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Evil Primes and Superspecial Moduli

Eyal Z. Goren and Kristin E. Lauter

For a quartic non-biquadratic CM field K, we say that a rational prime p is evil for K if

at least one of the principally polarized abelian varieties with CM by K reduces modulo

a prime ideal p|p to a product of supersingular elliptic curves with the product polar-

ization. We showed that for fixed K, such primes are bounded by a quantity related to

the discriminant of K. We show that evil primes are ubiquitous in the sense that for any

rational prime p, there are an infinite number of such CM fields K for which p is evil.

(Assuming a standard conjecture, the result holds for a finite set of primes simultane-

ously.) The proof consists of two parts: (1) showing the surjectivity of the principally

polarized abelian varieties with CM by K, for K satisfying some conditions, onto the su-

perspecial points of the reduction modulo p of the Hilbert modular variety associated

to the intermediate real quadratic field of K, and (2) showing the surjectivity of the su-

perspecial points of the reduction modulo p of the Hilbert modular variety associated

to a real quadratic field with large enough discriminant onto the superspecial points on

the reduction modulo p of the Siegel moduli space parameterizing abelian surfaces with

principal polarization.

1 Introduction

Given a quartic CM field K, one can study the values at CM points associated to K of Siegel

modular functions, specifically of the functions sometimes referred to as the absolute

Igusa invariants; see [11] and the references therein. Their values are algebraic numbers
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which generate unramified abelian extensions of the reflex field of K. Assume that K is

a primitive CM field, that is, does not contain a proper subfield which is CM; since K is

quartic, this is equivalent to K not being biquadratic. In this case, rational primes ap-

pearing in the denominators of the coefficients of the minimal polynomials of such val-

ues correspond to primes where at least one of the principally polarized abelian varieties

with CM by K reduces to a product of supersingular elliptic curves with the product po-

larization. We call such primes evil primes for K. The occurrence of such primes is an

issue in the numerical calculation of the minimal polynomials, a computational problem

of interest for generating genus 2 curves for cryptographic applications. The presence

of evil primes also appears as an obstruction for the class invariants defined in [4] to be

units (see also [11]), and so is connected to problems in algebraic number theory moti-

vated by Stark’s conjectures. Evil primes were studied in [11], though without using this

terminology, where we showed that for fixed K, such primes are bounded by a quantity

related to the discriminant of the field K. In this paper, we prove various results that in-

dicate that evil primes are a very common phenomenon, in particular we prove that every

prime is evil for an infinite number of primitive quartic CM fields.

The paper contains two main theorems, Theorems 2.1 and 2.4. Let L be a totally

real-number field of strict class number one (we allow arbitrary degree over Q). In

Theorem 2.1 we prove that there is a choice of a CM field K such that every principally po-

larized superspecial abelian variety with real multiplication by L over Fp (corresponding

to a superspecial point on the modulo p reduction of the Hilbert modular variety associ-

ated to L) arises as the reduction of a principally polarized abelian variety with CM by K.

Necessary and sufficient conditions on the field K are K+ = L (where K+ denotes the fixed

field under complex conjugation), p is unramified in K and satisfies decomposition con-

ditions specified in Theorem 2.1, and the norm of the relative discriminant Norm(dK/L)

is large enough. It then follows that there are infinitely many such CM fields K.

Consider now the case where L is a real quadratic field. Since we can easily man-

ufacture a superspecial point on the Hilbert modular variety associated to L correspond-

ing to a product of supersingular elliptic curves with the product polarization, we con-

clude that for every real quadratic field L in which p is unramified there are infinitely

many quartic primitive CM fields K, K+ = L, for which p is an evil prime. Let S be a fi-

nite set of rational primes. If one is willing to accept that there is always a real quadratic

field L of strict class number one in which every prime of S is unramified (certainly a

widely believed conjecture), then Theorem 2.1 has the following conditional corollary:

given a finite set of rational primes S, there are infinitely many primitive quartic CM

fields for which all primes in S are evil for each field. In this sense evil primes are ubiq-

uitous. Theorem 2.4 will allow us to draw stronger conclusions.
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Theorem 2.1 generalizes to arbitrary dimension recent work of Elkies, Ono, and

Yang [7], where they study the elliptic curve case corresponding to an imaginary qua-

dratic field K. In [7, Theorem 1.2], they prove that for an odd prime p and an imaginary

quadratic field K in which p is inert, (any power of) the supersingular polynomial mod-

ulo p divides the Hilbert class polynomial of K modulo p if the discriminant of K is large

enough. In other words, every supersingular elliptic curve modulo p is the reduction of

an elliptic curve with CM by K for any K satisfying the above conditions. Whereas [7, The-

orem 1.2] uses the results of Duke [5], Iwaniec [15], and Siegel to study the asymptotic

behavior of a certain theta function, Theorem 2.1 uses the work of Cogdell, Piatetski-

Shapiro and Sarnak [3] which generalizes Duke’s work to totally real-number fields.

We prove Theorem 2.1 in three steps. Let R be the centralizer of OL in the endo-

morphism ring of A, a principally polarized abelian variety with real multiplication cor-

responding to a superspecial point on the reduction modulo p of the Hilbert modular

variety associated to L. Following [19], we call R a superspecial order; it is an order in

the quaternion algebra Bp,L := Bp,∞ ⊗Q L, where Bp,∞ is the rational quaternion algebra

ramified at p and ∞ alone. First we establish a one-to-one correspondence between OL-

embeddings of OK into the order R up to equivalence and CM lifts of A to principally po-

larized abelian varieties with CM by K along the lines of what was shown in [11]. Next we

show that to give an OL-embedding of OK into the endomorphism ring of A, it is enough

that a totally positive generator of the relative discriminant of K/L be represented by

the norm form on a certain lattice associated to R. Next we use the theorem on integral

representability by positive definite integral ternary quadratic forms over totally real

fields [3] to reduce the computation to checking local representability. Checking local

representability uses the fact that all superspecial orders in the quaternion algebra Bp,L

are locally conjugate.

Theorem 2.4 concerns the relationship between the superspecial points on the

Hilbert and Siegel moduli spaces. We show that the superspecial points on the mod-

ulo p reduction of the Hilbert modular variety associated to a real quadratic field L sur-

ject onto the superspecial points on the modulo p reduction of the Siegel moduli variety,

if the discriminant of L is large enough. To prove this theorem we need to show how to

embed OL into the endomorphism ring of A, for A a principally polarized superspecial

abelian variety, in a way which is compatible with the polarization. We accomplish this

using the description of all possible polarizations given in [14] and the fact that the Tate

modules (resp., Dieudonné modules) of any two principally polarized superspecial abel-

ian varieties over Fp of the same dimension are isomorphic.

Combining Theorems 2.4 with 2.1 we get a stronger result on evil primes. Let p be

a rational prime unramified in L, a real quadratic field of strict class number one. Then
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if the discriminant of L is large enough, any principally polarized superspecial abelian

surface, in particular any product of supersingular elliptic curves with principal polar-

ization, arises as the reduction of a principally polarized abelian surface with CM by a

field K, where K satisfies the conditions of Theorem 2.1 mentioned above. Assuming the

same conjecture on real quadratic fields as above, such a conclusion holds also for a fi-

nite set S of rational primes simultaneously.

We remark that Theorems 2.1 and 2.4 are also of interest for reasons quite differ-

ent from those mentioned so far. In [8, 19], one finds an approach to Siegel and Hilbert

modular forms through the superspecial locus in the corresponding moduli spaces. For

a different motivation see [7]. For yet another motivation see [20], where a result like

Theorem 2.1 for the case of quadratic imaginary fields is assumed as part of an algo-

rithm to compute elliptic modular forms. A similar algorithm for Hilbert modular forms

would use the results of [19] and make use of Theorem 2.1.

The paper is organized as follows. Section 2 contains precise statements of the

results of the paper. Section 3 contains the proof of Theorem 2.1 and Section 4 contains

the proof of Theorem 2.4.

2 Statement of results

All number fields are considered as subfields of an algebraic closure Q of Q. Given a CM

field K of degree 2g over Q, denote by CM(K) the set of isomorphism classes over Q of

abelian varieties (A, λ, ι), where A is an abelian variety of dimension g, λ : A → A∨ is

a principal polarization, ι : OK → End(A) is a ring embedding and the Rosati involu-

tion x �→ xλ induces complex conjugation on OK. We denote by K+ the maximal totally

real subfield of K. If K+ has strict class number one then the discriminant ideal dK/K+

is generated by a totally negative element of K+, uniquely determined up to O×,2
K+ (see

Lemma 3.1). We will denote any such generator as −m:

(m) = dK/K+ , m totally positive. (2.1)

Theorem 2.1. Let L be a totally real field of degree g and strict class number one. Let p be

a rational prime, unramified in L, and P a prime of Q above p. Let SS(L) denote the super-

special points on the reduction modulo P of the Hilbert modular variety ML associated

to L that parameterizes abelian varieties with real multiplication by OL equipped with

an OL-linear principal polarization. There exists a constant N = N(p, L) such that if K is

a CM field satisfying

(1) K+ = L;

(2) for every prime P of K over p with p = P ∩ L,
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(a) if p �= 2, then f(P/p) + f(p/p) is odd;

(b) if p = 2, then 3m is a quadratic residue modulo p3 for all p | p;

(3) the norm from L to Q of the discriminant of K over L is greater than N in

absolute value;

then SS(L) is contained in the image of CM(K) under the natural reduction map

CM(K) −→ ML −→ ML ⊗Z Fp, (2.2)

that is, every superspecial abelian variety with RM by OL admits a lift to a characteristic

zero abelian variety with CM by OK. �

Definition 2.2. Let K be a quartic primitive CM field. A rational prime p is evil (for K) if

for some prime P of Q over p, there is an element of CM(K) whose reduction modulo P is

the product of two supersingular elliptic curves with the product polarization.

Corollary 2.3. Let L be a real quadratic field of strict class number one, and let p be a

rational prime unramified in L. Then p is evil for every primitive quartic CM field K satis-

fying conditions (1)–(3) of Theorem 2.1. �

Theorem 2.4. Let p be a rational prime. Let A = A2,1 denote the moduli space of princi-

pally polarized abelian surfaces, and let SS(A) denote the superspecial points of A mod-

ulo p. There exists a constant M = M(p) such that if L is a real quadratic field of strict

class number one and discriminant greater than M, then the map

SS(L) −→ SS(A) (2.3)

is surjective. �

Corollary 2.5. Let L be a real quadratic field of strict class number one, and let p be

a rational prime unramified in L, and suppose that L satisfies dL > M = M(p) from

Theorem 2.4. If K is a quartic CM field satisfying conditions (1)–(3) of Theorem 2.1, then

every superspecial principally polarized abelian surface in characteristic p has a CM lift

to an abelian surface with CM by K, that is, is a reduction of a point in CM(K). �

Remark 2.6. In Corollaries 2.3 and 2.5, the rational prime p can be replaced by a finite

set of rational primes, all unramified in L. The results of the corollaries then hold for

fields K satisfying the conditions of Theorem 2.1 for all primes in the set simultaneously.

In particular, for any finite set of rational primes S, if there exists a real quadratic field L

of strict class number one in which all primes in S are unramified, this gives a field K for

which all primes in S are evil for K.
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We remark that the existence of a real quadratic field L of strict class number one

in which a given finite set of primes is unramified is a slight strengthening of a famous

conjecture of Gauss on the existence of infinitely many real quadratic fields of class num-

ber one, and is widely believed to be true. More importantly, we expect that our meth-

ods can be generalized to remove the condition on strict class number one altogether,

and so the results concerning a finite number of primes would then hold uncondition-

ally.

3 Proof of Theorem 2.1

Let L be a totally real-number field of degree g over Q, and let K be a CM field such that

K+ = L. We assume that L has strict class number one. We recall that for an abelian vari-

ety A/k, k a field, with RM by L, that is, with an action of OL, one says that the Rapoport

condition holds if the tangent space of A at the origin TA,0 is a free OL ⊗Z k-module of

rank 1 (cf. [10, Section III.5]). Since we assumed that p is unramified in L, this is equiva-

lent to the Kottwitz condition used in [11] and defined in [16].

Lemma 3.1. (1) One can write OK = OL[t], where t satisfies the quadratic polynomial

x2 + bx + c, with b, c ∈ OL. Let −m = b2 − 4c. Then −m is a totally negative generator of

dK/L and D−1
K/L = OK[1/

√
−m ].

(2) Let A be an abelian variety with real multiplication by OL such that the Rapo-

port condition holds. Then A has an OL-linear principal polarization which is unique up

to automorphism.

(3) Let Φ be a CM type of K and let a be a fractional ideal in K. The abelian variety

Cg/Φ(a) carries a principal polarization λ such that the Rosati involution associated to

it induces complex conjugation on K. Moreover, λ is unique up to automorphism. �

Proof. Since OL has strict class number one, and OK is a torsion-free OL-module, we may

write OK = OL⊕OL ·t. Then t2 = −c−bt for some b, c ∈ OL. It follows that the discriminant

ideal dK/L is generated by NormK/L(2t + b) = NormK/L(
√

−m ) = m (see [22, Chapter 3,

Section 6, Corollary 2]) and that D−1
K/L ⊇ OK[1/

√
−m ]. We deduce equality by comparing

the norm to L of these ideals. We conclude part (1).

It is proven in [21] that A has an OL-linear polarization. Since the polarization

module of A is a projective OL-module with a notion of positivity, it follows that there

is an isomorphism of OL-modules HomOL
(A,A∨)sym ∼= OL, taking the polarizations to

the totally positive elements. Since A satisfies the Rapoport condition, it can be lifted

as a polarized abelian variety with RM to characteristic zero (see [11], or [23, Chapter

X, Corollary 1.8]). The characteristic zero uniformization allows us to deduce that the
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degree of a symmetric homomorphism, viewed as an element λ ∈ OL, is Norm(λ)2. In

particular, principal polarizations exist and are in bijection with O×,+
L .

Now, for any totally real-number field L of degree g we have an exact sequence

1 −→ L×/(
L×,+ · O×

L

) −→ Cl+(L) −→ Cl(L) −→ 1. (3.1)

There is a sign map, sgn : L×
→ {±1}g, which is a surjective homomorphism with ker-

nel L×,+. Thus, the cardinality of L×/(L×,+ · O×
L ) is 2g/| sgn(O×

L )|. If we interpret 2g as

the cardinality of O×
L /O×,2

L and | sgn(O×
L )| as the cardinality of O×

L /O×,+
L we conclude that

|O×,+
L /O×,2

L | = h+
L /hL. In particular, the statement h+

L = 1 is equivalent to the statement

that hL = 1 and O×,+
L = O×,2

L .

Now let λ1, λ2 be two principal OL-linear polarizations on the abelian variety

with real multiplication (A, ι). We may identify λi with totally positive units in OL and

so there is a unit ε ∈ OL such that λ2 = ε2λ1. That implies that the polarized abelian

varieties (A, ι, λ1) and (A, ι, λ2) are isomorphic via the multiplication by ε map.

Next we address part (3). It is well known that the polarizations on Cg/Φ(a) that

induce complex conjugation on K arise from bilinear pairings

Eρ : a × a −→ Z, Eρ(u, v) = TrK/Q(ρuv̄), (3.2)

where ρ ∈ (DK/Qaā)−1, ρ̄ = −ρ, and Im(φ(ρ)) > 0 for all φ ∈ Φ. The polarization is princi-

pal if and only if (ρ) = (DK/Qaā)−1.

It follows from part (1) that DK/L = (
√

−m ) and since L has strict class number,

one we also have DL/Q = (η) for some totally positive η. Since DK/Q = DK/LDL/Q, we

conclude that DK/Q = (δ), where δ̄ = −δ. Again, the strict class number one condition

gives that sgn(O×
L ) = {±1}g and so modifying δ by a unit ε ∈ O×

L we can achieve also

Im(φ(δ)) > 0 for all φ ∈ Φ. Given a fractional ideal a of OK there is an a ∈ L+ such

that aā = (a). Letting ρ = 1/(δa), we see that Cg/Φ(a) carries a principal polarization.

Moreover, the element ρ is unique up to multiplication by elements of O×,+
L = O×,2

L and

the same argument as in part (2) shows that different choices of ρ lead to isomorphic

polarized abelian varieties with CM. �

Let A ∈ SS(L). There is a given embedding ι : OL → End(A) and a unique up-

to-isomorphism OL-linear principal polarization for this embedding. The centralizer R

of OL in End(A) is an order of the quaternion algebra Bp,L = Bp,∞ ⊗ L, where Bp,∞ is the

quaternion algebra over Q ramified at p and infinity (cf. [2, Lemma 6]). In particular Bp,L

is ramified at any infinite place of L. It follows that the Rosati involution coming from

an OL-polarization fixes R and induces on it the canonical involution x �→ x̄ := Tr(x) − x.
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The orders R that arise in this way are called superspecial in [19]. In that thesis,

Nicole develops a theory analogous to Deuring’s theory for supersingular elliptic curves

and we refer the reader to that reference for a comprehensive picture. The only fact that

we need here is that if (Ai, ιi), i = 1, 2, are two superspecial abelian varieties with real

multiplication by OL and Ri = CentEnd(Ai)(OL), then R1 and R2 are everywhere locally

conjugate. For completeness we sketch the argument.

As is well-known, Tate’s theorem for abelian varieties (see, e.g., [25]) can be sim-

plified for supersingular abelian varieties over a finite field of characteristic p and writ-

ten as

Hom
(
A1, A2

) ⊗ Z�
∼= Hom

(
T�

(
A1

)
, T�

(
A2

))
,

Hom
(
A1, A2

) ⊗ Zp
∼= Hom

(
D

(
A1

)
, D

(
A2

))
,

(3.3)

where T� denotes the Tate module at 
 and D(Ai) is the covariant Dieudonné module of Ai

(the Hom’s ones are over Fp). It is not hard to see that if Ai have RM by OL, then we get

HomOL

(
A1, A2

) ⊗ Z�
∼= HomOL

(
T�

(
A1

)
, T�

(
A2

))
,

HomOL

(
A1, A2

) ⊗ Zp
∼= HomOL

(
D

(
A1

)
, D

(
A2

))
.

(3.4)

Since T�(A) ∼= (OL ⊗ Z�)2 and the isomorphism type of the Dieudonné module D(A) does

not depend on A if p is unramified (see [12, Theorem 5.4.4]), we conclude that the orders

EndOL
(Ai) are locally isomorphic at every prime.

Given an OL-embedding of OK into R, the action of OK will satisfy the Kottwitz

condition automatically, because OL does by assumption. The Rosati involution defined

by any principal OL-polarization will induce complex conjugation on K. By [11, Lemma

4.4.1] this gives an element of CM(K) reducing to A.

The problem is thus translated to showing the existence of an embedding of OK

into such an order R if K satisfies certain conditions. Let R0 denote the elements of re-

duced trace 0 in R and let ΛR = R0 ∩ (OL + 2R). This is an OL-lattice of rank 3 equipped

with a positive definite OL-valued quadratic form N (which is just the restriction of the

reduced norm on the quaternion algebra R ⊗OL
L to ΛR):

N : ΛR −→ OL, x �−→ N(x) = xx̄ = −x2. (3.5)

Lemma 3.2. Let −m be a totally negative generator of dK/L. Then OK ↪→ R if and only if m

is represented by the ternary quadratic form N on ΛR. �
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Proof. We write OK = OL[t], where t2 + bt + c = 0 as in Lemma 3.1. If t = (−b +
√

−m )/2 is

in R, then
√

−m = b + 2t ∈ ΛR and its norm is m. Conversely, suppose that there is an

element x ∈ ΛR such that N(x) = m. This gives a map K → Bp,L taking
√

−m to x. We

may write x = x1 + 2x2, where xi ∈ OL, x2 ∈ R, and so the image of the element α =

(−x1 +
√

−m )/2 is in R, hence it is an integral element. That is, α ∈ OK. We conclude that

OL[α] ⊆ OK. In fact, OL[α] = OK because t − α ∈ L ∩ OK = OL. Since OL[α] ⊂ R, our claim

follows. �

We will use the following theorem of Cogdell [3] in the case of strict class number

one.

Theorem 3.3. Let q(x1, x2, x3) be a positive definite integral ternary quadratic form

over L. Then there is a constant Cq such that if α is a totally positive square-free inte-

ger of OL with NormL/Q(α) > Cq, then α is represented integrally by q if and only if it

is represented integrally locally over every completion of L; that is, when NormL/Q(α) >

Cq, α = q(x1, x2, x3) for some xi ∈ OL if and only if for every prime ideal p of OL, α =

q(x1,p, x2,p, x3,p) for some xi,p ∈ OLp
. �

Using this theorem, one reduces the assertion that OK embeds into R if the ab-

solute value of the norm of dK/L is large enough to verify that the norm N on ΛR repre-

sents m locally at every prime p of OL. We note that ΛR ⊗OL
OLp

= ΛR⊗OL
OLp

:= (R ⊗OL

OLp
)0∩(OLp

+2R⊗OL
OLp

) (cf. Proposition 3.4). Since all the orders R that arise are locally

isomorphic, the isomorphism leaves the trace and norm unchanged, and the formation of

the lattices commutes with completions, it suffices to deal with a single-order R, which

we now proceed to do.

Let E/k be a supersingular elliptic curve and let A = E⊗ZOL. As an abelian variety

A is isomorphic to Eg and its functor of points is canonically given by A(R) = E(R)⊗Z OL.

It is thus a superspecial abelian variety with OL-action. Because the tangent space of A

at zero is clearly a locally free OL ⊗ k-module, as TE⊗ZOL,0 = TE,0 ⊗Z OL, A satisfies the

Rapoport condition. Lemma 3.1 gives that A carries a unique principal OL-linear polar-

ization up to isomorphism, thus giving a point of SS(L). In this case R = O ⊗Z OL, where

O ⊂ Bp,∞ is a maximal order identified once and for all with End(E) (see [19, Proposition

2.5.26.]). Set ΛO = O0 ∩ (Z + 2O), where O0 are the trace zero elements of O. In this case

one can prove the following.

Proposition 3.4. (i) ΛR = ΛO ⊗Z OL and the norm form on ΛR is the extension of scalars

of the norm form on ΛO.

(ii) Let q be a prime ideal of OL and OLq
the ring of integers of the completion Lq

of L at q. Let q = q ∩ Z. Then ΛR ⊗OL
OLq

= (ΛO ⊗Z Zq) ⊗Zq OLq
.
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(iii) ΛO ⊗Z Zq = (O ⊗Z Zq)0 ∩ (Zq + 2O ⊗Z Zq) (namely, the construction of the

lattice ΛO commutes with localization). Moreover the norm form induced on ΛO ⊗Z Zq is

none other than the norm form induced from Bp,∞ ⊗Q Qq. �

Proof. Consider the following diagram of Z-modules:

0 O0 ∩ (Z + 2O) Z + 2O
Tr

2Z 0

0 O0 O
Tr

Z 0

(3.6)

The rows are exact and the vertical arrows are injections. The only nontrivial claim here

is that the trace map O → Z is surjective. This can be checked by a local calculation,

which is trivial at odd primes because Z ⊂ O, and is easily carried out at the prime 2

using a model for quaternion algebras over Q2 as appearing below.

Since OL is a flat Z-module, the diagram stays exact after tensoring with OL, and

the vertical arrows are still injections. From that one concludes that (a) O0 ⊗Z OL =

Ker[Tr⊗1 : O ⊗Z OL → OL] = Ker[Tr : R → OL] = R0, and (b) (O0 ∩ (Z + 2O)) ⊗Z OL is

Ker[Tr⊗1 : (Z + 2O) ⊗Z OL → 2Z ⊗Z OL] = Ker[Tr : OL + 2R → 2OL] (where the identi-

fications are made using the vertical injective arrows of the diagram tensored with OL).

That is,ΛO⊗Z OL = ΛR, which is the first assertion of the proposition. Of course, (ii) is an

immediate consequence of (i). Part (iii) follows from the same reasoning, this time using

the flat Z-module Zq. �

Picking a convenient model for O ⊗Z Zq, we can now calculate ΛO ⊗Z Zq and its

norm form explicitly, extend scalars to OLq
, and check that there are no local obstructions

to representing m. We consider two cases.

Case 1 (q | q, q �= p). Outside of p and ∞, Bp,∞ is unramified, so

O ⊗ Zq
∼= M2

(
Zq

)
, (3.7)

where the reduced trace is the trace of a matrix and the reduced norm is the determinant

of a matrix. So

(
O ⊗ Zq

)0 ∼=

{(
a b

c −a

)

: a, b, c ∈ Zq

}

,

Zq
∼=

{(
a 0

0 a

)

: a ∈ Zq

}

.

(3.8)
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So

ΛO ⊗Z Zq =
(
O ⊗Z Zq

)0 ∩ (
Zq + 2O ⊗Z Zq

)
∼=

{(
a 2b

2c −a

)

: a, b, c ∈ Zq

}

,

ΛR ⊗OL
OLq

∼=

{(
a 2b

2c −a

)

: a, b, c ∈ OLq

}

.

(3.9)

The question of whether m is represented locally at q is now a question of whether

m = −a2 − 4bc, which is obviously the case.

Case 2 (q | p). Let Qp2 be the unramified extension of degree two of Qp and Zp2 its maxi-

mal order. In this case, we can verify using [24, Chapter II, Théorème 1.1] that

Bp,∞ ⊗ Qp =

{(
a b

−pbσ aσ

)

: a, b ∈ Qp2 , σ = Frobenius

}

. (3.10)

This is a division algebra over Qp, whose trace and norm are in this model the trace and

determinant of matrices. The algebra Bp,∞⊗Qp has a unique maximal order consisting of

all the elements with integral norm [24, Chapter II, Lemme 1.5]. Therefore, the maximal

order is

O ⊗ Zp =

{(
a b

−pbσ aσ

)

: a, b ∈ Zp2

}

,

(
O ⊗ Zp

)0
=

{(
a b

−pbσ aσ

)

: a + aσ = 0, a, b ∈ Zp2

}

.

(3.11)

So

ΛO ⊗ Zp =
(
O ⊗ Zp

)0 ∩ (
Zp + 2O ⊗ Zp

)

=

{(
a + 2α 2β

−2pβσ a + 2ασ

)

: a + α + ασ = 0, a ∈ Zp, α, β ∈ Zp2

}

=

{(
α − ασ 2β

−2pβσ ασ − α

)

: α,β ∈ Zp2

}

.

(3.12)

From this point we proceed by considering two possibilities.

Subcase 2.1 (p �= 2). Write Zp2 = Zp +
√

rZp, where r is not a square modulo p. Then we

can write down the following Zp-basis for the above collection of matrices:

e1 =

(√
r 0

0 −
√

r

)

, e2 =

(
0 1

−p 0

)

, e3 =

(
0

√
r

p
√

r 0

)

. (3.13)
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Let p | p be a prime of OL dividing p. Via the identifications in Proposition 3.4, this is also

a basis for ΛR over OLp
and we have

N
(
xe1 + ye2 + ze3

)
= −rx2 + py2 − prz2, x, y, z ∈ OLp

. (3.14)

An application of Hensel’s lemma shows that since p �= 2 and is unramified in L, m

is represented by −rx2 + py2 − prz2 over OLp
if and only if m is represented by −rx2

over OLp
. This, in turn, is equivalent to −m/r being a square modulo p. Now, (r/p) =

(−1)f(p/p) so m is representable if and only if (−m/p) = (−1)f(p/p). On the other hand,

for p �= 2 and unramified in K, we have (−m/p) = (−1)f(P/p)+1 for one (or any) prime P | p.

We conclude that m is representable locally at a place p | p if and only if f(P/p) + f(p/p)

is odd for all P | p.

Subcase 2.2 (p = 2). In this case we write Z4 = Z2[x]/(x2 +x+1). The form N is now given

by

N

( (
α − ασ 2β

−2pβσ ασ − α

) )

= −
(
α − ασ

)2
+ 8ββσ = 3b2 + 8ββσ,

α = a + bx, a, b ∈ Z2, β ∈ Z4.

(3.15)

This is a ternary quadratic form over Z2 and we want to find the conditions under which

m = 3b2 + 8ββσ, b ∈ OLp
, β ∈ Z4 ⊗Z2

OLp
. (3.16)

We first use Hensel’s lemma mod p3 (see, e.g., [17,Chapter II, Section 2]). Since p is unram-

ified, m �≡ 0(mod p) and one concludes that m is represented by N if and only if m = 3b2,

b ∈ OLp
, and that holds if and only if m = 3b2(mod p3). Equivalently, 3m is a quadratic

residue modulo p3. This concludes the proof of Theorem 2.1.

3.1 Scholium

One may ask whether the conditions appearing in Theorem 2.1 imply, in turn, superspe-

cial reduction. This is not the case, as can be learned by comparing our results with [9,

Theorem 2, cases (3) and (5)]. That theorem deals with the reduction of abelian surfaces

with CM by a quartic non-Galois CM field K. In both cases (3) and (5), the prime p stays
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inert in K+ and splits from K+ to K and so the conditions of Theorem 2.1 hold. The re-

duction in case (3) is superspecial, while in case (5) it is ordinary! Nonetheless, there

is a sense in which Theorem 2.1 can be strengthened, as we now explain. We remark

that [9] deals only with quartic CM fields, while Theorem 2.1 deals with any CM field

whose maximal totally real subfield has strict class number 1.

We have shown above that, under the conditions of Theorem 2.1, the natural map

CM(K) → ML has an image that contains the superspecial locus SS(L). Let Φ be a CM

type of K and let CM(K)Φ denote the elements of CM(K) having CM type Φ. We now ex-

plain why there is a CM type Φ such that the image of CM(K)Φ
→ ML is contained SS(L).

We have seen that the conditions appearing in the theorem guarantee that m is locally

represented everywhere by the norm form on ΛR, where R is the centralizer of OL in

the endomorphism ring of a superspecial principally polarized abelian variety with RM

by OL. The order R is a superspecial order; those are characterized for p unramified

in L as the orders of discriminant p in Bp,L. At every prime which does not split Bp,L

such an order is maximal, and at every prime p | p that splits Bp,L, it is an Eichler order

of conductor p. It is known [19] that every superspecial order, that is, an order of Bp,L of

discriminant p, arises this way from a superspecial abelian variety with RM by L. We use

now that when a genus of OL-integral positive definite quadratic forms represents an el-

ement m ∈ OL everywhere locally, then some form in the genus will represent m globally.

See [13, Section 2] and the references therein. There is thus a ternary form (Λ,q) in the

genus of (ΛR,NBp,L/L|ΛR
) that represents m. We claim that such a ternary form q arises

again in the same way from an order in a quaternion algebra, which is again superspe-

cial. First, the local data that we have allow us to conclude that there is a lattice Λ+ ⊃ Λ

on which q has discriminant p2 and is still integral; in fact, we choose Λ+ so that under

each local isomorphism of Λ with ΛR we have Λ+ corresponding to R0. Then the method

of Clifford algebras allows us to associate a quaternion algebra B over L to (Λ+, q) such

that for some order R ′ of B we have (R ′0,NB/L) ∼= (Λ+, q) as quadratic modules (see [1]

and the references therein). It follows then that B ∼= Bp,L and R ′ is a superspecial order

since its discriminant is p. Identifying B with Bp,L we find that ΛR ′ is everywhere locally

isomorphic to (Λ,q).

As said, the superspecial order R ′ is associated to a point in SS(L), that is, R ′ ∼=

EndOL
(A) for some superspecial abelian variety A with RM over Fp; once we make this

identification we have a CM type Φ associated to the embedding of OK in R ′ coming from

the action of OK on TA,0. We conclude that some point of SS(L) lifts to CM(K). Since

Hom(A,B) for two characteristic zero abelian varieties with CM by OK and of the same

CM type Φ always contains an element of degree prime to p, it now follows that any

abelian variety with CM by OK and CM type Φ will have superspecial reduction.
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3.2 Proof of Corollary 2.3

Let L = Q(
√

d), with d a square free positive integer. We need to show that there ex-

ist two supersingular elliptic curves E1, E2 in characteristic p such that OL embeds into

End(E1 × E2) and its image is contained in the elements of End(E1 × E2) fixed by the

Rosati involution coming from the product polarization on E1 × E2. Clearly, for any su-

persingular elliptic curve E1, we can find a supersingular elliptic curve E2 and an isogeny

β : E1 → E2 such that the following holds: (a) if d ≡ 2, 3(mod 4), then deg(β) = d; (b)

if d ≡ 1(mod 4), then deg(β) = (d − 1)/4. Then, in the first case sending
√

d to
(

0 β∨

β 0

) ∈
End(E1×E2) provides the required embedding, and in the second case, sending (1+

√
d)/2

to
(

1 β∨

β 0

) ∈ End(E1 × E2) provides the required embedding.

4 Proof of Theorem 2.4

There is a unique superspecial surface over Fp, which can be taken to be E1 × E2 for any

choice of supersingular elliptic curves Ei. Elements of SS(A) are distinguished by their

principal polarization (up to isomorphism). Those, by a result going back to Weil, are

given by the algebraic equivalence classes of divisors that are either two elliptic curves

crossing transversely at their origin, or a nonsingular curve of genus two (all up to auto-

morphisms of the abelian variety). There is another description.

Let A = E × E, where E is supersingular elliptic curve. Let λ : A → A∨ be any

principal polarization. Recall that the Rosati involution on End(A), f �→ fλ, is defined as

fλ = λ−1f∨λ, (4.1)

where f∨ : A∨
→ A∨ is the dual homomorphism. The map from the Neron-Severi group,

NS(A):

NS(A) −→ End(A), μ �−→ λ−1μ, (4.2)

identifies NS(A) with the λ-symmetric elements of End(A); the polarizations correspond

to the λ-totally positive elements under this identification (cf. [18, pages 189-190, 208–

210], [14, Section 2.2]). If we choose the product polarization λ0, coming from the canoni-

cal identification of E with E∨, and O = End(E), then the principal polarizations of A are

the elements

{(
s r

r∨ t

)

: s, t ∈ Z, s, t > 0, r ∈ O, st − rr∨ = 1

}

. (4.3)
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We first consider a particular case. We take A = E2 with the canonical polariza-

tion λ0. We then want to show that there is an embedding of OL into the matrices

Π
(
λ0

)
:=

{(
s r

r∨ t

)

: s, t ∈ Z, r ∈ O

}

(4.4)

if the discriminant dL of L is large enough (these are the symmetric matrices with re-

spect to the polarization we picked). Let Π0(λ0) = {M ∈ Π(λ0) : Tr(M) = 0} and let

Λ(λ0) = Π0(λ0) ∩ (Z + 2Π(λ0)). This is a rank 5 lattice that can be described explicitly:

Λ
(
λ0

)
=

{(
a 2r

2r∨ −a

)

: a ∈ Z, r ∈ O

}

. (4.5)

As in Section 3, one checks that to give an embedding of OL into Π(λ0) is equivalent to the

quintic quadratic form qλ0
given by a2 + 4rr∨ representing dL on Λ(λ0). Provided dL � 0,

this follows from the fact that the quaternary quadratic form rr∨ on O, a maximal order

in Bp,∞ , represents any large enough integer.

The general case. For every other polarization λ we associate a rank 5 lattice Λ(λ) with

a quadratic form qλ that will represent dL if and only if OL embeds in the lattice Π(λ) of

λ-symmetric elements of End(E2). To show that qλ represents sufficiently large primitive

discriminants, we need to show that there are no local obstructions, for which we will

argue that locally the quintic quadratic modules (Λ(λ), qλ) and (Λ(λ0), qλ0
) are isomor-

phic.

Take a matrix M =
( s r

r∨ t

)
defining a principal polarization λ. For any matrix

C = ( x y
w z ) ∈ M2(Bp,∞ ) we let C∨ =

(
x∨ w∨

y∨ z∨

)
. Denote the Rosati involution defined

by λ as N �→ Nλ. Then Nλ = M−1N∨M. Let

Π(λ) =
{

N ∈ M2(O) : Nλ = N
}

. (4.6)

By what we said above, the lattice Π(λ) is isomorphic to NS(A) and so is a rank 6 lat-

tice. We can view Π(λ) as Π(λ) ⊗ Q ∩ M2(O). We provide another description of Π(λ). One

may write M = H∨H for a suitable H ∈ M2(Bp,∞ ) (see [6, Proposition 4.2]). Consider the

automorphism of the algebra M2(Bp,∞ ) given by N �→ H−1NH. We also denote this by

N �−→ φH(N) = H−1NH. (4.7)

If N∨ = N, that is, N ∈ Π(λ0), then using the formula (C1C2)∨ = C∨
2 C∨

1 , one finds that

M−1
(
H−1NH

)∨
M = H−1

(
H∨

)−1
H∨N∨

(
H−1

)∨
H∨H = H−1NH. (4.8)
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That is, φH(N) = H−1NH is an element of Π(λ) ⊗ Q. We find that the rank 6 lattice Π(λ) is

given by

Π(λ) = φH

(
Π

(
λ0

) ⊗ Q
) ∩ M2(O), (4.9)

and so we define a rank 5 lattice

Π0(λ) = φH

(
Π0

(
λ0

) ⊗ Q
) ∩ M2(O) (4.10)

and a slightly smaller rank 5 lattice

Λ(λ) = Π0(λ) ∩ (
Z + 2Π(λ)

)
. (4.11)

The definition of these lattices is independent of the choice of H such that M = H∨H. To

see that, one first reduces to the case of M = I, the identity matrix, so that H satisfies

I = H∨H, that is, is a rational automorphism of the polarization λ0. We remark, though

this is not needed for our argument, that for any H one has H−1 = (H∨H)−1H∨, and for

∨-symmetric matrices
(

x11 x12
x21 x22

)
the inverse is given by 1/(x11x22 − x12x21)

(
x22 −x12

−x21 x11

)
,

as usual. The lattice Π(λ0) ⊗ Q, according to the definition, now consists of matrices

H−1NH = H∨NH for which N∨ = N, but it is easy to see that these are again just the

∨-symmetric matrices. That is, Π(λ) is well defined under our procedure. Next we con-

sider Π0(λ0). Remark that under the 
-adic representation on T�(E) ⊗Z�
Q�, j : Bp,∞ ↪→

M2(Q�), we have Tr(x) = Tr(j(x)). On the other hand, Bp,∞ , being a finite dimensional Q-

algebra, has an intrinsic trace Tr ′ coming from the left regular representation on itself,

and one has Tr ′ = 2 Tr. Using this it is not hard to see, making use of the 
-adic represen-

tation, that the intrinsic trace Tr ′ of an element ( a b
c d ) ∈ M2(Bp,∞ ) is just 4 Tr(a)+ 4 Tr(d).

We conclude that the function ( a b
c d ) �→ Tr(( a b

c d )) := Tr(a)+Tr(d) is invariant under conju-

gation because Tr ′ obviously is. Since Π0(λ0) can be described as the ∨-symmetric matri-

ces N with Tr(N) = 0, we conclude that its definition is indeed independent of the choice

of H, that is, φH(Π0(λ0)) = Π0(λ0) if H∨H = I. Note that this argument also gives a more

natural definition of the lattice Π0(λ) as the integral λ-symmetric matrices of Tr equal to

zero and our ad hoc definition is just more convenient for the purpose of our proof.

Lemma 4.1. Let L = Q(
√

D), D > 0 square-free, be a real quadratic field with discrimi-

nant dL.

(1) To give an embedding of L into Π(λ)⊗ Q is equivalent to giving an element C

of Π0(λ) ⊗ Q whose degree as a rational endomorphism is deg C = D2.

(2) To give an embedding of OL into Π(λ) is equivalent to giving an element of

Λ(λ) whose degree as an endomorphism is d2
L.
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(3) Define

qλ : Λ(λ) −→ Z, qλ(C) =
√

deg(C). (4.12)

The function qλ is a quintic integral positive definite quadratic form and

to give an embedding of OL into Π(λ) is equivalent to representing −dL by

qλ. �

Proof. The whole issue is to map
√

D to an element C ∈ Π(λ) ⊗ Q that will satisfy

C2 = DI2. Composing with φ−1
H , one verifies that the condition is that Tr(C1) = 0 and

det(C1) = −D, where C1 = φ−1
H (C) (writing the condition in Π(λ)⊗Q is more complicated;

see Section 4.1). However, for the matrices C1 =
( s r

r∨ −s

)
, we have deg(C1)2 = deg(C2

1) =

deg
(

s2+rr∨ 0
0 s2+rr∨

)
= (s2 + rr∨)4 = det(C1)4 and so deg(C1) = D2. However, we have

deg(C1) = deg(C) (for the natural extension of the degree map to rational isogenies).

Note that this implies that the map L → Π(λ)⊗Q gives a map Z[
√

D] → Π(λ) if and only if

C ∈ Π0(λ) and deg(C) = D2.

One now considers the conditions that actually guarantee that
√

D, or (1+
√

D)/2

(as the case may be), are in M2(O). The second part follows.

On Π0(λ0) we have qλ0

( s r
r∨ −s

)
= s2 + rr∨, which is visibly a quintic positive def-

inite quadratic form. Since qλ(C) = qλ0
(φ−1

H (C)) on ΦH(Π0(λ)) it follows that it too is a

quintic positive definite rational quadratic form. The identity qλ(C) =
√

deg(C) implies

that qλ is in fact integral. �

According to [14, Lemma 2.4], given a matrix M ∈ GL2(O) and a prime q we can

find a matrix H = H(q) ∈ GL2(Oq) such that M = H∨H. This means that locally the lat-

tices Λ(λ) and Λ(λ0) are conjugate by the map φH. It follows from our definitions that the

quadratic modules (Λ(λ), qλ) and (Λ(λ0), qλ0
) are in the same genus. Therefore, verifying

the local representability conditions for qλ reduces to the case of qλ0
which was already

considered.

4.1 Scholium

One can give another explicit description of the lattices Λ(λ) and the conditions for em-

bedding OL in them. For simplicity we only describe Π(λ) and the conditions for embed-

ding Z[
√

D] in it. Let M =
( s r

r∨ t

)
define the principal polarization λ. The elements of Π(λ)

are the matrices N = ( α β
γ δ ), α,β, γ, δ ∈ O such that

sα + rγ ∈ Z, r∨β + tδ ∈ Z, α∨r + γ∨t = sβ + rδ. (4.13)
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The conditions for N2 = D · I2 are

αβ = −βδ, γα = −δγ, (4.14)

and α2 + βγ = δ2 + γβ = D, which reduce given (4.14) to one condition:

α2 + βγ = D. (4.15)

As noted, the matrices satisfying (4.13) are a rank 6 lattice over Z. In fact the last equa-

tion can be written in the form

α2 + βγ =
ββ∨ + (m ′)2

t2
, (4.16)

where m ′ = r∨β + tδ ∈ Z.
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[24] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol.

800, Springer, Berlin, 1980.

[25] W. C. Waterhouse and J. S. Milne,Abelian varieties over finite fields, 1969 Number Theory Insti-

tute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Ameri-

can Mathematical Society, Rhode Island, 1971, pp. 53–64.

Eyal Z. Goren: Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street

West, Montreal, QC, Canada H3A 2K6

E-mail address: goren@math.mcgill.ca

Kristin E. Lauter: Microsoft Research, One Microsoft Way,Redmond,WA 98052,USA

E-mail address: klauter@microsoft.com

http://arxiv.org/abs/math.NT/0404378
mailto:goren@math.mcgill.ca
mailto:klauter@microsoft.com

	1. Introduction
	2. Statement of results
	3. Proof of [thm:A]Theorem 2.1
	4. Proof of [thm:B]Theorem 2.4
	Acknowledgment

