Quaternions and Arithmetic

Colloquium, UCSD, October 27, 2005

This talk is available from www.math.mcgill.ca/goren

Quaternions came from Hamilton after his really good work had been done; and, though beautifully ingenious, have been an unmixed evil to those who have touched them in any way, including Maxwell. – Lord Kelvin, 1892. We beg to differ.

Hamilton's quaternions \mathbb{H}

 $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k, \qquad i^2 = j^2 = -1, \ ij = k = -ji$ For x = a + bi + cj + dk, we let $\operatorname{Norm}(x) = a^2 + b^2 + c^2 + d^2, \quad \operatorname{Tr}(x) = 2a.$

This is a division algebra, $x^{-1} = (Tr(x) - x)/Norm(x)$. In fact, the normed division algebras over \mathbb{R} are precisely

	dim	properties
\mathbb{R}	1	assoc., comm., ordered
\mathbb{C}	2	assoc., comm.
\mathbb{H}	4	assoc.
\bigcirc	8	

Classical motivation:

• Physics

Generalization of the then new powerful complex numbers. Couples of real numbers to be replaced by triples (can't), quadruples (can). Today, subsumed by Clifford algebras.

• Topology

{Quaternions of norm 1} $\cong S^3$, so S^3 is a topological group. The other div. alg. give top. groups S^0, S^1, S^7 (H-space). No other spheres are top. groups \Leftrightarrow

no other normed division algebras over \mathbb{R} .

• Euclidean geometry and engineering

{Trace zero, norm 1 quaternions} $\cong S^2$. The quaternions of norm 1 act by $x * v = x^{-1}vx$. This gives a double cover $S^3 = \text{Spin}(3) \rightarrow SO_3$. This is an efficient way to describe rotations. Used in spacecraft attitude control, etc.

• Arithmetic

Lagrange: Every natural number is a sum of 4 squares.

 $Norm(x) \cdot Norm(y) = Norm(xy)$ (Euler)

Apply to $x, y \in \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$ to reduce the proof to the case of prime numbers.

Bhargava-Conway-Schneeberger: a quadratic form represents all natural numbers if and only if it represents $1, 2, \ldots, 15$.

How often is a number a sum of squares?

A modular form of level $\Gamma_1(N)$ and weight k is a holomorphic function

$$f:\mathfrak{H}\to\mathbb{C},\qquad f(\gamma\tau)=(c\tau+d)^kf(\tau),$$
$$\forall\gamma=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\mathsf{SL}_2(\mathbb{Z}),\equiv\begin{pmatrix}1&*\\0&1\end{pmatrix}\pmod{N}$$

Since $f(\tau + 1) = f\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\tau\right) = f(\tau)$, the modular form f has q-expansion

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_n q^n, \qquad q = \exp(2\pi i \tau).$$

In fact, such Fourier expansions can be carried at other "cusps" and we require that in all of them $a_n = 0$ for n < 0. If also $a_0 = 0$ we call f a cusp form.

Eisenstein series

$$E_{2k}(\tau) = c \cdot \sum_{(n,m) \in \mathbb{Z}^2 - \{(0,0)\}} \frac{1}{(m\tau + n)^{2k}}$$
$$= \zeta(1 - 2k) + \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n,$$

 $\sigma_r(n) = \sum_{d|n} d^r$. This is a modular form on $SL_2(\mathbb{Z})$ of weight 2k.

Theta series of a quadratic form

$$q(x_1,\ldots,x_r)=\frac{1}{2}x^tAx,$$

where A is integral symmetric positive definite with even entries on the diagonal. The level N(A) of A is defined as the minimal integer N such that NA^{-1} is integral. Theorem. The theta series

$$\sum_{n=0}^{\infty} a_q(n) \cdot q^n, \qquad a_q(n) = \sharp\{(x_1, \dots, x_r) \in \mathbb{Z}^n : q(x_1, \dots, x_r) = n\}$$

is a modular form of weight $r/2$ and level $N(A)$.

In particular, if

$$q(x_1, x_2, x_3, x_4) = x_1^2 + x_2^2 + x_3^2 + x_4^2 = \frac{1}{2}x^t \begin{pmatrix} 2 & x_1 \\ 2 & y_2 \end{pmatrix} x$$

we get a modular form of level 2. It is obviously not a cusp form.

Two options

• Particular quadratic form: identify the modular form (for fixed level and weight this is a finite dimensional vector space). Find explicit answer. One gets $a(n) = \begin{cases} 4 \sum_{d|n} d & n \text{ odd} \\ 24 \sum_{d|n} d & \text{odd} \end{cases}$

• General quadratic form: estimate coefficients.

1) Coeff. of "basic" Eisenstein series of weight k grow like n^{k-1} . Show little cancelation in the Eisenstein part.

2) Deligne (Ramanujan's conjecture): The coefficients of cusp forms of weight k grow like $\sigma_0(n) \cdot n^{(k-1)/2}$.

Using this we see that $a_q(n) = O(n) \rightarrow \infty$ for 4 squares.

Deuring's quaternions $B_{p,\infty}$

 $K = \text{field, char}(K) \neq 2.$ The quaternion algebra $\left(\frac{a,b}{K}\right)$ is the central simple algebra $K \oplus Ki \oplus Kj \oplus Kk, \quad i^2 = a, \ j^2 = b, \ ij = -ji = k.$

Example, $K = \mathbb{R}$. Then $\mathbb{H} \cong \left(\frac{-1,-1}{K}\right)$ and $M_2(\mathbb{R}) \cong \left(\frac{1,1}{K}\right)$. No others!

Example, $K = \mathbb{Q}_p$. Then there are again only two quaternion algebras, one of which is $M_2(\mathbb{Q}_p)$ and the other is a division algebra.

Theorem. Let *B* be a quaternion algebra over \mathbb{Q} . *B* is uniquely determined by $\{B \otimes_{\mathbb{Q}} \mathbb{Q}_p : p \leq \infty\}$. For a (finite) even number of $p \leq \infty$ we have $B \otimes_{\mathbb{Q}} \mathbb{Q}_p$ ramified, i.e. $B \otimes_{\mathbb{Q}} \mathbb{Q}_p \ncong M_2(\mathbb{Q}_p)$.

An order in a quaternion algebra over \mathbb{Q} is a subring, of rank 4 over \mathbb{Z} . Every order is contained in a maximal order.

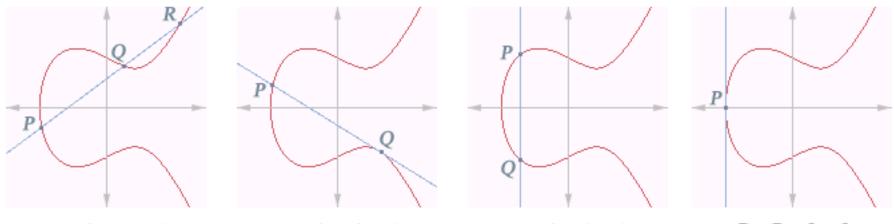
Example: in the rational Hamilton quaternions $\left(\frac{-1,-1}{Q}\right)$ the order $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$ is not maximal. A maximal order is obtained by adding $\frac{1+i+j+k}{2}$.

Elliptic curves and Deuring's quaternions

Elliptic curve: homogeneous non-singular cubic f(x, y, z) = 0 in \mathbb{P}^2 , with a chosen point.

An elliptic curve is a commutative algebraic group (addition given by the secant method).

End(E) is a ring with no zero divisors and for any elliptic curve E', Hom(E, E') is a right module.



P+Q+R=0

P+Q+Q=0

P+Q+0=0

P+P+0=0

Classification:

• if
$$char(K) = 0$$
 then $End(E) \otimes \mathbb{Q} \cong \begin{cases} \mathbb{Q} \\ \mathbb{Q}(\sqrt{-d}) \end{cases}$

• if
$$char(K) = p$$
 then $End(E) \otimes \mathbb{Q} \cong \begin{cases} \mathbb{Q} \\ \mathbb{Q}(\sqrt{-d}) \\ B_{p,\infty} \end{cases}$

An elliptic curve with $\operatorname{End}(E) \otimes \mathbb{Q} \cong B_{p,\infty}$ is called supersingular. It is known that $\operatorname{End}(E)$ is a maximal order in $B_{p,\infty}$. There are finitely many such elliptic curves up to isomorphism. Fix one, say E.

Deuring: there is a canonical bijection between supersingular elliptic curves and right projective rank 1 modules for End(E). One sends E' to Hom(E, E').

In this manner, quaternion algebras provide new information on elliptic curves.

Singular moduli

Let E_s (resp. E'_t) be the finitely many elliptic curves over \mathbb{C} such that End(E_s) (resp. End(E'_t)) has endomorphism ring which is the maximal order R_d (resp. $R_{d'}$) of $\mathbb{Q}(\sqrt{-d})$ (resp. $\mathbb{Q}(\sqrt{-d'})$).

Each elliptic curve is isomorphic to $\mathbb{C}/\mathbb{Z} + \tau\mathbb{Z}$, where $\tau \in SL_2(\mathbb{Z})\setminus\mathfrak{H}$ is uniquely determined. There is a modular form of weight 0, namely a modular function

$$j: \operatorname{SL}_2(\mathbb{Z}) \setminus \mathfrak{H} \xrightarrow{\cong} \mathbb{C}, \qquad j(q) = \frac{1}{q} + 744 + 196884q + \dots$$

Gross-Zagier. There is an explicit formula for the integer

$$\prod_{s,t} (j(E_s) - j(E'_t)).$$

The numbers $j(E_i)$, called singular moduli, are of central importance in number theory, because they classify elliptic curves and allow generation of abelian extensions of $\mathbb{Q}(\sqrt{-d})$. (Hilbert's 12th problem).

Relation to quaternion algebras: If p divides $\prod_{s,t}(j(E_s) - j(E'_t))$ then it means that some E_s and E'_t become isomorphic modulo (a prime above) p. This implies that their reduction is a supersingular elliptic curve. The problem becomes algebraic: into which maximal orders of $B_{p,\infty}$ can one embed simultaneously R_d and $R_{d'}$.

Supersingular graphs (Lubotzky-Philips-Sarnak, Pizer, Mestre, Osterlé, Serre, ...)

Pick a prime $\ell \neq p$ and construct the (directed) supersingular graph $\mathscr{G}^p(\ell)$.

• Vertices: supersingular elliptic curves.

• Edges: E is connected to E' if there is an isogeny $f : E \to E'$ of degree ℓ . (But we really only care about the kernel of f).

This graph has degree $\ell + 1$ and is essentially symmetric.

Ramanujan graphs

Expanders. Let \mathscr{G} be a k-regular connected graph with n vertices and with adjacency matrix A and combinatorial Laplacian

 $\Delta = kI_n - A,$

whose eigenvalues are $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1} \leq 2k$. $\frac{1}{k}\Delta(f)(v)$ is f(v) minus the average of f on the neighbors of v.

The expansion coefficient is

$$h(\mathscr{G}) = \min\left\{\frac{|\partial S|}{|S|} : |S| \le n/2\right\} \le 1 \text{ or } \frac{n+1}{n-1}$$

One is interested in getting a large $h(\mathscr{G})$.

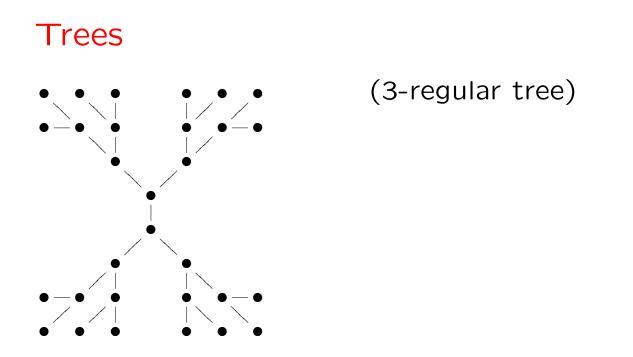
Tanner, Alon-Milman: $\frac{2\lambda_1}{k+2\lambda_1} \le h(\mathscr{G}) \le \sqrt{2k\lambda_1}$.

To have a graph in which information spreads rapidly/ random walk converges quickly, one looks for a graph with a large λ_1 . Those have many technological and mathematical applications.

Alon-Boppana: $\liminf \mu_1(G) \ge 2\sqrt{k-1}$, where $k - \mu_1 = \lambda_1$ is the second largest eigenvalue of A, and where the limit is over all k-regular graphs of size growing to infinity.

Thus, asymptotically, the best family of expanding graphs of a fixed degree d will satisfy the Alon-Boppana bound.

A graph G is called a Ramanujan graph if $\mu_1(G) \leq 2\sqrt{k-1}$.



A *k*-regular infinite tree \mathscr{T} is the ideal expander. One can show that $h(\mathscr{T}) = k - 1$. The idea now is to find subgroups Γ of the automorphism group of a tree that does not identify vertices that are "very close" to each other. Arithmetic enters first in finding such subgroups Γ .

- Two distinct primes $p \neq \ell$.
- An $\ell + 1$ regular tree \mathscr{T} could be viewed as the Bruhat-Tits tree for the group $\operatorname{GL}_2(\mathbb{Q}_\ell)$ and in particular, we have

$\mathsf{PGL}_2(\mathbb{Q}_\ell) \subseteq \mathsf{Aut}(\mathscr{T}).$

• $\mathcal{O} = \text{maximal order of } B_{p,\infty}$. Then the group of units of norm 1 of $\mathcal{O}[\ell^{-1}]^{\times}$ maps into $B_{p,\infty} \otimes \mathbb{Q}_{\ell} = M_2(\mathbb{Q}_{\ell})$ and gives a subgroup Γ of $\text{Aut}(\mathscr{T})$ of the kind we want. In fact,

 $\Gamma \backslash \mathscr{T} \cong \mathscr{G}^p(\ell).$

The Ramanujan property.

$\Gamma \setminus \mathscr{T} = moduli space of super-singular elliptic curves$	$\Gamma_0(p) \setminus \mathfrak{H} = moduli space for el-$ liptic curves + additional data
quaternionic modular forms = sections of line bundles = functions	modular forms = sections of line bundles
Hecke operators $T_\ell \sim$ averag- ing operators \sim Adjacency ma- trices $\mathscr{G}^p(\ell)$	Hecke operators $T_\ell \sim$ averaging operators
system of eignevalues of $T_{\ell} \stackrel{\text{JL.}}{=}$ acting on functions with integral zero	system of eignevalues for T_{ℓ} acting on cusp forms; given by the coeff. a_{ℓ} in q-exp.

The bound on the eigenvalues of the adjacency matrix of $\mathscr{G}^p(\ell)$ is thus given by the Ramanujan bound on the ℓ -th Fourier coefficient of elliptic modular forms.

Generalization: Quaternion algebras over totally real fields

- J. Cogdell P. Sarnak I. I. Piatetski-Shapiro. Bounds on Eisenstein series and cusp forms, mostly of half-integral weight.
- M.-H. Nicole. (McGill thesis, 2005) Generalizes Deuring theory for certain quaternion algebras over totally real fields.
- Bruinier Yang. (2004), G.-Lauter (2004, 2005). Certain generalizations of Gross-Zagier to totally real fields.
- B. Jordan R. Livne (2000), D. Charles G. K. Lauter (2005). Construction of Ramanujan graphs from quaternion algebras over totally real fields and superspecial graphs.

A. Cayley compared the quaternions to a pocket map "... which contained everything but had to be unfolded into another form before it could be understood."