Quaternions and Arithmetic

Colloquium, UCSD, October 27, 2005

This talk is available from www.math.mcgill.ca/goren
Quaternions came from Hamilton after his really good work had been done; and, though beautifully ingenious, have been an un-mixed evil to those who have touched them in any way, including Maxwell. – Lord Kelvin, 1892.
We beg to differ.
Hamilton’s quaternions \(\mathbb{H} \)

\[
\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k, \quad i^2 = j^2 = -1, \quad ij = k = -ji
\]

For \(x = a + bi + cj + dk \), we let

\[
\text{Norm}(x) = a^2 + b^2 + c^2 + d^2, \quad \text{Tr}(x) = 2a.
\]

This is a division algebra, \(x^{-1} = (\text{Tr}(x) - x)/\text{Norm}(x) \). In fact, the normed division algebras over \(\mathbb{R} \) are precisely

<table>
<thead>
<tr>
<th>dim</th>
<th>properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R})</td>
<td>1 assoc., comm., ordered</td>
</tr>
<tr>
<td>(\mathbb{C})</td>
<td>2 assoc., comm.</td>
</tr>
<tr>
<td>(\mathbb{H})</td>
<td>4 assoc.</td>
</tr>
<tr>
<td>(\mathbb{O})</td>
<td>8</td>
</tr>
</tbody>
</table>
Classical motivation:

- **Physics**
 Generalization of the then new powerful complex numbers. Couples of real numbers to be replaced by triples (can’t), quadruples (can). Today, subsumed by Clifford algebras.

- **Topology**
 \{Quaternions of norm 1\} \cong S^3, so \(S^3\) is a topological group. The other div. alg. give top. groups \(S^0, S^1, S^7\) (H−space). No other spheres are top. groups \(\Leftrightarrow\)
 no other normed division algebras over \(\mathbb{R}\).
• Euclidean geometry and engineering
 \{\text{Trace zero, norm 1 quaternions}\} \cong S^2. \text{ The quaternions of norm 1 act by } x \ast v = x^{-1}vx. \text{ This gives a double cover } S^3 = \text{Spin}(3) \to SO_3. \text{ This is an efficient way to describe rotations. Used in spacecraft attitude control, etc.}

• Arithmetic
 \textbf{Lagrange: Every natural number is a sum of 4 squares.}
 \[\text{Norm}(x) \cdot \text{Norm}(y) = \text{Norm}(xy) \quad (\text{Euler})\]
 \text{Apply to } x, y \in \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k \text{ to reduce the proof to the case of prime numbers.}
Bhargava-Conway-Schneeberger: a quadratic form represents all natural numbers if and only if it represents $1, 2, \ldots, 15$.
How often is a number a sum of squares?

A modular form of level $\Gamma_1(N)$ and weight k is a holomorphic function

$$f : \mathcal{H} \rightarrow \mathbb{C}, \quad f(\gamma \tau) = (c\tau + d)^k f(\tau),$$

$$\forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N}$$

Since $f(\tau + 1) = f\left(\left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \tau\right) = f(\tau)$, the modular form f has q-expansion

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_n q^n, \quad q = \exp(2\pi i \tau).$$

In fact, such Fourier expansions can be carried at other “cusps” and we require that in all of them $a_n = 0$ for $n < 0$. If also $a_0 = 0$ we call f a cusp form.
Eisenstein series

\[
E_{2k}(\tau) = c \cdot \sum_{(n,m) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(m\tau + n)^{2k}}
\]

\[
= \zeta(1 - 2k) + \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n,
\]

\[
\sigma_r(n) = \sum_{d|n} d^r. \text{ This is a modular form on } \text{SL}_2(\mathbb{Z}) \text{ of weight } 2k.
\]

Theta series of a quadratic form

\[
q(x_1, \ldots, x_r) = \frac{1}{2} x^t A x,
\]

where \(A \) is integral symmetric positive definite with even entries on the diagonal. The level \(N(A) \) of \(A \) is defined as the minimal integer \(N \) such that \(NA^{-1} \) is integral.
Theorem. The theta series

\[\sum_{n=0}^{\infty} a_q(n) \cdot q^n, \quad a_q(n) = \#\{(x_1, \ldots, x_r) \in \mathbb{Z}^n : q(x_1, \ldots, x_r) = n\} \]

is a modular form of weight \(r/2 \) and level \(N(A) \).

In particular, if

\[q(x_1, x_2, x_3, x_4) = x_1^2 + x_2^2 + x_3^2 + x_4^2 = \frac{1}{2} x^t \begin{pmatrix} 2 & 2 & 2 & 2 \end{pmatrix} x \]

we get a modular form of level 2. It is obviously not a cusp form.
Two options

• **Particular quadratic form:** identify the modular form (for fixed level and weight this is a finite dimensional vector space). Find explicit answer. One gets $a(n) = \begin{cases} 4 \sum_{d|n} d & n \text{ odd} \\ 24 \sum_{d|n,d \text{ odd}} d & n \text{ even}. \end{cases}$

• **General quadratic form:** estimate coefficients.

1) Coeff. of “basic” Eisenstein series of weight k grow like n^{k-1}. Show little cancelation in the Eisenstein part.

2) Deligne (Ramanujan’s conjecture): The coefficients of cusp forms of weight k grow like $\sigma_0(n) \cdot n^{(k-1)/2}$.

Using this we see that $a_q(n) = O(n) \rightarrow \infty$ for 4 squares.
Deuring’s quaternions $B_{p,\infty}$

K = field, char(K) $\neq 2$.

The quaternion algebra $\left(\frac{a,b}{K}\right)$ is the central simple algebra

$$K \oplus Ki \oplus Kj \oplus Kk, \quad i^2 = a, \ j^2 = b, \ ij = -ji = k.$$

Example, $K = \mathbb{R}$. Then $\mathbb{H} \cong \left(\frac{-1,-1}{K}\right)$ and $M_2(\mathbb{R}) \cong \left(\frac{1,1}{K}\right)$. No others!

Example, $K = \mathbb{Q}_p$. Then there are again only two quaternion algebras, one of which is $M_2(\mathbb{Q}_p)$ and the other is a division algebra.
Theorem. Let B be a quaternion algebra over \mathbb{Q}. B is uniquely determined by $\{B \otimes_{\mathbb{Q}} \mathbb{Q}_p : p \leq \infty\}$. For a (finite) even number of $p \leq \infty$ we have $B \otimes_{\mathbb{Q}} \mathbb{Q}_p$ ramified, i.e. $B \otimes_{\mathbb{Q}} \mathbb{Q}_p \not\cong M_2(\mathbb{Q}_p)$.

An order in a quaternion algebra over \mathbb{Q} is a subring, of rank 4 over \mathbb{Z}. Every order is contained in a maximal order.

Example: in the rational Hamilton quaternions $\left(\frac{-1}{\mathbb{Q}}, \frac{-1}{\mathbb{Q}}\right)$ the order $\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$ is not maximal. A maximal order is obtained by adding $\frac{1+i+j+k}{2}$.
Elliptic curves and Deuring’s quaternions

Elliptic curve: homogeneous non-singular cubic $f(x, y, z) = 0$ in \mathbb{P}^2, with a chosen point.

An elliptic curve is a commutative algebraic group (addition given by the secant method).

$\text{End}(E)$ is a ring with no zero divisors and for any elliptic curve E', $\text{Hom}(E, E')$ is a right module.
Classification:

- if $\text{char}(K) = 0$ then $\text{End}(E) \otimes \mathbb{Q} \cong \begin{cases} \mathbb{Q} \\ \mathbb{Q}(\sqrt{-d}) \end{cases}$

- if $\text{char}(K) = p$ then $\text{End}(E) \otimes \mathbb{Q} \cong \begin{cases} \mathbb{Q} \\ \mathbb{Q}(\sqrt{-d}) \\ B_{p,\infty} \end{cases}$

An elliptic curve with $\text{End}(E) \otimes \mathbb{Q} \cong B_{p,\infty}$ is called supersingular. It is known that $\text{End}(E)$ is a maximal order in $B_{p,\infty}$. There are finitely many such elliptic curves up to isomorphism. Fix one, say E.
Deuring: there is a canonical bijection between supersingular elliptic curves and right projective rank 1 modules for $\text{End}(E)$. One sends E' to $\text{Hom}(E, E')$.

In this manner, quaternion algebras provide new information on elliptic curves.
Singular moduli

Let E_s (resp. E'_t) be the finitely many elliptic curves over \mathbb{C} such that End(E_s) (resp. End(E'_t)) has endomorphism ring which is the maximal order R_d (resp. $R_{d'}$) of $\mathbb{Q}(\sqrt{-d})$ (resp. $\mathbb{Q}(\sqrt{-d'})$).

Each elliptic curve is isomorphic to $\mathbb{C}/\mathbb{Z} + \tau\mathbb{Z}$, where $\tau \in \text{SL}_2(\mathbb{Z}) \backslash \mathfrak{H}$ is uniquely determined. There is a modular form of weight 0, namely a modular function

$$j : \text{SL}_2(\mathbb{Z}) \backslash \mathfrak{H} \overset{\sim}{\longrightarrow} \mathbb{C}, \quad j(q) = \frac{1}{q} + 744 + 196884q + \ldots$$

Gross-Zagier. There is an explicit formula for the integer

$$\prod_{s,t} (j(E_s) - j(E'_t)).$$
The numbers $j(E_i)$, called singular moduli, are of central importance in number theory, because they classify elliptic curves and allow generation of abelian extensions of $\mathbb{Q}(\sqrt{-d})$. (Hilbert’s 12th problem).

Relation to quaternion algebras: If p divides $\prod_{s,t}(j(E_s) - j(E'_t))$ then it means that some E_s and E'_t become isomorphic modulo (a prime above) p. This implies that their reduction is a supersingular elliptic curve. The problem becomes algebraic: into which maximal orders of $B_{p,\infty}$ can one embed simultaneously R_d and $R_{d'}$.
Supersingular graphs (Lubotzky-Philips-Sarnak, Pizer, Mestre, Osterlé, Serre, . . .)

Pick a prime $\ell \neq p$ and construct the (directed) supersingular graph $\mathcal{G}_p(\ell)$.

- **Vertices:** supersingular elliptic curves.

- **Edges:** E is connected to E' if there is an isogeny $f : E \to E'$ of degree ℓ. (But we really only care about the kernel of f).

This graph has degree $\ell + 1$ and is essentially symmetric.
Ramanujan graphs

Expanders. Let G be a k-regular connected graph with n vertices and with adjacency matrix A and combinatorial Laplacian

$$\Delta = kI_n - A,$$

whose eigenvalues are $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1} \leq 2k$.

$\frac{1}{k} \Delta(f)(v)$ is $f(v)$ minus the average of f on the neighbors of v.

The expansion coefficient is

$$h(G) = \min \left\{ \frac{|\partial S|}{|S|} : |S| \leq n/2 \right\} \leq 1 \quad \text{or} \quad \frac{n + 1}{n - 1}.$$

One is interested in getting a large $h(G)$.
Tanner, Alon-Milman: \[
\frac{2\lambda_1}{k+2\lambda_1} \leq h(G) \leq \sqrt{2k\lambda_1}.
\]

To have a graph in which information spreads rapidly/ random walk converges quickly, one looks for a graph with a large \(\lambda_1\). Those have many technological and mathematical applications.

Alon-Boppana: \(\lim \inf \mu_1(G) \geq 2\sqrt{k-1}\), where \(k - \mu_1 = \lambda_1\) is the second largest eigenvalue of \(A\), and where the limit is over all \(k\)-regular graphs of size growing to infinity.

Thus, asymptotically, the best family of expanding graphs of a fixed degree \(d\) will satisfy the Alon-Boppana bound.

A graph \(G\) is called a Ramanujan graph if \(\mu_1(G) \leq 2\sqrt{k-1}\).
A k-regular infinite tree \mathcal{T} is the ideal expander. One can show that $h(\mathcal{T}) = k - 1$. The idea now is to find subgroups Γ of the automorphism group of a tree that does not identify vertices that are “very close” to each other. Arithmetic enters first in finding such subgroups Γ.
• Two distinct primes $p \neq \ell$.

• An $\ell + 1$ regular tree \mathcal{T} could be viewed as the Bruhat-Tits tree for the group $GL_2(\mathbb{Q}_\ell)$ and in particular, we have

$$PGL_2(\mathbb{Q}_\ell) \subseteq \text{Aut}(\mathcal{T}).$$

• \mathcal{O} = maximal order of $B_{p,\infty}$. Then the group of units of norm 1 of $\mathcal{O}[\ell^{-1}]^\times$ maps into $B_{p,\infty} \otimes \mathbb{Q}_\ell = M_2(\mathbb{Q}_\ell)$ and gives a subgroup Γ of $\text{Aut}(\mathcal{T})$ of the kind we want. In fact,

$$\Gamma \backslash \mathcal{T} \cong \mathcal{G}^p(\ell).$$
The Ramanujan property.

\[\Gamma \backslash \mathcal{T} = \text{moduli space of supersingular elliptic curves} \quad \Gamma_0(p) \backslash \mathcal{H} = \text{moduli space for elliptic curves + additional data} \]

<table>
<thead>
<tr>
<th>Quaternionic modular forms (=) sections of line bundles (=) functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular forms (=) sections of line bundles</td>
</tr>
</tbody>
</table>

Hecke operators \(T_\ell \sim\) averaging operators \(\sim\) Adjacency matrices \(G^p(\ell)\)

<table>
<thead>
<tr>
<th>System of eigenvalues of (T_\ell) acting on functions with integral zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>System of eigenvalues for (T_\ell) acting on cusp forms; given by the coeff. (a_\ell) in (q)-exp.</td>
</tr>
</tbody>
</table>

The bound on the eigenvalues of the adjacency matrix of \(G^p(\ell)\) is thus given by the Ramanujan bound on the \(\ell\)-th Fourier coefficient of elliptic modular forms.
Generalization: Quaternion algebras over totally real fields

A. Cayley compared the quaternions to a pocket map “... which contained everything but had to be unfolded into another form before it could be understood.”