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the residue class field of K is k. Let T denote the set of Teichmiiller repre-
sentatives of k& in K ; let T* =T — {0}, the ¢—1 roots of unity. Let ¢ be
a primitive p-th root of unity. If « is an integer of @, {* is defined to be ¢°
if a( € Z,) is congruent to « modulo p. Letting S denote the trace of K over

g-1
Q, we define C= X c(m)U™ to be the unique polynomial of degree ¢—1
m=0

with coefficients in K (¢) such that C(¢) =¢5® for all ¢€ 7. Summing
C(t)t4 over t€ T* we find

(3) c(1)(¢q—1) =g(j) for 0<j< qg—1 where the Gauss sum g¢(j)
is defined for 0 =j<<q¢—1 by

()=S0 (teT).

Summing C (¢) over ¢ € T'* and using that the trace function is not identically
zero on a finite field, we find

—1=9(0) = (¢—1) (¢(0) +¢(g—1))-

Since

(3") ¢(0) =1,

we have

(3”) e(¢—1)(¢—1) =—q¢

If0=j=q—1,let j; fori=0, - -,f—1 be such that 0 =ji=p—1 and

=i We set o(j) = S jis p(j) — L1 js! and A\—¢{—1. Then Stickel-

bel'g:azl(')’s congruence [3] (anﬁ0 [R] for fu;;er reference),
9(i)p (i) /X =—1 mod\ for 0= < g—1

together with (3), (3’), and (3”) certainly imply

(4) ¢(§) =0mod ¥ for 0 =j=qg—1.

The map «—> {5 is a non-trivial character of the additive group of the
integers of K, trivial on the maximal ideal of the integers of K. Thus the
map B from k to the p-th roots of unity defined by g(z) =C(t) for z €l
and ¢ the Teichmiiller representative of @ is a non-trivial character of the
additive group of k. If w€k, then X B(zu) =g if u=0, zero otherwise
where the sum if over a,€ k. It follows that

gN (F) =Z (@l (22,7« 52))  ((@o, =+, @0) €B™).



258 JAMES AX.

Let
F=Ta(w)Xv (we W)

where W is the set of w € (Z,)” such that height w =d. We have
V(F) =% 1L B(a(w)e) (2= (20" - -, @) €™)

where if w=— (wy," + -, wn) €(Z,)" then w' = (L, wy,- - -, w,) €(Z,)». 1If
A(w) is the Teichmiiller representative of a(w) for each w€ W, then

gV (F) =EW[IW0(A(W)75"") (6= (to,* * =, ) € T™)

QN(F) = X II qilc(m)A(w)mtmw’

teTnl we W m=0

=2 2 1I (c(m(w))A4 (w)mwrime)

meMteTl weW

(5)

where JI is the set of functions on W with values from the integers 0,

1,- - -,q—1. Setting a(m) = HA(w)’"(w>€ T, e(m) =3 m(w)w for
wew

m € M, we may rewrite (5) as

(&) gN(F") = X a(m) II c(m(w)) 3 tetw,
meM weWw

ten+t
It ve(Z,)r we write ¢q—1|v if there exists w€(Z,)" such that

v=(¢—1)u and ¢—11 v otherwise. Let m be an arbitrary element of /.
Then we easily compute

(6) >t =0 if g—11e(m)’
ten+l
and
(6’) 2 te(m)'=qn+1 if e(m)’= (O, . .’0)_
teTn+l
We now assume ¢—1| ¢(m)’ and e(m)’ 54 (0, - -,0), i.e., m(w) 40 for

some w€ W. Let e(m) = 2 m(w)w and let s be the number of non-zero

entries in e(m), Oésgn We have

(6”) E fe(m)’ — (q_l)sugn—s if q—l ] 6(m)'=7é (0,' . ',O)

t e Tn+l
taking into account that the first entry of e(m)’, 3 m(w), is a non-zero
wew
multiple of q—l For each we W, let mi(w) for i=0,- - -,f—1 be such

that m (w) = Em,(w)pi and 0 = m;(w) =p—1. We extend the definition
of m,(w) to all 2 € Z by letting m,(w) = m, (w) if r is the least non-negative
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residue of z modulo f and define for each j=0,- - -,f—1 the function
mD € M by

-1 .
(7) m (w) — 3 mes ()7,

Using t¢=1¢ for all t€ T, we readily compute that the effect of substituting
m) for m in the sum in (6”) is the same as if we formally substitute ¢’ for ¢,
i.e.,, no change since {—t? is a permutation of 7. We deduce from the
mutually exclusive (6), (6”) and (6”) that ¢—1 | e(m®)’, and the number
of non-zero entries of e(m) is again s for each j=0,- - -,f—1. This
yields the inequalities

$(¢g—1) =height e(m®) =height 3 my(w)w =d X mD (w).
wew wew

Since X m@¥ (w), the first entry of ¢(m)’, is a multiple of ¢—1 we conclude
wew

(s/d)*(g—1) = 2 mP (w),

where (y)* means the smallest integer not less than y. Summing this relation

over j=0,- - +,f—1, using (7) and interchanging order of summation twice
we obtain

f(s/a)* (q—l)<2 Ep me(w)

weW i=0 j=0

Thus with o as used in (4)
fs/*(a—1) =3 S pia(n(w).
So
flp—1) (s/d)* = X o(m(w))

which in view of (4) and the fact that p divides A?-! implies the exponent
of the highest power of ¢ d1v1d1ng Hc(m(w)) is at least (s/d)*. Com-

bining this with (6), (6’), and (6") We see from (5”) that

(8) ¢ | ¢(N(F) if r—=min7(s)
where

(9) r(8) = (s/d)* +n—s, s=0,1,-+ -,n.
Now

h= ((s+h)/d)y*— (s/d)*, he€Z,
since in going from A to % - 1 the left side increases by one while the right
side increases by at most one. Substituting h—mn—s in the relation and
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using b+ 1= (n/d)* we see from (9) that 7(s) =b 41 for s=0,- - -, n.
By (8) ¢° divides N (F).

CororrArY. If F; is a polynomial in n variables of degree d; for
=1, - -, j then the number N of common zeroes of the F; is divisible by

¢ if >0 d,
s

Proof. A standard combinatorial argument shows

N=—SE(~1)#SN(HHSE)

where the sum is over all non-empty subsets S of the set of integers 1, - -,
and where #8—number of elements of S. The corollary follows from the
theorem since for each §,

degree I1 F; = > d,.
i€8 i=1

4. Examples. If a€Z,, a > 0 we define
Goa(Xsy 3 Xaa) =X1 * Xat 4+ Xanyan * - Xaa

and assert that the highest power of p dividing N(G4q) is ¢@*. Now
N(Gya) =q?— (¢q—1)% N(Geu,a) =N (Gqq) times the number of zeroes
of X(g1yanr* * *Xea (in k?) plus the number of non-zeroes of G4 (in kod)
times the (constant) number of representations of a non-zero element of &
by X(o-1yan* * - Xag (in k9), i.e.,

N (Gaun,a) =N (Goa) N (Gr,a) + (¢°¢—DN(Gqa)) (g—1)¢*
=N (Gaa) (¢°*— (g—1)%?) + gud(qg—1)d,

For d>1 this yields our assertion recursively; for d—1 our assertion is
immediate. If n—=0d+h with 0 <h=d (so that b is largest integer less
than n/d) we set

F(Xy, o, Xp) = Gpa(Xy, -+, Xpa) if h=1,
F(Xl,' . ,Xn) =Gb,d(X1,' . ',de) +de+1‘ . 'Xn lf h>1.

(10)

We assert that the highest power 6f p dividing N (F) is qv.

It h—1 this follows from our previous assertion since in this case N (F)
=gN(Gpa). If > 1 our previous assertion still yields the desired result
since by reasoning similar to that used in establishing (10) we have

N(F) —_ qN(Gb,d) (qh—l_ (q_l)h—l) + qbd(q_l)h—l.
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