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ABSTRACT. We study Hilbert modular forms in characteristic p and over p-
adic rings. In the characteristic p theory we describe the kernel and image of
the q-expansion map and prove the existence of filtration for Hilbert modular
forms; we define operators U , V and Θχ and study the variation of the filtration
under these operators. Our methods are geometric – comparing holomorphic
Hilbert modular forms with rational functions on a moduli scheme with level-p
structure, whose poles are supported on the non-ordinary locus.

In the p-adic theory we study congruences between Hilbert modular forms.
This applies to the study of congruences between special values of zeta func-
tions of totally real fields. It also allows us to define p-adic Hilbert modular
forms “à la Serre” as p-adic uniform limit of classical modular forms, and com-
pare them with p-adic modular forms “à la Katz” that are regular functions
on a certain formal moduli scheme. We show that the two notions agree for
cusp forms and for a suitable class of weights containing all the classical ones.
We extend the operators V and Θχ to the p-adic setting.

1 Introduction.
This paper is concerned with developing the theory of Hilbert modular forms along
the lines of the theory of elliptic modular forms. Our main interests in this paper
are:

(i) to determine the ideal of congruences between Hilbert modular forms in char-
acteristic p and to find conditions on the existence of congruences over artinian
local rings. This allows us to derive explicit congruences between special val-
ues of zeta functions of totally real fields, to establish the existence of filtration
for Hilbert modular forms, to establish the existence of p-adic weight for p-adic
modular forms (defined as p-adic uniform limit of classical modular forms) and
more;

(ii) to construct operators U, V,Θψ (one for each suitable weight ψ) on modular
forms in characteristic p and to study the variation of the filtration under these
operators. This allows us to prove that every ordinary form has filtration bounded
from above;

(iii) to show that there are well defined notions of a Serre p-adic modular form and
of a Katz p-adic modular form and to show that the two notions agree for a
suitable class of weights containing all the classical ones. Our argument involves
showing that every q-expansion of a mod p modular form lifts to a q-expansion
of a characteristic zero modular form. We extend the theta operators Θψ to
the p-adic setting – their Galois theoretic interpretation is that of twisting a
representation by a Hecke character.

Our approach to modular forms is emphatically geometric. Our goal is to develop
systematically the geometric and arithmetic aspects of Hilbert modular varieties
and to apply them to modular forms. As to be expected in such a project, we
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use extensively the ideas of N. Katz [Ka1], [Ka2], [Ka3], [Ka4] and J.-P. Serre
[Se], of the founders of the theory in the case of elliptic modular forms, and we
have benefited much from B. Gross’ paper [Gr]. In regard to previous work on the
subject, we mention that some of the constructions and methods in this paper were
introduced by the second named author, in the unramified case, in [Go1], [Go2],
and the congruences we list for zeta functions may be derived from the work of
P. Deligne and K. Ribet [DeRi]. For this reason we restrict our discussion to zeta
functions, though the same reasoning applies to a wide class of L-functions.

We now describe in more detail the main results of this paper.
Let L be a totally real field of degree g over Q. Let K be a normal closure of L.

Let N ≥ 4 be an integer prime to p. Let M(S, µN ) be the fine moduli scheme
parameterizing polarized abelian schemes over S with RM by OL and µN -level
structure; see 3.2. A Hilbert modular form defined over an OK-scheme S has a
weight ψ ∈ XS , where XS is the group of characters of the algebraic group GS =
ResOL/ZGm,OL

×Spec(Z) S. We shall mostly be concerned with weights obtained
from the characters X of GOK

= ResOL/ZGm,OL
×Spec(Z) Spec(OK); we shall use

the notation X
U
S (“U” for universal) to the denote the group of characters of GS

induced from X by base change. See 4.1.
The group X is a free abelian group of rank g and has a positive cone X

† gener-
ated by the characters coming from the embeddings σ1, . . . , σg:L→ K. Indeed, the
map OL⊗ZK ∼= ⊕gi=1K induces a splitting of the torus GK , and hence canonical
generators of X that we denote accordingly by χ1, . . . , χg, and call the basic charac-
ters. A complex Hilbert modular form of weight χa1

1 . . . χ
ag
g is of weight (a1, . . . , ag)

in classical terminology.
It is important to note that X

U
S depends very much on S. For example, assume

that L is Galois and S = Spec(OL/p), with p an inert prime in L, then X ∼= X
U
S ,

while if p is totally ramified in L, p = Pg, then X
U
S
∼= Z; in this case, letting Ψ

denote the reduction of any basic character χi, we obtain that an OL-integral
Hilbert modular form of weight χa1

1 . . . χ
ag
g reduces modulo p to a modular form of

weight Ψa1+...+ag .
We denote the Hilbert modular forms defined over S, of level µN and weight χ

by M(S, µN , χ).

Let p be a rational prime. Let k be a finite field of characteristic p, which is an OK-
algebra. Let Xk(1) be the subgroup of Xk consisting of characters χ that are trivial
on
(
OL/(p)

)∗
under the map

(
OL/(p)

)∗
↪→ Gk(k) =

(
OL⊗Z k

)∗ χ−→Gm(k) = k∗.
It is proven in 4.4 that the map X → Xk is surjective and, in particular, Xk =
X
U
k . This allows us to define a positive cone X

+
k in Xk as follows. For every i

there exists 1 ≤ τ(i) ≤ g such that the image of χpiχ
−1
τ(i) in X

U
k is in Xk(1). The

character χpiχ
−1
τ(i) in X

U
k does not depend on the choice of τ(i). The positive cone

in Xk is the one induced by these generators. The positive cone induces an order ≤k
on Xk; we say that τ1 ≤k τ2 if τ−1

1 τ2 belongs to the positive cone. Note that we
have provided Xk(1)

+ := Xk(1) ∩ X
+
k with a canonical set of generators.

For every character ψ ∈ Xk(1)
+ we construct in 7.12 a holomorphic modular

form hψ over k. By 7.14 it has the property that its q-expansion at any Fp-rational
cusp is 1. Moreover, the ideal I of congruences

I := Ker
{
⊕

χ∈Xk

M(k, µN , χ)
q-exp−−−−−−→ k[[qν ]]ν∈M

}
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(where M is a suitable OL-module depending on the cusp used to get the q-
expansion) is given by (

hψ − 1 : ψ ∈ Xk(1)
+
)
.

It is a finitely generated ideal and a canonical set of generators is obtained by
letting ψ range over the generators for Xk(1)

+ specified above; see 7.22; Cf. [Go2].
Again, it may beneficial to provide two examples. Assume that L is Galois. If p

is inert in L, we may order σ1, . . . , σg cyclically with respect to Frobenius: σ ◦ σi =
σi+1. Let k = OL/(p). Then Xk(1) and Xk(1)

+ are generated by the characters
χp1χ

−1
2 , . . . , χpiχ

−1
i+1, . . . , χ

p
gχ
−1
1 . Note that this positive cone is different from the

one obtained from X
† via the reduction map. The kernel of the q-expansion map is

generated by g relations h1 − 1, . . . , hg − 1, where hi = hχp
i−1

χ−1
i

is a modular form

of weight χpi−1χ
−1
i . On the other hand, when p = Pg is totally ramified, k = OL/P,

we find that Xk(1) is generated by the characters χp−1
1 , . . . , χp−1

g that are all the

same character Ψp−1 in X
U
k and the q-expansion kernel is generated by a single

relation hΨp−1 − 1, where hΨp−1 is a modular form of weight Ψp−1.

We offer two constructions of the modular forms hψ; see 7.12 and 7.18. One con-
struction allows us to prove in 8.18 that the divisor of hψ, for ψ one of the canonical
generators of Xk(1)

+, is a reduced divisor. The other construction is related to a
compactification of M(k, µNp).

The proof of the theorem on the ideal of congruences is based on the isomorphism
between the ring ⊕χ∈Xk

M(k, µN , χ)/I of modular forms as q-expansions and the
ring of regular functions on the quasi-affine scheme M(k, µNp). The latter scheme
can be compactified by adding suitable roots of certain of the sections hψ. This iso-
morphism creates a dictionary between modular forms of level µN and meromorphic
functions on the compactification M(k, µNp) that are regular on M(k, µNp). Under
this dictionary, the weight of a modular form, a character in Xk, is mapped to an
element of Xk/Xk(1), the k∗-valued characters of the Galois group

(
OL/(p)

)∗
of

the cover M(k, µNp) → M(k, µN )ord. The exact behavior of the poles of such a
meromorphic function is related to a minimal weight (with respect to the order ≤k
on Xk), called filtration, from which a q-expansion may arise. Here the explicit
description of the compactification is invaluable in studying the properties of the
filtration.

This dictionary also allows us to define operators that clearly depend only on
q-expansions, like U , V and suitable Θψ operators, first as operators on functions
on M(k, µNp), and then as operators on modular forms (see §§ 12-14). This enables
us to read some of the finer properties of these operators from the corresponding
properties on M(k, µNp). Our main results are the following:

• There exists a notion of filtration for Hilbert modular forms: a q-expansion arising
from a modular form f arises from a modular form of minimal weight Φ(f) with
respect to ≤k; see 8.20.

• There exists a linear operator V :M(k, χ, µN )→M(k, χ(p), µN ), whose effect on
q-expansions is

∑
aνq

ν 7→∑
aνq

pν . The character χ(p) is the character induced

from χ by composing with Frobenius. (Concretely, in the inert case χ
(p)
i = χpi−1,

and in the totally ramified case Ψ(p) = Ψp.) We have Φ(V f) = Φ(f)(p). The op-
erator V comes from the Frobenius morphism of M(Fp, µNp). See 13.1, 13.5, 13.9
and 15.12.
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• For every basic character ψ there exists a k-derivation Θψ taking modular forms
of weight χ to modular forms of weight χψ(p)ψ. Its effect on q-expansions at
a suitable cusp is given by

∑
a(ν)qν 7→ ∑

ψ(ν)a(ν)qν . See 12.38–12.40. The
behavior of filtration under such operator involves too much notation to include
here and we refer the reader to 15.10. In the inert case, Φ(f) = χa1

1 · · ·χ
ag
g ,

we have Φ(Θχi
f) ≤k Φ(f)χpi−1χi, and Φ(Θχi

f) ≤k Φ(f)χ2
i iff p|ai (note: χ2

i =

(χpi−1χi)/(χ
p
i−1χ

−1
i )). If p is completely ramified the result resembles the elliptic

case: if Φ(f) = Ψa then Φ(ΘΨf) ≤k Ψa+p+1 and Φ(ΘΨf) ≤k Ψa+2 iff p|a.
• There exists a linear operator U taking holomorphic modular forms of weight χ

to meromorphic modular forms of weight χ. See 14.7. The effect of U on q-
expansions is ∑

aνq
ν 7→

∑
apνq

ν .

If χ is “positive enough” (see 14.7 for a precise statement) then U takes holo-
morphic modular forms of weight χ to holomorphic modular forms of weight χ.
Every ordinary modular form has the same q-expansion as an ordinary modular
form whose weight is bounded from above (see 15.15). For example, such weight
lies in (−∞, p+ 1]g for p inert. It is ≤ g(p+ 1) if p is totally ramified.

We always have an identity of q-expansions between V ◦ U and a certain
operator constructed from the operators Θχi

; see 14.7.1 for the general formula.
For instance, if p is totally split then

V Uf(q) =

g∏

i=1

(
Id−Θp−1

χi

)
f(q),

while if p is inert we have

V Uf(q) =
(
Id−

g∏

i=1

Θp−1
χi

)
f(q).

The product appearing in the split case is typical of the general case. If we
write the operator on the right hand side as Id − Λ, then on the one hand
we have the classical identity V ◦ U = Id − Λ, but on the other hand Λ has
a complicated expression (involving addition and composition) in terms of the
basic theta operators which makes its study difficult. However, in the inert case
we can improve and further our results.

• Assume that p is inert in L. In this case we study in §16 two phenomena. The first
is modular forms of parallel weight, the notion of parallel filtration (the definition
can be made in the general case as well) and the behavior of those under U , V
and θ = Θχ1

· · ·Θχg
. For example, in 16.13 we prove that every ordinary form of

parallel weight is congruent to an ordinary form of parallel weight lying in the
range [2, p+ 1].

The second phenomenon is that of Θχ1
-cycles. This suffices to study all q-

expansions obtained by “twists”. Following N. Jochnowitz we establish several
combinatorial facts concerning such cycles. For g > 1 it appears that the struc-
ture is much richer than in the elliptic case.

Our main results concerning the p-adic theory are the following. We define a p-
adic modular form as an equivalence class of Cauchy sequences of classical modular
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forms of level µN , withN prime to p, with respect to an appropriate p-adic topology;
see 10.8. A choice of cusp allows one to identify a p-adic modular form with a p-
adic uniform limit of q-expansions of classical modular forms of a fixed level µN ;
see 10.10 and 10.11. Thus, this definition is in the spirit of Serre’s original definition
in the one dimensional case [Se] and we are able to present a theory very similar to
that of loc. cit. In particular, a p-adic modular form has a well defined weight in a
p-adic completion X̂ of the group of universal characters X; see 10.11.

On the other hand, one may define p-adic modular forms as regular functions on
a formal scheme along lines established by Katz [Ka2], [Ka4] (who works mostly in
the unramified case); see 11.4. The group (OL⊗Z Zp)

∗ acts on this ring of regular

functions and we interpret X̂ as p-adic characters of (OL⊗Z Zp)
∗. We prove that

the notions of a modular form in Serre’s approach and Katz’ approach agree under
minor restrictions: one may then identify a modular form of weight χ ∈ X̂ with a
regular function transforming under the action of the group (OL⊗Z Zp)

∗ by the
character χ; see 11.11.

Using this, we extend the definition of the theta operators defined modulo p to
p-adic operators that agree with those in Katz [Ka4] when defined; see 12.15, 12.23
and 12.26. This allows us to present many examples of p-adic modular forms;
see 12.27.

The arithmetic of (p-adic) Hilbert modular forms has already seen some major
achievements through Hida’s theory and the association of Galois representations
to Hilbert modular forms by A. Wiles and R. Taylor. The subject continues to de-
velop rapidly and as the final version of this manuscript is written, related work by
P. Kassaei on p-adic modular forms over Shimura curves, by A. Abbes-A. Mokrane,
M. Kisin-K. F. Lai and E. Nevens on canonical subgroups of abelian varieties, and
by F. Diamond and collaborators on the Serre conjectures for Hilbert modular
forms are presumed to appear soon. The connection and mutual applications be-
tween these theories and the theory exposed below is yet to be explored and many
interesting problems still need to be resolved. Among which, the construction of
analytic families and eigenvarieties of Hilbert modular forms, the issue of bound-
edness from below of filtrations of Hilbert modular forms, a theory of theta cycles
and the applications of the canonical subgroup to over-convergence. The authors
hope to return to some of these topics in a future work.
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2 Notations.

2.1 Notation. Let L be a totally real number field. Let p be a prime of Z. Let

• OL be the ring of integers of L;

• g = [L : Q] be the degree of L over Q;

• DL be the different ideal of L over Q and dL be the discriminant;

•
{(

I, I+
)}

be fractional OL-ideals, with the natural notion of positivity, forming
a set of representatives of the strict class group of L i. e., of the isomorphism
classes of projective OL-modules of rank 1 with a notion of positivity;

• K be a Galois closure of L. Fix embeddings K ↪→ Qp and K ↪→ C;

• {γ:L→ K} be the set of distinct embeddings of L into K;

• {P|Pdivides p} be the primes of OL above p. For each prime P over p, let πP ∈
OL be a generator of P⊗Z Zp such that πP 6∈ P′ for any other prime P′ over p
different from P;

• LP be the completion of L at P and OLP
be its ring of integers;

• eP be the ramification index of P over p;

• kP = OL/P and fP = [kP : Fp]. Denote by W(kP) the Witt vectors of kP.

Let k be a perfect field of characteristic p such that k contains isomorphic copies
of the residue fields {kP}P|p of the prime ideals of OL over p. Let σ: k → k be the
absolute Frobenius on k sending x 7→ xp. Let σ:W(k) → W(k) be the Frobenius
automorphism – the unique lift of σ to the Witt vectors W(k) of k. For each
prime P of OL over p let

{
σ̄P,i: kP = OL/P −−→ k

}
i=1,...,fP

(resp.
{
σ̂P,i:W

(
kP

)
−−→W(k)

}
i=1,...,fP

)

be the set of different homomorphisms from the residue field kP of OL at P to k
(resp. from W

(
kP

)
to W(k)) ordered so that

σ ◦ σ̄P,i = σ̄P,i+1 (resp. σ ◦ σ̂P,i = σ̂P,i+1).

Then

OL ⊗
Zp

W(k) =
∏

P

OLP
⊗
Zp

W(k) =
∏

P

( fP∏

i=1

OLP
⊗

W(kP)
W(k)

)
,
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where for each prime P the last isomorphism is induced by applying OLP
⊗W(kP)(·)

to the isomorphism

(
σ̂P,1, . . . , σ̂P,fP

)
:W

(
kP

)
⊗
Zp

W(k) ∼−→
fP∏

i=1

W
(
k
)
.

For each prime P and for 1 ≤ i ≤ fP, denote by

eP,i ∈ OL⊗
Z

W(k)

the associated idempotent.

Let p be a prime of OK over p and fix an embedding OK/p ↪→ k. Let σ be a lifting
to OKp

of the absolute Frobenius on OK/p. For every prime P of OL over p let
{
σP,i:OLP

−−→ OKp

}
i=1,...,fP

be extensions of the homomorphisms
{
σ̂P,i

}
i=1,...,fP

to homomorphisms from the

P-adic completion OLP
of OL to the p-adic completion OKp

of OK .

2.2 Definition. Let

G := ResOL/Z

(
Gm,OL

)
: Schemes −−→ Groups

be the Weil restriction of Gm,OL
to Z i. e., the functor associating to a scheme S

the group
(
Γ(S,OS)⊗ZOL

)∗
. If T is a scheme, we write

GT := G ×
Spec(Z)

T.

If T = Spec(R), we write GR for GT . For any scheme T define

XT := HomGR

(
GT ,Gm,T

)

as the group of characters of GT . We often write X for XOK
.

3 Moduli spaces of abelian varieties with real multiplication.

3.1 Note carefully. Throughout this paper we fix a fractional ideal I with its
natural positive cone I+, among the ones chosen in 2.1. Below, we discuss Hilbert
moduli spaces and Hilbert modular forms, where the polarization datum is fixed
and equal to

(
I, I+

)
. Our notation, though, does not reflect that. When we are

compelled to consider the same notions with all the polarization modules chosen
in 2.1 simultaneously, this will be explicitly mentioned.

3.2 Definition. Let S be a scheme. Let N be a positive integer. Denote by

M
(
S, µN

)
→ S

the moduli stack over S of I-polarized abelian varieties with real multiplication
by OL and µN -level structure. It is a fibred category over the category of S-schemes.

7



If T is a scheme over S, the objects of the stack over T are the I-polarized Hilbert-
Blumenthal abelian schemes over T relative to OL with µN -level structure i. e.,
quadruples

(
A, ι, λ, ε

)
consisting of

a) an abelian scheme A→ T of relative dimension g;

b) an OL-action i. e., a ring homomorphism

ι:OL ↪→ EndT (A);

c) a polarization
λ: (MA,M

+
A ) ∼−→(I, I+)

i. e., an OL-linear isomorphism of sheaves on the étale site of T between the
invertible OL-module MA of symmetric OL-linear homomorphisms from A to its
dual A∨ and the ideal I of L, identifying the positive cone of polarizations M+

A

with I+;

d) an OL-linear injective homomorphism

ε:µN ⊗
Z

D−1
L ↪−→ A,

where for any scheme S over T we define
(
µN ⊗

Z
D−1
L

)
(S) := µN (S)⊗

Z
D−1
L .

We require that the following condition, called the Deligne-Pappas condition, holds:

(DP) the morphism A⊗OL
MA −−→ At is an isomorphism.

Let p be a prime. Suppose that S is a scheme over Zp. Denote by

M
(
S, µN

)ord

the open substack of M
(
S, µN

)
whose objects are the I-polarized abelian schemes,

with real multiplication by OL and with µN -level structure, that are geometrically
ordinary.

3.3 Remark. If N ≥ 4, the level structure of type µN is rigid [Go2, Lem. 1.1] and
hence M

(
S, µN

)
is represented by a scheme over S.

Furthermore, M
(
S, µN

)
is geometrically irreducible over S. To see this one may

reduce to the case S is the spectrum of Z localized at a prime p. By the theory of
local models cf. [DePa], the geometric fibers are locally irreducible. Thus, it suffices
to prove that the fibers are geometrically connected.

Consider first the case N prime to p. Replace the scheme M
(
Z(p), µN

)
with its

Satake compactification, X. It is normal, projective and flat over Z(p) [Ch]. One
then argues that in the Stein factorization X → Y → Spec(Z(p)), the scheme Y is
integral. By Zariski’s main theorem and complex uniformization it follows that Y =
Spec(Z(p)) and, hence, that the geometric fibers of X → Spec(Z(p)) are connected.

Since M
(
Fp, µN

)
is dense in X ⊗Fp, it is also geometrically connected.

It remains to consider the covering M
(
Fp, µprN

)
→ M

(
Fp, µN

)ord
. The irre-

ducibility of M
(
Fp, µprN

)
follows from a monodromy argument as in [Ri, §III].
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3.4 Γ0

(
D
)
-level structure. Let N be an integer and let D be an ideal of OL prime

to N . Let T be a scheme. A I-polarized abelian scheme over T with real multipli-
cation by OL and µN and Γ0

(
D
)
-level structures is a quintuple

(
A, ι, λ, ε,H

)
/T,

where
(
A, ι, λ, ε

)
is a I-polarized abelian scheme over T with real multiplication

by OL and µN -level structure, and H is an OL-invariant closed subgroup scheme

H ↪−→ A,

such that H is isomorphic to the constant group scheme
(
OL/D

)
locally étale on T .

If S is a scheme, let
M
(
S, µN ,Γ0(D)

)
−−→ S

be the moduli stack over S of I-polarized abelian varieties with real multiplication
by OL and µN ×Γ0(D)-level structure. If T is an S-scheme, the objects of the stack
over T consist of I-polarized abelian schemes over T with real multiplication by OL
and µN and Γ0

(
D
)
-level structures.

3.5 Definition. Let T be a scheme. We say that an abelian scheme π:A → T
with OL-action ι:OL ↪→ EndT (A) satisfies the Rapoport condition if

(R) π∗Ω
1
A/T is a locally free OT ⊗ZOL-module.

Let S be a scheme. Denote by

M
(
S, µN

)R

the open substack of M
(
S, µN

)
whose objects are the I-polarized abelian schemes

with real multiplication by OL, with µN -level structure and satisfying the Rapoport
condition.

3.6 Remark. We make several observations concerning the Rapoport condition.

1) A quadruple
(
A, ι, λ, ε

)
as in (a)-(d) of 3.2 satisfying (R) automatically satisfies

(DP). It follows from [Ra, Cor. 1.13] and the characteristic 0 theory.

2) If dL is invertible in S, then (R) and (DP) are equivalent. See [DePa, Cor. 2.9].

3) Suppose that S is a scheme over Zp. A quadruple
(
A, ι, λ, ε

)
as in (a)-(d) of 3.2,

such that A→ S is geometrically ordinary, automatically satisfies (R). Using that
(R) is an open condition, one reduces to the case S = Spec(k) where k is an alge-
braically closed field of characteristic p. Now, H1

crys(A/W(k)) is a free module of
rank 2 over OL⊗W(k) [Ra, Lem. 1.3] that can be identified with the Dieudonné
module of the p-divisible group A[p∞]. Since A is ordinary, A[p∞] decomposes
as A[p∞]0⊕A[p∞]et and so H1

crys(A/W(k)) decomposes as the sum of the re-
spective Dieudonné modules M 0 and M et. Since A admits an OL-polarization
by [Ra, Prop. 1.12], the OL⊗W(k)-modules M0, M et are isogenous, hence iso-
morphic (this uses that OL⊗W(k) is a product of discrete valuation rings). It
follows that M0 is a free OL⊗W(k)-module. Since M0/pM0 ∼= H0(A,Ω1

A/k) as
OL⊗ k-modules, the Rapoport condition holds.

4) We have open immersions

M
(
S, µN

)ord
↪−→M

(
S, µN

)R
↪−→M

(
S, µN

)
.
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Fiberwise over S, the complement of M
(
S, µN

)R
in M

(
S, µN

)
has codimension

at least 2. See [DePa, Prop. 4.4].

3.7 Remark. Let N1 and N2 be positive integers such that N2|N1 and N2 ≥ 4.
The morphism

M
(
S, µN1

)
−−→M

(
S, µN2

)

is étale. Its image is open. Let s ∈ S be a geometric point with residue field of
characteristic l. Consider the induced étale morphism

M
(
k(s), µN1

)
−−→M

(
k(s), µN2

)
.

Then
• if l|N1, but l 6 |N2, the map is not surjective and its image coincides with the

ordinary locus;
• otherwise the map is surjective.

Assume that R is a local artinian ring with residue field of characteristic l. Suppose
that N1N

−1
2 = lk. Then, the morphism from M

(
S, µN1

)
to its image in M

(
S, µN2

)

is Galois with Galois group isomorphic to

AutOL

(
µN1N

−1
2
⊗
Z

D−1
L

)
'
(
OL/N1N

−1
2 OL

)∗
=
(
OL/l

kOL
)∗
.

4 Properties of G.
The notation is as in 2.2. The characters of G over a scheme S are the weights of
Hilbert modular forms over S. For this reason we study them in some detail in
this section. Special emphasis is reserved to positive characteristic. An important
phenomenon is that if p ramifies in L, there exist characters over OK (a normal
extension of OL) which coincide in characteristic p. This explains why the kernel of
the q-expansion map in characteristic p is generated by g relations if p is inert in L
and by a single relation if p is totally ramified. We also investigate the existence of
“exotic” weights (as opposed to the universal ones) over artinian local rings such
as Witt vectors of finite length.

4.1 Definition. (The universal characters) The homomorphism of OK-algebras

OL⊗
Z
OK

∏
γ
γ⊗ id

−−−−−−→
∏

γ:L→K

OK

defines a morphism of OK-schemes

GOK

∏
γ
χγ

−−−−−−→
∏

γ:L→K

Gm,OK
.

The characters {χγ |γ:L→ K} are called the basic characters of GOK
. Denote by

X
†
OK
⊂ XOK

:= HomOK

(
GOK

,Gm,OK

)

the cone spanned by the basic characters. We also use the notation

X
† = X

†
OK

, X = XOK
.

10



Define Nm to be the character which is the product of the basic ones.

Let T be a scheme over OK . The subgroup X
U
T of the character group XT of GT ,

spanned by the basic characters, is called the subgroup of universal characters.

4.2 The generic fiber. The group scheme GQ is a torus. Let K be the fixed Galois
closure of L over Q, then the universal characters induce an isomorphism

GK

∏
γ
χγ

−−−−−−→
∏

γ:L→K

Gm,K .

In fact, OL⊗ZK

∏
γ
γ⊗ id

−−−−−−→ ∏
γ:L→K K is an isomorphism.

4.3 The group scheme GZp
. We have

GZp

∼−→
∏

P|p

GP,

where GP = ResOLP
/Zp

(
Gm,OLP

)
for all primes P of OL over p. This follows

from the isomorphism OL⊗Z Zp
∼−→∏P|pOLP

. For each P the natural inclusion

W(kP)→ OLP
defines a closed immersion of group schemes

ResW(kP)/Zp

(
Gm,W(kP)

)
↪−→ GP.

The group scheme ResW(kP)/Zp

(
Gm,W(kP)

)
is a torus. Let k be a field containing

the fields kP for all primes P. Then for every P we have canonical isomorphisms

ResW(kP)/Zp

(
Gm,W(kP)

)
×

Spec
(
Zp

) Spec
(
W(k)

) ∼−→
∏

kP→k

Gm,W(k)
∼−→G

fP

m,W(k).

4.4 The special fiber of GZp
. Let P be a prime of OL over p. We have an exact

sequence
0 −−→ G

P,u
Fp
−−→ G

P
Fp
−−→ G

P,ss
Fp
−−→ 0,

where G
P,u
Fp

stands for the maximal unipotent subgroup of G
P
Fp

and G
P,ss
Fp

is the

semisimple part. The natural inclusion kP ↪→ OLP
/pOLP

defines a subgroup
scheme

ReskP/Fp

(
Gm,kP

)
↪−→ G

P
Fp

mapping isomorphically to G
P,ss
Fp

. In particular, the exact sequence above is split.

If k is a field containing kP = OL/P, then

ReskP/Fp

(
Gm,kP

)
×

Spec
(
Fp

) Spec(k) ∼−→
∏

kP→k

Gm,k
∼−→G

fP

m,k

is a split torus. In particular, if k contains all the residue fields of OK at all primes
above p, the reduction map

XOK
−−→ Xk

11



is surjective and, hence, Xk is spanned by the universal characters. As shown in
Example 4.7, the reduction map is not an isomorphism in general.

4.5 Remark. We have

Xk =
∏

P


 ∏

i=1,...,fP

χZ
P,i


 ,

where χP,i is the character of the torus G
P,ss
Fp

∼= ReskP/Fp
(Gm,kP

) defined over k
by the homomorphism σ̄P,i of 2.1.

4.6 Example: the inert case. Suppose that p is inert in L. Then the morphisms
defined in 4.1 are isomorphisms after tensoring with Zp. In particular, GZp

is a
torus. The natural morphisms of character groups

X
Fp
←−− XOK

−−→ XK

are all isomorphisms.

4.7 Example: the totally ramified case. Suppose that the prime p is totally ramified
in L and g > 1. Let P be the unique prime above p and fix an isomorphism
OL/pOL ∼= kP[T ]/

(
T g
)
. Then

(
G

P
Fp

)
(R) =

(
R⊗ kP[T ]/(T g)

)∗

for any kP-algebra R. In particular, the toric part of G
P
Fp

is one dimensional. The
natural morphism of character groups

XOK
−−→ X

Fp

has a non-trivial kernel. In particular, all the basic characters have the same reduc-
tion Ψ.

4.8 Exotic characters of G. Let k be a perfect field of positive characteristic p.
Let Wm+1(k)→Wm(k) be the canonical surjective homomorphism on truncated
Witt vectors. It is defined by a principal ideal (ε) satisfying pε = 0. Consider the
induced reduction homomorphism

α: XWm+1(k) −−→ XWm(k).

Let
χ:GWm+1(k) −−→ Gm,Wm+1(k)

be a character. Write

GWm+1(k) := Spec(A), Gm,Wm+1(k) = Spec

(
Wm+1(k)

[
t,

1

t

])
.

Then
χ ∈ Ker(α) ⇐⇒ χ(t) = 1 + εa, a ∈ A/pA

12



with a satisfying
∆(a) = a⊗ 1 + 1⊗ a, u(a) = 0,

where ∆ (resp. u) is the comultiplication (resp. counit) of A. Hence the kernel of α
is

Ker
(
α
)

= Homk−GR

(
Gk,Ga,k

)
.

Let Guk be the unipotent part of Gk. As soon as it is non-trivial, the group Ker(α) is
not finitely generated. In fact, there exists a surjective homomorphism Gk → Ga,k

and it is acted upon by

Endk−GR

(
Ga,k

) ∼−→
{
f ∈ k[X]| f ∈ k[Xp], f(0) = 0

}
,

where the group structure on the right hand side is induced by composition. In
particular, as soon as p is ramified, XWm+1(k) is not finitely generated and hence is
not generated by the basic characters.

The reader may have noticed that this phenomenon cannot occur for g = 1. The
phenomenon of exotic weights, and the exotic Hilbert modular forms associated
to them, may only occur for g > 1 in the presence of ramification. However, this
“pathology” is a peculiarity of artinian bases and disappears in the truly p-adic situ-
ation. The situation is different when we consider the characters that lift to Wm(k)
for all integers m.

4.9 Definition. (The formal characters) Let Ĝ be the smooth formal group over

Spf(Zp) associated to the group scheme G. Let ÔK be the completion of OK with
respect to the ideal pOK . Define

X
ÔK

(
Ĝ

)
= Hom

ÔK

(
Ĝ×̂

Spf
(
Zp

)Spf
(
ÔK
)
, Ĝ

m,ÔK

)

as the group of formal characters of Ĝ over Spf(ÔK). For any character χ ∈ XOK

define χ̂ to be the induced element of X
ÔK

(Ĝ).

4.10 Proposition. The natural morphism

∏

γ:L→K

χ̂Z
γ −−→ X

ÔK

(
Ĝ

)

is an isomorphism.

Proof: Consider the following natural diagram over ÔK

G
ÔK

←−− G
K̂x
x

G
\p

ÔK

G
\1

K̂x
y

G
\p,1

ÔK

ξ−→ G
\1

ÔK

,
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where G
\1

ÔK

(resp. G
\1

K̂
) stands for the completion of G

ÔK
(resp. G

K̂
) along the

identity section, where G
\p

ÔK

stands for the completion of G
ÔK

along the special

fiber G
ÔK/pÔK

and where G
\p,1

ÔK

stands for the completion of G
ÔK

at the identity

section of G
ÔK/pÔK

. Let G = Spec(A). Then

a) using that A is a domain and Krull’s theorem, one deduces that all the arrows
in the diagram are inclusions at the level of the algebras of regular functions;

b) since G is smooth over Spec(Z), we have that G
\1

ÔK

is the formal spectrum of a

power series ring over ÔK . Hence, the associated algebra is p-adically complete.

In particular, the natural map ξ:G
\p,1

ÔK

→ G
\1

ÔK

induces an isomorphism at the

level of the algebras of regular functions;
c) under this isomorphism the underlying diagram of algebras is commutative.

A similar diagram exists replacing G with Gm,Z. To any element of X
ÔK

(
Ĝ
)
, one

can associate a formal character of G
\p

ÔK

and hence, by the diagram above and b),

an element in
X
K̂

(
G
\1

K̂

)
:= Hom

K̂

(
G
\1

K̂
,G
\1

m,K̂

)
.

On the other hand to any character of GK (resp. of G), one can associate an element

in X
K̂

(
G
\1

K̂

)
(resp. in X

ÔK

(
Ĝ
)
). In particular, we obtain a commutative diagram

X
∼−−→ XKy

yt

X
ÔK

(
Ĝ
) s−−→ X

K̂

(
G
\1

K̂

)
.

By 4.2, we have GK ∼=
∏
γ:K→LGm,K . Hence, t is an isomorphism. By (a) the map s

is injective. Hence, all the arrows in the diagram of characters are isomorphisms.
This proves the claim.

Let B be a ring with an ideal p such that B/p is of characteristic p. In the rest of
this section we define a certain filtration {XB,p(n)} on the group of characters XB

of G×Spec(Z) Spec(B). If B is a p-adic ring and an OK-algebra, the topology of XB

induced by this filtration is separated and we study the resulting completion X̂B,p.
The motivation is that p-adic modular forms “à la Serre” over B, defined in 10.8,
have a well defined weight in X̂B,p.

4.11 Definition. Let B be a ring with an ideal p such that B/p is of character-
istic p. For any non-negative integer n define

XB,p(n) :=
{
χ ∈ XB |χ:

(
OL/p

nOL
)∗ −−→

(
B/pnB

)∗
is trivial

}
.

Define
X̂B,p := lim

∞←n
XB/XB,p(n).

We suppress the index p if no confusion is likely to arise.

4.12 The structure of X̂B,p. Suppose that B is an OK-algebra and that p is a
maximal ideal. Note that XB/XB,p(1) is isomorphic to XB/pB/XB/pB(1). It follows
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from 4.4 that XB/XB,p(1) consists of universal characters and

XB/XB,p(1)
∼−→Hom

(
(OL/pOL)∗, (B/p)∗

)
=
∏

P|p

Hom
(
k∗P, (B/p)∗

)
.

Since

Ker
((
B/pn+1

)∗ →
(
B/pn

)∗)
= 1 + pn (mod pn+1) ∼= pn/pn+1,

it is killed by p. In particular, for any n ≥ 1 we have that p kills XB,p(n)/XB,p(n+1).

Suppose that B is flat over OK . We aim to prove that

∩nXB,p

(
n
)

=
{
1
}
.

Let B̂ := limnB/p
n. Let σ1, . . . , σg:L → K denote the distinct embeddings of L

in K. Let χ1, . . . , χg be the associated basic characters of ResOK/Z

(
Gm,OK

)
as

in 4.1. The flatness of B over Z implies that XB = χZ
1 × · · · × χZ

g ; see 4.13. Sup-

pose χ ∈ ∩nXB,p(n). Write χ = χa1
1 · · ·χ

ag
g . By assumption the homomorphism

χ: (OL⊗Z Zp)
∗ → B̂∗ is trivial. Let U ⊂ (OL⊗Z Zp)

∗ and V ⊂ OL⊗Z Zp be
subgroups of finite index where the exponential map is defined and induces an
isomorphism exp:V ∼−→U . The map log

B̂
◦χ ◦ exp:V −−→ B̂, given by l⊗ z 7−→∑g

i=1 aiσi(l)z, is the zero map and factors through the completion ofK at the prime
ideal p ∩OK . The independence of the embeddings σ1, . . . , σg gives that ai = 0 for
every i = 1, . . . , g i. e., that χ = 1 as claimed.

4.13 Lemma. Suppose that B is a ring flat over OK . Then

1. we have
XB = XOK

=
∏

γ:L→K

χZ
γ ;

2. the topology on XB induced by the system of subgroups {XB,p(n)}n∈N is sepa-
rated, i. e.

∩n∈NXB,p(n) =
{
1
}
;

3. finally, X̂B,p is independent of p and is the product of
• a finite group of order prime to p isomorphic to

∏
P|p Hom

(
k∗P, (B/p)∗

)
;

• a topological group isomorphic to Zgp.

Proof: The flatness implies that XB ↪−→ XB⊗Z Q. Claim (1) follows from 4.1.
Claim (2) follows from 4.12. Note that XB,p(1) is a free abelian group of rank g.
Consider

X̂B,p(1) := lim
∞←n

XB,p(1)/XB,p(n).

By 4.12 the group XB,p(n)/XB,p(n + 1) is killed by p for n ≥ 1. Hence pnXB,p(1)
is contained in XB,p(n). We obtain a continuous surjective homomorphism

lim
∞←n

XB,p(1)/p
n
XB,p(1) −−→ X̂B,p(1).

The group on the left hand side is isomorphic to Zgp as topological groups. It follows

from (2) that X̂B,p(1) has no p-torsion. Hence, X̂B,p(1) is isomorphic to Zgp. We
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conclude from 4.12 that X̂B,p = X̂B,p(1)× XB,p/XB,p(1). This proves claim (3).

4.14 Examples. In the inert case X̂B,p is the direct product of a cyclic subgroup of
order pfp − 1 and a free Zp-module with basis

{
χp1χ

−1
2 , . . . , χpgχ

−1
1

}
. In the totally

ramified case X̂B,p is the direct product of a cyclic subgroup of order p − 1 and

a free Zp-module with basis
{
χp−1

1 , χ2χ
−1
1 , . . . , χgχ

−1
1

}
(where one can obtain a

similar basis with any χi in place of χ1).

5 Hilbert modular forms.

5.1 Definition. Let S be a scheme. Let χ be an element of XS . A I-polarized
Hilbert modular form f over S of weight χ and level µN is a rule associating to

i. any affine scheme Spec(R) over S;

ii. any I-polarized Hilbert-Blumenthal variety (A, ι, λ, ε) over Spec(R) with µN -
level structure;

iii. any generator ω of Ω1
A/R as R⊗ZOL-module,

an element f
(
A, ι, λ, ε, ω

)
of R i. e.,

(A, ι, λ, ε, ω) 7−→ f(A, ι, λ, ε, ω),

with the following properties:

I. the value f
(
A, ι, λ, ε, ω

)
depends only on the isomorphism class over Spec(R) of

the I-polarized Hilbert-Blumenthal variety (A, ι, λ, ε, ω) with µN -level structure
and with section ω;

II. the rule f is compatible with base change i. e., if φ:R → B is a ring homomor-
phism

f

((
A, ι, λ, ε, ω

)
×

Spec(R)
Spec(B)

)
= φ

(
f(A, ι, λ, ε, ω)

)
;

III. if α ∈ G(R) = (R⊗ZOL)∗, then

f(A, ι, λ, ε, α−1ω) = χ(α)f(A, ι, λ, ε, ω).

Denote by M
(
S, µN , χ

)
the Γ(S,OS)-module of such functions.

5.2 Remark. The notation is as in 3.4. One defines I-polarized Hilbert mod-
ular forms of weight χ and level µN × Γ0(D) in the obvious way. Denote by
M
(
S, µN ,Γ0(D), χ

)
the Γ(S,OS)-module of such functions.

5.3 Remark. The formation of the space of modular forms does not commute
with base change. In fact, it is not even true that, given a morphism of schemes
T → S, the map

M
(
S, µN , χ

)
⊗

Γ(S,OS)
Γ(T,OT ) −−→M

(
T, µN , χ

)
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is surjective. For example, one can take S = Spec(OL) and T = Spec(kP) for
some prime ideal P of OL. By [vdG, Lem. I.6.3], the weight χ =

∏
γ χ

aγ
γ of non-

zero modular forms over OL must satisfy the condition that aγ ≥ 0. See 4.1 for
the notation. Examples show that this is not necessary if T is of characteristic p.
See 7.12.

5.4 Definition. Suppose that N ≥ 4. Let R be a ring and let χ ∈ XR. By 3.3
there exists a universal I-polarized Hilbert-Blumenthal abelian scheme with µN -
level structure

(AU, ιU, λU, εU)

over M
(
Z, µN

)
. The pull-back of the sheaf π∗Ω

1
AU/M(Z,µN )R to the Rapoport lo-

cus M
(
R,µN

)R
, defined in 3.5, is a locally free OM(R,µN )R ⊗ZOL-module of rank 1.

Hence, it defines a cohomology class

c ∈ H1

(
M
(
R,µN

)R
,
(
OM(R,µN )R ⊗

Z
OL
)∗
)
.

Let Lχ be the invertible sheaf over M
(
R,µN

)R
associated to the cohomology class

defined by the push-forward of c via the map χ

H1

(
M
(
R,µN

)R
,
(
OM(R,µN )R ⊗

Z
OL
)∗
)

χ−−→ H1

(
M
(
R,µN

)R
, O∗M(R,µN )R

)
.

See [Ra, §6.8].

5.5 Proposition. 1. To define a I-polarized Hilbert modular form f of weight χ

and level µN over a ring R is equivalent to define a section of Lχ over M
(
R,µN

)R
.

2. For χ, χ′ ∈ XR we have a canonical isomorphism

Lχ⊗Lχ′
∼−→Lχχ′

as invertible sheaves on M
(
R,µN

)R
.

5.6 Remark. By definition, Hilbert modular forms are only defined over the
Rapoport locus. It is interesting to note that although one can make sense of Hilbert
modular forms of parallel weight (i. e., Nmk) over the whole moduli space, this is
not possible for non parallel weight. For example, when p is maximally ramified
in OL the invertible sheaf Lψ (ψ any basic character) does not extend as an invert-
ible sheaf over the whole moduli space [AG].
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6 The q-expansion map.

6.1 Uniformization of semiabelian schemes with OL-action. Let R be a noetherian
normal excellent domain complete and separated with respect to an ideal I such
that

√
I = I. Let S := Spec(R) and S0 = Spec(R/I). Let S\S0 be the open

subscheme defined by the complement of S0 in S. Then we have an equivalence of
categories between

(OL-DD) the category of 1-motives

q:B −→ A−1D−1
L ⊗

Z
Gm

(
S\S0

)
,

where
• A and B are projective OL-modules of rank 1;
• q is OL-linear;
• the OL-module M := AB is endowed with a notion of positivity so that(

AB−1, (MB−2)+
) ∼=

(
I, I+

)
.

The motive is subject to the degeneration condition that for any m = ab ∈ AB

such that m ∈ M+ the element of the fraction field of A associated to a
(
q(b)

)
∈

Gm(S\S0) belongs to I. Here, we identify A with the character group of the
torus A−1D−1

L ⊗Z Gm,Z.
The morphisms from an object q:B −→ A−1D−1

L ⊗Z Gm

(
S\S0

)
to a second

object q′:B′ −→ (A′)−1D−1
L ⊗Z Gm

(
S\S0

)
are defined by the OL-linear maps

(
A
)−1 −−→

(
A′
)−1

such that in
B

q
−→ A−1D−1

L ⊗Z Gm

(
S\S0

)
y

B′
q′

−→ (A′)−1D−1
L ⊗Z Gm

(
S\S0

)

there exists a left vertical arrow making the diagram commute. Note that the de-
generation condition implies that q and q′ are injective. Hence, if such map exists
it is unique.

(OL-Deg) the category whose objects consist of semiabelian schemes G over S
endowed with an OL-action such that
• G×S

(
S\S0

)
is an abelian scheme with OL-action and with polarization mod-

ule isomorphic to (I, I+);
• G×S S0

∼= AD−1
L ⊗Z Gm,S0

, where A is a projective OL-module of rank 1.
The morphisms are the homomorphisms as semiabelian schemes commuting with
the OL-action.

The semiabelian scheme G associated to a 1-motive q:B→ A−1D−1
L ⊗Z Gm(S\S0)

is usually denoted by (
A−1D−1

L ⊗
Z

Gm,S

)
/q(B).

See [Ra] for details.

6.2 Remark. We gather some properties of this construction.
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i) We have an isomorphism :
((

A−1D−1
L ⊗

Z
Gm,S

)
/q(B)

)
×
S
S0
∼= A−1D−1

L ⊗
Z

Gm,S0
.

ii) For any integral OL-ideal D we have an exact sequence of group schemes
over S\S0

0→
(

A

DA

)
(1) −→

(
A−1D−1

L ⊗
Z

Gm,S/q(B)

)[
D
]
−→ D−1B/B→ 0,

where (A/DA)(1) is the Cartier dual of the constant group scheme A/DA.

iii) The module of invariant differentials ωG/S of G relative to S satisfies

ωG/S
∼−→
(
(A−1D−1

L )∨⊗
Z
R
)dt
t
∼−→
(
A⊗

Z
R
)dt
t
,

where Rdt/t is the module of invariant differentials of Gm,S relative to S.

iv) The OL-module of symmetric OL-linear homomorphisms from the abelian
scheme G×S

(
S\S0

)
to its dual is canonically isomorphic to

HomOL

(
B, (A−1D−1

L )∨
)

= B−1A = MB−2 = M−1A2

and it is endowed with a notion of positivity induced by the one on M .

6.3 Tate objects. Fix projective OL-modules A and B of rank 1. Fix a notion of
positivity on M := AB such that

(
AB−1, (MB−2)+

) ∼=
(
I, I+

)
. Fix a rational

polyhedral cone decomposition {σβ}β of the dual cone to M+
R ⊂ MR, which is

invariant under the action of the totally positive units of OL and such that, modulo
this action, the number of polyhedra is finite. Let

S := M∨⊗
Z

Gm,Z.

For any σβ we obtain an affine torus embedding S ⊂ Sσβ
. Let S∧σβ

be the spectrum
of the ring obtained by completing the affine scheme Sσβ

along the closed subscheme
Sσβ ,0 = Sσβ

\S with reduced structure. Over the base Sσβ
one has a canonical 1-

motive giving rise over S∧σβ
\Sσβ ,0 to a I-polarized generalized Tate object

Tate(A,B)σβ
=
(
A−1D−1

L ⊗
Z

Gm,S∧
σβ
/q
(
B
))
×
S∧

σβ

(
S∧σβ
\Sσβ ,0

)
.

See [Ra] or [Ka1, §1.1]. Define

Z
((

A,B, σβ
))

:= Z((qν))ν∈σβ
.

It can be interpreted as

Spec
(
Z
((

A,B, σβ
)))

= S∧σβ
\Sσβ ,0.

19



6.4 Unramified cusps. A I-polarized unramified cusp of level µN over Spec(R) is
a quadruple (A,B, ε, j), where

a) A and B are fractional ideals such that AB−1 = I;

b) ε:N−1OL/OL
∼−→N−1A−1/A−1 is an OL-linear isomorphism;

c) j:A⊗ZR
∼−→OL⊗ZR is an OL⊗ZR-linear isomorphism.

6.5 Remark. i) By 6.2, the equality AB−1 = I identifies I with MTate(A,B)σβ
,

the group of OL-linear symmetric homomorphisms from Tate(A,B)σβ
to its dual,

and the cone I+ with the cone M+
Tate(A,B)σβ

of polarizations. Thus, we obtain a

canonical polarization datum

λcan:
(
MTate(A,B)σβ

,M+
Tate(A,B)σβ

)
∼−−→

(
I, I+

)
.

ii) By 6.2, the isomorphism ε defines a canonical µN -level structure on the abelian
scheme Tate(A,B)σβ

.

iii) The isomorphism j defines a canonical isomorphism
(

Ω1

Tate(A,B)σβ
/
(
S∧

σβ
\Sσβ,0

)
)
⊗
Z
R ∼−→OL⊗

Z

(
R⊗

Z
OS∧

σβ
\Sσβ,0

)
.

In some situations one has a canonical choice of j. For example:

a) if R is a Q-algebra we get

jcan:A⊗
Z
R ∼−→

(
A⊗

Z
Q
)
⊗
Q
R ∼−→L⊗

Q
R =

(
OL⊗

Z
Q
)
⊗
Q
R;

b) if A is an integral OL-ideal of norm invertible in R (e.g. A = OL), then the
natural inclusion A ↪→ OL induces a canonical isomorphism

jcan:A⊗
Z
R ∼−→OL⊗

Z
R.

c) if pnR = 0 and pn divides N , then ε induces by duality an isomorphism

A/NA
∼−→OL/NOL

and, consequently, a canonical isomorphism

jε:A⊗
Z
R ∼−→OL⊗

Z
R.

6.6 The q-expansion. Let Spec(R) be an affine scheme. Let f be an element of
M
(
R,µN , χ

)
i. e., a I-polarized Hilbert modular form over Spec(R) of weight χ

and level µN . Denote

f
(
Tate(A,B), ε, j

)
:= f

(
Tate(A,B)σβ

×
Spec(Z)

Spec(R), λcan, ε,
dt

t

)

and call it the q-expansion of f at the unramified cusp (A,B, ε, j).
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6.7 A variant. Let D be an integral OL-ideal prime to N . A I-polarized cusp of
level µN ×Γ0(D) over an affine scheme Spec(R) is a quintuple (A,B, ε,H, j), where
(A,B, ε, j) satisfy (a)-(c) in 6.4 and

H ↪−→ Tate(A,B)σβ
×

Spec(Z)
Spec(R)

denotes an OL-invariant closed subgroup scheme isomorphic étale locally to the
OL-constant group scheme

(
OL/D

)
.

Let f be an element of M
(
R,µN ,Γ0(D), χ

)
i. e., a I-polarized Hilbert modular

form over Spec(R) of weight χ and level µN × Γ0(D) in the sense of 5.2. Denote

f
(
Tate(A,B), ε,H, j

)
:= f

(
Tate(A,B)σβ

×
Spec(Z)

Spec(R), λcan, ε,H,
dt

t

)

and call it the q-expansion of f at the cusp (A,B, ε,H, j).

6.8 Theorem. Let (A,B, ε, j) be an unramified cusp over R. Then the element
f
(
Tate(A,B), ε, j

)
does not depend on the cone decomposition {σβ}. Moreover, it

is of the form

f
(
Tate(A,B), ε, j

)
=

∑

ν∈AB+∪{0}

cνq
ν ∈ R[[qν ]]ν∈AB+∪{0}.

Proof: [Ra, §4.6] and [Ra, Prop. 4.9].

6.9 Remark. It is proven in [Ch, Thm. 4.3 (X)] that R[[qν ]]U
2

ν∈AB+∪{0}, the invari-

ants under the action of squared units U 2 of OL, is the completed local ring of the
minimal compactification of M

(
Spec(R), µN

)
at the cusp (A,B, ε, j).

6.10 Theorem. (q-expansion principle) Let R be a ring and let (A,B, ε, j) be an
unramified cusp defined over R. Let f be an element of M

(
R,µN , χ

)
.

i. If f
(
Tate(A,B), ε, j

)
= 0, then f = 0;

ii. If (A,B, ε, j) is defined over a subring R0 of R and f
(
Tate(A,B), ε, j

)
belongs

to R0[[q
ν ]]ν∈AB+∪{0}, then f belongs to M

(
R0, µN , χ

)
.

Proof: See [Ra, Thm. 6.7].

6.11 The comparison with the complex theory. Let

σ1, . . . , σg:L −−→ R

be the real embeddings of L. Let A and B be ideals of OL such that I = AB−1.
Fix an OL-linear isomorphism

ε:N−1OL/OL
∼−→N−1A−1/A−1.
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Define the group

ΓN
(
B⊕(ADL)−1

)
:=
{(

a b
c d

)
| a ∈ 1 +NOL, d ∈ OL, b ∈ (BADL)−1,

c ∈ NBADL, ad− bc = 1
}
.

It acts on the g-fold product of the Poincaré upper half plane Hg by
(
a b
c d

)
(z1, . . . , zg) :=

(
. . . ,

σi(a)zi + σi(b)

σi(c)zi + σi(d)
, . . .

)

i=1,...,g

.

The moduli space M
(
C, µN ) classifying I-polarized abelian varieties A over C with

real multiplication by OL and µN -level structure, in the sense of 3.2, is isomorphic,
as an analytic manifold, to

ΓN
(
B⊕(ADL)−1

)
\Hg.

The abelian variety corresponding to τ ∈ Hg is

Aτ := Cg/
(
Bτ + (ADL)−1

)
.

The µN -level structure on Aτ is induced by ε. The vector space M
(
C, µN , χ

)
of

I-polarized modular forms of level µN and weight χ =
∏g
i=1 χ

ai
σi

can be viewed,
more classically, as the vector space of holomorphic functions

Hg f−→ C
τ = (z1, . . . , zg) 7→ f(τ),

on which the action of the modular group ΓN
(
B⊕(ADL)−1

)
is defined by the

automorphic factor

jχ

(
µ,
(
z1, . . . , zg

))
=

g∏

i=1

(
σi(c)zi + σi(d)

)ai
with µ =

(
a b
c d

)
;

c.f. [vdG] or [Go3]. Fix a modular form f . Assuming B = OL, one deduces that f ,
as a function, is invariant with respect to the translations on Hg

τ 7→ τ + α, α ∈ (ADL)−1.

In particular, it has q-expansion at the cusp
(
i∞, . . . , i∞

)

f
(
q
)

:= a0 +
∑

ν∈A+

aνq
ν with qν := exp2πiTrL/Q(ντ),

where
TrL/Q(ντ) := σ1(ν)z1 + . . .+ σg(ν)zg.

By 6.2 we have a natural OL-linear isomorphism

jcan:A⊗
Z

C ∼−→OL⊗
Z

C.

Note that under the exponentiation map z 7→ exp2πiTrL/Q(z), where we use the
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identification Cg = (ADL)−1⊗Z C, we have

Cg/
(
Bτ + (ADL)−1

) ∼= (C∗)g/q(B),

with q(B) equal to the image of Bτ . By the discussion in [Ra, §§6.13-6.15] it follows
that

f
(
q
)

= f
(
Tate(A,B), ε, jcan

)
.

7 The partial Hasse invariants.

In this section we define a canonical set of Hilbert modular forms that we call “par-
tial Hasse invariants”. The name comes from the fact that these modular forms
factor the Hasse invariant according to the OL-structure. The partial Hasse invari-
ants are defined in characteristic p and, in general, do not lift to characteristic zero.
Indeed, because the weight of a non-cusp form in characteristic zero must be par-
allel, none of the partial Hasse invariants hP,i defined below lifts to characteristic
zero, unless p is maximally ramified in the totally real field L. In this case, there
is a unique partial Hasse invariant hP, which is a g-th root of the total Hasse in-
variant h (h is, up to a sign, the determinant of the Hasse-Witt matrix). In certain
cases, see §20, one can guarantee the existence of a lift of a power of hP; in general,
the existence of such a lift, in particular to an Eisenstein series, is closely related to
properties of special values of the p-adic zeta function of L and, hence, to Leopoldt’s
conjecture (cf. [Go1]).

The partial Hasse invariants, however, play a crucial role in the theory in several
ways: they provide canonical generators for the kernel of the q-expansion map; they
allow one to compactify the moduli scheme M(k, µpN ).

The results and the methods of this section appear already in [Go2] in the un-
ramified case. In that case, the divisors of the partial Hasse invariants yield an
interesting stratification of the moduli space M(k, µN ), [Go1] and [GoOo].

7.1 Notation. Let k be a perfect field of characteristic p. Assume that it contains
the residue fields kP = OL/P for all primes P of OL over p. Let R be a local ring
with maximal ideal m and residue field R/m = k.

For each representative (I, I+) of the strict class group of L fixed in 2.1 choose an
element of I generating I⊗Z Zp as OL⊗Z Zp-module. It provides each I-polarized
abelian scheme with real multiplication by OL over a Zp-scheme with a polarization
of degree prime to p.

7.2 Definition. Let n ≥ m ≥ 1 be positive integers. Let N be an integer such
that N ≥ 4 and N is prime to p. Assume that R is an OK-algebra. Define

M
(
R/mm, µpnN

) ψ−−→ M
(
R/mm, µN

)ord

by (
A, ι, λ, εpnN

)
|−−→

(
A, ι, λ, εN

)
.

By 3.7, it is a Galois cover of smooth schemes over R/mm with group

Γn := AutR/mm

(
µpn ⊗

Z
D−1
L

)
=
(
OL/p

nOL
)∗
.
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We can evaluate χ ∈ X on Γn as follows: Γn = G(Z/pnZ)
χ−→(Z/pnZ)∗ → (R/mm)∗.

Let
M
(
R/mm, µpnN

)Kum φ−−→ M
(
R/mm, µN

)ord

be the quotient of the above cover by the group of elements of
(
OL/p

nOL)∗ killed
by {

χ:
(
OL/p

nOL
)∗ →

(
R/mm

)∗|χ is a universal character
}
.

Let Gm,n be the Galois group of φ. By [DeRi, Thm. 4.5] it acts transitively on the
fibers of φ.

7.3 Remark. If m = n = 1, then G := G1,1
∼−→∏P|p

(
OL/P

)∗
.

7.4 Definition. Let χ ∈ XR/mm be a character in the sense of 2.2. Write

µpn = Z[t]/
(
tp

n − 1
)
.

Denote by
dt

t
∈ Ω1

D−1
L
⊗Z µpn

×
Spec(Z)

Spec
(
Z/pnZ

)

the canonical generator, as a free OL/p
nOL-module of rank 1, of the submodule of

invariant differentials of Ω1
D−1

L
⊗Z µpn

×Spec(Z) Spec
(
Z/pnZ

)
.

Suppose that n ≥ m. Let

π:
(
AU, ιU, λU, εUpnN

)
−−→M

(
R/mm, µpnN

)

be the I-polarized universal abelian scheme with real multiplication by OL and
µpnN -level structure. We use the notation:

ωcan := εpnN,∗

(
dt

t

)
∈ π∗Ω1

AU/M
(
R/mm,µpnN

).

We can also view ωcan as a translation invariant differential in Ω1

AU/M
(
R/mm,µpnN

).
See 7.5.

Define a
(
χ
)

to be the unique I-polarized modular form of weight χ and level µpnN

over R/mm satisfying the following. Let T be a R/mm-algebra. Let (A, ι, λ, ε) be a
I-polarized Hilbert-Blumenthal abelian scheme over T with µpnN -level structure.
Let ω be an OL⊗Z T -generator of H0

(
A,Ω1

A/T

)
. Then, there is a unique element γ

of
(
OL⊗Z T

)∗
such that

ω = γ−1 ε∗

(dt
t

)
.

Define
a
(
χ
)(
A, ι, λ, ε, ω

)
:= χ (γ) .

7.5 Some explanations. Decompose εUpnN := εUpn×εUN . Since n ≥ m, the embedding

εUpn :
(
µpn ⊗

Z
D−1
L

)
×M

(
R/mm, µpnN

)
→ AU
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defines an isomorphism on tangent spaces at the origin relative to M
(
R/mm, µpnN

)
.

By duality, one gets a canonical isomorphism of the translation invariant differen-
tials relative to M

(
R/mm, µpnN

)
. This defines a canonical OL⊗ZO

M

(
R/mm,µpnN

)-
generator of the translation invariant differentials of AU over M

(
R/mm, µpnN

)
:

ωcan := εpnN,∗

(
dt

t

)
∈ Ω1

AU/M
(
R/mm,µpnN

).

By 5.4, the pull-back ψ∗(Lχ) of the invertible sheaf Lχ, defined on M
(
R/mm, µN

)R
,

to M
(
R/mm, µpnN

)
is obtained as the push-out of Ω1

AU/M
(
R/mm,µpnN

). The sec-

tion ωcan of Ω1

AU/M
(
R/mm,µpnN

) defines by push-out a section of ψ∗(Lχ). Us-

ing the equivalence between sections of ψ∗
(
Lχ
)

and modular forms of weight χ
and level µpnN over R/mm, we find that this section coincides with the modular
form a(χ).

7.6 Proposition. We have
(
OL⊗

Z
O

M

(
R/mm,µpnN

)
)
ωcan = π∗Ω

1

AU/M
(
R/mm,µpnN

).

For any α ∈ Γn =
(
OL/p

nOL
)∗

, the induced action by pull-back

[
α
]
:π∗Ω

1

AU/M
(
R/mm,µpnN

) −−→ π∗Ω
1

AU/M
(
R/mm,µpnN

)

sends
ωcan |−−→ α−1 ωcan.

Proof: The first claim follows from 7.5. Decompose εUpnN := εUpn × εUN . Since the

universal I-polarized abelian scheme AU over M
(
R/mmµpnN

)
is the pull-back of

the universal I-polarized abelian scheme over M
(
R/mm, µN

)
, the automorphism α

lifts to an automorphism of AU, which we denote by α and induces the automor-
phism [α] on Ω1

AU/M
(
R/mm,µpnN

). By definition, α
(
εUpn

)
=
(
εUpn ◦ 1⊗α

)
. Hence,

(
εUpn ◦ 1⊗α

)
∗

(
dt

t

)
= εUpn,∗

(
(1⊗α)

dt

t

)

= α−1ωcan.

7.7 Corollary. For any α ∈
(
OL/p

nOL
)∗

, the induced action by pull-back,

[
α
]
: Γ
(
M
(
R/mm, µpnN

)
, ψ∗

(
Lχ
))
−−→ Γ

(
M
(
R/mm, µpnN

)
, ψ∗

(
Lχ
))
,

maps
a
(
χ
)
|−−→ χ−1(α)a

(
χ
)
.

7.8 Corollary. The section ωcan descends to a section over M
(
R/mm, µpnN

)Kum
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of the relative differentials of the pull-back by φ of the universal I-polarized abelian
scheme over M

(
R/mm, µN

)
. We denote it ωcan by abuse of notation.

The section a
(
χ
)

of ψ∗
(
Lχ
)

descends to a section, denoted a
(
χ
)

by abuse of

notation, of φ∗
(
Lχ
)

over M
(
R/mm, µpnN

)Kum
. It is the push-out via χ of ωcan.

If α belongs to the Galois group Gm,n of φ, then

[
α
](
ωcan

)
= α−1ωcan and

[
α
](
a
(
χ
))

= χ−1(α)a
(
χ
)
.

7.9 Proposition. 1. The section a
(
χ
)

induces a trivialization of the invertible

sheaf φ∗
(
Lχ
)
on M

(
R/mm, µpnN

)Kum
.

2. For any universal characters χ and χ′ the section a
(
χ
)
⊗ a
(
χ′
)

of Lχ⊗Lχ′ is

sent by the isomorphism defined in 5.5 to the section a
(
χχ′

)
of Lχχ′ .

3. For any universal character χ the q-expansion of a
(
χ
)

at any I-polarized cusp
(A,B, ε, jε) (see 6.5 and 6.6) of level µpnN over R/mm is 1.

Proof: (1) and (2) are clear. Let Tate(A,B)σβ
be a Tate object with µpnN -level

structure ε. The modular form a(χ) takes the value 1 on the section ε∗
(
dt/t

)
. The

latter coincides with the section of the translation invariant relative differential
defined by jε as in 6.5. This proves (3).

7.10 Remark. The Proposition justifies the introduction of the covering φ in 7.2.

7.11 First construction of the Hasse invariants: the geometric definition. Let R
be a k-algebra. Let (A, ι, λ, ε) be a I-polarized Hilbert-Blumenthal abelian variety
over R satisfying the condition (R) defined in 3.5. Let ω be an OL⊗ZR-basis
of H0

(
A,Ω1

A/R

)
. Using λ, and the choices in 7.1, we get an isomorphism

H0
(
A,Ω1

A/R

) ∼−→H0
(
A∨,Ω1

A∨/R

)
.

Here A∨ is the dual abelian scheme. Via the canonical isomorphism

H0
(
A∨,Ω1

A∨/R

) ∼−→HomR

(
H1(A,OA), R),

the element ω determines a generator

η ∈ H1(A,OA)

as OL⊗ZR-module.

The absolute Frobenius on A induces a σ-linear map OA → OA and consequently
a σ-linear map

F:H1(A,OA) −−→ H1(A,OA).

Let P be a prime of OL above p and let 1 ≤ i ≤ fP. With the notation of 2.1, the
σ-linearity of F implies that for each idempotent eP,i ∈ OL⊗ZR

F
(
eP,i−1 · η

)
∈
(
OL⊗

Z
R
)
eP,i · η.
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7.12 Definition. Define the modular form of weight χpP,i−1χ
−1
P,i over k

hP,i ∈M
(
k, χpP,i−1χ

−1
P,i

)

by the rule

F
(
eP,i−1 · η

)
≡ hP,i

((
A, ι, λ, ω

))
eP,i · η mod P.

See 4.5 for the notation.

The modular forms
{
hP,i

}
P,i

are called the generalized or partial Hasse invari-

ants. If ψ ∈ Xk is a weight of the form ψ =
∏

P,i

(
χpP,i−1χ

−1
P,i

)aP,i , with aP,i ∈ N,
define the modular form of weight ψ

hψ :=
∏

P,i

h
aP,i

P,i .

Define h := hNmp−1 as the Hasse invariant.

7.13 Remark. It is easy to verify that all the conditions given in the definition 5.1
of modular forms of a given weight are satisfied.

7.14 Proposition. 1. The q-expansion of the partial Hasse invariant hP,i at any
I-polarized unramified cusp defined over Fp is 1.

2. The modular form h coincides, up to a sign, with the determinant of the Hasse-
Witt matrix.

3. The subgroup of Xk spanned by the weights of the partial Hasse invariants coin-
cides with the subgroup Xk(1) of the elements χ ∈ Xk such that χ

(
(OL/pOL)∗

)
≡ 1

in k.

Proof: Part (1) is proved via an explicit computation using Tate objects; c.f. [Go1,
Thm. 2.1(2)]. Part (2) is clear. We next prove part (3). The set of basic charac-
ters {χP,i : P|p, 1 ≤ i ≤ fP} forms a basis for the lattice Xk. The subgroup H

of Xk spanned by the weights
{
χpP,i−1χ

−1
P,i : P|p, 1 ≤ i ≤ fP

}
of the partial Hasse

invariants is contained in Xk(1). We conclude by remarking that Xk/Xk(1) ∼=∏
P|p HomGr

(
k∗P, k

∗
)

has cardinality
∏

P|p

(
pfP − 1

)
, the same as Xk/H.

7.15 Examples. Assume that the prime p is inert in L. Let χ1, . . . , χg be the basic
characters of Gk ordered so that σ ◦ χi = χi+1. Then we get precisely g partial
Hasse invariants h1, . . . , hg of weights χpgχ

−1
1 , χp1χ

−1
2 , . . . , χpg−1χ

−1
g . In this case

(
χpgχ

−1
1

)Z × · · · ×
(
χpg−1χ

−1
g

)Z
= Xk(1) ↪−→ Xk = χZ

1 × · · · × χZ
g .

Assume that p = Pg is totally ramified in L. Let Ψ be the unique basic character
of Gk. Then we get a unique partial Hasse invariant hΨp−1 which is a g-th root of
the Hasse invariant and is of weight Ψp−1. We have

(
Ψp−1

)Z
= Xk(1) ↪−→ Xk = ΨZ.
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7.16 Second construction of the Hasse invariants: the definition by descent theory.
From 7.8 we deduce the following result:

7.17 Corollary. The section a
(
χ
)

of the sheaf φ∗
(
Lχ
)

on M
(
R/mm, µpnN

)Kum

descends to a section of Lχ on M
(
R/mm, µN

)ord
if and only if

χ(α) = 1 ∈ (R/mm)∗ for all α ∈
(
OL/p

nOL
)∗
.

7.18 Corollary. Let P be a prime of OL over p and let 1 ≤ i ≤ fP. The
section a

(
χpP,i−1χ

−1
P,i

)
descends to a section of the invertible sheaf Lχp

P,i−1
χ−1

P,i

over M
(
k, µN

)ord
. It coincides with the restriction of the partial Hasse invari-

ant hP,i defined in 7.12.

Proof: The two modular forms have the same weight and the same q-expansion at
any Fp-rational cusp. Hence, they must be equal.

7.19 Definition. Let

Rm,n := Γ
(
M
(
R/mm, µpnN

)Kum
, O

M

(
R/mm,µpnN

)Kum

)
.

Define the map
r: ⊕
χ∈X

U
R/mm

M
(
R/mm, µN , χ

)
−−→ Rm,n

by the formula

f = ⊕
χ
fχ |−−→ r(f) :=

∑

χ

φ∗
(
fχ
)

a
(
χ
) .

Let α ∈
(
OL⊗Z W(k)

)∗
. If f is a I-polarized modular form on M

(
R/mm, µN

)

define
[α]f

(
A, ι, λ, ω

)
:= f

(
A, ι, λ, α−1ω

)
.

This provides a graded action of
(
OL⊗ZR

)∗
on ⊕χ∈X

U
R/mm

M
(
R/mm, µN , χ

)
.

On the other hand the action of Gm,n, the Galois group of M
(
R/mm, µpnN

)Kum →
M
(
R/mm, µN

)ord
, and the canonical projection

(
OL⊗Z Z/pnZ

)∗ → Gm,n, defined

in 7.2, induce an action of
(
OL⊗ZR

)∗
on Rm,n.

7.20 Proposition. The map r defined in 7.19 has the following properties:

1. it is
(
OL⊗ZR

)∗
-equivariant;

2. let
(
A,B, ε, jε

)
be a I-polarized unramified cusp over R/mm of level µpnN ;

see 6.4–6.5. The following diagram is commutative

⊕χ∈X
U
R/mm

M
(
R/mm, µN , χ

) r−→ Rm,n

↘
y

R/mm⊗Z Z
((

A,B, σβ
))
.
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The notation is the following. The ring Z
((

A,B, σβ
))

is the base over which
Tate(A,B)σβ

lives by 6.3, the vertical map is the unique one so that the pull-

back of the universal abelian scheme over M
(
R/mm, µpnN

)
is Tate(A,B)σβ

and

the diagonal map is the q-expansion map at the cusp
(
A,B, ε, jε

)
defined in 6.6.

Proof: Claim (1) follows from 7.8. Claim (2) follows from 6.6 and 7.9.

7.21 Corollary. The kernel of the q-expansion map is independent of the cusp.

7.22 Theorem. Assume that m = n = 1. In particular, R = k. Then

1) the kernel of r consists of the ideal I

I := 〈hP,i − 1 : P|p, 1 ≤ i ≤ fP〉,

where the hP,i’s are the partial Hasse invariants defined in 7.12;

2) the map r is surjective. In particular, the ring R1,1 is canonically isomorphic to
the ring of I-polarized modular forms ⊕χ∈Xk

M
(
R/m1, µN , χ

)
modulo the ideal

defined by the kernel of the q-expansion map.

Proof: We prove (1). The fact that the q-expansion map is zero on the ideal I
follows from 7.14. Let

f =
∑

χ

fχ ∈ ⊕
χ∈Xk

M
(
k, µN , χ

)

be the sum of non-zero I-polarized modular forms fχ of weight χ such that r(f) = 0.
Thanks to part (3) of 7.14, multiplying the modular forms fχ’s by suitable powers
of the partial Hasse invariants, we can assume that the set of weights {χ} appearing
in the decomposition of f does not contain two distinct elements defining the same
character

(
OL/pOL

)∗ → k∗. Consider the function r(f) =
∑
χ φ
∗
(
fχ
)
/a(χ). It is

the constant function 0 by assumption. By (2) of 7.20 the group
(
OL⊗Z k

)∗
acts

on φ∗
(
fχ
)
/a(χ) via the character χ. Hence, each φ∗

(
fχ
)
/a(χ) is zero i. e., fχ = 0.

We conclude that f = 0.

Next, we prove claim (2). The Galois group G of M
(
k, µpN

)Kum →M
(
k, µN

)ord
is isomorphic to

∏
P|p k∗P and, hence, has order prime to p. For every

χ ∈ Xk/Xk(1) ∼= HomGr

(
(OL/pOL)∗, k∗

)
,

let
Rχ1,1 := {b ∈ R1,1|g · b = χ(g) b ∀g ∈ G} .

By Kummer theory we get a direct decomposition

R1,1 = ⊕
χ∈Xk/Xk(1)

Rχ1,1

into R1,0-modules of rank 1. If χ ∈ Xk and b ∈ Rχ1,1, then b ·a(χ) is a modular form

of weight χ on M
(
k, µpN

)Kum
. By 7.8 it descends to a I-polarized modular form

of weight χ on M
(
k, µN

)ord
. Multiplying it by a suitable power hs of the Hasse

invariant, defined in 7.12, we may assume that b · a(χ)hs extends to a modular

form f of weight χ ·Nms(p−1) on M
(
k, µN

)R
. By construction, r(f) = b.
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7.23 Corollary. The ring
(
⊕χ∈Xk

M
(
R/m, µN , χ

))
/I is a domain, finitely gen-

erated over R/m.

Proof: Use the Theorem and 3.3.

7.24 Exotic modular forms. We prove the existence of I-polarized modular forms
of weight χ over artinian bases for non-universal χ. A fortiori such modular forms
can not be lifted to characteristic 0. We first need the following

7.25 Lemma. Suppose that p is ramified. Let k be a finite field and let m > 0 be
an integer. There exist infinitely many characters χ ∈ XWm+1(k) such that
1) χ is non-trivial and is not a universal character;
2) χ

(
(OL/p

m+1OL)∗
)

= 1 in Wm+1(k).

Proof: We use the notation and the results of 4.8. Let χ ∈ Ker(α) be a non-trivial
character of GWm+1(k). Let χ̃:Gk → Ga,k be the associated non-trivial homomor-
phism of group schemes. Denote by σ the absolute Frobenius on k. Since k is a
finite field, there exists a positive integer s such that k is killed by σs − Id. Let
b ∈ G

(
Wm+1(k)

)
(e.g. b ∈ G(Z/pm+1Z) = (OL/p

m+1Z)∗) and let b̄ ∈ Gk(k) be the
reduction of b modulo p. Then χ(b) = 1 if and only if χ̃(b̄) = 0. In particular, the
character χ′ ∈ Ker(α) associated to (σs−Id)◦χ̃ is non-trivial and kills b̄. Therefore,
χ′ satisfies the requirements of the lemma.

7.26 Construction. Let χ be as in 7.25. We have constructed in 7.8 a section a(χ)
of φ∗

(
Lχ
)
. By the properties of χ and using 7.8, it descends to a section of Lχ

over M
(
Wm+1(k), µN

)ord
. Let h be the Hasse invariant defined on M(k, µN )R

in 7.14. We shall prove in 11.9 that there exists an integer t such that ht lifts to

a modular form h̄ over M
(
Wm+1(k), µN

)R
. It has the property that it vanishes

exactly on the complement of the ordinary locus. In particular, there exists an inte-

ger s such that a(χ)h̄s extends to a global section of Lχ1
over M

(
Wm+1(k), µN

)R
,

where χ1 = χ ·Nmst(p−1). Note that χ1 is non-trivial and is not a universal char-
acter.

8 Reduceness of the partial Hasse invariants.
We prove in this section, using local deformation theory of displays, that the divi-
sor of a partial Hasse invariant is reduced. This is an analogue of Igusa’s theorem
that states that the zeroes of the supersingular polynomial are simple. This re-
sult is the basis for establishing a notion of filtration for Hilbert modular forms
of any (not necessarily parallel) weight, and for later computations regarding the
operators U , V and ΘP,i.

The following sections deal with the deformation theory of abelian varieties
with real multiplication satisfying Rapoport’s condition using Zink’s theory of dis-
plays [Zi] (many of the results we are using can be found in the introduction to this
paper). For the general case, and for extensive discussion of the relation between
this deformation theory and the crystalline theory, see [AG].

8.1 Deformation theory of abelian varieties with RM over the Rapoport locus. Let(
A0, ι0, λ0

)
be a I-polarized abelian variety with RM by OL over a perfect field k
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of characteristic p satisfying condition (R) defined in 3.5. Let
(
A0[p

∞], ι0
)

be the
associated p-divisible group with OL-action. Let

(
P0,Q0,F0,V

−1
0

)

be the 3n-display in the sense of [Zi] associated to A0[p
∞]. Note that λ0 and the

choices in 7.1 induce a polarization on A0, and hence on A0[p
∞], of degree prime

to p. Let
〈 , 〉0: P0 × P0 −−→W(k)

be the associated non-degenerate pairing of 3n-displays as defined in [Zi]. The action
of OL on A0[p

∞] induces an action of OL on P0 and Q0 such that F0 and V−1
0 are

OL-equivariant. Moreover,
〈lγ, δ〉0 = 〈γ, lδ〉0

for all l ∈ OL⊗Z W(k) and for all γ and δ in P0.

Note that the OL-action on A0[p
∞] induces a decomposition over all primes P

of OL over p:

A0[p
∞] =

∏

P|p

A0[P
∞].

Analogously the OL-action on
(
P0,Q0,F0,V

−1
0

)
and the OL-linearity of F0 and V−1

0

induce a decomposition

(
P0,Q0,F0,V

−1
0

)
=
∏

P|p

(
OL,P ⊗

OL

P0, OL,P ⊗
OL

Q0,F0,V
−1
0

)
.

For each prime P the display
(
OL,P⊗OL

P0, OL,P⊗OL
Q0,F0,V

−1
0

)
is associated

to the p-divisible group A0[P
∞].

8.2 Proposition. The OL⊗Z W(k)-module P0 is free of rank 2. There exist α
and β in P0 such that

P0 =
(
OL⊗

Z
W(k)

)
α⊕

(
OL⊗

Z
W(k)

)
β

and
Q0 =

(
OL⊗

Z
W(k)

)
pα⊕

(
OL⊗

Z
W(k)

)
β.

Moreover,

T0 :=
(
OL⊗

Z
W(k)

)
α and L0 :=

(
OL⊗

Z
W(k)

)
β

are totally isotropic with respect to 〈 , 〉0.

Proof: Noting that P0
∼−→H1,crys

(
A0/W(k)

)
and using [Ra, Lem. 1.3], we deduce

that P0 is a free OL⊗Z W(k)-module of rank 2. The image Q̄0 of Q0 in P̄0 :=
P0/pP0 is isomorphic to H0

(
A∨0 ,Ω

1
A∨

0 /k

)
. Via λ0 it is isomorphic to H0

(
A0,Ω

1
A0/k

)
.

In particular, since condition (R) holds, it is a free OL⊗Z k module of rank 1.
Let β be an element of Q0 generating Q̄0 as OL⊗Z k-module. The quotient P̄0/Q̄0

is isomorphic to Homk

(
H0(A0,Ω

1
A0/k

), k
)

and, hence, it is a free OL⊗Z k-module

of rank 1. Let α ∈ P0 be an element generating P̄0/Q̄0 as OL⊗Z k-module. For
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all γ ∈ P0

〈lγ, γ〉0 = 〈γ, lγ〉0 = −〈lγ, γ〉0.
We conclude that 〈lγ, γ〉0 = 0 for all l ∈ OL⊗Z W(k) and all γ ∈ P0. Hence the
conclusion.

8.3 Notation. For each prime P of OL dividing p and each integer 1 ≤ i ≤ fP, let
eP,i be the associated idempotent of OL⊗Z W(k) defined in 2.1 and let πP ∈ OL
be the generator of the ideal POL,P chosen in 2.1. The elements

e
[1]
P,i := eP,i, e

[2]
P,i := πPeP,i, . . . , e

[eP]
P,i := π

eP−1
P eP,i

form a W(k)-basis of the module
(
OL⊗Z W(k)

)
· eP,i. Let α ∈ P0 be as in 8.2.

Define α
[j]
P,i ∈ P0 by

α
[j]
P,i := e

[j]
P,iα = πj−1

P eP,iα

for every prime P over p and for all 1 ≤ i ≤ fP and 1 ≤ j ≤ eP. Denote by

β
[j]
P,i

the element of L0 such that

〈α[j]
P,i, β

[j]
P,i〉0 = 1, and 〈α[t]

Q,s, β
[j]
P,i〉0 = 0

if α
[t]
Q,s 6= α

[j]
P,i.

For every prime P dividing p, define a total ordering

α
[j1]
P,i1

< α
[j2]
P,i2

{
if i1 < i2;
if i1 = i2 and j1 < j2.

Analogously for the β
[j]
P,i’s. The elements

{
α

[j]
P,i

}
i,j

form an ordered W(k)-basis

of the module OL,P⊗OL
T0. Analogously the elements

{
β

[j]
P,i

}
i,j

form an ordered

W(k)-basis of OL,P⊗OL
L0. By construction

BP :=
{
α

[j]
P,i, β

[j]
P,i

}
i,j

is a symplectic basis for
(
OL,P⊗OL

P0, 〈 , 〉0
)

as a W(k)-module.

Let (
AP BP

CP DP

)

be the matrix of F0⊕V−1
0 on (OL,P⊗OL

T0)⊕ (OL,P⊗OL
L0) with respect to the

given basis. Define c
[1]
P,i and a

[1]
P,i in W(k) by

CP

(
α

[1]
P,i−1

)
= c

[1]
P,i β

[1]
P,i + · · · and AP

(
α

[1]
P,i−1

)
= a

[1]
P,i α

[1]
P,i + · · · .
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8.4 Remark. For primes P, Q of OL over p, we have by construction

〈α[t−1]
Q,s , πQβ

[j]
P,i〉0 = 〈πQα

[t−1]
Q,s , β

[j]
P,i〉0 =

{
〈α[t]

Q,s, β
[j]
P,i〉0 if 2 ≤ t ≤ eQ

〈γ, β[j]
P,i〉0 γ ∈ pP0, if t = eQ + 1.

Hence, for any 2 ≤ j ≤ eP, we have πPβ
[j]
P,i = β

[j−1]
P,i modulo pP0.

8.5 Lemma. Let P be a prime over p;

1. the 2 (fPeP)× (fPeP) matrix (
AP

CP

)

has rank g;

2. for any i, j as above we have

AP

(
α

[j]
P,i

)
∈

eP

⊕
s=1

W(k)α
[s]
P,i+1 and CP

(
α

[j]
P,i

)
∈

eP

⊕
s=1

W(k)β
[s]
P,i+1.

Analogously,

BP

(
β

[j]
P,i

)
∈

eP

⊕
s=1

W(k)α
[s]
P,i+1 and DP

(
β

[j]
P,i

)
∈

eP

⊕
s=1

W(k)β
[s]
P,i+1;

3. the matrix AP is invertible if and only if A0[P
∞] is ordinary.

Proof: The first assertion follows since the map F0⊕V−1
0 is an isomorphism. The

second assertion follows the σ-linearity of F0 and of V−1
0 and from the definition of

the elements α
[j]
P,i and β

[j]
P,i. Note that A0[P

∞] is ordinary if and only if the reduction

of F0 on (OL/P)⊗OL

(
P̄0/Q̄0

)
= T0/PT0 is an isomorphism. This proves the last

assertion.

8.6 Corollary. Let P be a prime over p. Then, either A0[P
∞] is ordinary or it is

connected.

Proof: The 3n-display defined by A0[P
∞] is

(
OL,P⊗OL

P0, OL,P⊗OL
Q0,F0,V

−1
0

)
.

By 8.2, we have that OL,P⊗OL
T0 is free of rank 1 over OL,P⊗Zp

W(k). Consider
the reduction ĀP on T0/PT0 of the matrix AP. By 8.5, Part (2), either ĀP is in-
vertible or nilpotent. The p-divisible group A0[P

∞] is connected if and only if A0[P]
is connected. This is equivalent to ask that ĀP is nilpotent. We conclude by 8.5,
Part (3).

8.7 Proposition. Let P be a prime over p. Assume that A0[P
∞] has p-rank

equal to 0 (equiv. is non-ordinary by 8.6). The universal equi-characteristic defor-
mation space of A0[P

∞], as a principally polarized p-divisible group, is RP :=
k[[ta,b]]1≤a,b≤fpeP

with the relations ta,b = tb,a. The universal display, denoted

by
(
PP,QP,FP,V

−1
P

)
, is given by

PP :=

(
OL,P ⊗

OL

P0

)
⊗

W(k)
W(RP), QP :=

(
OL,P ⊗

OL

Q0

)
⊗

W(k)
W(RP)
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and

LP :=

(
OL,P ⊗

OL

L0

)
⊗

W(k)
W(RP), TP :=

(
OL,P ⊗

OL

T0

)
⊗

W(k)
W(RP).

The matrix of FP⊕V−1
P on TP⊕LP with respect to BP is

(
AP + TPCP BP + TPDP

CP DP

)
,

where TP is the symmetric matrix of Teichmüller lifts
(
w(ta,b)

)
1≤a,b≤ePfP

. The

pairing
〈 , 〉P,

defined extendingOL,P⊗OL
W(RP)-linearly the pairing 〈 , 〉0, is a non-degenerate

pairing of displays such that LP and TP are maximal isotropic submodules of PP.

Proof: It follows form the assumption on the p-rank of A0[p
∞] that (P0,Q0,F0,V

−1
0 )

is a display. The theorem follows from [Zi, §2.2].

8.8 The universal equi-characteristic deformation space of (A0, ι0). By the Serre-
Tate theorem the universal equi-characteristic deformation space Spf

(
Rι
)

of A0

with the OL-action coincides with the universal equi-characteristic deformation
space Spf

(
Rι
)

of A0[p
∞] with the OL-action. Hence,

Spf
(
Rι
)

=
∏

P|p

Spf
(
RP,ι

)
,

where for any prime P we define Spf
(
RP,ι

)
as the universal deformation space

of A0[P
∞] with OL-action.

Fix a prime P. If A0[P
∞] is non-ordinary, Spf

(
RP,ι

)
is the closed subscheme

of Spf(RP) defined by the condition that FP and V−1
P commute with the OL-action

on PP and QP induced by theOL-structures of P0 and Q0. Since
〈
FP(x),V−1

P (y)
〉

=

〈x, y〉σ for all x in PP and all y in QP, we deduce that FP⊕V−1
P is a symplectic

isomorphism. Hence, V−1
P is OL-linear if and only if FP is. This is equivalent to

require that FP restricted to TP i. e., AP + TPCP, is equivariant with respect to
the OL-structure on TP.

8.9 Lemma. The conditions that the restriction of FP to TP is OL-equivariant
are linear in the ta,b’s and are equivalent to the conditions

1. FP

(
α

[1]
P,i

)
∈W(R)α

[1]
P,i+1⊕ . . .⊕W(R)α

[eP]
P,i+1 for all 1 ≤ i ≤ fP;

2. FP

(
α

[j]
P,i

)
= πj−1

P F
(
α

[1]
P,i

)
for all 1 ≤ i ≤ fP and all 1 ≤ j ≤ eP.

Proof: Clear.

8.10 Definition. For any prime P and integers 1 ≤ i ≤ fP and 1 ≤ j ≤ eP let

t
[j]
P,i := ta,b

with a = (i− 1)eP + 1 and b = (i− 1)eP + 1 + (j − 1).

34



8.11 Theorem. Let P be a prime over p. Assume that A0[P
∞] is non-ordinary.

Let Spf
(
RP,ι

)
be the universal equi-characteristic deformation space of A0[P

∞] as
p-divisible group with OL-action. Then, RP,ι is a (fPeP)-dimensional power series
ring

RP,ι = k[[t
[j]
P,i]]i,j .

The associated universal display
(
PP,QP,FP,V

−1
P

)
is given by

PP :=

(
OL,P ⊗

OL

P0

)
⊗

W(k)
W(RP,ι), QP :=

(
OL,P ⊗

OL

Q0

)
⊗

W(k)
W(RP,ι)

and

LP :=

(
OL,P ⊗

OL

L0

)
⊗

W(k)
W(RP,ι), TP :=

(
OL,P ⊗

OL

T0

)
⊗

W(k)
W(RP,ι).

The matrix of FP⊕V−1
P on TP⊕LP with respect to BP is

(
AP + TPCP BP + TPDP

CP DP

)
,

where TP is the matrix determined by

TP

(
α

[j]
P,i

)
=

eP∑

l=1

w
(
t
[l]
P,i

)
πj−1

P α
[l]
P,i

for all integers 1 ≤ i ≤ fP and 1 ≤ j ≤ eP.

Proof: By 8.8 and 8.9, the formal scheme Spf
(
RP,ι

)
is the universal deformation

space of
(
OL,P⊗OL

P0, OL,P⊗OL
Q0,F0,V

−1
0

)
as display with OL-action. By [Zi],

it is also the universal deformation space of A0[P
∞] with the OL-action.

8.12 Corollary. The notation is as above. The formal scheme Spf
(
RP,ι

)
is for-

mally smooth of dimension fPeP.

8.13 Example: the inert case. In this case p remains a prime ideal in OL. We omit
the subscripts P and [j] in the formulas above. The matrix A+ TC mod p of 8.11
is 



0 0 . . . 0 ā1 + t1c̄1
ā2 + t2c̄2 0 . . . 0 0

0 ā3 + t3c̄3 . . . 0 0
...

...
...

...
...

0 0 . . . āg + tg c̄g 0



.

8.14 Example: the totally ramified case. Suppose that there is only one prime
over p which is totally ramified. In this case we omit the subscripts P and i. We

write the coefficients ā
[j]
P,i, c̄

[j]
P,i and the variables t

[j]
P,i as ā[j], c̄[j] and t[j], respectively.
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The matrix A+ TC mod p of 8.11 is



ā[1] + t[1]c̄[1] 0 . . . 0
ā[2] + t[2]c̄[1] + t[1]c̄[2] ā[1] + t[1]c̄[1] . . . 0

...
...

...
...

ā[g] +
∑g
i=1 t[g−i+1]c̄[i] ā[g−1] +

∑g−1
i=1 t[g−i]c̄[i] . . . ā[1] + t[1]c̄[1]


 .

8.15 The Hasse-Witt matrix of the universal equi-characteristic deformation. Let(
A, ι, λ

)
be the universal equi-characteristic object over the universal deformation

space of
(
A0, ι0, λ0

)
. Let

(AP, ιP, λP) := (A, ι, λ) ×
Spf(Rι)

Spf(RP,ι);

the morphism Spf(RP,ι)→ Spf(Rι) =
∏

Q|p Spf(RQ,ι) (see 8.8 for the last equality)

is defined to be the identity on the factor Spf(RP,ι) and the map Spf(RP,ι) →
Spf(k) → Spf(RQ,ι) if Q 6= P. Let IRP,ι

be the kernel of the reduction map

W
(
RP,ι

)
→ RP,ι. By [Me], we get a canonical identification of H1,dR

(
AP/RP,ι

)

with the Lie algebra of the universal vector extension of AP[p∞]. By the definition
of RP,ι and AP we have

AP[p∞] ∼= AP[P∞]×
∏

Q6=P

(
A0[Q

∞]×
k

Spf(RP,ι)

)
.

Hence, for any prime Q over p different from P we get a canonical isomorphism
(OL/Q)⊗OL

H1,dR

(
AP/RP,ι

) ∼=
(
P0/QP0

)
⊗k RP,ι. By 8.11 we have a canonical

identification
(OL/P) ⊗

OL

H1,dR

(
AP/RP,ι

) ∼= PP/IRP,ι
PP.

The exact sequence

0 −−→ Hom
(
H1
(
AP, OAP

)
, RP,ι

)
−−→ H1,dR

(
AP/RP,ι

)

−−→ Hom
(
H0
(
AP,Ω1

AP/RP,ι

)
, RP,ι

)
−−→ 0,

tensored over OL with OL/P (resp. OL/Q for Q 6= P), and the exact sequence

0 −−→ LP/IRP,ι
LP −−→ PP/IRP,ι

PP −−→ TP/IRP,ι
T −−→ 0

(resp.

0 −−→
(
L0/QL0

)
⊗
k

RP,ι −−→
(
P0/QP0

)
⊗
k

RP,ι −−→
(
T0/QT0

)
⊗
k

RP,ι −−→ 0)

are identified. Using λP and the choices in 7.1, we obtain a polarization on A
of degree prime to p. This induces perfect pairings between H0

(
AP,Ω1

AP/RP,ι

)

and H1
(
AP, OAP

)
, and between L/IRι

L and TP/IRP,ι
TP (resp.

(
T0/QT0

)
⊗k RP,ι

and
(
L0/QL0

)
⊗k RP,ι), compatible with the identifications given above.
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Hence, we get canonical isomorphisms

H0
(
AP,Ω1

AP/RP,ι

) ∼−→L0 ⊗
W(k)

RP,ι

and
H1
(
AP, OAP

) ∼−→T0 ⊗
W(k)

RP,ι

so that Frobenius on the left hand side, induced by Frobenius on OAP , corresponds
to Frobenius on the right hand side.

By 8.3, the k-vector space T0/pT0 (resp. L0/pL0) is endowed with k-generators

ᾱ
[j]
Q,i (resp. β̄

[j]
Q,i) defined as the reduction of α

[j]
Q,i (resp. β

[j]
Q,i). Their images induce

canonical RP,ι-generators

{
η
[j]
Q,i

}
Q,i,j

⊂ H1
(
AP, OAP

)

(resp. {
ω

[j]
Q,i

}
Q,i,j

⊂ H0
(
AP,Ω1

AP/RP,ι

)
).

We deduce the following

8.16 Lemma. Let P be a prime over p. Let {Q1, . . . ,Qd} be the set of primes
over p different from P. Assume that A0[P

∞] is not ordinary. The Hasse-Witt

matrix of
(
AP, ιP, λP

)
with respect to the basis

{
η
[j]
Q,i

}
Q,i,j

is canonically identified

with the reduction of the matrix


AQ1

0 0 0
0 · · · AQd

0
0 · · · 0 AP + TPCP




via the quotient map W
(
Rι
)
→ Rι.

8.17 Corollary. Let P be a prime of OL over p. Assume that A0[P
∞] is not

ordinary. Let i be an integer satisfying 1 ≤ i ≤ fP. With the notation of 7.12, we
have

hP,i

(
A, ι, λ, ωα

)
= ā

[1]
P,i + c̄

[1]
P,it

[1]
P,i.

The elements ā
[1]
P,i and c̄

[1]
P,i are the reduction mod p of the element a

[1]
P,i and c

[1]
P,i

defined in 8.3. If ā
[1]
P,i = 0, then c̄

[1]
P,i is invertible by 8.5.

8.18 Corollary. The zero locus WP,i of the partial Hasse invariant hP,i is a
reduced, non-singular divisor. In particular, it is locally irreducible.

The divisor of the Hasse-invariant is equal to
∑

P,i ePWP,i and the WP,i are
normal crossing divisors.

Note that this corollary, as all other results in this section, holds only over the
Rapoport locus; the closure of WP,i can be singular and even locally reducible.

8.19 Theorem. Let f ∈ M
(
k, µN , χ

)
be a I-polarized modular form over k of

weight χ. There is a unique I-polarized modular form g over k having the same
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q-expansion as f at some (hence, any) cusp and such that if g′ is a I-polarized
modular form over k with the same q-expansion of f , then there exist non-negative
integers bP,i for each prime P of OL over p and each integer 1 ≤ i ≤ fP such that

g′ = g
∏

P,i

h
bP,i

P,i ;

see 7.12 for the definition of the partial Hasse invariants hP,i.

Proof: Define g to be a I-polarized modular form satisfying

f = g
∏

P,i

h
aP,i

P,i ,

where the aP,i are chosen maximal non-negative so that g is a holomorphic mod-
ular form. The modular form g is unique with this property by the two previous
corollaries. By 7.14, the modular form g has the same q-expansion of f . It satisfies
the requirement of the Theorem by 7.22.

8.20 Filtrations on modular forms. The notation is as above. Define the filtration
of f , denoted by

Φ(f),

to be the weight of the unique I-polarized modular form g with the properties
described in the Theorem. Since the weight of hP,i is χpP,iχ

−1
P,i, we have

χ = Φ(f)
∏

P,i

(
χpP,i−1χ

−1
P,i

)aP,i

for suitable non-negative integers aP,i.

9 A compactification of M
(
k, µpN

)Kum
.

Fix a field k of characteristic p containing all the finite fields kP; see 7.1. Let
N ≥ 4 be an integer prime to p. In this section we construct a compactification
of M(k, µpN )Kum, which is well suited for the study of the arithmetic of modular
forms. The compactification is normal and it is explicit, in the sense that it is
defined, up to codimension 2, as the scheme resulting from adjoining to M(k, µN )
roots of explicitly given modular forms. The notation is as in 7.2.

9.1 Definition. Let M
(
k, µN

)
be the minimal compactification of M

(
k, µN

)

constructed in [Ch, Thm. 4.3]. It is a projective normal scheme over k obtained by
adding finitely many cusps. Its singular locus consists precisely of the complement

of the Rapoport locus M
(
k, µN

)R
defined in 3.5.

Define
φ:M

(
k, µpN

)Kum −−→M
(
k, µN

)

as the normal closure of M
(
k, µN

)
in M

(
k, µpN

)Kum
via the Galois cover φ with

group G = G1,1, defined in 7.2.

9.2 Lemma. The following properties hold:
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1. the morphism φ is finite;

2. the scheme M
(
k, µpN

)Kum
is projective, irreducible and normal;

3. the scheme M
(
k, µpN

)Kum
is endowed with an action of G and φ represents the

quotient map;

4. the branch locus of φ is a divisor contained in the complement of M
(
k, µN

)ord
.

We use the convention that the cusps are in the ordinary locus.

Proof: Since M(k, µN ) is of finite type over k, it is excellent and, hence, univer-
sally japanese. By [EGA IV2, §7.8.3] we conclude that φ is finite. By [EGA II,
Cor. 6.1.11] we deduce that φ is projective and, by [EGA II, Prop. 5.5.5 (ii)],

that M
(
k, µpN

)Kum
is projective. The quotient of M

(
k, µpN

)Kum
by G is finite

and birational over M
(
k, µN

)
. We deduce that it coincides with M

(
k, µN

)
. This

concludes the proofs of claims (1)-(3). By purity of branch locus, see [SGA 2, X,
Thm. 3.4 (i)], the map φ is ramified along a divisor of M

(
k, µN

)
. By construc-

tion the pre-image of M
(
k, µN

)ord
in M

(
k, µpN

)Kum
is M

(
k, µpN

)Kum
. Hence, φ

is étale over M
(
k, µN

)ord
. Since the cusps are isolated points in the complement

of M
(
k, µN

)ord
, the map φ is unramified also at the cusps. This proves part (4).

9.3 Local charts of M
(
k, µpN

)Kum
. Fix a prime Q of OL over p and an integer

1 ≤ j ≤ fQ. Let

M
(
k, µN

)R
↪→M

(
k, µN

)
,

be the locus where condition (R) holds. The convention is that the cusps satisfy (R).
We are going to give an explicit description of φ in a neighborhood of the generic
point of the divisor WQ,j defined by the partial Hasse invariant hQ,j ; see 8.18.

Define a scheme

φ
R

Q,j :M
(
k, µpN

)Kum,R

Q,j
−−→M

(
k, µN

)R\
∑

(P,i)6=(Q,j)

WP,i

over the complement in M
(
k, µN

)R
of the divisor

∑
(P,i)6=(Q,j)WP,i by adjoining a

pfP − 1-th root of the modular forms hp
fP−1

P,i+1 h
pfP−2

P,i+2 · · ·hP,i for any prime P of OL
over p and a fixed integer 1 ≤ i ≤ fP (we require i = j if P = Q).

1) The identity

(
hp

fP−1

P,i+1 h
pfP−2

P,i+2 · · ·hP,i

)p (
hp

fP−1

P,i+2 h
pfP−2

P,i+3 · · ·hP,i+1

)−1

= hp
fP−1

P,i

for all 1 ≤ i ≤ fP implies that the construction is independent of i for P 6= Q.

2) For every prime P of OL over p and any integer 1 ≤ i ≤ fP we have the

following equality of modular forms on M
(
k, µpN

)Kum
:

a
(
χP,i

)pfP−1
= a

(
χpP,iχ

−1
P,i+1

)pfP−1

a
(
χpP,i+1χ

−1
P,i+2

)pfP−2

· · · a
(
χpP,i−1χ

−1
P,i

)p0

= φ∗
(
hP,i+1

)pfP−1

φ∗
(
hP,i+2

)pfP−2

· · ·φ∗
(
hP,i

)
.
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See 7.8 for the notation. In particular, we have a commutative diagram

M
(
k, µpN

)Kum −−→ M
(
k, µpN

)Kum,R

Q,j

φ

y
yφR

Q,j

M
(
k, µN

)ord −−→ M
(
k, µN

)R\∑(P,i)6=(Q,j)WP,i.

By 7.2 the left hand side is a finite étale morphism, Galois under the group G. In
particular, its degree is equal to

∏
P|p

(
pfP − 1

)
.

9.4 Proposition. The scheme M
(
k, µpN

)Kum,R

Q,j
has the following properties

1) it is irreducible and normal;

2) the morphism φ
R

Q,j is finite, its branch locus is (pfQ − 2)WQ,j and the inverse
image of any irreducible component of WQ,j is irreducible;

3) there is a commutative diagram

M
(
k, µpN

)Kum
↪−→ M

(
k, µpN

)Kum,R

Q,j
↪−→ M

(
k, µpN

)Kum

φ

y φ
R

Q,j

y
yφ

M
(
k, µN

)ord
↪−→ M

(
k, µN

)R\∑(P,i)6=(Q,j)WP,i ↪−→ M
(
k, µN

)
,

where the squares are cartesian and the horizontal arrows are open immersions.

Proof: The finiteness in claim (2) clearly follows from the construction. We prove
claims (1)–(2), and claim (3) for the square on the left hand side. Then, the ex-
istence of the diagram and the rest of claim (3) are deduced from the definition

of M
(
k, µpN

)Kum
and the finiteness in (2).

Let x be a closed point of WQ,j such that x 6∈WP,i for (P, i) 6= (Q, j). Let Ux =

Spec(A) be an affine open neighborhood of x in M
(
k, µN

)R\∑(P,i)6=(Q,j)WP,i over
which every invertible sheaf LχP,i

is trivial. Choose an ordering Q = P1 < · · · < Ps

of the primes of OL over p. Define

B := A
[
X1, . . . , Xs

]
/
(
Xp

fPt−1
t −

(
hPt,i+1

)pfPt · · ·
(
hPt,i

))
t=1,...,s

,

with the abuse of notation that, via the chosen trivialization, the elements hP,i are
now considered as elements of A. As remarked in 9.3 the definition does not depend
on the choice of 1 ≤ i ≤ fPt

for t > 1. Then:
i) B is finite and flat over A of degree

∏s
t=1

(
pfPt − 1

)
;

ii) the group
∏s
t=1 k∗Pt

acts A-linearly on B through roots of unity.

Note that φ−1 (Ux\WQ,j)→ Ux\WQ,j is endowed with an action of G1,1
∼=
∏s
t=1 k∗P

as remarked in 9.3. By 7.8 the morphism φ−1 (Ux\WQ,j)→ Spec
(
B
)

defined in (2)
of 9.3 is equivariant with respect to the action of

∏s
t=1 k∗P. Hence, the map

φ−1 (Ux\WQ,j) −−→ Spec
(
B
[
h−1

Q,j

])

is an isomorphism. In particular, we conclude that B is a domain. Define

B1 := A
[
X1

]
/
(
XpfQ−1

1 −
(
hQ,i+1

)pfQ · · ·
(
hQ,i

))
.
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We know it is a domain. Let

Y =

pfQ−2∑

d=0

YdX
d
t with Yd ∈ Frac (A)

be an element in the fraction field of B1 which is a zero of a monic polyno-
mial g(X) ∈ A[X]. For every prime Q of A, the equation

XpfQ−1
1 −

(
hQ,i+1

)pfQ · · ·
(
hQ,i

)

in the local ring AQ is either Eisenstein, if hQ,j ∈ Q, or separable otherwise. Hence,
Yd ∈ AQ for every d. Since A is normal, we conclude that Yd ∈ A for every d. In par-
ticular, B1 is normal. Moreover, the extension A ⊂ B1 is ramified only along hQ,j =
0 with ramification index pfQ−1. The extension B1 ⊂ B is étale. Hence, B is normal
and A ⊂ B is ramified only along hQ,j = 0 with ramification index pfQ − 1. Let Q
be a prime ideal of A corresponding to an irreducible component of WQ,j . By 8.17
the hP,i are local parameters in A. Thus, the extension B1Q/(X1) = AQ/(hQ,i) ⊂
BQ/(X1) = AQ/(hQ,i)

[
X2, . . . , Xs

]
/
(
Xp

fPt−1
t −

(
hPt,i+1

)pfPt · · ·
(
hPt,i

))
t=2,...,s

is a domain.

9.5 Corollary. The scheme ∪Q,jM
(
k, µpN

)Kum,R

Q,j
is endowed with an action of G

so that the map φ
R

is the quotient map. The open subscheme ∪Q,jM
(
k, µpN

)Kum,R

Q,j

of M
(
k, µpN

)Kum
has codimension 2.

Proof: The first claim is clear. The second follows from 3.6.

9.6 Corollary. The branch locus of φ is exactly the complement of the ordinary
locus in M

(
k, µN

)
. For each prime Q and each 1 ≤ i ≤ fQ, the ramification index

of WQ,i in M
(
k, µpN

)Kum
is pfQ − 1.

Furthermore, let B0 be the local ring of an irreducible component C of WQ,i.

The scheme φ
R−1

(C) is irreducible; let B be its local ring. The extension B0 ⊂ B
is Galois with Galois group

∏
P k∗P and factors as B0 ⊂ Bet ⊂ B where B0 ⊂ Bet

is étale and Galois with Galois group
∏

P6=Q k∗P (corresponding to the equations

{Xp
fPt−1
t − (hPt,i+1)

p
fPt · · · (hPt,i)}t=2,...,s) and Bet ⊂ B is purely ramified with

Galois group k∗Q (corresponding to the equation XpfQ−1
1 − (hQ,i+1)

pfQ · · · (hQ,i)).

Proof: It follows from 9.4.

9.7 Remark. The locus M
(
k, µN

)R
is the locus where the modular forms of

level µN are defined; see 5.1 and 5.4. This is why we need an explicit description of
the map φ over such locus, at least up to codimension 2, as given in the Proposition.
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10 Congruences mod pn and Serre’s p-adic modular forms.

There is already a notion of p-adic Hilbert modular forms in the literature [Ka4,
§1.9], [Hi,§4]. Although this notion is important and useful, the authors of this
paper are not aware of a reference that explains how it stands vis-a-vis a more
direct approach. Recall that the theory of p-adic modular forms began when Serre
introduced the notion of a p-adic modular form of a given level as a q-expansion
which is a p-adic uniform limit of q-expansions of classical modular forms of that
same level.

In this setting, Katz’s approach of defining p-adic modular forms as certain reg-
ular functions on a formal scheme obtained from schemes of the sort M

(
Zp, µpnN

)

merged nicely with Serre’s approach. See [Ka2, Prop. A1.6].

In the Hilbert modular case the development did not follow the same lines. It
seems that the interest was initially in p-adic interpolation of special values of L-
functions [DeRi], [Ka4]. Later efforts were mainly devoted to understanding the
phenomenon of analytic families of Hilbert modular forms and the connection to
completed Hecke algebras; the ensuing theory is now known as Hida’s theory.

The authors of this paper are interested in following Serre’s original approach.
Congruences between modular forms imply congruences between their weights that
suggest defining a p-adic modular form as a q-expansion that is a p-adic uniform
limit of classical modular forms. Such a limit has a well defined weight in the
completion X̂ of X with respect to a system of subgroups depending on p.

We prove that a p-adic modular form of weight χ ∈ X̂ defined in this fashion is
(almost always) the same thing as a p-adic modular form in Katz’s approach, which
is an eigenfunction of character χ. We remark that p-adic modular forms à la Katz
are certain regular functions on the formal scheme

lim
∞←m

(
lim
n→∞

M
(
Wm(k), µpnN

))

(see definition 11.4), and thus correspond to ordinary p-adic modular forms in the
case g = 1, i. e., to p-adic modular forms of growth condition 1.

One virtue of this isomorphism is that the extension of certain derivation opera-
tors ΘP,i (see 12.38) to p-adic modular forms is easily proven. This yields an ample
supply of examples of p-adic modular forms. The results of this section follow the
presentation in Serre, [Se].

10.1 Notation. In this section we fix a complete discrete valuation ring R with
fraction field F of characteristic 0 and residue field k of characteristic p. Let m = (π)
be the maximal ideal of R. Suppose that R is an OK-algebra where K is a normal
closure of L.

10.2 Definition. Let f ∈ M
(
F, µN , χ

)
be a I-polarized modular form over F

with N not necessarily prime to p. Let
(
A,B, ε, j

)
be a I-polarized cusp. Consider

the q-expansion f
(
Tate(A,B), ε, j

)
= a0 +

∑
ν∈(AB)+ aνq

ν of f at the given cusp.
Define

val(f) := sup
{
n ∈ Z| aν ∈ mn ∀ν

}
= inf

{
valπ(aν)

}
.
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10.3 Proposition. The notation is as in 10.2. We have, val(f) > −∞. Moreover,

π−val(f) f ∈M
(
R,µN , χ

)

i. e., is a I-polarized modular form over R.

Proof: To prove that val(f) > −∞ note that, with the notation of 6.3, we have

f
(
Tate(A,B), ε, j

)
∈ F ⊗

Z
Z
((

A,B, σβ
))
.

In particular, the valuation of the coefficients of the q-expansion of f is bounded
from below. Since the q-expansion of π−val(f) f at the given cusp has integral coef-
ficients, we conclude by 6.10 that π−val(f)f is defined over R.

10.4 Lemma. The number val(f) is independent of the chosen cusp.

Proof: By 10.3 we may assume that val(f) ≥ 0 at any cusp. By the q-expansion
principle explained in 6.10 we have that f

(
Tate(A,B), ε, j

)
/πn has coefficients in R

if and only if f/πn is in M
(
R,µN , χ

)
.

10.5 Proposition. Let N ≥ 4 be an integer prime to p. Let fi ∈M
(
R,µN , χi

)
,

i = 1, 2, be a I-polarized modular form of weight χi and level µN . Suppose that
their q-expansions at a I-polarized unramified cusp

(
A,B, ε, j

)
in the sense of 6.6

satisfy
f1
(
Tate(A,B), ε, j

)
6≡ 0 mod m,

and
f1
(
Tate(A,B), ε, j

)
≡ f2

(
Tate(A,B), ε, j

)
mod mn.

Then
χ1 ≡ χ2 mod XR(n).

See 4.11 for the notation XR(n).

Proof: Let f̄i be the image of fi in M
(
R/mn, µN , χi

)
for i = 1, 2. Consider the

forgetful morphism

ψ:M
(
R/mn, µpnN

)
−−→M

(
R/mn, µN

)
.

It is a Galois cover with group

AutOL

(
µpn ⊗DL

)
=
(
OL/p

nOL
)∗
.

Let
r1 = r

(
f̄1
)

and r2 = r
(
f̄2
)

be the associated regular functions on M
(
R/mn, µpnN

)
defined in 7.19. The hy-

pothesis guarantees that r1 = r2. Therefore, if b ∈
(
OL/p

nOL
)∗

is an element of
the Galois group, then

χ1(b)r1 = [b] r1 = [b] r2 = χ2(b)r2.

Hence,
(
1− χ1χ

−1
2 (b)

)
r1 = 0. This implies the claim.
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10.6 Corollary. Let fi ∈ M
(
F, µN , χi

)
for i = 1, 2 be two I-polarized modular

forms. Assume their q-expansions at a I-polarized unramified cusp satisfy

f1
(
Tate(A,B), ε, j

)
≡ f2

(
Tate(A,B), ε, j

)
mod mn.

Then
χ1 ≡ χ2 mod XR

(
n−min

{
val(f1), val(f2)

})
.

Proof: By 10.3 we may assume that f1 and f2 are defined over R. Let mi := val
(
fi
)

for i = 1, 2. Without loss of generality we may assume that m1 ≤ m2. Let Fi :=
π−m1fi for i = 1, 2. By assumption Fi ∈M

(
R,µN , χi

)
and F1 6= 0 modulo m and

F1 ≡ F2 modulo mn−m1 . We conclude using 10.5.

10.7 Corollary. Let f ∈ M
(
F, µN , χ

)
be a I-polarized modular form. Consider

its q-expansion f
(
Tate(A,B), ε, j

)
= a0 +

∑
ν aνq

ν at a I-polarized unramified
cusp. Let

n(χ) := min
{
n ∈ N|χ /∈ XR(n)

}
.

Then
val(a0) ≥ −n(χ) + val

(
f − a0

)
.

Proof: By 10.3 we may assume that f is defined over R. Consider a0 as a modular
form of weight 1 (the trivial character). By corollary 10.6, we have χ ≡ 1 modulo
XR

(
val
(
f − a0

)
− val

(
f
))

. Hence, valπ(a0) ≥ val
(
f
)
≥ −n(χ) + val

(
f − a0

)
as

wanted.

10.8 Definition. (Serre modular forms) Suppose that R is π-adically complete.
A I-polarized p-adic Hilbert modular form à la Serre over F of level µN (N prime
to p) is the equivalence class of a Cauchy sequence

{
fi ∈ M

(
F, µN , χi

)}
i∈N

of
classical modular forms. ‘Cauchy’ means Cauchy with respect to val i. e., that for
any n ∈ N there exists m ∈ N such that

val(fi − fj) ≥ n for all i, j ≥ m.

Two Cauchy sequences {fi}i∈N and {gj}j∈N such that val(fi−gi)→∞ for i→∞
are called equivalent. The next lemma shows that this is a well defined concept.

10.9 Lemma. Let (A1,B1, ε1, j1) be a I-polarized unramified cusp. Let {fi}i
be a Cauchy sequence of I-polarized Hilbert modular forms with respect to the
valuation val1 associated to (A1,B1, ε1, j1). If (A2,B2, ε2, j2) is another unramified
I-polarized cusp with associated valuation val2, then {fi}i is Cauchy also with
respect to val2.

Proof: One reduces to the following assertion. Let gi ∈ M
(
R,µN , χi

)
, i = 1, 2, be

modular forms such that val1(g1 − g2) ≥ n then val2(g1 − g2) ≥ n.

Viewing gi as a modular form on M
(
R/(πn), µpnN

)Kum
we find that g1 − g2

belongs to the kernel of the q-expansion relative to the cusp (A1,B1, ε1, j1) if and
only if val1(g1 − g2) ≥ n. The conclusion follows from Corollary 7.21.

10.10 Definition. (Weight and q-expansions of p-adic modular forms) Let

f =
{
fi ∈M

(
F, µN , χi

)}
i∈N
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be a I-polarized p-adic Hilbert modular form à la Serre over R of level µN . Define
the weight χ ∈ X̂R of f as

χ := lim
i→∞

χi ∈ X̂R.

Fix a I-polarized unramified cusp
(
A,B, ε, j

)
over F . Define the q-expansion of f

at the given cusp by

f
(
Tate(A,B), ε, j

)
:= lim

i→∞
fi
(
Tate(A,B), ε, j

)
.

Finally, define

val(f) := sup
{
n ∈ Z| aν ∈ mn ∀ν

}
= inf

{
valπ(aν)

}
.

10.11 Proposition. The notation is as in the Definition.

1) The weight and the q-expansion at the I-polarized cusp
(
A,B, ε, j

)
of a I-

polarized p-adic modular form f à la Serre are well defined i. e., the limits
exist and do not depend on the choice of Cauchy sequence of classical modular
forms fi defining it;

2) the map

{p-adic Hilbert modular forms of wt χ} −−→ {q-expansions at
(
A,B, ε, j

)
},

associating to a p-adic Serre modular form f its q-expansion f
(
Tate(A,B), ε, j

)
,

is injective;

3) the assertions in 10.3-10.7 hold if one replaces I-polarized Hilbert modular forms
of level µN with I-polarized p-adic Hilbert modular forms à la Serre of level µN
and XR with X̂R.

Proof: Assertions (1) and (2) follow from the results above. The last assertion follows
as in [Se, §1].

10.12 Remark. See 11.13 for examples of how Hilbert modular forms of level µNpn

and trivial nebentypus at p define I-polarized p-adic Hilbert modular forms. See 18.8
for examples of p-adic, but not classical, I-polarized Hilbert modular forms aris-
ing from Eisenstein series. Other examples are given in 12.27 by applying suitable
p-adic theta operators to classical Hilbert modular forms.

10.13 Definition. We say that a I-polarized p-adic modular form {fi}i of level µN
over F is a cusp form if the constant coefficient of its q-expansion at any cusp is 0.
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11 Katz’s p-adic Hilbert modular forms.
The notation is as in 10.1.

11.1 Definition. Let m ≥ 1, n ≥ 0 and N ≥ 4 be integers. Let p be a prime not
dividing N . Consider the affine schemes

M(m,n) = M
(
R/mm, µpnN

)
.

For n = 0 we use the convention M(m, 0) = M(R/mm, µN )ord. For m′ ≤ m we
have a closed immersion

M(m′, n) ↪−→M(m,n).

For n′ ≥ n we have a Galois covering

M(m,n′) −−→M(m,n)

with Galois group

Γ(n′, n) =
(
OL/p

n′

OL
)∗
/
(
OL/p

nOL
)∗
,

where the group
(
OL/p

0OL)∗ is understood as the trivial group. Define

Γn′ := Γ(n′, 0) = AutOL
(µpn′ ⊗

Z
D−1
L ) =

(
OL/p

n′

OL
)∗
.

Define M(∞,∞) as the formal scheme

M(∞,∞) = lim
m→∞

M(m,∞) = lim
m→∞

(
lim
∞←n

M(m,n)
)
.

The group
Γ = lim

∞←n
Γn = lim

∞←n

(
OL/p

nOL
)∗

=
(
Zp⊗

Z
OL
)∗

acts as Galois automorphisms on M(m,∞) for every m with quotient M(m, 0).

Let n ≥ m. Let
M(m,n)Kum −−→M(m, 0)

be the Kummer part of the cover M(m,n)→M(m, 0); see 7.2. Its Galois group is

Gm,n ∼= Γ(n, 0)/
(
∩χKer(χ)

)
;

the intersection is taken over all the universal characters χ restricted to

χ:
(
OL/p

nOL
)∗ −−→

(
R/mm

)∗
.

11.2 Lemma. For every n ≥ m the natural map M(m,n)Kum → M(m,m)Kum

is an isomorphism.

Proof: The space M(m,n) is the quotient of M(m,∞) by the group 1+pn(Zp⊗OL)
while M(m,n)Kum is the quotient of M(m,n) by the subgroup T = ∩Ker(χ)
of Γn, the intersection being over all universal characters viewed as homomorphisms
χ: (OL/p

nOL)∗ → (R/mm)∗.
Define T ′ as ∩Ker(χ), where the intersection is taken over all universal (equiva-

lently, basic) characters viewed as homomorphisms (Zp⊗OL)∗ → (R/mm)∗; T ′
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is a subgroup of Γ. Any basic character can be extended to a ring homomor-
phism Zp⊗OL → R/mm and thus is trivial on pn(Zp⊗OL) (n ≥ m). It fol-
lows that T ′/

(
1 + pn(Zp⊗OL)

)
= T and, therefore, M(m,n)Kum is the quotient

of M(m,∞) by T ′ which is independent of n.

11.3 Weights and characters of Γ. Let χ ∈ XR be a character. We may apply χ
to Γ by forming the composition

Γ = (Zp⊗
Z
OL)∗ ↪−→ (R⊗

Z
OL)∗ = G(R)

χ−−→ R∗.

Suppose that χ ∈ XR(n) (see 4.11), then χ(Γ) ≡ 1 modulo mn. It follows that every

element of χ ∈ X̂R defines a well defined homomorphism

Γ
χ−−→ R∗.

11.4 Definition. (Katz modular forms; c.f. [Ka4, §1.9]) Let χ be a character in

X̂R. A I-polarized Katz modular form of weight χ and level µN defined over R is a
regular function f on M(∞,∞) such that for every α ∈ Γ we have

α∗
(
f
)

= χ(α) f,

where α∗
(
f
)

:= f ◦ α. Denote the R-module of such functions by

M(R,µN , χ)p−adic.

The F -module of I-polarized Katz modular forms of weight χ and level µN over F
is defined as

M(F, µN , χ)p−adic := F ⊗
R

M(R,µN , χ)p−adic.

11.5 Remark. The notion of I-polarized Katz p-adic Hilbert modular forms com-
mutes with base change. More precisely, let R→ R′ be an extension of OK-algebras,
which are discrete valuation rings of unequal characteristic p and 0. Let F and F ′

be the associated fraction fields. If χ ∈ X̂R ⊂ X̂R′ , then

M(R′, µN , χ)p−adic ∼= M(R,µN , χ)p−adic⊗
R
R′

and
M(F ′, µN , χ)p−adic ∼= M(F, µN , χ)p−adic⊗

F
F ′.

This follows from the fact that the formation of the fine moduli spaces M(m,n)
commutes with base change.

11.6 Definition. (q-expansions of Katz modular forms) Define a I-polarized un-
ramified cusp of M(∞,∞) to be equivalently

a) an unramified cusp (A,B, εp∞N , jε
)

over R with µp∞N -level structure;

b) a compatible system of unramified cusps (A,B, εpnN , jε
)

over R/mn.
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Note that we write jε in place of jεp∞ (resp. jεpn ). We refer to 6.5 for the latter
notation. Given such a cusp, one has a q-expansion map

⊕
χ

M(F, µN , χ)p−adic −−→ F [[qν ]]ν∈(AB)+∪{0},

which is injective; see [Ka4, Thm. 1.10.15]. With the notation of 6.3, it is defined
by evaluating a I-polarized Katz modular form f defined over R via

Spec

(
Z((A,B, σβ))⊗

Z
R

)
−−→M(∞,∞).

We say that a I-polarized Katz modular form is a cusp form if the constant coeffi-
cient of its q-expansion at every cusp is 0.

11.7 Recall. If the inequality m ≤ n holds and χ ∈ XR there is a canonically
defined modular form

a(χ) ∈M
(
R/mm, µpnN , χ

)
;

see 7.4. Let (A,B, εp∞N , jε
)

be a I-polarized unramified cusp of M(m,n); see 6.4.
Then

i) the modular form a(χ) descends to a modular form on M
(
R/mm, µpnN

)Kum
.

See 7.8;

ii) the modular form a(χ) transforms under Γn (equivalently under Gm,n) according
to the character χ−1. See 7.7;

iii) a(χ) has q-expansion 1 at the cusp (A,B, εp∞N , jε
)
;

iv) for m′ ≤ m ≤ n and n′ ≥ n ≥ m the modular forms a(χ) defined on M(m,n),
on M(m′, n) and on M(m,n′) (resp. on M(m,n)Kum, on M(m′, n)Kum and
on M(m,n′)Kum) agree.

11.8 The comparison between Serre and Katz modular forms. Let g = {gi}i be a
I-polarized Serre p-adic modular form of weight χ, level µN and defined over R as
in 10.8. We may assume w.l.o.g. that

gn+1 ≡ gn mod mn.

Let χn be the weight of gn so that χ = limn χn by 10.10. For every n ∈ N define

fn := gn/a(χn)

as a regular function on M(n, n) and, hence, on M(n,∞). The q-expansion at a
cusp of M(n, n) of fn is the q-expansion of gn. It follows that fn+1 ≡ fn mod mn

and, thus, {fn}n defines a I-polarized Katz p-adic modular form f of weight χ and
level µN over R. Furthermore, the q-expansion of f at a cusp of M(∞,∞) coincides
with that of g. Thus, we obtain a map

{I-pol. Serre p-adic HMF over F} r−−→ {I-pol. Katz p-adic HMF over F},

which preserves weights. We also conclude that for any I-polarized unramified cusp
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(A,B, εp∞N , jε) of M(∞,∞) the following diagram is commutative

{Serre p-adic HMF over F} r−−→ {Katz p-adic HMF over F}
q-exp↘ ↙ q-exp

F [[qν ]]ν∈(AB)+∪{0}.

We deduce from 11.6, and the fact that r preserves weights, that the q-expansion
map is injective also on the graded ring of I-polarized Serre p-adic Hilbert modular
forms.

11.9 Lemma. Let N ≥ 4 be an integer.

1) For a suitable integer n0 > 0 the modular form hn0 (the n0-th power of the
Hasse invariant defined in 7.12) admits a lift to a modular form h̄ over Zp of

weight Nm(p−1)n0 . We may choose h̄ so that the leading coefficient of its q-
expansion at a given cusp is 1.

2) For any I-polarized modular form f ∈ M
(
R/mn, µN ,Nms

)
there exists a I-

polarized modular form gn ∈M
(
R,µN ,Nms′

)
such that

2.a) gn mod mn and f have the same q-expansion at one (any) cusp;

2.b) Nms ≡ Nms′ mod XR(n).

3) For any character χ ∈ XR, any n ∈ N and any I-polarized cusp form f ∈
M
(
R/mn, µN , χ

)
there exists a I-polarized modular form gn ∈ M

(
R,µN , χ

′
)

such that
3.a) gn mod mn and f have the same q-expansion at one (any) cusp;
3.b) χ ≡ χ′ mod XR(n).

Proof: We fix some notation. Let

δ:M(R,µN )σβ
−−→M(R,µN )

be the morphism from a smooth toroidal compactification to the minimal compact-
ification of M(R,µN ). See [Ra, §5] and [Ch, §4]. Let

π: A −→M(R,µN )

be the universal I-polarized abelian scheme with real multiplication by OL. By [Ra,
§5.4], the abelian scheme A extends to a semiabelian scheme over M(R,µN )σβ

such that the sheaf π∗Ω
1
A/M(R,µN ) extends to a locally free O

M(R,µN )σβ
-module Ω

on M(R,µN )σβ
. The line bundle

∧gπ∗
(
Ω1

A/M(R;µN )

)
= LNm

is the determinant of the Hodge bundle; see 5.4 for the notation. It extends to a
line bundle ∧gπ∗

(
Ω
)

on M(R,µN )σβ
. By [Ch, Thm. 4.3 (IX)] the latter descends

to an ample line bundle on M(R,µN ), which we denote in the same way. This
implies that there exists an integer n0 � 0 such that LNmn0(p−1) is very ample.
Note that h is a section of LNm over M(k, µN )R which has codimension at least
two 2 in M(k, µN ). By [Ch, Thm. 4.3 (V)], the scheme M(k, µN ) is normal. In
particular, h extends to a section over M(k, µN ). Hence, hn0 lifts to a modular
form h̄ of LNmn0(p−1) over M(R,µN ).
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Fix a I-polarized unramified cusp (A,B, ε, jε) of M(R,µN ). The q-expansion prin-
ciple implies that the q-expansion of h̄ is congruent to that of hn0 modulo m.
By 7.14, letting

a0 +
∑

ν∈(AB)+

aνq
ν

be the q-expansion of h̄ at the given cusp, we have that a0 ≡ 1 mod m and aν ∈ m

for all ν 6= 0. In particular, a0 is a unit. Replacing h̄ by a−1
0 h̄ we may assume h̄ to

have a leading Fourier coefficient equal to one at the given cusp. This proves (1).
The proof of (2) is analogous: one replaces f by f ′ := fh̄n for n� 0, argues that f ′

extends to the minimal compactification and lifts to R provided n is suitably chosen.

Define
δo:M(R,µN )oσβ

−−→M(R,µN )o

as δ restricted to the complement of the divisor of h̄ in M(R,µN ). Let χ ∈ XR.
Since Ω1

A/M(R,µN ) extends on M(R,µN )oσβ
as an invertible OL⊗ZOM(R,µN )o

σβ

-

module, proceeding as in 5.4 we see that the invertible sheaf Lχ on M(R,µN )
extends to an invertible sheaf L̄χ on M(R,µN )oσβ

. Since δo is proper, δo∗
(
L̄χ
)

is

a coherent sheaf. By construction its restriction to M(R,µN ) coincides with Lχ.
Since h̄ is very ample, M(R,µN )o is affine. In particular, for any n ∈ N the map

Γ
(
M(R,µN )o, δo∗

(
L̄χ
))
−−→ Γ

(
M(R/mn, µN )o, δo∗

(
L̄χ
))

is surjective. Note that

M
(
R/mn, µN , χ

)
= Γ

(
M(R/mn, µN ),Lχ ×

Spec(R)
Spec(R/mn)

)
.

In particular, if f ∈ M
(
R/mn, µN , χ

)
is a cusp form, we can extend f by 0 to a

global section f ′ of δo∗
(
L̄χ
)

over M
(
R/mn, µN

)o
. There exists a global section g′

of δo∗
(
L̄χ
)

over M
(
R,µN

)o
lifting f ′. Hence, there exists r � 0 such that g := g′h̄r

extends to a section of Lχ over M(R,µN ) and Nm(p−1)n0r ≡ 1 mod XR(n). Since

M
(
R,µN , χ

)
= Γ

(
M(R,µN ),Lχ

)
,

this proves (3).

11.10 Lemma. Let N be an integer. Let U1(N) denote the elements of O∗L con-
gruent to 1 modulo N . Let χ ∈ XR such that we have χ

(
U1(N)

)
= 1. Then χ is a

power of Nm.

Proof: The character χ belongs to X by 4.2. Let us write the complex embeddings
of L as σ1, . . . , σg. Then we may write χ⊗C = σa1

1 . . . σ
ag
g . Replacing χ by χ2

if necessary, we may assume that the a1, . . . , ag are even. By multiplying χ by a
suitable power of Nm2 we may assume ai ≥ 0 for all 1 ≤ i ≤ g and w.l.o.g. a1 = 0.
By Dirichlet’s units theorem there exists a unit u ∈ O∗L such that σ1(u) > 1
and 0 < σi(u) < 1 for i = 2, . . . , g. Since U1(N) is of finite index in O∗L, there exists
a power un of u such that un ∈ U1(N). But then 1 = χ

(
un
)

=
∏g
i=2 σ

ai
i

(
un)
)
≤ 1.

We have equality if and only if ai = 0 for 2 ≤ i ≤ g i. e., χ is a multiple of Nm.

11.11 Theorem. The notions of a I-polarized p-adic Hilbert modular form over F
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in the sense of Serre and in the sense of Katz are the same i. e., the map r is an
isomorphism, in the following cases:

i. cusp forms;

ii. forms of weight χ ∈ X;

iii. forms of weight Nmz with z ∈ Zp.

Moreover, a modular form of non-parallel weight χ ∈ X i. e., whose weight is not
of the form Nms for a suitable integer s, is a cusp form.

Proof: The injectivity of r follows from the injectivity of the q-expansion map on
Serre p-adic modular forms proven in 10.11. The fact that r preserves the notion
of cusp form in the sense of Katz and of Serre follows from 11.8. We are left with
the proof of the surjectivity of r. By 10.3 it suffices to prove it for modular forms
defined over R.

Let {fn ∈ OM(n,∞)}n be a sequence giving a Katz modular form of weight

χ ∈ X̂. For every n, the regular function fn on M(n,∞) is of weight χn := χ
mod mn, a character of Γ. In particular, fn is invariant under H := ∩ψKer(ψ),
where the intersection is taken over all characters ψ: Γ→ (R/mn)∗. Let M(n,∞)→
M(n,∞)Kum = M(n, n)Kum be the Galois cover with group H. Note that

fn ∈ Oχn

M(n,n)Kum
∼= Lχn

the isomorphism being as OL⊗ZOM(n,0)-modules. It follows from 7.8 that the mod-
ular form g′n := a(χn) fn on M(n, n)Kum descends to a modular form on M(n, 0) of
weight χn mod. XR(n) and with the same q-expansion at any cusp as that of fn. By
multiplying it by a high enough power of the modular form h̄, constructed in 11.9
as a lifting to Zp of a power of the Hasse invariant, we may assume that g′n extends
to a modular form defined over M(R/mn, µN ).

Assume first that f is a cusp form. Then so is each fn and g′n. It follows from 11.9
that we may find a modular form gn over R such that

gn ≡ g′n mod mn.

Hence, the sequence of modular forms gn of weight ψn ≡ χn mod XR(n) of modular
forms over R converges to a Serre p-adic modular form with the same q-expansion
as that of f . It follows from 11.8 that f is the image of the Serre p-adic modular
form {gn}n. This proves (i).

Suppose that f is not a cusp form, but has weight χ ∈ X. The q-expansion of g′n
lies in the ring

(R/mn)[[qν ]]
U1(N)

ν∈O+
L

,

where the action of U1(N) (the units of OL congruent to 1 mod N) is given by the
“factor of automorphy”

qν 7→ χ(ε)qε
2ν .

Looking at the coefficient q0, this implies that χ(ε) ≡ 1 mod mn for all n and
all ε ∈ U1(N) and, therefore, that χ induces the trivial character χ:U1(N) → R∗.
We conclude from 11.10 that χ is of the form Nmr for a suitable r ∈ Z.

In particular, to prove (ii) and (iii) we may assume that χn = Nms(n) mod XR(n)
for a suitable integer s(n). There exists a positive integer t, depending on g′n, such
that the modular form g′nh̄

t extends to a modular form on M(R/mn, µN ). By 11.9,
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we may take t such that g′nh̄
t can be lifted to a modular form gn of parallel weight,

defined over R and whose q-expansion mod mn is the q-expansion of g′n. The se-
quence {gn}n defines a Serre p-adic modular form whose associated Katz p-adic
modular form is f by construction.

11.12 Remark. It is interesting to note that although there is no natural mor-
phism M(n, n)Kum →M(n+ 1, n+ 1)Kum, the proof above reveals that to give a
Katz modular form of level µN and weight χ is equivalent to giving a compatible
sequence of regular functions {fn}n in Oχn

M(n,n)Kum . The compatibility condition is

that fn+1 ≡ fn mod mn viewed as regular functions on M(n,∞).

11.13 Modular forms of level Γ0(p
n) as p-adic modular forms. Let M(R,µpnN , χ)1

be the R-module of I-polarized modular forms of level µpnN , character χ and trivial
nebentypus at p i. e., invariant under Γn = Aut

(
D−1
L ⊗Z µpn

)
. Define an F -linear

map
τF :M(F, µpnN , χ)1 −−→M(F, µN , χ)p−adic

as follows. For any m ∈ N, consider the Galois morphism with group Γn

ψ:M(R/mm, µpnN ) −−→M(R/mm, µN ).

Let f ∈M(R,µpnN , χ)1. For any m ∈ N the reduction gm of f defines a modular
form on M(R/mm, µpnN ) of weight χ invariant under the action of Γn. Hence, gm
descends to a modular form of weight χ on M(m, 0) = M(R/mm, µN )ord (we freely
use the interpretation of modular forms of given weight as sections of line bundles;
see 5.4). In particular, for any s ≥ m we obtain a regular function

gm
a(χ)

∈ Γ
(
M(m, s), OM(m,s)

)
;

see 11.7 for the notation. This defines a I-polarized p-adic Hilbert modular form g
à la Katz of weight χ. Define

τF (f) := g.

If f is a I-polarized modular form of weight χ and level µpnN defined over F , as
argued in 10.3, there exists an integer t� 0 such that πt f is defined over R. Define

τF
(
f
)

:= π−tτF
(
πtf
)
.

We now explain the connection to I-polarized modular forms of level µN ×Γ0(p
n).

The notation is as in 5.2. The morphism

M
(
F̄ , µpnN

)
−−→M

(
F̄ , µN ,Γ0(p

n)
)

is finite, étale and Galois with group Aut
(
D−1
L ⊗Z µpn

)
. In particular, we obtain

the isomorphism

M
(
F̄ , µN ,Γ0(p

n), χ
) ∼−→M

(
F̄ , µpnN , χ

)1
.

Hence, we get F̄ -linear maps

M
(
F̄ , µN ,Γ0(p

n), χ
) ∼−→M

(
F̄ , µpnN , χ

)1 τF̄−−→ M
(
F̄ , µN , χ

)p−adic
.
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By construction we obtain the following important property

τF̄ (f)
(
Tate(A,B), εp∞N , jε

)
= f

(
Tate(A,B), εpnN , jε

)
;

see 6.6 and 11.6 for the notation.

12 The operators ΘP,i.

This section is devoted to the construction of certain derivation operators on p-adic
Hilbert modular forms and on Hilbert modular forms in characteristic p. For p un-
ramified, these operators were defined by Katz [Ka4, §2.5]. However, our construc-
tion is independent; more importantly, in characteristic p the operators defined by
Katz are defined only on the ordinary locus, while our operators are defined on the
whole moduli space.

Let R be a discrete valuation ring of unequal characteristic p-0 and with maximal
ideal m. Our method is first to define these operators as derivation operators on
functions on M

(
R/mn, µpnN

)
and then to use the map r of 7.19, which relates

modular forms on M
(
R/mn, µN ) to functions on M

(
R/mn, µpnN

)
, to transport

the operators to modular forms on M
(
R/mn, µN

)ord
.

In characteristic p, we succeed in defining theta operators on modular forms de-
fined on M

(
R/m, µN

)
. After establishing the existence of these operators and some

basic properties we examine how the divisor of a modular form changes under such
a derivation operator. This is applied to study how the filtration of a q-expansion
changes under these derivation operators.

This section is technically demanding, yet forms the core of §§12-17. To orient the
reader we explain its structure.

Sections 12.1-12.6 recall the definition of the Kodaira-Spencer isomorphism in the
setting of the schemes M(m,n) (n ≥ m). The main use we make of this isomorphism
is to construct a canonical basis for the holomorphic 1-forms on M(m,n) from the
modular forms a(χP,i) of 7.4.

Sections 12.7-12.11 are devoted to constructing machinery to be used in the fol-
lowing definition of the theta operators. The complications arise from ramification.
One of our goals is to have a certain operator Λ – constructed out of theta operators
– on modular forms, such that Λ(f) is in the image of the operator V . The opera-
tor V is essentially raising to a p-power (see Section 13). Hence, we need Λ(f) to
have q-expansion of the form

∑
ν∈O+

L
apνq

pν . On the other hand, our theta operator

associated to a character χ yields a q-expansion of the form
∑
ν∈O+

L
χ(ν)aνq

ν in

which “too many” coefficients are zero; we find that in the case of ramification the
theta operators need an extra modification for which §§ 12.7-12.9 provide technical
background.

Sections 12.12-12.15 provide the definition of the theta operators in the mod p
and p-adic settings. In essence, the theta operators are coming from the opera-
tion f 7→ df and the canonical trivialization of the holomorphic one forms on the
schemes M(m,n). The propagation of this definition to modular forms of level µN
is carried out later.

Sections 12.16-12.27 are devoted to the calculation of the effect of the theta oper-
ators on q-expansions and various corollaries.
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Sections 12.28-12.37 are devoted to examining how the poles of a rational function
on M(m,n)Kum, whose poles are supported on the complement of the ordinary lo-
cus, change under a theta operator. For this we use the local charts of M(m,n)Kum

constructed in 9.3. This is used to get well defined theta operators on modular
forms and later to determining how the filtration of a modular form changes under
a theta operator.
Sections 12.38-12.42 apply the previous results to define and derive the proper-
ties of theta operators on modular forms. We remark that on the level of Galois
representations, an application of a theta operator corresponds to a twist by a
Hecke character. The change of filtration under a theta operator is examined in
Section 15; that corresponds to the question of the minimal weight from which a
Galois representation arises, up to a twist.

12.1 Notation. Let R be a complete discrete valuation ring with maximal ideal m,
residue field k of characteristic p and fraction field F of characteristic 0. Suppose
that R is an OK-algebra where K is a normal closure of L.

12.2 Definition. Let n ≥ n′ ≥ m ≥ 1 be integers. Let

M(m,n) := M(R/mm, µpnN ), M(m,n′) := M(R/mm, µpn′N ).

Let
φ:M(m,n) −−→M(m,n′)

be the natural forgetful morphism; it is a Galois cover. We also write

M(m, 0) := M(R/mm, µN )ord.

Let

d:OM(m,n) −−→ Ω1
M(m,n)/(R/mm), d′:OM(m,n′) −−→ Ω1

M(m,n′)/(R/mm)

be the derivation from the structure sheaf to the sheaf of differentials of M(m,n)
(resp. of M(m,n′)) over R/mm. Denote by

π: A −→M(m,n), π′: A′ −−→M(m,n′)

the universal I-polarized abelian schemes. Let

ωA/M(m,n) := π∗

(
Ω1

A/M(m,n)

)
, ωA′/M(m,n′) := π′∗

(
Ω1

A′/M(m,n′)

)
.

12.3 Remark. Letting AU →M(m, 0) be the universal abelian scheme, we have
canonical isomorphisms

A ∼−→AU ×
M(m,0)

M(m,n), ωA/M(m,n)
∼−→ψ∗

(
ωAU/M(m,0)

)
.

We deduce that OM(m,n), Ω1
M(m,n)/(R/mm) and Ω1

A/M(m,n) are canonically endowed

with an action of Γn (see 7.2 for the notation). Note that d is Γn-equivariant. It
follows from 3.6 that ωA/M(m,n) is a locally free OM(m,n)⊗ZOL-module of rank 1

and hence it is endowed with an action of
(
(R/mm)⊗ZOL

)∗
. Let χ be a universal
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character. Let Lχ the line bundle associated to ωA/M(m,n) and the character χ as

in 5.4. Then Lχ is endowed with two actions of
(
OL/p

nOL
)∗

:

a. the first is induced by the Galois action of Γn on Ω1
A/M(m,n);

b. the second is induced via the natural map
(
OL/p

nOL
)∗ −−→

(
(R/mm)⊗

Z
OL
)∗

by the action of
(
(R/mm)⊗ZOL

)∗
. The latter is identified with the automor-

phism group of Ω1
A/M(m,n) as OM(m,n)⊗ZOL-module.

By 7.8 the effect of α ∈ Γn on the section a(χ) is χ−1(α)a(χ) via the first action,
and χ(α)a(χ) via the second action.

12.4 Notation. Fix an element l ∈ I+ generating Zp⊗Z I as Zp⊗ZOL-module as
in 7.1. For any I-polarized abelian scheme with real multiplication by OL over a
Zp-scheme S such a choice induces a prime to p and OL-linear polarization.

12.5 Remark. The sequence of differentials

0 −−→ π∗
(
Ω1

M(m,n)/(R/mm)

)
−−→ Ω1

A/(R/mm) −−→ Ω1
A/M(m,n) −−→ 0 (12.5.1)

is exact. The exactness on the right and in the middle is obvious; see [EGA
IV4, Cor. 16.4.19]. The exactness on the left follows from the smoothness of A
over M(m,n); see [EGA IV4, Prop. 17.2.3]. The sheaves appearing in the sequence
above are locally free OA-modules. The functor from the category of sheaves on A,
invariant under translation on A, to the category of sheaves on M(m,n) (defined by
pulling back along the identity section of π) is an equivalence of categories. Hence,
there is a canonical isomorphism of OA-modules

π∗
(
Ω1

M(m,n)/(R/mm)

) ∼−→Ω1
M(m,n)/(R/mm) ⊗

OM(m,n)

OA.

Applying the functor π∗ to the sequence (12.5.1), we obtain an exact sequence of
OM(m,n)-modules

0 −→ Ω1
M(m,n)/(R/mm) −→ π∗

(
Ω1

A/(R/mm)

)

−→ ωA/M(m,n) −→R1π∗

(
π∗
(
Ω1

M(m,n)/(R/mm)

))
.

We have canonical isomorphisms

R1π∗

(
π∗
(
Ω1

M(m,n)/(R/mm)

)) ∼−→Ω1
M(m,n)/(R/mm) ⊗

OM(m,n)

R1π∗
(
OA

)

∼−→Ω1
M(m,n)/(R/mm) ⊗

OM(m,n)

HomOM(m,n)

(
ωA∨/M(m,n), OM(m,n)

)
,

where A∨ is the dual abelian scheme of A. Call the object on the right hand side N .
By 12.4 we get a prime-to-p and OL-linear polarization A → A∨. This induces an
isomorphism

ωA/M(m,n) ⊗
OM(m,n) ⊗ OL

ωA/M(m,n)
∼= ωA/M(m,n) ⊗

OM(m,n) ⊗ OL

ωA∨/M(m,n)
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and hence a morphism

ω
⊗2

OL

A/M(m,n) −−→ N ⊗
OM(m,n) ⊗ OL

ωA/M(m,n) −−→ Ω1
M(m,n)/(R/mm).

Here ⊗2
OL

means tensor product as OM(m,n)⊗OL-modules. A similar remark holds
for A′ in place of A and M(m,n′) in place of M(m,n).

12.6 Proposition. The maps described above induce canonical isomorphisms,
called Kodaira-Spencer isomorphisms,

KS′: Ω1
M(m,n′)/(R/mm) −−→ ω

⊗2
OL

A′/M(m,n′)

and

KS:Ω1
M(m,n)/(R/mm) −−→ ω

⊗2
OL

A/M(m,n).

In particular, Ω1
M(m,n′)/(R/mm) (resp. Ω1

M(m,n)/(R/mm)) is endowed with the struc-

ture of a free OM(m,n′)⊗ZOL-module (resp. of OM(m,n)⊗ZOL-module) of rank 1.
Moreover, the following diagram is commutative:

Ω1
M(m,n)/(R/mm)

KS−−−−−−→ ω
⊗2

OL

A/M(m,n)yo
yo

φ∗
(
Ω1

M(m,n′)/(R/mm)

) φ∗(KS′)−−−−−−→ ω
⊗2

OL

A′/M(m,n′).

In particular, the map KS is Γn-equivariantly.

Proof: The fact that KS and KS′ are isomorphisms is well known. See [Ka4, §1.0.21].
The rest is clear.

12.7 Recall. The notation is as in 7.4. Define

ωcan⊗ωcan ∈ Γ
(
M(m,n), ω

⊗2
OL

A/M(m,n)

)

(resp. KS−1
(
ωcan⊗ωcan

)
∈ Γ
(
M(m,n),Ω1

M(m,n)/(R/mm)

)
)

the canonical generators of ω
⊗2

OL

A/M(m,n) (resp. Ω1
M(m,n)/(R/mm)) as OM(m,n)⊗ZOL-

module.

For each prime P of OL dividing p let πP ∈ OL be a generator of the ideal POL,P
as in 2.1. Let p := m ∩OK . For each integer 1 ≤ i ≤ fP, let

σP,i:R⊗
Z
OL −−→ R and eP,i ∈ R⊗

Z
OL

be as in 2.1. Recall that R is assumed to be an m-adically complete OK-algebra.
For every j ∈ N we denote by

[
(R/mm)⊗

Z
Pj

]

the image of (R/mm)⊗Z Pj in (R/mm)⊗ZOL.
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12.8 Lemma. Let m ≥ 1. Let P be a prime of OL over p and let 0 ≤ j ≤
eP− 1. There exists a maximal non-negative integer 1 ≤ t[j]P (m) ≤ m satisfying the
following. For each 1 ≤ i ≤ fP there exists a unique morphism

σ̃
[j]
P,i:

[
(R/mm)⊗

Z
Pj

]
−−→ (R/mt

[j]

P
(m))

of (R/mm)⊗ZOL-modules such that the diagram

(R/mm)⊗ZOL
·(1⊗πj

P)
−−−−−−→

[
(R/mm)⊗Z Pj

]

σP,i

y ↙ σ̃
[j]
P,i

R/mt
[j]

P
(m)

commutes. Moreover, the sequence {t[j]P (m)}m∈N is non-decreasing and

lim
m→∞

t
[j]
P (m) =∞.

Proof: Fix 0 ≤ j ≤ eP − 1. The morphism σ̃
[j]
P,i, whose existence is claimed in the

lemma exists if and only if Ker
(
·(1⊗πj

P)
)
⊂ Ker

(
σP,i

)
. Consider first the case m =

1. Then R/m1 = k. Moreover, a ∈ Ker
(
·(1⊗πj

P)
)

if and only if a = (1⊗πeP−j

P ) · b
for some b ∈ k⊗ZOL. Since eP−j > 0, it follows that σP,i(a) = 0. This proves that

t
[j]
P (1) = 1 and that t

[j]
P (m) ≥ t

[j]
P (1) = 1 for any m. Clearly t

[j]
P (m + 1) ≥ t

[j]
P (m).

Since ·(1⊗πj
P):R⊗ZOL → R⊗ZOL is injective and R is m-adically complete, it

is clear that
lim
∞←m

Ker
(
·(1⊗πj

P)|(R/mm)⊗Z OL

)
= 0.

Hence, limm→∞ t
[j]
P (m) =∞ as claimed.

12.9 Example. As far as the theory of Hilbert modular forms modulo p is con-
cerned, only the case m = 1 is relevant. The general case is used to construct theta
operators in the p-adic setting.

If m = 1, then t
[j]
P (1) = 1 and for every v ∈ (R/m)⊗OL we have σ̃

[j]
P,i(π

j
Pv) =

σP,i(v).

12.10 Definition. Let P be a prime of OL over p and let 1 ≤ i ≤ fP. Define

σP,i:ω
⊗2

OL

A/M(m,n) −−→ Lχ2
P,i

to be the unique morphism of OM(m,n)-modules such that:

1) σP,i(ω
can⊗ωcan) = a

(
χ2

P,i

)
. See 7.8 for the definition of a

(
χP,i

)
;

2) for any α ∈ OL and any local section ω of ω
⊗2

OL

A/M(m,n) we have

σP,i(α · ω) = σP,i(α)σP,i(ω).
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Let 0 ≤ j ≤ eP − 1 be an integer. Let t
[j]
P (m) be as in 12.8. Let

Lχ2
P,i
−−→M

(
t
[j]
P (m), n

)

be the line bundle defined in 5.4. Define

σ̃
[j]
P,i:

[
ω
⊗2

OL

A/M(m,n) ⊗
OL

Pj

]
−−→ Lχ2

P,i

as the unique morphism ofOL⊗ZOM(m,n)-modules such that the following diagram
commutes

ω
⊗2

OL

A/M(m,n)

·(1⊗πj
P)

−−−−−−→
[
ω
⊗2

OL

A/M(m,n)⊗OL
Pj

]

σP,i

y ↙ σ̃
[j]
P,i

Lχ2
P,i

Its existence is guaranteed by 12.8.

12.11 Lemma. The morphisms σ̃
[j]
P,i satisfy the following properties

1) they are compatible for different m and n i. e., if n′ ≥ n and m′ ≥ m are integers
such that n′ ≥ m′ and n ≥ m, then

1.a) the morphism σ̃
[j]
P,i, defined on

[
ω
⊗2

OL

A/M(m′,n′)⊗OL
Pj

]
, restricts mod mm to

the morphism σ̃
[j]
P,i, defined on

[
ω
⊗2

OL

A/M(m,n′)⊗OL
Pj

]
;

1.b) the morphism σ̃
[j]
P,i, defined on

[
ω
⊗2

OL

A/M(m,n′)⊗OL
Pj

]
, coincides with the pull-

back of the morphism σ̃
[j]
P,i defined on

[
ω
⊗2

OL

A/M(m,n)⊗OL
Pj

]
.

2) Let Γn be the Galois group of M(m,n)→M(m, 0). For any α ∈ Γn, we have

α∗
(
σ̃

[j]
P,i

)
= σ̃

[j]
P,i.

Proof: By the definition of σ̃
[j]
P,i, it suffices to prove the lemma for j = 0 i. e.,

for σP,i. Both ω
⊗2

OL

A/M(m,n) and Lχ2
P,i

are defined over M(m, 0) and are compatible

for different m’s. In particular, they are endowed with a canonical action of Γn
proving that statement (2) makes sense. By 5.4 the line bundle Lχ2

P,i
over M(m, 0)

is defined by push-out of ω
⊗2

OL

A/M(m,0) by the map σP,i of 12.8. By 7.8 this defines

the map σ̃
[j]
P,i over M(m, 0). The conclusions follow.

12.12 Definition. For each prime P of OL dividing p and each integer 1 ≤ i ≤ fP,
define the (R/mm)-derivation

ΘP,i:OM(m,n) −−→ OM(m,n)

by the formula

f |−−→ σP,i

(
KS
(
df
))
· a
(
χ2

P,i

)−1
.
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See 12.10 for the definition of σP,i. For 0 ≤ j ≤ eP−1 define the subsheaf of OM(m,n)

O
P,[j]
M(m,n)(U) :=

{
f ∈ Γ

(
U,OM(m,n))|

(
df
)
≡ 0mod Pj

}
.

Define the (R/mm)-derivation

Θ
[j]
P,i:O

P,[j]
M(m,n) −−→ O

M(t
[j]

P
(m),n)

(both considered as sheaves of rings on M(m,n)) by the formula

f |−−→ σ̃
[j]
P,i

(
KS
(
df
))
· a
(
χ2

P,i

)−1
.

See 12.10 for the definition of σ̃
[j]
P,i and 12.8 for the definition of t

[j]
P (m). Note that

O
P,[0]
M(m,n) = OM(m,n)

and Θ
[0]
P,i coincides with ΘP,i.

12.13 Remark. The function ΘP,i(f) is thus obtained by taking df , viewing it as

a section of the OL⊗OM(m,n)-module ω
⊗2

OL

A/M(m,n), projecting it to the χ2
P,i compo-

nent to get a section of Lχ2
P,i

, and then dividing by the non-vanishing section a(χ2
P,i)

to obtain a regular function on M(m,n).

Note that, for example, if m = 1, j > 0 and f ∈ O
P,[j]
M(m,n) then ΘP,i(f) = 0,

while Θ
[j]
P,i(f) (morally obtained from ΘP,i(f) by dividing by πj

P) is typically not
zero. A similar phenomenon would happen with modular forms. This motivates the

introduction of the operators Θ
[j]
P,i.

12.14 Proposition. Let f be a regular function on M(m,n). Suppose that f is an
eigenfunction for the action of Γn of weight ψ: Γn → (R/mm)∗ i. e., α∗

(
f
)

= ψ
(
α
)
f .

Then, Θ
[j]
P,i

(
f
)
, whenever defined, is an eigenfunction for Γn of weight ψ · χ2

P,i.

Proof: For any α ∈ Γn denote by α∗ the induced action on functions, differentials,
etc. Using 12.6 and 7.8, we obtain:

ψ(α)KS
(
df
)

= KS
(
ψ(α)df

)
= KS

(
d
(
ψ(α)f

))

= KS
(
d
(
α∗f

))
= KS

(
α∗
(
df
))

= α∗
(
KS
(
df
))
.

Applying σ̃
[j]
P,i to the first and last terms of these inequalities and using 12.11, we

have
ψ(α)σ̃

[j]
P,iKS

(
df
)

= σ̃
[j]
P,i

(
ψ(α)KS(df)

)

= σ̃
[j]
P,i

(
α∗
(
KS
(
df
)))

= α∗
(
σ̃

[j]
P,i

(
KS(df)

))
.
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Since by 7.8 we have that

α∗
(
a(χ2

P,i)
)

= χ−2
P,i(α) · a(χ2

P,i),

the conclusion follows.

12.15 Theta operators on Katz p-adic modular forms. The notation is as in 11.4.
For every prime ideal P of OL over p and any 1 ≤ i ≤ fP one can define the
R-linear operator

ΘP,i:M(R,µN , χ)p−adic −−→M(R,µN , χχ
2
P,i)

p−adic

as follows. Let {fn}n be a compatible sequence of functions as in 11.12 defining a I-
polarized (Katz) p-adic Hilbert modular form f of weight χ. Let χn = χ mod XR(n)
be the weight of fn. Define

ΘP,i(fn) ∈ Γ
(
M(n, n), OM(n,n)

)

as in 12.12. By the compatibility of the Kodaira-Spencer morphisms proven in 12.6,
by 11.7 and 12.11, it follows that {ΘP,i(fn)}n is a compatible sequence defining a
p-adic modular form ΘP,i(f) of weight χ · χ2

P,i.

For any 0 ≤ j ≤ eP − 1 let

M(R,µN , χ)p−adic,P,[j] := lim
∞←m

lim
n→∞

Γ
(
M(m,n), O

P,[j],χ
M(m,n)

)
.

An element of this space can be described as a compatible sequence of functions

{fn}n, fn ∈ Γ(M(n, n), O
P,[j]
M(n,n)), each fn is a χ-eigenfunction for Γn; cf. 11.12.

One defines the R-linear operator

Θ
[j]
P,i:M(R,µN , χ)p−adic,P,[j] −−→M(R,µN , χχ

2
P,i)

p−adic,P,[j]

as follows. With the notation of 12.8, we have a compatible sequence

Θ
[j]
P,i(fn) ∈ Γ

(
M(t

[j]
P (n), n), O

M(t
[j]

P
(n),n)

)
.

Since t
[j]
P (n)→∞ this defines a p-adic modular form of weight χχ2

P,i.

12.16 The behavior of Θ
[j]
P,i on q-expansions. Fix a prime P of OL over p and

integers 1 ≤ i ≤ fP and 0 ≤ j ≤ eP − 1. To compute the effect of Θ
[j]
P,i on q-

expansions we need to use some definitions and properties of Tate objects; see 6.3.
Fix a cusp

(
A,B, ε, j

)
as in 6.4. Fix a rational polyhedral cone decomposition {σβ}β

of the dual cone to M+
R ⊂MR, where M := AB, as in 6.3. Then

R
((

A,B, σβ
))

:= R⊗
Z

Z
((

A,B, σβ
))

is a formally smooth R-algebra of dimension g, which can be interpreted as

Spec
(
R
((

A,B, σβ
)))

=
(
S∧σβ
\Sσβ ,0

)
×
Z
R.
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Moreover,

Ω1

R
((

A,B,σβ

))
/R

=
〈dqν
qν

〉
ν∈M

,

the span is taken as a R
((

A,B, σβ
))

-module. We conclude that

12.17 Lemma. There is a canonical isomorphism

Ω1

R
((

A,B,σβ

))
/R
∼= R

((
A,B, σβ

))
⊗
Z
M.

In particular, the module of relative differentials Ω1

R
((

A,B,σβ

))
/R

is endowed with

the structure of free R
((

A,B, σβ
))
⊗ZOL-module of rank 1.

12.18 Remark. By 6.2 the translation invariant relative differentials

ω
Tate(A,B)σβ

/R
((

A,B,σβ

))

of the universal object Tate(A,B)σβ
over R

((
A,B, σβ

))
are canonically isomor-

phic toR
((

A,B, σβ
))
⊗Z A asR

((
A,B, σβ

))
⊗ZOL-module. TheOL-structure is of

course given by the real multiplication by OL on Tate(A,B)σβ
over R

((
A,B, σβ

))
.

In 12.4 we have fixed an element l ∈ I = HomOL
(B,A) inducing an OL-linear

isomorphism Zp⊗Z B
∼−→Zp⊗Z A. We get an OL-linear isomorphism

τ :Zp⊗
Z
(AB) ∼−→Zp⊗

Z
A2.

12.19 Proposition. The Kodaira-Spencer map is defined on R
((

A,B, σβ
))

. The
OL-linear isomorphism τ makes the following diagram commutative

Ω1

R
((

A,B,σβ

))
/R

KS−−−−−−→ ω
⊗2

OL

Tate(A,B)σβ
/R
((

A,B,σβ

))
yo

yo
R
((

A,B, σβ
))
⊗ZM

1⊗ τ−−−−−−→ R
((

A,B, σβ
))
⊗Z A

⊗2
OL ,

Proof: It follows from [Ka4, §1.1.18-§1.1.20].

12.20 Remark. The isomorphisms KS and τ depend on the choice of the ele-
ment l ∈ I+ in 12.4. Different choices of l change the isomorphisms by multiplica-
tion by a unit of R⊗ZOL. In [Ka4, §1.0.21] one finds an expression for KS which
is independent of such choice.

12.21 Corollary. The notation is as in 12.12. Let f ∈ Γ
(
M(m,n), OM(m,n)

)

be a regular function on M(m,n). Fix a I-polarized unramified cusp
(
A,B, ε, jε

)
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of M(m,n). Suppose that f is equal to
∑
ν∈M+∪{0} aνq

ν in R/mm
((

A,B, σβ
))

.

For any ν ∈ PjM define

χ̃
[j]
P,i(ν) = σ̃

[j]
P,i

(
jε
(
τ(ν)

))
mod mt

[j]

P
(m),

where σ̃
[j]
P,i:

[
R⊗Z Pj

]
→ R is the R⊗ZOL-linear homomorphism defined in 12.8.

Then

1. f ∈ Γ
(
M(m,n), O

P,[j]
M(m,n)

)
in the sense of 12.12 if and only if ν ∈ PjM for all ν

such that aν 6= 0;

2. if f is in Γ
(
M(m,n), O

P,[j]
M(m,n)

)
, the value of Θ

[j]
P,i(f) in R/mt

[j](m)

P

((
A,B, σβ

))

is
Θ

[j]
P,i(f) =

∑

ν

χ̃
[j]
P,i(ν)aνq

ν .

Proof: Since the condition f ∈ Γ
(
M(m,n), O

P,[j]
M(m,n)

)
is a closed condition, it is

enough to check it at the cusp (A,B, ε, jε). Note that

d

(
a0 +

∑

ν∈M+

aνq
ν

)
=
∑

ν∈M+

aνq
ν d
(
qν
)

qν

=
∑

ν∈M+

aνq
ν ⊗ ν,

where the last element is in R
((

A,B, σβ
))
⊗ZM . By 12.19 we have that f be-

longs to Γ
(
M(m,n), O

P,[j]
M(m,n)

)
if and only if

∑
ν∈M+ aνq

ν ⊗ ν is in the image of

R
((

A,B, σβ
))
⊗Z PjM in R

((
A,B, σβ

))
⊗ZM . This proves (I).

By 6.5 the element ωcan⊗ωcan in ω
⊗2

OL

Tate(A,B)σβ
/R
((

A,B,σβ

)) is the inverse image

of 1 via the composite homomorphism called, say, J

ω
⊗2

OL

Tate(A,B)σβ
/R
((

A,B,σβ

)) −→ R
((

A,B, σβ
))
⊗
Z

A
⊗2

OL
1⊗ jε−−→ R

((
A,B, σβ

))
⊗
Z
OL.

By the definition of Θ
[j]
P,i in 12.12 this implies that Θ

[j]
P,i(f)

(
Tate(A,B), ε, jε) =

σ̃
[j]
P,i

(
J
(
KS(df)

)
· ωcan⊗ωcan

)
= σ̃

[j]
P,i

(
J
(
KS(df)

))
(the first σ̃

[j]
P,i is defined on dif-

ferentials as in 12.12, the second σ̃
[j]
P,i is defined on

[
R
((

A,B, σβ
))
⊗Z Pj

]
). Since

the q-expansion of the modular form a
(
χP,i

)
at any unramified cusp is 1, we have

that the q-expansion of Θ
[j]
P,i(f) at the given cusp is

Θ
[j]
P,i(f)

(
Tate(A,B), ε, jε) = σ̃

[j]
P,i

(
J
(
KS
(
d(a0 +

∑

ν∈M+

aνq
ν)
))
)

=
∑

ν∈M+

aνq
ν · σ̃[j]

P,i

(
jε
(
τ(ν)

))

as claimed.

12.22 Corollary. The operators Θ
[j]
P,i commute for different primes P and differ-
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ent 1 ≤ i ≤ fP.

12.23 Corollary. The notation is as in 12.15 and in 12.21. Let f be a I-polarized
p-adic Hilbert modular form over R of level µN and weight χ; see 11.4. Suppose
that f has q-expansion at the I-polarized p-adic cusp (A,B, εp∞N , jε

)
equal to

a0 +
∑
ν∈M+ aνq

ν ; see 11.6 for the notation. Here M = AB. Then

1. f ∈M(R,µN , χ)p−adic,P,[j] if and only if aν = 0 for all ν 6∈ PjM ;

2. if f ∈M(R,µN , χ)p−adic,P,[j], the q-expansion of Θ
[j]
P,i(f) at the same cusp is

Θ
[j]
P,i(f)

(
Tate(A,B), ε, jε

)
=
∑

ν

χ̃
[j]
P,i(ν)aνq

ν .

Proof: It follows from the definition of Θ
[j]
P,i given in 12.15 and the previous corollary.

12.24 Corollary. The p-adic theta operators Θ
[j]
P,i commute for different primes P

and different 1 ≤ i ≤ fP.

12.25 The comparison with the complex theory. We use the notation of 6.11. Given
a class in the strict class group of L, we may choose a representative I which is
fractional ideal prime to p. Take B = OL and A = I. Under the above assumption
there is a canonical identification jcan:A⊗Z Zp

∼−→OL⊗Z Zp and, hence, canonical
isomorphisms εpn : p−nOL/OL

∼−→p−nA/A for every n ∈ N. This defines a canonical
I-polarized unramified cusp (A,B, εp∞N , jε) with jε = jcan; see 6.5 and 11.6.

Let f be a I-polarized Hilbert modular forms in M(Q̄, µN , χ). Choose embed-
dings Q̄ ⊂ C and Q̄ ⊂ Q̄p and view f as complex or p-adic Hilbert modular form.
Assume that the q-expansion of f at the cusp (i∞, . . . , i∞) is a0 +

∑
ν∈A+ aνq

ν .

Then, f ∈M(Q̄, µN , χ)P,[j] if and only if aν = 0 for all ν 6∈ (PjA)+ and

Θ
[j]
P,i(f)

(
Tate(A,B), εp∞N , jε

)
=
∑

ν∈A+

χP,i

(
νπ−j

P

)
aνq

ν ;

where πP is the chosen uniformizer of OL at p.

12.26 Katz’s p-adic theta operators. In [Ka4, §2.6] one finds a definition of p-
adic theta operators on p-adic Hilbert modular forms à la Katz (see 11.4) if p is
unramified in L. In this case it follows from [Ka4, Cor. 2.6.25] and 12.23 that Katz’s
theta operators coincide on q-expansions with the p-adic theta operators defined
above.

12.27 Other examples of p-adic modular forms. One way to produce examples of
p-adic modular forms (see 11.4) is by applying the p-adic theta operators to classical
Hilbert modular forms. In general, the image of a classical modular form, i. e., an
element of M(F, µN , χ) (see 5.1), under a theta operator is not a classical modular
form. To illustrate that we consider the case of g = 2 and the I-polarized classical
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Eisenstein series E2 over Q of weight 2. Recall from 18.3 that its q-expansion at a
I-polarized unramified Q-rational cusp (A,B, jcan) is

Nmk−1(A)

(
2−gζL(1− k) +

∑

ν∈(AB)+

( ∑

ν∈C⊂AB

Nm(νC−1)k−1
)
qν
)
.

Let p be a split prime and let χ, χ′ be the basic characters over p. Then ΘχE2 is a
p-adic modular form, whose q-expansion is

Nmk−1(A)

(
2−gζL(1− k) +

∑

ν∈(AB)+

( ∑

ν∈C⊂AB

Nm(νC−1)k−1
)
χ̃(ν)qν

)
.,

which is not a classical modular form. To see that we remark that there exists a
pull-back map from classical modular forms for our quadratic field to modular forms
on Q, taking a modular form of level 1 (say) and weight χa1

1 . . . χ
ag
g to a modular

form on SL2(Z) of weight a1 + . . .+ ag. See § 17. The pull-back of E2 is a multiple

of the Eisenstein series EQ
4 on SL2(Z), where to avoid confusion, we write EQ

k for
Eisenstein series of weight k for the field Q.

If ΘχE2 is classical of some weight and level, so is its Galois conjugate Θχ′E2

over L. Hence, the sum ΘχE2 + Θχ′E2 is in the graded ring of classical modular
forms. It follows from 17.8 that the pull-back of ΘχE2 + Θχ′E2 is proportional

to ΘEQ
4 and is a p-adic cusp form on SL2(Q) of weight 6 and integral q-expansion.

But then, reducing modulo p, we would have a mod p cusp form of weight 4+p+1,
hence divisible, as a holomorphic modular form, by ∆. Take p = 2, 3 or 5 to obtain
a contradiction.

From now on we work in characteristic p. The goal of the rest of this section is
to define theta operators on Hilbert modular forms in characteristic p. See the
introduction of the section for a more detailed discussion.

12.28 The poles of ΘP,i in characteristic p. We use the notation of 11.1 and define

M := M(1, 1)Kum, M′ := M
(
1, 0
)
.

Then φ:M→M′ is a Galois cover with group

G ∼=
∏

P|(p)

(
OL/P

)∗
.

By 9.1 and 9.3 we can complete φ to a finite morphism of quasi-projective normal
schemes:

M ↪−→ M∗ ↪−→ M(k, µpN )Kumyφ
yφ

yφ
M′ ↪−→ M(k, µN )R ↪−→ M(k, µN ).

Note that M∗ has codimension at least 2 in M(k, µpN )Kum and the map φ is
ramified along the complement of the ordinary locus of M(k, µN ).

Let π: A′ → M(k, µN ) be the universal abelian scheme. Proceeding as in 12.6
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one obtains an isomorphism

KS′: Ω1
M(k,µN )R/k

∼−→ω⊗
2
OL

A′/M(k,µN )R
,

which we use to define an isomorphism

KS := φ
∗
(
KS′

)
:φ
∗
(
Ω1

M(k,µN )R/k

)
∼−→φ∗

(
ω
⊗2

OL

A′/M(k,µN )R

)
= ω

⊗2
OL

φ
∗
(A′)/M∗

,

extending to M∗ the previously defined KS on M.

12.29 Definition. For every prime P over p and any integer 1 ≤ i ≤ fP, define
the Weil divisor of M∗:

WP,i := support of the effective divisor φ
−1(

hP,i

)
.

12.30 Remark. By construction WP,i is reduced. Moreover,

(
φ
−1(

hP,i

))
= φ

−1
((
hP,i

))
=
(
pfP − 1

)
WP,i.

See 9.6.

If f is a regular function of M lying in Γ
(
M, O

P,[j]
M

)
, we are interested in computing

the poles of Θ
[j]
P,i(f) on M∗. This is achieved as follows:

12.31 Some notation. Let P and Q be prime ideals of OL over p and let 1 ≤ i ≤ fP

and 1 ≤ j ≤ fQ. Define (
Ω1

M/k

)
P,i

:= eP,i · Ω1
M/k

and if f ∈ OM define
dfP,i := eP,i · df ∈

(
Ω1

M/k

)
P,i
.

See 12.7 for the definition of the idempotent eP,i. Let δ be a local uniformizer of
an irreducible component of the divisor WQ,j . Let vδ be the discrete valuation on
the meromorphic functions on M defined by δ. Let us write

f =
u

δn
,

where u is a function such that vδ(u) = 0. Then

(
Ω1

M/k

)
P,i
3
(
df
)
P,i

=

(
du
)
P,i

δn
−
nu
(
dδ
)
P,i

δn+1
. (12.31.1)

12.32 The poles of dδ for a specific choice of δ. The modular forms hP,i are all
well defined functions on M∗ via the trivialization of the line bundles LχP,i

by
means of the sections a(χP,i) (note that this trivialization exists only over M, but
that suffices for viewing the hP,i’s as functions). We remark that the value of the
function hP,i on a geometric point [(A, ι, λ, εpN )] of M is the value of the modular
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form hP,i on
[(
A, ι, λ, εN , εp∗(dt/t)

)]
. By 9.3-9.4 we may choose δ = δ(Q, j) such

that
δp

fQ−1 = hp
fQ−1

Q,j+1 · · ·h
p
Q,j−1hQ,j .

Since k is of characteristic p, we conclude that

(
pfQ − 1

)
δp

fQ−2dδ =
(
hp

fQ−1

Q,j+1 · · ·h
p
Q,j−1

)
dhQ,j . (12.32.1)

12.33 Proposition. We have dhQ,j ∈
(
Ω1

M/k

)
Q,j

.

Proof: The statement is equivalent to say that the (P, i)-projection of dhQ,j is zero
for (P, i) 6= (Q, j). Therefore, it suffices to prove the Proposition after reducing
modulo the maximal ideal of every geometric point of M.

Fix a geometric point [(A0, ι0, λ0, (ε0)pN )]. Let k[[t
[j]
P,i]]P,i,j be the completion

of M′ at [(A0, ι0, λ0, (ε0)N )] as in 8.11. Let mι be its maximal ideal and let

Rι := k[[t
[j]
P,i]]P,i,j/m

2
ι .

By abuse of notation, mι denotes the maximal ideal of Rι.
With the notation of 8.15, it follows from 8.17 that in mι/m

2
ι

dhQ,j = c̄
[1]
Q,jdt

[1]
Q,j (12.33.1)

for an invertible element c̄
[1]
Q,j of k. The Proposition follows from the following:

12.34 Lemma. For every geometric point [(A0, ι0, λ0, (ε0)N )] of M(k, µN )R one
has

kdt
[1]
Q,j ⊕ kπQdt

[1]
Q,j ⊕ . . .⊕ kπ

eQ−1
Q dt

[1]
Q,j =

(
Ω1
Rι/k

)
Q,j

.

Proof: The proof relies on understanding the connection between two deforma-
tion theories of abelian varieties: one based on Grothendieck and Mumford’s in-
finitesimal theory, the other based on the theory of displays. Consider the display(
P0,Q0,F0,V

−1
0

)
over k introduced in 8.1–8.3. The following results follow from [Zi].

a) Let
(
P1,Q1,F1,V

−1
1

)
and

(
P2,Q2,F2,V

−1
2

)
be two displays over an artinian

k-algebra D deforming
(
P0,Q0,F0,V

−1
0

)
. For i = 1, 2 let Q̂i be the inverse image

of Qi via P→ P0. Then there exists a unique isomorphism

αP1,P2
:
(
P1, Q̂1,F1,V

−1
1

) ∼−→
(
P2, Q̂2,F1,V

−1
2

)

inducing the identity on
(
P0,Q0,F0,V

−1
0

)
. In particular, the functor associating to

a nilpotent pd-thickening k ⊂ D the D-module DP0
(D) := P̄ := P/IDP, where

(P,Q,F,V−1) is a display over D deforming (P0,Q0,F0,V
−1
0

)
, defines a crystal

over k.

b) Let DA0[p∞] be the crystal over k associated to the formal group A0[p
∞] by

Grothendieck and Messing [Me]. The morphism DP0
→ DA0[p∞], which associates

to a nilpotent pd-thickening k ⊂ D and a display (P,Q,F,V−1) over D deform-
ing (P0,Q0,F0,V

−1
0

)
the Lie algebra of the universal extension over D of the formal

group associated to P, defines an isomorphism of crystals; see [Zi, Thm. 6].
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Let D be an artinian k-algebra with nilpotent divided powers structure and a
section s. Let

(
Pcan,Qcan,Fcan,V

−1
can

)
be the trivial deformation of

(
P0,Q0,F0,V

−1
0

)

to D defined by pulling-back via s. Let DefP0

(
D
)

be the category of deformations

of the display
(
P0,Q0,F0,V

−1
0

)
to a display over D. Let DefQ̄⊂P̄can

(
D
)

be the
category of liftings of the Hodge filtration Q̄0 ⊂ P̄0 in P̄can.

c) The functor
DefP0

(
D
)
−−→ DefQ̄⊂P̄can

(
D
)
,

associating to
(
P,Q,F,V−1

)
∈ DefP0

(
D
)

the flag α−1
Pcan,P

(Q̄) ⊂ P̄can, defines an
equivalence of categories.

d) Let R := k[[ta,b]]1≤a,b≤g with the relations ta,bta′,b′ = 0. Let T (resp. T̄ )
be the matrix of Teichmüller lifts

(
w(ta,b)

)
1≤a,b≤g

(resp. the matrix
(
ta,b
)
1≤a,b≤g

).

The flag Q̄can + T̄ T̄can ⊂ P̄can comes from the display P := Pcan and Q := Qcan via
the map

αPcan,P :=

(
Idg T
0 Idg

)
;

the matrix is given on Pcan = Tcan⊕Lcan with respect to B. In particular, the
matrix of F⊕V−1 with respect to the same basis is given by

(
A+ TC B + TD

C D

)
.

Imposing the condition that
(
P,Q,F,V−1

)
is polarized is equivalent to restrict to

the quotient of R defined by the relations ta,b = tb,a. The ring Rι is the maxi-
mal k-algebra over which the OL-action extends, see 8.11, and mι = (ta,b). De-
fine

(
P,Q,F,V−1

)
to be the associated display over Rι.

Let A→ Spec(Rι) be the abelian scheme with real multiplication by OL associ-
ated to the display

(
P,Q,F,V−1

)
. The isomorphism αPcan,P induces an OL-linear

isomorphism

H1,dR(A0/k)×
k

Spec(Rι) = P̄can
∼−→P̄ = H1,dR(A/Rι). (12.34.1)

By b) it is compatible with the isomorphism

DA0[p∞](k)×
k

Spec(Rι)
∼−→DA0[p∞](Rι).

By the comparison theorem between the crystals DA0[p∞] and R1πcrys,∗

(
OA0,crys

)
,

we get that the isomorphism (12.34.1) identifies H1,dR(A0/k) with the horizontal
sections of the Gauss-Manin connection on H1,dR(A/Rι).

Via the identifications of 8.15, we get that the OL-linear map deduced from (12.34.1)

Hom
(
H1
(
A0, OA0

)
, k
)

= Q̄0 −−→ mι ·
(
P̄ /Q̄

)
= Hom

(
H0
(
A0,Ω

1
A0/k

)
,mι

)

is defined by the matrix T̄ . By [Ka4, §1.0.11–§1.0.21] the induced k-linear map

H0
(
A0,Ω

1
A0/k

)
⊗
OL

H0
(
A0,Ω

1
A0/k

) ∼−→mι = Ω1
Rι/k

coincides with the Kodaira-Spencer map. In particular, for any prime Q, any 1 ≤
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j ≤ fQ and any 1 ≤ l ≤ eQ − 1, we compute that

(
ω

[1]
Q,j

)
⊗
(
ω

[l]
Q,j

)
|−−→ d

(
t
[l]
Q,j

)

by considering the corresponding matrix coefficient of T̄ . This implies that dt
[l]
Q,j =

πlQt
[1]
Q,j for 1 ≤ l ≤ eQ − 1. This proves the lemma.

We are now ready to calculate the poles of (dδ)P,i in the following sense: we con-

sider (dδ)P,i as a meromorphic section of the vector bundle φ
∗
(Ω1

M(k,µN )R/k)P,i.

As such it has a well defined divisor on M∗ (which is different from the divisor
of (dδ)P,i considered as a meromorphic differential on M∗), if s is a meromorphic
section and x is a point of height 1 with uniformizer t then the valuation of s at x
is the maximal n such that s/tn is a regular section.

By 8.17 and 12.34 the differentials {dhQ,j , πQdhQ,j , . . . , π
eQ−1
Q dhQ,j} are local

generators of (Ω1
M(k,µN )R/k)Q,j at WQ,j as OM(k,µN )R-module. Gathering the re-

sults of 12.31 and 12.32 and using the Proposition, we conclude that for the par-
ticular choice of δ = δ(Q, j) made in 12.32

vδ

((
dδ
)
P,i

)
=

{
∞ if (P, i) 6= (Q, j);
2− pfP if (P, i) = (Q, j).

Furthermore, vδ

(
πlQ
(
dδ
)
Q,j

)
= 2− pfQ for every 0 ≤ l ≤ eQ − 1.

12.35 Proposition. With the notation of 12.31, we have

vδ
(
(df)P,i

)




≥ vδ
(
f
)

if (P, i) 6= (Q, j);

≥ vδ
(
f
)
− (pfP − 2) if (P, i) = (Q, j) and p|vδ(f);

= vδ
(
f
)
−
(
pfP − 1

)
if (P, i) = (Q, j) and p 6 |vδ(f).

If f is an eigenfunction for the group G, (P, i) = (Q, j) and p|vδ(f), then

vδ
(
(df)P,i

)
≥ vδ

(
f
)
.

Proof: It remains to calculate the contribution of vδ
(
(du)P,i

)
. Let B0 (resp. B) be

the local ring of M(k, µN ) (resp. of M∗) at the component of WQ,j corresponding
to δ. By 9.6 the extension B0 ⊂ B factors as B0 ⊂ Bet ⊂ B where B0 ⊂ Bet is

étale and B = Bet[δ]. Write u =
∑pfP−2
h=0 uhδ

h with uh ∈ Bet. Then, (du)P,i =
∑
h

(
δh(duh)P,i + huhδ

h−1(dδ)P,i

)
. Note that δh(duh)P,i lies in B⊗Bet Ω1

Bet/k =

φ
∗
Ω1
B0/k and, in particular, it has no poles. Hence, vδ

(
(du)P,i

)
≥ inf{0, vδ(dδ)P,i}.

Assume that f is an eigenfunction with respect to a character χ. Let I ⊂ G
be the Galois group of B/Bet. Then, I acts via roots of unity on δ: identifying
I = k∗P we have [α]δ = α−1δ for every α ∈ I. Then,

∑
h uhχ(α)δh−n = χ(α)f =

[α]f =
∑
h uh[α]δh−n =

∑
h uhα

n−hδh−n. Hence, for all 0 ≤ h ≤ pfP − 2 we have
uh(α

n−h−χ(α)) = 0. Taking α to be a primitive element, one concludes that there
exists only one h such that αn−h − χ(α) = 0. In particular, for every h′ 6= h one
has uh′ = 0. Since vδ(u) = 0 by assumption, h = 0 and u ∈ Bet. Reasoning as before,
one gets the conclusion. Note that it also follows that χ is the character α 7→ αn

on I.
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12.36 Lemma. Let f be a regular function on M such that f ∈ Γ(M, O
Q,[j]
M )

for j > 0. Let f = u/δn, as above. Then, p|n and u ∈ Γ(M, O
Q,[j]
M ).

Proof: By definition (df)Q,j ∈ πj
Q(Ω1

M/k)Q,j . Since (dδ)Q,j 6∈ πj
Q(Ω1

M/k)Q,j if j > 0,

it follows from (12.31.1) that p|n and u ∈ Γ(M, O
Q,[j]
M ).

12.37 Proposition. The notation is as in 12.12. Fix primes P and Q over p and
integers 1 ≤ i ≤ fP and 1 ≤ j ≤ fQ. Let 0 ≤ j ≤ eP − 1. Let f be a regular

function on M such that f ∈ Γ(M, O
P,[j]
M ). Let C be an irreducible component of

the divisor WQ,j defined in 12.29. Let vC be the corresponding valuation. Then

vC

(
Θ

[j]
P,i

(
f
))




≥ vC
(
f
)

if P 6= Q;

≥ vC
(
f
)
− 2pfP−r if P = Q and i 6= j;

≥ vC
(
f
)
− 2−

(
pfP − 2

)
if P = Q, i = j and p|vC(f);

= vC
(
f
)
− 2−

(
pfP − 1

)
if P = Q, i = j and p 6 | vC(f);

where r = j−i if j > i and r = fP +j−i if j < i. As before, if f is an eigenfunction
for the group G, (P, i) = (Q, j) and p|vC(f), then

vC

(
Θ

[j]
P,i

(
f
))
≥ vC

(
f
)
− 2.

Proof: By 12.12, the identity

Θ
[j]
P,i(f) = σ̃

[j]
P,i

(
KS
(
df
))
· a
(
χ2

P,i

)−1

holds on M. We first explain how to extend it to M∗.

The map σ̃
[j]
P,i defined in 12.10 over M(k, µN )ord extends to an OL⊗Z k-linear

surjective map

σ̃
[j]
P,i:

[
ω
⊗2

OL

A′/M(k,µN )R
⊗
OL

Pj

]
−−→ Lχ2

P,i

over M
(
k, µN

)R
. Hence we obtain an OL⊗Z k-linear map

[
Ω1

M(k,µN )R/k ⊗
OL

Pj

]
KS′

−−−−−−→
[
ω
⊗2

OL

A′/M(k,µN )R
⊗
OL

Pj

]
σ̃

[j]

P,i−−−−−−→ Lχ2
P,i
.

Pulling-back, we get a map

φ
∗
[
Ω1

M(k,µN )R/k ⊗
OL

Pj

]
−−→ φ

∗(Lχ2
P,i

)
.

We also have a natural inclusion of sheaves of OMR -modules

0 −−→ φ
∗(

Ω1
M(k,µN )R/k

)
−−→ Ω1

MR/k.

The cokernel defines the branch locus of φ; see 9.6. Recall that our goal is to

compute the poles of Θ
[j]
P,i

(
f
)

where df is to be interpreted as a meromorphic

section of φ
∗(

Ω1
M(k,µN )R/k

)
. Now Θ

[j]
P,i(f) = σ̃

[j]
P,i

(
KS
(
df
))
·a
(
χ2

P,i

)−1
makes sense

over M∗.
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By general principles, if τ :L1 → L2 is a surjective map of locally free sheaves
with a locally free kernel over a normal scheme and if s is a meromorphic section
of L1, then the divisor of s is less or equal to the divisor of τ(s). In particular,

the poles of σ̃
[j]
P,i

(
KS(df)

)
are at worst the poles of (df)P,i. This suffices except in

the case P = Q, i = j and p 6 |vC(f), but in this case we can do better. By 12.36
this can happen only for j = 0 and the poles along C of (df)P,i are the poles

of (dδ)P,i/δ
n+1 see 12.31.1. The fact that vC σ̃

[0]
P,i

(
(dδ)P,i/δ

n+1
)

= vC(f)−(pfP−1)
follows from (12.32.1), (12.33.1) and 12.34.

The modular form a
(
χ2

P,i

)
defined in 7.8 extends by 9.3 to a section of φ

∗(Lχ2
P,i

)

over M∗, which we denote in the same way. It is non-vanishing on M and locally
on M∗\M it satisfies

a
(
χP,i

)pfP−1
= hp

fP−1

P,i+1 h
pfP−2

P,i+2 · · ·hP,i.

Hence, vC
(
a(χ2

P,i)
)

is equal to 0 if P 6= Q, it is equal to 2pfP−r if P = Q and i 6= j,
and it is equal to 2, if P = Q and i = j. We conclude using the previous Proposition.

12.38 Definition. (The operator Θ
[j]
P,i on modular forms). Let P be a prime

over p, let 1 ≤ i ≤ fP and let 0 ≤ j ≤ eP − 1. Define the subspace of I-polarized
modular forms of weight ψ

M
(
k, µN , ψ

)P,[j]
:=
{
f ∈M

(
k, µN , ψ

)
|r(f) ∈ Γ

(
M, O

P,[j]
M

)}
,

where r(f) is the regular function on M defined in 7.19 and Γ
(
M, O

P,[j]
M

)
is defined

in 12.12. For f ∈M
(
k, µN , ψ

)P,[j]
define

Θ
[j]
P,i(f) := Θ

[j]
P,i

(
r(f)

)
· a
(
ψ
)
· a
(
χ2

P,i

)
· hP,i.

We have
Θ

[j]
P,i(f) ∈ Γ

(
M,Lψχp

P,i−1
χP,i

)
.

12.39 Theorem. The notation is as in 12.38.

1. The section Θ
[j]
P,i(f) over M(1, 1)Kum descends to a section of the line bundle

Lψχp
P,i−1

χP,i
over M

(
k, µN

)ord
;

2. the section Θ
[j]
P,i(f) extends to a section of Lψχp

P,i−1
χP,i

over M(k, µN )R.

Hence, we obtain a k-derivation:

Θ
[j]
P,i:⊕

ψ
M
(
k, µN , ψ

)P,[j] −−→ ⊕
ψ

M
(
k, µN , ψχ

p
P,i−1χP,i

)
.

Proof: Part (1) follows from the description of the action of the Galois group G on
functions and on modular forms given in 7.8. Part (2) follows from 12.37.

12.40 Corollary. The notation is as in 12.38 and in 12.16. Let f ∈M
(
k, µN , ψ

)
be

a I-polarized modular form of level N and weight ψ. Suppose that the q-expansion
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of f at a I-polarized unramified cusp
(
A,B, ε, jε

)
is

f
(
Tate(A,B), ε, jε

)
=
∑

ν

aνq
ν .

Then

1. f ∈M
(
k, µN , ψ

)P,[j]
if and only if aν = 0 for all ν /∈ PjM ;

2. if f ∈M
(
k, µN , ψ

)P,[j]
, the q-expansion of Θ

[j]
P,i(f) at the same cusp is

Θ
[j]
P,i(f)

(
Tate(A,B), ε, jε

)
=
∑

ν

χ̃
[j]
P,i(ν)aνq

ν .

See 12.21 for the definition of χ̃
[j]
P,i.

Proof: It follows from the definition of ΘP,i given in 12.38 and 12.21.

12.41 Corollary. The theta operators Θ
[j]
P,i commute for different primes P and

different 1 ≤ i ≤ fP.

12.42 Comparison with Katz’s definition. Katz’s definition of theta operators ex-
tends to Hilbert modular form in characteristic p; see [Ka4, §2.6]. Note however that
our operators ΘP,i in characteristic p and Katz’s theta operators change the weights
in a different way; compare 12.38 with [Ka4, Cor. 2.6.25]. Indeed, our theta oper-
ators in characteristic p are Katz’s operators multiplied by suitable partial Hasse
invariants in order to ensure that they send holomorphic modular forms to holo-
morphic modular forms. Instead, Katz is interested only in modular forms defined
over the ordinary locus where the holomorphicity is not an issue.

13 The operator V .
In this section we suppose that k ⊂ F̄p.

13.1 The definition. Let g ∈ M
(
k, µN , ψ

)
be a I-polarized modular form over k

of level µN and of weight ψ. Let R be a k-algebra. Let

A :=
(
A, ι, λ, ε

)
, ω ∈ H0

(
R,Ω1

A/R

)
,

be a I-polarized abelian scheme over R with OL-action and µN -level structure, as
defined in 3.2, and a generator ω of H0

(
R,Ω1

A/R

)
as a free OL⊗ZR-module. Define

V
(
g
)(
A,ω

)
:= g

(
A(p), ω(p)

)
,

where the superscript (p) stands for the base change by the absolute Frobenius on R.

13.2 Definition. The notation is as in 2.2. Let Fabs:GFp
→ GFp

be the absolute
Frobenius morphism on GFp

. Let Fabs
k := Fabs×Spec(Fp) Spec(k) be the base change

of Fabs to Spec(k). Define the following endomorphism of the group of characters Xk

by (
χ:Gk → Gm,k

)
|−−→

(
χ(p) := χ ◦ Fabs

k

)
.
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It preserves the universal characters defined in 4.1.

13.3 Remark. Suppose that k = F̄p. Then the group of characters Xk of Gk
is endowed with a Gal(k/Fp)-action. In particular, the absolute Frobenius σ ∈
Gal(k/Fp) defines an action on Xk. Explicitly:

σ∗:χ 7→ σ−1 ◦ χ ◦ σ.

Such action preserves the universal characters since

σ∗
(
χP,i

)
= χP,i−1.

Indeed, if a⊗ 1 ∈ OL⊗Z F̄p, then
(
σ−1 ◦ χP,i ◦ σ

)
(a⊗ 1) =

(
σ−1 ◦ χP,i

)
(a⊗ 1) = χP,i−1(a).

For any χ ∈ Xk, we have

χ(p) =
(
σ∗(χ)

)p
.

13.4 Examples. For p inert, Xk is freely generated by {χ1, . . . , χg} and χ
(p)
i =

χpi−1, where χ
(p)
1 = χpg. If p is totally ramified, then Xk is freely generated by one

character Ψ and Ψ(p) = Ψp.

13.5 Proposition. Let g ∈M(k, µN , ψ), then V
(
g
)
∈M(k, µN , ψ

(p)).

Proof: We need to verify properties (I)-(III) of 5.1. The first two clearly hold. For
(III) consider any A and any ω as in 13.1 and any γ ∈ Gk(R) =

(
OL⊗ZR

)∗
. Then,

with the notation γ(p) := Fabs
k (γ), we have

V
(
g
)(
A, γ−1ω

)
= g
(
A(p), (γ(p))−1ω(p)

)

= ψ
(
γ(p)

)
g
(
A(p), ω(p)

)

= ψ(p)(γ)
(
V
(
g
)(
A,ω

))
.

We want to compute the effect of V on q-expansions. To do this we introduce an
auxiliary operator.

13.6 Definition. Let σ be the absolute Frobenius on k. Consider the induced
self-equivalence on the category of schemes over k given by

S |−−→ Sσ := S ×
k,σ

k.

Let g be a I-polarized modular form of weight ψ and level µN over k. Define the
rule σ∗(g) by

σ∗(g)
(
A,ω

)
:=
(
g
(
Aσ, ωσ

))σ−1

,

where A and ω are as in 13.1.
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13.7 Remark. Let A be defined over a k-algebra R. We have defined two different
objects A(p) → Spec(R) and Aσ → Spec(Rσ). Letting σ be the Frobenius on R,
they are defined by the following cartesian diagrams

A(p) −→ A Aσ −→ Ay
y

y
y

Spec(R)
σ−→ Spec(R), Spec(k)

σ−→ Spec(k).

13.8 Lemma. The rule σ∗(g) defines a I-polarized modular form of weight σ∗(ψ)
as defined in 13.3. Moreover, if the q-expansion of g at a I-polarized Fp-rational
unramified cusp

(
A,B, ε, j

)
is

g
(
Tate(A,B), ε, j

)
=
∑

ν

aνq
ν ,

then the q-expansion of σ∗(g) at the same cusp is

σ∗(g)
(
Tate(A,B), ε, j

)
=
∑

ν

aσ
−1

ν qν .

Proof: To prove that σ∗(g) defines a modular form, one has to check that (I)–
(III) of 5.1 hold. Properties (I) and (II) are clearly satisfied. We verify that (III)
holds as well. For any I-polarized Hilbert-Blumenthal abelian scheme A over R
with µN -level structure and for any generator ω of the relative differentials and for
any γ ∈

(
OL⊗ZR

)∗
, we have:

σ∗(g)
(
A, γ−1ω

)
=
(
g
(
Aσ, (γσ)−1ωσ

))σ−1

=
(
ψ
(
γσ
))σ−1(

g
(
Aσ, ωσ

))σ−1

=
(
σ∗
(
ψ
)
(γ)
)(
σ∗(g)

(
A,ω

))
.

For the assertion on q-expansions note that

σ∗(g)
(
Tate(A,B), ε, j

)
=
(
g
(
Tate(A,B)σ, εσ, (j)σ

))σ−1

=
(
g
(
Tate(A,B), ε, j

))σ−1

,

since Tate objects are defined over Fp.

13.9 Proposition. The notation is as in 13.1. Fix a I-polarized unramified Fp-
rational cusp

(
A,B, ε, j

)
. Suppose that g has q-expansion

g
(
Tate(A,B), ε, j

)
=
∑

ν

aνq
ν ,

then the q-expansion of V (g) at the same cusp is

V (g)
(
Tate(A,B), ε, j

)
=
∑

ν

aν q
pν .
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Proof: We use the notations of 6.3. Let k
((

A,B, σβ
))

:= Z
((

A,B, σβ
))
⊗Z k. We

can factor the absolute Frobenius Fabs on k
((

A,B, σβ
))

as follows:

k[[qν ]]
σ−→ k[[qν ]]

ξ−→ k[[qν ]]∑
ν aνq

ν 7→ ∑
ν a

p
νq
ν

∑
ν bνq

ν 7→ ∑
ν bνq

pν .

Note that ξ is a homomorphism of k-algebras. In particular,

V (g)
(
Tate(A,B), ε, j

)
= g
(
Tate(A,B)(p), ε(p), (j)(p)

)

= g
((

(Tate(A,B), ε)σ
)ξ
,
(
(j)σ

)ξ)

= ξ
(
g
(
Tate(A,B)σ, εσ, (j)σ

))
(by 5.1(II))

= ξ ◦ σ
(
σ∗
(
g
)(

Tate(A,B), ε, j
))

(by 13.6)

= ξ ◦ σ
(∑

ν

aσ
−1

ν qν

)
(by 13.8)

=
∑

ν

aν q
pν .

13.10 Katz’s V operator. In [Ka4, §1.11.21] one finds a more general notion of
Frobenius operator on Katz’s I-polarized p-adic Hilbert modular forms in the sense
of 11.4

V :M(R,µN , χ)p−adic −−→M(R,µN , χ)p−adic,

where R is as in 10.1. It is defined as follows.

For n,m ∈ N let (
AU, ιU, λU, εUNpn

)
−−→M(m,n)

be the universal I-polarized abelian scheme with real multiplication by OL and
µNpn -level structure. Define for n ≥ 1

π: AU −−→ (AU)′ := AU/
(
D−1
L ⊗

Z
µp
)
.

Then, (AU)′ inherits a canonical OL-action (ιU)′ and a canonical µN × µpn−1-level
structure (εUNpn)′. By [Ka4, Lem. 1.11.6] it inherits a canonical polarization data λ′.
For m = 1 we have that

(
(AU)′, . . . , (εUNpn)′

) ∼=
(
(AU)(p), . . . , (εUNpn−1)(p)

)
×

M(1,n−1)
M(1, n).

Futhermore, for any n ≥ 1 there exists a unique morphism of schemes over R/mm

Fn:M(m,n) −−→M(m,n− 1)

such that
(
(AU)′, (ιU)′, (λU)′, (εUNpn)′

) ∼=
(
AU, ιU, λU, εUNpn−1

)
×

M(m,n−1),Fn

M(m,n).
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With the notation of 11.1, let α ∈ Γn. By construction the diagram

M(m,n)
α−−→ M(m,n)

Fn

y
yFn

M(m,n− 1)
α−−→ M(m,n− 1)

is commutative. This gives a well defined Γ-equivariant morphism

V :OM(m,∞) −−→ OM(m,∞), f 7→ f ◦ F,

where F := limFn. Moreover, the following diagram commutes

OM(m+1,∞)
V−→ OM(m+1,∞)y

y
OM(m,∞)

V−→ OM(m,∞).

Let f = {fm}n be a I-polarized p-adic Hilbert modular form of level µN and
weight χ over R, with fm ∈ Γ(M(m,∞), OM(m,∞)) transforming via χ under the
action of Γ. It follows that the sequence {V (fm)}m∈N defines a p-adic modular
form V (f) of the same weight χ, V (f) ∈M(R,µN , χ)p−adic.

Fix a I-polarized unramified cusp (A,B, εp∞N , jε). By [Ka4, §1.11.23] the oper-
ator V changes the q-expansions at this cusp according to the rule

∑

ν

aνq
ν |−−→

∑

ν

aνq
pν .

13.11 Remark. Let f be a Serre p-adic modular form over F of level µN ; see 10.8.

Then, Θ
[j]
P,i(f) and V (f) are Serre p-adic modular forms over F if f is either a cusp

form, or of weight χ ∈ X, or of weight Nmz with z ∈ Zp. This follows from 11.11.

13.12 Lemma. Let f ∈M(k, µN , χ). We have

r
(
V (f)

)
= V

(
r(f)

)
,

where the V on the left hand side is the one defined in 13.1, while the one defined
on the right hand side is Katz’s V operator on regular functions on M(1,∞) and

r:⊕
ψ

M
(
k, µN , ψ

)
−−→ Γ

(
M(1, 1), OM(1,1)

)

is the map
∑
gψ →

∑
ψ gψ/a(ψ) defined in 7.19.

Proof: By 7.9 the q-expansion of the a(ψ)’s can be assumed to be 1. The lemma
follows by comparing the effect on q-expansions of Katz’s V operator and our V
operator; see 13.9.

13.13 Remark. If f ∈ M(k, µN , χ), then V (f) ∈ M(k, µN , χ
(p)). Note that

χ(p)χ−1 ∈ Xk(1) in the notation of 4.11. In particular, r
(
V (f)

)
and V

(
r(f)

)
have

the same weight as functions on M(1, 1). This justifies our approach to the opera-
tor V ; it allows to control how the weight changes (see 13.5).
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13.14 Remark. Recall that M(k, µN ) is defined over Fp. Let Fabs be the absolute
Frobenius morphism on M(Fp, µN ) and let Fabs

k be its base-change to k. Using the
moduli property of M(k, µN ), one sees that if g is a modular form of level µN and

weight 1⊥ over k i. e., g ∈ Γ
(
M(k, µN ), OM(k,µN )

)
, then V (g) = Fabs,∗

k (g).

Analogously, let Fabs be the absolute Frobenius morphism on M(Fp, µpN ) and

let Fabs
k be its base-change to k. It follows from 13.10 that Fabs,∗

k :OM(1,1) →
OM(1,1) extends the operator V :OM(1,0) → OM(1,1). Note that this is in agree-
ment with 13.12.

14 The operator U.
We use previously introduced notation

M := M(1, 1)Kum, M′ := M
(
1, 0
)
.

Then φ:M→M′ is a Galois cover with group

G ∼=
∏

P|(p)

(
OL/P

)∗
.

14.1 Definition. Let P be a prime of OL over p. Let 0 ≤ j ≤ eP−1 be an integer.
Define an operator

Λ
(
P, j

)
: Γ
(
M, O

P,[j]
M

)
−−→ Γ

(
M, O

P,[j+1]
M

)

(see 12.12 for the notation, extended by the same formula for j+1 = eP) as follows.
Choose ψ =

∏
P,i χ

aP,i

P,i ∈ Xk(1), in the notation of 4.11, with aP,i ≥ 0. Let

Λ
(
P, j

)
:= Id−

fP∏

i=1

(
Θ

[j]
P,i

)aP,i .

14.2 Lemma. The operator Λ
(
P, j

)
is well defined.

1. It has the following effect on q-expansions. If f = a0 +
∑
ν∈(PjAB)+ aνq

ν at the

I-polarized unramified cusp
(
A,B, εpN , jε

)
, then

Λ
(
P, j

)
(f) =

∑

ν∈(Pj+1AB)+

aνq
ν

at this cusp;

2. let χ:G→ k∗ be a character and let f be an eigenfunction for G with character χ.
Then Λ

(
P, j

)
(f) is also an eigenfunction for G with character χ.

Proof: Choose ψ as in 14.1. We calculate the effect of Λ
(
P, j

)
on q-expansions

using that the operators ΘP,i, for different i’s, commute by 12.41. Suppose f ∈
Γ(M, O

P,[j]
M ) i. e., by 12.21, that aν = 0 if ν /∈ PjAB. It follows from 12.21 that

the q-expansion of
(
Id−

fP∏

i=1

(
Θ

[j]
P,i

)aP,i
)
(f)
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at the given cusp is

∑

ν

(
1−

( fP∏

i=1

(χ̃
[j]
P,i)

aP,i
)
(ν)
)
aνq

ν =
∑

ν∈(Pj+1AB)+

aνq
ν .

The last equality holds since

fP∏

i=1

(
χ̃

[j]
P,i(ν)

)aP,i =

{
0 if ν ∈ Pj+1AB,
1 otherwise.

In particular, by 12.21,

Λ
(
P, j

)
(f) ∈ Γ

(
M, O

P,[j+1]
M

)

and the definition of Λ
(
P, j

)
does not depend on the choice of ψ. Part (2) follows

from 12.14.

14.3 Definition. Define an operator

Λ:Γ
(
M, OM

)
−−→ Γ

(
M, OM

)

by

Λ := ◦P|p
(

Λ
(
P, eP − 1

)
◦ · · · ◦ Λ

(
P, 0

))
.

14.4 Proposition. The operator Λ is well defined.

1. It has the following effect on q-expansions. If f =
∑
ν aνq

ν at the I-polarized
unramified cusp

(
A,B, εpN , jε

)
, then

Λ(f) =
∑

ν

apνq
pν

at this cusp;

2. let χ:G→ k∗ be a character and let f be an eigenfunction for G with character χ.
Then Λ(f) is also an eigenfunction for G with character χ.

Proof: This follows from 14.2.

14.5 Proposition. Let f be a regular function on M. There exists a unique
regular function a on M such that

V (a) = Λ(f).

Moreover, if f is an eigenfunction for G with character χ, then a is also an eigen-
function for G with character χ.

Proof: Let K be the function field of M. We have a commutative diagram:

K
d−→ Ω1

K/ky
y

k
((

A,B, σβ
)) d−→ Ω1

k
((

A,B,σβ

))
/k
.
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The left vertical arrow is injective being a morphism of fields. By [Ra, Thm. 5.1] the
schemes S∧σβ

, defined in 6.3, for a suitable choice of the cone decomposition {σβ}β
appear as formal completions of boundary components of smooth toroidal compact-
ifications of M. In particular,

Ω1
K/k ↪−→ Ω1

k
((

A,B,σβ

))
/k

is injective. It now follows from 14.4 that

Ω1
K/k 3 d (Λ(f)) = 0.

We conclude that
Λ(f) ∈ Γ

(
M, OM

)
∩Kpk;

see [La, Ch. X, Prop. 7.4]. Since M is normal and affine

Γ
(
M, OM

)
∩Kpk := Γ

(
M, OM

)p
k.

We conclude by 13.14.

14.6 Definition. Let f be a regular function on M. Define U(f) to be the
unique regular function on M such that

V
(
U
(
f
))

= Λ(f).

Its existence and uniqueness is guaranteed by 14.5.

14.7 Theorem. Let M
(
k, µN , χ

)ord
be the space of I-polarized modular forms

over k of weight χ defined on M(k, µN )ord. There exists a (unique) k-linear operator

U :M
(
k, µN , χ

)ord −−→M
(
k, µN , χ

)ord

with the following effect on q-expansions. Let f ∈M
(
k, µN , χ

)ord
. Suppose that its

q-expansion at a I-polarized unramified cusp
(
A,B, εpN , jε

)
is

f
(
Tate(A,B), εpN , jε

)
=
∑

ν

aνq
ν .

Then the q-expansion of U(f) at the same cusp is

U(f)
(
Tate(A,B), εpN , jε

)
=
∑

ν

apν q
ν .

Moreover, if χ =
∏

P,i χ
aP,i

P,i and aP,i ≥ (eP− 1)p+ eP + 1 for all primes P and all
integers 1 ≤ i ≤ fP, then

f ∈M
(
k, µN , χ

)
=⇒ U(f) ∈M

(
k, µN , χ

)
.

Proof: Let U be the operator on functions on M defined in 14.6. Let

U(f) := U
(
r(f)

)
a(χ),
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where r(f) is the regular function on M associated to f as in 7.19 and a(χ) is the
modular form on M defined in 7.8. In particular, U(f) is a modular form on M.
By 7.8 it descends to a modular form on the ordinary locus M′ = M(k, µN )ord

of M(k, µN ). It has weight χ. By 14.4, 14.6 and 13.9, we conclude that the effect
on q-expansions is as claimed in the theorem.

By comparing weights and q-expansions we conclude the following equality of
modular forms

hp+1V
(
U(f)

)
= hχ∗ ·


∏

P

eP−1∏

j=0

( fP∏

i=1

hp+1
P,i −

fP∏

i=1

(
Θ

[j]
P,i

)p−1
)

(f

)
, (14.7.1)

where χ∗ =
∏

P,i ψ
aP,i

P,i , hP,i are the partial Hasse invariants and hχ∗ and h are
defined as in 7.12.

Assume that f ∈M(k, µN , χ) with χ =
∏

P,i χ
aP,i

P,i and aP,i ≥ (eP−1)p+eP +1
for all primes P and all integers 1 ≤ i ≤ fP. Consider the equality of meromorphic
modular forms:

∏

P

( fP∏

i=1

h
eP(p+1)−aP,i

P,i

)
· V
(
U(f)

)
=


∏

P

eP−1∏

j=0

( fP∏

i=1

hp+1
P,i −

fP∏

i=1

(
Θ

[j]
P,i

)p−1
)

(f

)
.

The poles of U(f) are supported on the complement of M(k, µN )ord in M(k, µN ),
which is the union of the distinct reduced divisors WP,i defined by hP,i. It follows
from 13.14 that V increases the poles by p. On the other hand the order of vanishing

of
∏

P

(∏fP

i=1 h
eP(p+1)−aP,i

P,i

)
along any WP,i is at most p− 1. Hence, if U(f) is not

holomorphic, so is the left hand side. But, the modular form on the right hand side
of the equality has no poles by 12.39.

14.8 Remark. The argument above, as well as the case g = 1 and weight 1
cf. [Gr, §4], suggests that in general one needs to require a condition such as aP,i ≥
(eP − 1)p+ eP + 1 for all P and i to guarantee that U takes holomorphic modular
forms to holomorphic modular forms.

15 Applications to filtrations of modular forms.

Let f ∈ M
(
k, µN , χ

)
be a I-polarized modular form. Let Φ(f) =

∏
P,i χ

aP,i

P,i

with aP,i ∈ Z be its filtration as defined in 8.20.

15.1 A summary. Let
(
A,B, ε, j

)
be an unramified cusp in the sense of 6.4. Suppose

that the q-expansion of f at the given cusp is

f
(
Tate(A,B), ε, j

)
= a0 +

∑

ν∈AB+

aνq
ν ∈ k[[qν ]]ν∈{0}∪(AB)+ .

In the following table we summarize the effect of various operators on the weight χ
and the q-expansion of f ; the lower part of the table should be understood on the
level of q-expansions only.
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Operator Weight q-expansion

[hP,i] (f) χχpP,i−1χ
−1
P,i a0 +

∑
ν aνq

ν

Θ
[j]
P,i(f) χχpP,i−1χP,i

∑
ν χ̃

[j]
P,i(ν)aνq

ν

V (f) χ(p) a0 +
∑
aνq

pν

U(f) χ a0 +
∑
ν apνq

ν

Λ
(
P, j

)
(f) χ mod Xk(1) a0 +

∑
ν∈(Pj+1AB)+ aνq

ν

Λ(f) χ mod Xk(1) a0 +
∑
apνq

pν

See 12.38 and 12.40 for the operator Θ
[j]
P,i, 13.1, 13.5 and 13.9 for the opera-

tor V , 14.7 for the operator U . Finally, [hP,i] means multiplication by the partial
Hasse invariant hP,i introduced in 7.12.

15.2 Proposition. Let
(
A,B, ε, j

)
be a I-polarized unramified cusp of level µN .

Let M̃(k, µN ) be the subring of k
((

A,B, ε, j
))

generated by the q-expansions at this
cusp of modular forms of level µN and any weight. Consider the linear operator

Θ := Id − Λ on M̃(k, µN ); see 14.1 for the notation. The operator Θ takes χ-
eigenfunctions to χ-eigenfunctions and has the following effect on q-expansions:
a0 +

∑
ν∈AB+ aνq

ν 7→∑
ν 6∈pAB+ aνq

ν .
The following sequence of k-vector spaces is exact:

0 −→ M̃(k, µN )
V−→M̃(k, µN )

Θ−−→ M̃(k, µN )
U−→M̃(k, µN ) −→ 0.

Proof: By the table above one sees that U ◦ Θ = 0 and that Θ ◦ V = 0. One also
concludes also that V is injective and U ◦V = Id. In particular, U is surjective. By
definition (see 14.6), we have V ◦U = Λ = Id−Θ. We conclude that if f ∈ Ker

(
Θ
)
,

then f = (Id − Θ)(f) = V
(
U(f)

)
. Hence, f ∈ Im(V ). Finally, if f ∈ Ker(U),

then f =
∑
ν 6∈pAB+ aνq

ν . Hence, f = Θ(f) i. e., f ∈ Im
(
Θ
)
.

15.3 Caveat. For g = 1, the operator Θ defined above is θp−1, where θ is the
classical theta operator as in [Gr, §4].

15.4 Definition. Let g be a rational function on M. For every prime P over p
and any 1 ≤ i ≤ fP, define

vP,i(g) := min {vC(g)|C an irreducible component of WP,i} .

15.5 Definition. For any prime P above p and any 1 ≤ i ≤ fP, let

ψP,i := χpP,i−1χ
−1
P,i

be the weight of the partial Hasse invariant hP,i defined in 7.12. Define two positive
cones in Xk ⊗Z Q by

X
+
k :=

{∏

P,i

ψ
aP,i

P,i : aP,i ∈ Q≥0

}
X
†
k =

{∏

P,i

χ
aP,i

P,i : aP,i ∈ Q≥0

}
,
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(X†k is the cone generated by X
†
OK

, defined in 4.1, under the reduction map). Finally,
we define a partial ordering ≤k on Xk by requiring that if χ, ψ are in Xk,

χ ≤k ψ ⇐⇒ ψ χ−1 ∈ X
+
k .

15.6 Lemma. The elements
{
ψP,i

}
P,i

form a basis of Xk ⊗Z Q. Moreover,

X
†
k ⊂ X

+
k and Xk(1) =

{∏

P,i

ψ
aP,i

P,i |aP,i ∈ Z
}
.

See 4.11 for the definition of Xk(1).

Proof: For any prime P the basic characters
{
χP,i

}
i

defined in 4.1 are expressed

in terms of
{
ψP,i

}
i
by the positive rational fP × fP-matrix

1

pfP − 1




1 p p2 . . . pfP−1

pfP−1 1 p . . . pfP−2

...
...

p p2 p3 . . . 1


 .

This proves the inclusion. The other statement is Part (3) of 7.14.

15.7 Lemma. For any positive integer k one has, Φ(f k) = Φ(f)k.

Proof: We assume that f has weight Φ(f). We certainly have Φ(f k) ≤ Φ(f)k.
Suppose that the inequality is strict. Then, for some P and i, we have that f k,
therefore f , vanishes on every component of WP,i. Hence, f/hP,i is also holomor-
phic. This implies that Φ(f) is strictly less than the weight of f . Contradiction.

15.8 Question. Over the complex numbers, a non-zero Hilbert modular form has
weight in X

†
OK

. In characteristic p this is no longer true as the example of the partial
Hasse invariant shows. Note though that the filtration of a partial Hasse invariant
is the trivial character 1⊥ that lies in X

†
k. We therefore ask: is there an example of

a modular form whose filtration is not in X
†
k? is not in X

+
k ?

15.9 Proposition. Let f be a I-polarized modular form of level µN over k. The
filtration of f and the poles of r(f) determine each other by the following relation.
If Φ(f) =

∏
P,i χ

aP,i

P,i , then

vP,i

(
r(f)

)
= −vP,i

(
a(χ)

)
= −

fP−1∑

s=0

aP,i+sp
s. (15.9.1)

Proof: Without loss of generality we may assume that the weight of f is equal to its
filtration Φ(f). In particular, f does not vanish identically along any WP,i. Else,
by 8.18 the modular form f/hP,i is holomorphic of weight strictly smaller than Φ(f).
Since for any irreducible component C of WP,i we have that vP,i

(
a(χ)

)
= vC

(
a(χ)

)
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and for some such component vC
(
f
)

= 0, it follows that vP,i

(
r(f)

)
= −vP,i

(
a(χ)

)
.

By 9.3,

vP,i

(
a(χ)

)
=

fP∑

j=1

aP,jvP,i

(
a(χP,j)

)

=

fP−1∑

s=0

aP,i+sp
s.

15.10 Proposition. Let P be a prime over p, 1 ≤ i ≤ fP and 0 ≤ j ≤ eP − 1.

Let Θ
[j]
P,i be the operator introduced in 12.38. Suppose that f ∈M

(
k, µN , χ

)P,[j]
.

Then
Φ
(
Θ

[j]
P,i(f)

)
≤k Φ(f)χpP,i−1χP,i,

with equality in the direction χpP,i−1χP,i if and only if p 6 |aP,i.

Proof: We may assume that χ = Φ(f). The filtration Φ
(
Θ

[j]
P,i(f)

)
of Θ

[j]
P,i(f) is less

or equal to its weight Φ(f)χpP,i−1χP,i. By definition

Θ
[j]
P,i(f) = Θ

[j]
P,i

(
r(f)

)
a
(
χ
)
a
(
χ2

P,i

)
hP,i;

see 12.38.

The filtration of Θ
[j]
P,i(f) in the χpP,i−1χ

−1
P,i-direction is smaller than its weight if

and only if for every component C of WP,i we have

vC
(
Θ

[j]
P,i(r(f))

)
≥ vC(a(χ))− vC(a(χ2

P,i)) = vC(a(χ))− 2 (15.10.1)

Since the weight of f is assumed to be equal to its filtration, there is a component C
of WP,i along which f does not vanish. For any such, we have by 15.9

vC(r(f)) = −vC(a(χ)) = −
fP−1∑

s=0

aP,i+sp
s.

In particular, p|vP,i

(
r(f)

)
if and only if p|aP,i. By 12.37, we then get

vC

(
Θ

[j]
P,i

(
r(f)

)){ ≥ vC
(
a(χ)

)
− 2 if p|aP,i;

= vC
(
a(χ)

)
− 2−

(
pfP − 1

)
if p 6 | aP,i.

Thus, (15.10.1) holds if and only if p|aP,i.

To conclude the proof it suffices to prove that (15.10.1) holds for every irreducible
component C of WP,i along which f vanishes. For any such, recalling that we are
taking valuations in M∗, one has

vC(r(f)) ≥ −vC(a(χ)) + (pfP − 1).

As above we compute that

vC

(
Θ

[j]
P,i

(
r(f)

))
≥ vC(r(f))− 2− (pfP − 1) ≥ −vC(a(χ))− 2

as claimed.
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15.11 Remark. Since
(
Θ

[j]
P,i

)p
= Θ

[j]
P,i+1 one can not hope to strengthen 15.10

i. e., that equality holds if p 6 |aP,i.

15.12 Proposition. See 13.1 and 13.5 for the definition of the operator V and
its effect on weights. We have Φ

(
V (f)

)
= Φ(f)(p).

Proof: By definition V is induced by Frobenius on M(k, µN ). In particular, it
increases the poles or the zeroes of f by p. Hence, if some partial Hasse invariant
divides V (f), it must divide f itself.

15.13 Proposition. Let f be a I-polarized Hilbert modular form of level µN and
filtration Φ(f) =

∏
P,i χ

aP,i

P,i such that U(f) is also holomorphic e. g., aP,i ≥ 2 for
every P and every i. Then,

Φ
(
U(f)

)(p) ≤k Φ(f)Nmp2−1,

with strict inequality if p is ramified or aP,i 6≡ 1 modulo p for some P and i.

Proof: By (14.7.1), we have

hp+1V
(
U(f)

)
=
∏

P

fP∏

i=1

h
aP,i

P,i ·
∏

P

eP−1∏

j=0

( fP∏

i=1

hp+1
P,i −

fP∏

i=1

(
Θ

[j]
P,i

)p−1
)(
f
)
.

By 15.12 V
(
U(f)

)
has filtration Φ

(
U(f)

)(p)
. For each j ∈ N, each prime P and

each g ∈M
(
k, µN , χ

)
we have

Φ



( fP∏

i=1

hp+1
P,i −

fP∏

i=1

(
Θ

[j]
P,i

)p−1
)(
g
)

 ≤ sup



Φ(g),Φ

( fP∏

i=1

(
(Θ

[j]
P,i)

p−1
)(
g
))


 .

By 15.10 we have

Φ
( fP∏

i=1

(
Θ

[j]
P,i

)p−1(
g
))
≤k Φ(g)

fP∏

i=1

χp
2−1

P,i .

This proves the first part the Proposition. By 15.10 we have strict inequality if there
exist P, i, 0 ≤ j < eP(p− 1) such that aP,i + j ≡ 0 mod p i. e., either p is ramified
or aP,i 6≡ 1 mod p.

15.14 Definition. We say that f is an ordinary form if there exists λ ∈ k∗ such
that U(f) = λf .

Note that in the definition of an ordinary form f , we do not require f to be an
eigenform for the Hecke operators.

15.15 Corollary. The notation is as in 15.13. If aP,i > eP(p + 1) for some P

and i, then Φ
(
U(f)

)
<k Φ(f).

In particular, if f is an ordinary form and χ =
∏

P,i χ
aP,i

P,i is its filtration,
then aP,i ≤ eP(p+ 1) for every P and i.
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Proof: By hypothesis, Φ(f)(p)−1 =
∏

P,i ψ
aP,i

P,i >k
∏

P,i ψ
eP(p+1)
P,i = Nmp2−1;

see 15.5 for the notation ψP,i. Therefore, Φ(f)(p) >k Φ(f)Nmp2−1. Using 15.13 we

get that Φ(f)(p) >k Φ
(
U(f)

)(p)
. Since the operation χ 7→ χ(p) induces a bijection

on the positive cone X
+
k we conclude that Φ

(
U(f)

)
<k Φ(f).

15.16 Remark. The assumption aP,i > eP(p + 1) for all P and i, implies that
Φ
(
U(f)

)
<k Φ(f) with respect to any ψP,i.

15.17 Remark. For every prime P and 1 ≤ i ≤ fP we can ensure, by multiplying
by suitable positive powers of partial Hasse invariants, that 2 ≤ aP,j ≤ eP(p + 1)
except possibly for j = i. In order to get a result of the type aP,j ∈ [t, . . . , eP(p+1)]
for every P, j (for some t, preferably t = 0 or 1), as in the g = 1 case, one needs a
positivity result for filtrations of Hilbert modular forms mod p; cf. 15.8.

16 Theta cycles and parallel filtration (inert case).

In this section we deal with two further phenomena concerning modular forms,
under the assumption that p is inert in L. The first is the case of modular forms
of parallel weight. Those are of particular interest from the point of view of Galois
representations and it makes sense to discuss a “parallel theory” for them. In fact,
due to the ampleness of the Hodge bundle, we are able to improve on our results
for modular forms of non-parallel weight; cf. 15.17.

The second topic we take is the theory of theta cycles, for not necessarily parallel
weight. So far, we are only able to present some preliminary results that indicate
that the behavior of theta cycles is much more complicated than in the elliptic case.
The subject definitely deserves further study and the authors hope to discuss it in
greater depth on a future occasion.

Throughout this section we assume that p is inert in OL i. e., that P := pOL is a
prime ideal of OL. For i = 1, . . . , g we write χi for the basic weight χP,i, hi for the
partial Hasse invariant hP,i defined in 7.12 and ψi = χpi−1χ

−1
i for its weight.

16.1 Definition. A I-polarized Hilbert modular form over k and of level µN is
said to be of parallel weight if its weight is a power of Nm.

As an example, note that the total Hasse invariant h :=
∏
i hi is a modular form

of parallel weight Nmp−1.

16.2 The operators θ, V and U . If f is a modular form of parallel weight, de-
fine V (f) as in 13.1, U(f) as in 14.7 and

θ(f) := (Θ1 ◦ · · · ◦Θg) (f).

By 12.39, 13.5 and 14.7, the operators θ, V and U preserve the space of mod-
ular forms of parallel weight. Furthermore, θ and V send holomorphic modular
forms to holomorphic modular forms and U sends holomorphic modular forms of
weight Nmc to holomorphic modular forms of the same weight if c ≥ 2.
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Let f ∈ M
(
k, µN ,Nmc

)
. Let

(
A,B, ε, j

)
be an unramified cusp in the sense

of 6.4 and let

f
(
Tate(A,B), ε, j

)
= a0 +

∑

ν∈AB+

aνq
ν ∈ k[[qν ]]ν∈{0}∪(AB)+ .

The following table summarizes the effects of the above operators on q-expansions
and weights.

Operator Power of Nm q-expansion

[h] (f) c+ p− 1 a0 +
∑
ν aνq

ν

θ(f) c+ p+ 1
∑
ν Ñm(ν)aνq

ν

V (f) p · c a0 +
∑
aνq

pν

U(f) c a0 +
∑
ν apνq

ν

Here, Ñm :=
∏
i χ̃i(ν) and [h](f) := h · f . Furthermore, we have the classical

identity between modular forms (deduced from (14.7.1))

hp+1 · V U(f) = hc ·
((
hp+1 − θp−1

)
(f)
)

(16.2.1)

(V U = Id− θp−1 on q-expansions).

16.3 Remark. Given two modular forms f and f ′ of parallel weights χ and χ′,
we have χ ≤k χ′ in the sense of 15.5 if and only if χ′χ−1 = Nma with a ∈ N.

16.4 Lemma. Let f ∈M
(
k, µN ,Nmc

)
. If f 6= 0, then c ≥ 0.

Proof: Denote by π:A → M(k, µN ) the universal abelian scheme over M(k, µN ).
Then, M

(
k, µN ,Nmc

)
is the space of global sections of the c power of the deter-

minant of the Hodge bundle π∗Ω
1
A/M(k,µN

. Since det π∗Ω
1
A/M(k,µN

is ample, the
conclusion follows.

16.5 Definition. Let f ∈M
(
k, µN ,Nmc

)
be a I-polarized Hilbert modular form

over k, of level µN and of parallel weight c. Define the parallel filtration of f ,
denoted by Φ‖(f), to be the minimal parallel weight for which there exists a I-
polarized modular form over k, of level µN , having the same q-expansion as f at
some (hence, any) cusp.

16.6 Proposition. The notation is as in 16.5. There is a unique I-polarized mod-
ular form t‖ over k of level µN , of weight Φ‖(f) and with the same q-expansion as f .
If t is a I-polarized modular form over k of level µN , of parallel weight and with the
same q-expansion of f , then there exist non-negative integer b such that t = t‖ hb.

Proof: The existence of t‖ follows from the definition of Φ‖(f). By the q-expansion
principle, two modular forms of the same weight and q-expansion at a cusp are
equal. This proves the uniqueness of t‖. By 7.14 and 7.22, two modular forms of
parallel weight having the same q-expansion at some cusp differ by a power of the
total Hasse invariant.
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16.7 Proposition. Let f ∈M
(
k, µN ,Nmc

)
. Let Φ(f) = χa1

1 . . . χ
ag
g be the filtra-

tion of f as in 8.20. Let

ri :=
p− 1

pg − 1

g−1∑

s=0

ai+sp
s, r := max{r1, . . . , rg}.

Then, we have

Φ(f) = ψ
r1

p−1

1 · · ·ψ
rg

p−1
g , Φ‖(f) = Nmr.

Let t‖ (respectively, t) be a modular form of weight Φ‖(f) (resp. Φ(f)) and with
the same q-expansion as f , then

t‖ = t ·
∏

i

h
r−ri
p−1

i .

In particular, ri0 = r if and only if t‖ does not vanish on the zero locus Wi0 of hi0 .

Proof: The formula for Φ(f) follows by applying the matrix transforming the basis
of Xk ⊗Q given by the basic characters {χ1, . . . , χg} into the basis {ψ1, . . . , ψg};
see 15.6. Write Φ‖(f) = Nmw. By definition of filtration we may write t‖ = t·∏i h

bi
i

with bi ∈ N. Comparing weights, we have
∏
i ψ

w
p−1

i =
∏
i ψ

ri
p−1+bi

i . Since t‖ does not
vanish identically on the zero locus of h, there exists 1 ≤ i0 ≤ g such that bi0 = 0.
Then,

w = ri0 =
p− 1

pg − 1

g−1∑

s=0

ai0+sp
s.

For every i, w = ri + (p − 1)bi ≥ ri. This implies that w = r = ri0 . Furthermore,

(p− 1)bi = r − ri, which gives t‖ = t ·∏i h
r−ri
p−1

i . Thus, t‖ vanishes along Wi if and
only if r > ri.

16.8 Corollary. For any a ∈ N we have Φ‖(fa) = Φ‖(f)a.

16.9 Corollary. We have Φ‖
(
V (f)

)
= Φ‖(f)p.

16.10 Proposition. Let f ∈M
(
k, µN ,Nmc

)
. We have,

Φ‖(θ(f)) ≤k Φ‖(f)Nmp+1.

Furthermore, if p|Φ‖(f), then Φ‖(θ(f)) <k Φ‖(f)Nmp+1.

Proof: The first statement is clear. In the notation of 16.7, write Φ(f) =
∏
i ψ

ri
p−1

i .
Let {i0, . . . , is} be the set of indices for which rij = r. Then, p|r implies that p|aij .

By 15.10, we have that Φ(θ(f)) ≤k
∏
i ψ

ri+p+1

p−1

i

∏
j ψ
−1
ij

. Write Φ(θ(f)) =
∏
i ψ

r′
i

p−1

i .

Then, r′i ≤ ri+p+1 for every 1 ≤ i ≤ g and r′ij < rij +p+1 for j = 0, . . . , s. Hence,

max{r′i|i = 1, . . . , g} < r + p+ 1. The second statement now follows from 16.7.

16.11 Remark. Contrary to the elliptic case, it seems that in general the assump-
tion p 6 | Φ‖(f) does not imply that Φ‖(θ(f)) = Φ‖(f)Nmp+1.
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16.12 Proposition. Let f be a I-polarized Hilbert modular form of level µN , par-
allel weight and parallel filtration Φ‖(f) = Nmr. Assume that U(f) is holomorphic
e. g., r ≥ 2. Then,

Φ‖
(
U(f)

)p ≤k Φ‖(f)Nmp2−1,

with strict inequality if p|r.
Proof: By (16.2.1) we have hp+1V U(f) = hc

((
hp+1−θp−1

)
(f)
)
. Since Φ‖(V U(f)) =

Φ‖(U(f))p by 16.9, we conclude using 16.10.

16.13 Proposition. Let f be a form of parallel weight. If Φ‖(f) > Nmp+1, then
Φ‖
(
U(f)

)
<k Φ‖(f).

Moreover, if f is an ordinary form of parallel weight, there exists an ordinary

form f ′ of weight Nmr′ , with the same q-expansion as f , such that 2 ≤ r′ ≤ p+ 1.

Proof: Let Nmr = Φ‖(f). Since r > p+ 1, we have by 16.12

Φ‖(f)p = Nmpr >k NmrNmp2−1 = Φ‖(f)Nmp2−1 ≥k Φ‖(U(f))p,

and the first assertion follows.
To prove the second claim, note that 0 ≤ Φ‖(f) ≤ p + 1 by the first statement

and 16.4. If Φ‖(f) = 0, 1 and t‖ is as in 16.6, then f ′ := t‖h has the required
properties.

We next discuss, following [Jo], theta cycles and until the end of this section we
work with modular forms whose weight is not necessarily parallel. From the point of
view of understanding the filtrations of q-expansions obtained by “twists”, i.e., by
applications of the theta operators Θ1, . . . ,Θg, it is enough to consider only powers
of a single theta operator, say Θ1.

16.14 Θ1-cycles. Let f be a I-polarized Hilbert modular form of level µN and
weight χ over k. Then, U(f) = 0 if and only if Θpg−1

1 (f) and f have the same
q-expansion. In that case, we say that f belongs to its Θ1-cycle. In particular,
Φ
(
Θpg−1

1 (f)
)

= Φ(f).

16.15 Definition. Let f be a I-polarized Hilbert modular in Ker(U) of weight χ.
We call the set

{
Φ
(
ΘA

1 (f)
)
|A = 0, . . . pg − 2

}
the Θ1-cycle belonging to f .

For 0 ≤ A ≤ pg − 2, we say that A is a low point of the Θ1-cycle of f
if Φ

(
ΘA(f)) <k Φ(ΘA−1(f))χpgχ1 in the ψ1 = χpgχ

−1
1 direction i. e., Φ

(
ΘA(f)) ≤k

Φ(ΘA−1(f))χ2
1.

Assume that Φ(f) = χ and, without loss of generality, that 0 is a low point of
the Θ1-cycle of f . Label by 0 = A0 < A1 < . . . < As the low points of the Θ1-cycle
of f . For every i = 0, . . . , s put

ci := Ai+1 −Ai,

where by cs we mean pg − 1−As. Let bi be the positive integer defined by

Φ(ΘAi−1(f)) · χpgχ1 = Φ(ΘAi(f)) · ψbi
1

∏

j 6=1

ψ
αi,j

j
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with αi,j ∈ N.

16.16 Proposition. The following hold:

a)
∑s
i=0 ci = pg − 1 and 0 < ci < p for every i;

b)
∑s
i=0 bi = pg + 1;

c) ci + bi ≡ 0 mod p.

Proof: The length of the Θ1-cycle is pg − 1. Hence,
∑s
i=0 ci = pg − 1. By 15.10,

for every modular form g of filtration
∏
i χ

ai
i the filtration of Θ1(g) is strictly less

in the ψ1 direction than Φ(g)χpgχ1 if and only if p|a1. Thus, if g = ΘAi
1 (f) after

iterating Θ1 at most p times another low point must appear. Claim a) follows.

Using the matrix in 15.6, one finds that χpgχ1 = ψ
pg+1
pg−1

1 · ψ∗2 · · ·ψ∗g . Therefore,

up to multiplication by (rational) powers of ψ2, . . . , ψg, we have Φ(ΘAi(f)) =

Φ(ΘAi−1(f))ψ
pg+1
pg−1

−bi

1 and Φ(Θj(f)) = Φ(Θj−1(f))ψ
pg+1
pg−1

1 for j 6= Ai. Since f be-

longs to its Θ1-cycle, Φ
(
Θpg−1

1 (f)
)

= Φ(f) and we conclude that (pg − 1) p
g+1
pg−1 =∑

i bi. Claim b) follows.
Let Φ = Φ

(
ΘAi−1(f)

)
=
∏
j χ

aj

j . Using 15.10 and the assumption that Ai is

a low point, we have p|a1. In the notation above, Φ(ΘAi
1 (f)) = Φχbi+1

1 modulo

the subgroup H := 〈χp1, χ2, . . . , χg〉. Modulo H the filtration of Θ
Ai+1−1
1 (f) =

Θci−1
1 (ΘAi

1 (f)) is Φχbi+1
1 ·χci−1

1 . Since Ai+1 is a low point, we have that a1 + (bi +
1) + (ci − 1) ≡ 0 mod p. Claim c) follows.

16.17 Remark. The Proposition shows that there are at least pg−1
p−1 low points

in the Θ1-cycle of f . Also, note that the weight wt(Θpg−1
1 (f)) of Θpg−1

1 (f) is

equal to wt(f)(χpgχ1)
pg−1, while Φ(Θpg−1

1 (f)) = Φ(f) = wt(f). Using the iden-

tity (χpgχ1)
pg−1 = ψp

g+1
1 ψ2pg−1

2 · · ·ψ2p
g , we conclude that there must be drops in

the ψ2, . . . , ψg directions along the Θ1-cycle of f (the accumulated drop in the ψi

direction being ψ2pg−i+1

i for 1 < i ≤ g). The position of these drops along the
Θ1-cycle seems mysterious at present. Thus, contrary to the elliptic case studied
in [Jo], the combinatorics of the Θ1-cycle seems to be quite complicated.

17 Functorialities.

Let L1 ⊂ L2 be an extension of totally real number fields. Let Ii ⊂ Li be fixed
fractional ideals such that I2 = I1⊗OL1

DL2/L1
. We add subscripts 1 or 2 to the

usual notations for the degrees over Q, the primes, the ramification indices, the
degrees of the residue fields, the associated moduli spaces and spaces of modular
forms.

17.1 Definition. LetN be an integer and let S be a scheme. We define a morphism

Υ:M1

(
S, µN

)
−−→M2

(
S, µN

)
,

where Mi

(
S, µN

)
is the moduli space with respect to Ii-polarization. Consider

an abelian scheme
(
A1, ι1, λ1, ε1

)
over a S-scheme T , with real multiplication ι1
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by OL1
, polarization type λ1: (MA1

,M+
A1

) ∼−→(I1, I
+
1 ) and µN -level structure ε1;

see 3.2. Then
Υ
(
A1, ι1, λ1, ε1

)
:=
(
A2, ι2, λ2, ε2

)
,

where
A2 := A1 ⊗

OL1

D−1
L2/L1

→ T

is an abelian scheme over T with real multiplication

ι2 := ι1⊗ id:OL2
↪−→ EndT

(
A ⊗
OL1

D−1
L2/L1

)
= EndT

(
A2

)

and µN -level structure

ε2 := ε1⊗ id:µN ⊗
Z

D−1
L1
⊗
OL1

D−1
L2/L1

↪−→ A1 ⊗
OL1

D−1
L2/L1

= A2.

Note that
(
A2

)∨
:= Ext1T

(
A2,Gm,T

) ∼←− Ext1T
(
A1,Gm,T

)
⊗
OL1

OL2

∼−→A∨1 ⊗
OL1

OL2
,

where ∨ denotes the dual abelian scheme. Hence, we get the polarization type

λ2 := λ1⊗ id:
(
MA2

,M+
A2

) ∼−→
(
I2, I

+
2

)

with I2 := I1⊗OL1
DL2/L1

.

17.2 The extension of Υ to the cusps. Let i = 1 or 2. Let
(
Ai,Bi

)
be two fractional

ideals of Li such that AiB
−1
i = Ii. Fix a rational polyhedral cone decomposition

{σi,β}β of the dual cone to (AiBi)
+
R ⊂ (AiBi)R which is invariant under the action

of the totally positive units of OLi
and such that, modulo this action, the number

of polyhedra is finite. Let

Si := (AiBi)
∨⊗

Z
Gm,Z.

We have constructed in 6.3 Tate objects

Tate
(
Ai,Bi

)
σi,β

=
(
A−1
i D−1

Li
⊗
Z

Gm,S∧
i,σi,β

/q(Bi)
)
×

S∧
i,σi,β

(
S∧i,σi,β

\Si,σi,β ,0

)
.

This is an abelian scheme with real multiplication by OLi
over the open subscheme

S∧i,σi,β
\Si,σi,β ,0 of S∧i,σi,β

. The latter is defined as the spectrum of the ring obtained

completing the affine scheme Si,σi,β
along the closed subscheme Si,σi,β ,0 = Sσi,β

\Si
with reduced structure.

By 6.2 we have that

Υ
(
Tate

(
A1,B1

)
σ1,β

)
∼−→

(
A−1

1 D−1
L2
⊗
Z

Gm,S∧
1,σ1,β

/q
(
B1D

−1
L2/L1

))
×

S∧
1,σ1,β

(
S∧1,σ1,β

\S1,σ1,β ,0

)
.
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Assume that A2 = A1OL2
and B2 = B1D

−1
L2/L1

. The trace map defines an OL1
-

linear, surjective homomorphism 1⊗TrL2/L1
:A2B2 → A1B1 and, hence, a closed

immersion S1 ↪−→ S2. Choose cone decompositions {σi,β}β for i = 1, 2 as above
such that {σ1,β}β is induced by {σ2,β}β via 1⊗TrL2/L1

for each index β. We get

an induced a closed immersion ρβ :S
∧
1,σ1,β

↪−→ S∧2,σ2,γ
such that ρ−1

β

(
S2,σ2,β ,0

)
=

S1,σ1,β ,0 and

Υ
(
Tate

(
A1,B1

)
σ1,β

)
= Tate

(
A2,B2

)
σ2,β

×
S2,σ2,β

S1,σ1,β
.

17.3 The canonical homomorphism on weights. There is a canonical injective ho-
momorphism of Z-group schemes G1 −−→ G2 defined on R-valued points by the
inclusion

(
OL1
⊗ZR

)∗
↪−→

(
OL2
⊗ZR

)∗
. This induces for any scheme T a map of

characters defined over T :

Ψ: XT
(
G2

)
−−→ XT (G1

)
.

It follows from 7.4 that it sends basic (resp. universal) characters to basic (resp. uni-
versal) characters.

17.4 The effect of Υ on modular forms. Let f ∈M2

(
S, µN , χ

)
be a modular form

over S of level µN and weight χ. Define

Υ∗(f) ∈M1

(
S, µN ,Ψ(χ)

)

by requiring that for any affine S-scheme Spec(R), any abelian scheme A1 with RM
by OL1

and level µN and any generator ω of H0
(
A1,Ω

1
A1/R

)
as R⊗ZOL1

-module

Υ∗(f)
(
A1, ι1, λ1, ε1, ω

)
:= f

(
A1 ⊗

OL1

D−1
L2/L1

, ι2, λ2, ε2, ω⊗ 1

)
.

See 17.1 for the notation. Note that

Ω1
A1⊗OL1

D−1
L2/L1

/R

∼−→Ω1
A1/R

⊗
OL1

OL2

and, hence, ω⊗ 1 is a generator of Ω1
A1⊗OL1

D−1
L2/L1

/R
. One checks that the definition

is well posed.

17.5 Lemma. (The effect of Υ on q-expansions) Let f ∈ M2

(
S, µN , χ

)
and let(

A,B, ε, j) be a I1-polarized unramified cusp of M1(S, µN
)
. Suppose that the q-

expansion of f at the cusp
(
AOL2

,BD−1
L2/L1

, ε, j
)
, in the sense of 6.6, is

f
(
Tate(AOL2

,BD−1
L2/L1

), ε, j
)

= a0 +
∑

ν∈(ABD−1
L2/L1

)+

aνq
ν .
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Then the q-expansion of Υ∗(f) at the cusp
(
A,B, j, ε

)
is

a0 +
∑

δ∈(AB)+

( ∑

ν|TrL2/L1
(ν)=δ

aν

)
qδ.

Proof: We calculate from the definitions

Υ∗(f)
(
Tate(A,B), ε, j

)
:= Υ∗(f)

(
Tate(A,B)σ1,β

, ε,
dt

t

)

= f
(
Tate(A,B)σ1,β

⊗
OL1

D−1
L2/L1

, ε,
dt

t
⊗ 1
)

= f
(
Tate(AOL2

,BD−1
L2/L1

)σ2,β
×

S2,σ2,β
,ρβ

S1,σ1,β
, ε,

dt

t

)

= ρβ

(
f
(
Tate(AOL2

,BD−1
L2/L1

), ε,
dt

t

))

= ρβ

(
a0 +

∑

ν∈(ABD−1
L2/L1

)+

aνq
ν
)

= a0 +
∑

δ∈(AB)+


 ∑

ν|TrL2/L1
(ν)=δ

aν


 qδ.

17.6 Compatibilities of U and V operators. For i = 1, 2 let Ui and Vi be the U
and V operators on the space of modular forms ⊕χ∈Xk(Gi) Mi

(
k, µN , χ) in char-

acteristic p introduced in 14.7 and 13.1. From the behavior of these operators on
weights and q-expansions described in 14.7, in 13.5 and 13.9, we conclude that

U1 ◦Υ∗ = Υ∗ ◦ U2 and V1 ◦Υ∗ = Υ∗ ◦ V2.

17.7 Proposition. (Compatibilities of Θ operators) Let P1 be a prime of OL1

over p and let 1 ≤ i ≤ fP1
. We have the following identity of differential operators

on the algebra ⊕χM2

(
k, µN , χ

)
:

ΘP1,i ◦Υ∗ = Υ∗ ◦


 ∑

P2|P1,j|i

eP2/P1
ΘP2,j


 .

Here
∑

P2|P1,j|i
means summing over all primes P2 of OL2

over P1 and all 1 ≤
j ≤ fP2

such that the embedding σ̄P2,j :OL2
/P2 → k induces the embedding σ̄P1,i

on OL1
/P1. As customary, eP2/P1

denotes the ramification index of P2 relative
to P1.

Proof: To prove this identity it is enough to show that both sides change the weight
and the q-expansion of a modular form f ∈M2

(
k, µN , χ

)
in the same way.

For weights we argue as follows: the operator Υ∗◦
(∑

P2|P1,j|i
eP2/P1

ΘP2,j

)
is equal

to
∑

P2|P1,j|i
eP2/P1

Υ∗ ◦ ΘP2,j . Therefore, it is enough to calculate the weight of

the modular form
(
Υ∗◦ΘP2,j

)
(f). By 12.38, the modular form ΘP2,j(f) has weight
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χ·χpP2,j−1 ·χP2,j . By 17.4, we conclude that Υ
(
ΘP2,j(f)

)
has weight Ψ(χ)·χpP1,i−1 ·

χP1,i, which is equal to the weight of
(
ΘP1,i ◦Υ∗

)
(f).

We compute the effect on q-expansions. Let
(
A,B, ε, j) be a I1-polarized unramified

cusp of M1(k, µN
)
. Denote the q-expansion of f at the I2-polarized unramified cusp(

AOL2
,BD−1

L2/L1
, ε, j) by a0 +

∑
ν aνq

ν . By 17.5 and 12.40 the effect of ΘP1,i on

the q-expansion of Υ∗(f) at the cusp
(
A,B, ε, j

)
is

ΘP1,i

(
Υ∗(f)

)(
Tate(A,B), ε, j

)
= a0 +

∑

δ∈(AB)+

χ̃P1,i(δ)

( ∑

ν|TrL2/L1
(ν)=δ

aν

)
qδ

= a0 +
∑

δ,Tr(ν)=δ

( ∑

P2|P1,j|i

eP2/P1
χ̃P2,j(ν)aν

)
qδ

= Υ∗
( ∑

P2|P1,j|i

eP2/P1
ΘP2,j(f)

)
.

17.8 Corollary. Let Υ∗ be the homomorphism from Hilbert modular forms over k
of level µN w.r.t. OL to elliptic modular forms over k. Then,

θ ◦Υ∗ = Υ∗ ◦


 ∑

P|p,1≤i≤fP

ePΘP,i


 ,

where θ is the classical theta operator of Serre and Swinnerton-Dyer.

18 Integrality and congruences for values of zeta functions.
In this section we apply the results of Section 10 to derive congruences between
values of Dedekind zeta functions and bounds on the denominators of these values.
In fact, the method is applicable for a wide range of L-functions; [DeRi].

18.1 Definition. Let

ζL(s) :=
∑

I

Nm(I)−s
(
Re(s) > 1

)

be the Dedekind ζ-function associated to L.

18.2 Theorem. The function ζL(s) can be continued to a meromorphic function
on C, holomorphic for s 6= 1. Moreover, ζL(1− k) is in Q for every integer k ≥ 1.

Proof: See [Si].

18.3 Theorem. Let k ≥ 2 be an even integer. There exists a I-polarized modular
form

Ek ∈M
(
C, µN ,Nmk−1

)

such that the q-expansion of Ek at a I-polarized unramified cusp (A,B, jcan), as
in 6.4 and 6.11, is

Nmk−1(A)

(
2−gζL(1− k) +

∑

ν∈(AB)+

( ∑

ν∈C⊂AB

Nm(νC−1)k−1
)
qν
)
.
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Proof: See [vdG, Chap. I, §6] or [DeRi, Thm. 6.1].

18.4 Definition. Let D be an ideal of OL dividing p and prime to N . See 3.4 for
the notion of Γ0(p)-level structures. Let

πD:M
(
C, µN ,Γ0(p)

)
−−−−−−→M

(
C, µN

)

be the map associating to a Hilbert-Blumenthal abelian scheme A over a scheme S
with OL-action, µN -level structure and Γ0(p)-level structure H ↪−→ A the Hilbert-
Blumenthal abelian scheme A/H[D] over S with induced OL-action and µN -level
structure.

18.5 Remark. Here we are forced to work with several polarization modules.
Indeed, if the abelian scheme A in 18.4 is I-polarized, the quotient A/H[D] is
DI-polarized.

18.6 Theorem. The notation is as in 18.4. Consider the DI-polarized Eisenstein
series

Ek ∈M
(
C, µN ,Nmk−1

)
.

Let

H =

(
OL
D

)
(1) ↪−→ Tate

(
OL, I

−1
)
σβ

be the subgroup defined in 6.2. The q-expansion of π∗D
(
Ek
)

at the I-polarized cusp(
OL, I

−1, ε,H, jcan
)

is

Nm(D)k−1

(
2−gζL(1− k) +

∑

ν∈(I−1D)+

( ∑

ν∈C⊂DI−1

Nm(νC−1)k−1
)
qν
)
.

See 6.7 for the notation.

Proof: The q-expansion of π∗D
(
Ek
)

is defined by

π∗D
(
Ek
)(

Tate(OL, I
−1)σβ

⊗
Z
R, ε,H,

dt

t

)
;

the notation is as in 6.4 and in 6.7. This is equal to

Ek

(
πD

(
Tate(OL, I

−1)σβ
⊗
Z
R, ε,H,

dt

t

))
.

As explained in 6.3, the abelian scheme Tate(OL, I
−1)σβ

is defined by restrict-

ing the semiabelian scheme D−1
L ⊗Z Gm,Sσβ

/q
(
I−1

)
to the open Sσβ

\Sσβ ,0. Using

the dictionary of 6.1 we get that πD

(
Tate(OL, I

−1)σβ

)
coincides with the re-

striction to Sσβ
\Sσβ ,0 of D−1D−1

L ⊗Z Gm,Sσβ
/q
(
I
)
. Observe that I−1D ⊂ I−1,

where the inclusion is as OL-modules of rank 1 with a notion of positivity. Any
rational polyhedron {σβ}β in the given rational polyhedral cone decomposition

of the dual cone to
(
I−1

)+
R
⊂
(
I−1

)
R

induces a rational polyhedron of the dual

cone to
(
I−1D

)+
R
⊂
(
I−1D

)
R

. Hence πD

(
Tate(OL, I

−1)σβ

)
is the pullback of
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Tate(D, I−1)σβ
via the morphism induced by completing along the boundaries the

affine torus embeddings associated to σβ to the isogeny of the tori

(I−1
)∨⊗

Z
Gm,Z ⊂ (I−1D

)∨⊗
Z

Gm,Z.

Since the differential dt/t descends to Tate(D, I−1) and corresponds to the differ-
ential dt/t on Tate(D, I−1) we conclude.

18.7 Corollary. There exists a I-polarized modular form E†k of weight Nmk−1

and level µN × Γ0(p) i. e., E†k ∈ M
(
C, µN ,Γ0(p),Nmk−1

)
, whose q-expansion at

the cusp (OL, I
−1, ε, (OL/p), jcan) is


∏

P|p

(
1−Nm(P)k−1

)(
2−gζL(1− k)

)

+

∑

ν∈(I−1)+

( ∑

C⊂I−1

Nm′(νC−1)k−1

)
qν ,

where

Nm′(νC−1) =

{
Nm(νC−1) if Nm(νC−1) is prime to p
0 otherwise.

Proof: Let Z be the set of primes of L over p. If I is a subset of Z, define DI :=∏
P∈I P. Define

E†k :=
∑

I⊂Z

(−1)|I|π∗DI

(
Ek
)
.

Fix ν ∈ (I−1)+. Let I be a subset of Z. It follows from 18.6 that the coefficient
of qν in the q-expansion at the given cusp of π∗DI

(Ek) is 0, if ν 6∈ (I−1DI)
+, and is

Nmk−1(DI)


 ∑

ν∈C⊂I−1DI

Nm(νC−1)k−1


 =

∑

ν∈C⊂I−1DI

Nm
(
ν
(
CD−1

I

)−1
)k−1

=
∑

W⊂I−1|ν∈WDI

Nm
(
νW−1

)k−1

otherwise. Fix W ⊂ I−1 such that ν ∈W. Let I be the maximal subset of Z such
that DI |(νW−1). The contribution of Nm(νW−1) to the coefficient of qν in the

q-expansion of E†k is (∑

I′⊂I

(−1)|I
′|

)
Nm(νW−1).

Since
∑
I′⊂I(−1)|I

′| is 0 if I 6= ∅ and is 1 if I = ∅, we conclude.

18.8 p-adic Eisenstein series. Let p be a prime not dividing N . Let k1 < k2 < . . . <
kn < . . . be a sequence of even integers ≥ 2 converging p-adically to k ∈ Zp. Let(
OL, I

−1, j
)

be a I-polarized unramified cusp defined over Z(p). It follows from 18.3

that for every ν ∈
(
I
)+

the coefficient aki,ν of qν in the q-expansion of Eki
at the

given cusp is

aki,ν =

( ∑

ν∈C⊂I−1

Nm(νC−1)ki−1

)
∈ Q.
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It follows from the q-expansion principle, see 6.10, that

Eki
∈M

(
Q, µN ,Nmki−1

)
.

For i→∞ we have

lim
i→∞

aki,ν =
( ∑

ν∈C⊂I−1

Nm′(νC−1)k−1
)

and the convergence is uniform in ki. See 18.7 for the definition of Nm′. It follows
from 10.7 that the sequence

aki,0 = 2−g ζL(1− ki) ∈ Qp

is bounded. As in [Se, Cor. 2, §1.5], one concludes that it converges p-adically.
Define

ζ∗L(1− k) := lim
i→∞

ζL(1− ki) ∈ Qp.

One may interpret this formula as the value of the p-adic zeta function ζ∗L associated
to L at 1− k; see [Se, Thm. 3, §1.6, Thm. 20, §5.3]. We also get that

E∗k :=
ζ∗L(1− k)

2g
+

∑

ν∈∈I+

(∑

νC⊂I

Nm′(νC−1)k−1
)
qν

is a p-adic modular form à la Serre; see 10.8.

18.9 E†k as a p-adic Eisenstein series. Let k be an even, positive integer. By 11.13

the I-polarized modular form E†k defines a I-polarized p-adic modular form à la
Katz, and hence à la Serre by 11.11, of level µN over Qp. It has the property that
its q-expansion at a I-polarized cusp (A,B, εp∞N , jε), in the sense of 10.10, is the q-

expansion of E†k at the I-polarized cusp (A,B, εN , H, jε). The latter is given in 18.7.
In particular, it has the same coefficients for ν 6= 0 as the q-expansion of the Serre
I-polarized p-adic Hilbert modular form E∗k of level µN at the cusp (A,B, ε, jε).
It follows from 10.11, more precisely from the generalization of 10.7 to the case of
p-adic modular forms of level µN , that E†k has the same q-expansion as E∗k. Hence,

ζ∗L(1− k) =
∏

P|p

((
1−Nm(P)k−1

))
· ζL(1− k) for k ∈ 2Z, k ≥ 2.

Compare with [Se, Rmk. 1, §1.6].

18.10 Notation. Let P be a prime dividing p in OL. Let BP be the maximal abelian
subextension over Qp of the completion LP of L at P and let AP be its ring of
integers. Let e′(P/p) be the ramification index of BP over Qp. Note that e′(P/p)
divides eP. Write e′(P/p) = e′(P/p)t · e′(P/p)w, where e′(P/p)t is the prime to p
part of e′(P/p). Local class field theory gives that

H(P) := NmBP/Qp
(A∗P)

is equal to NmLP/Qp
(O∗LP

). Moreover, for p 6= 2,

H(P) = H1(P)H2(P),
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whereH1(P) ⊂ µp−1 is the unique subgroup of µp−1 of index e′(P/p)t andH2(P) ⊂
1 + pZp is equal to 1 + pe′(P/p)wZp, is the unique subgroup of 1 + pZp of in-
dex e′(P/p)w. For p = 2, H(P) is the unique subgroup of index e′(P/p) of Z∗2

∼=
{±1} × Z2.

Let
etp := min{e′(P/p)t : P|p}, ewp := min{e′(P/p)w : P|p}.

For p = 2 we use
e2 := ew2 .

We find that for p 6= 2,

H := Nm ((OL⊗Zp)
∗) =

∏

P|p

H1(P)×
∏

P|p

H2(P) = H1 ×H2,

where H1 is the unique subgroup of index etp of µp−1 and H2 is the unique subgroup
of ewp of 1 + pZp.

For p = 2, we find that

H := Nm ((OL⊗Zp)
∗) =

∏

P|p

H(P)

is a subgroup of index e2 of Z∗2.

18.11 Calculation of exponents. Let n ≥ 1 be an integer. We compute the exponent
of the abelian group

H := Image(H) via the map Z∗p →
(
Zp/p

nZp
)∗
.

If x ∈ R, we use the notation

dxe := min {n ∈ Z|x ≤ n} .

If p 6= 2, the exponent is equal to

p− 1

etp
·
⌈
pn−1

ewp

⌉
.

If p = 2, the exponent is equal to

2ε ·
⌈

2l(n)

e2

⌉
,

where ε = 0, 1 depending on the case and

l(n) :=

{
n− 1 if n ≤ 2,
n− 2 if n ≥ 3;

(note that 2l(n) is the exponent of
(
Z2/2

nZ2

)∗
).

18.12 Theorem. Let k > 1 be an even integer. Suppose that 2−gζL(1− k) is not
p-integral and let n = −valp

(
2−gζL(1− k)

)
. Then,

96



i. if p 6= 2,

k ≡ 0 mod
p− 1

etp
·
⌈
pn−1

ewp

⌉
;

ii. if p = 2,

k ≡ 0 mod

⌈
2l(n)

e2

⌉
.

Proof: Consider the modular form f1 := pnEk. It is a modular form of weight Nmk

over Zp and the reduction modulo pn of its q-expansion is equivalent to 2−gpnζL(1−
k). Let f2 be the modular form 2−gpnζL(1 − k) over Zp of weight 0. By 10.5

we conclude that Nmk ∈ XZ/pnZ(n) i. e., that for any b ∈
(
OL⊗Z Zp)

∗ we

have Nmk(b) ≡ 1 modulo pn. It follows that the exponent of H (see 18.11) di-
vides k and the theorem follows.

18.13 Theorem. Let k, k′ ≥ 2 be even integers such that k ≡ k′ modulo (p−1)pm

for some non-negative integer m. Then

i. if k 6≡ 0 mod (p− 1)/etp (and hence p 6= 2), then

valp





(∏

P|p

(1−Nm(P)k−1)

)
ζL(1− k)

2g
−
(∏

P|p

(1−Nm(P)k
′−1)

)
ζL(1− k′)

2g





≥ m+ 1;

ii. if k ≡ 0 mod (p− 1)/etp and p 6= 2, then

valp





(∏

P|p

(1−Nm(P)k−1)

)
ζL(1− k)

2g
−
(∏

P|p

(1−Nm(P)k
′−1)

)
ζL(1− k′)

2g





≥ m− valp(kk
′)− 1− 2valp

(
ewp
)
;

iii. if p = 2, then

val2





(∏

P|p

(1−Nm(P)k−1)

)
ζL(1− k)

2g
−
(∏

P|p

(1−Nm(P)k
′−1)

)
ζL(1− k′)

2g





≥ m− 2− val2(kk
′)− 2val2(e2).

Proof: Let

` := max
{
−valp

(
2−gζL(1− k)

)
,−valp

(
2−gζL(1− k′)

)
, 0
}

and let

β = p`
(

2−gζL(1− k)
∏

P|p

(1−Nm(P)k−1)− 2−gζL(1− k′)
∏

P|p

(1−Nm(P)k
′−1)

)
.

Let i := 1 if p 6= 2 and let i := 2 if p = 2. Note that if x is an integer prime to p,
then

xk − xk′ ≡ 0 mod pm+i.
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It follows that

f := p`E†k − p`E
†
k′ − β ≡ 0 mod pm+i+`.

Using 18.9, we interpret f as a p-adic modular form à la Katz. It reduces to func-
tion 0 on M

(
Z/pm+i+`, µNpm+i+`

)
, invariant under Γm+i+`. (Here N is any auxil-

iary integer ≥ 4 and prime to p). It follows that for all α ∈ Γm+i+` = (OL/p
m+i+`)∗

we have

α∗f − f =
(
Nmk(α)− 1

)
p`E†k −

(
Nmk′(α)− 1

)
p`E†k′ ≡ 0 mod pm+i+`.

Consider this equation modulo pm+i. Using that for α ∈ Γm+i+` we have Nmk(α) ≡
Nmk′(α) modulo pm+i, we find

α∗f − f =
(
Nmk(α)− 1

) (
p`E†k − p`E

†
k′

)
≡ 0 mod pm+i,

and from here that
(
Nmk(α)− 1

)
β ≡ 0 mod pm+i.

Let t be the p-adic valuation of β. Then Nmk(α) − 1 ≡ 0 modulo
⌈
pm+i−t

⌉
.

Let n := m+ i− t. In the notation of 18.10 and 18.11, H = Nm
(
(OL⊗Zp)

∗
)

and
we have:
1) If p 6= 2, then H = H1 ×H2 where H1, H2 are as in loc. cit.
1.a) If k 6≡ 0 mod p−1

etp
, then we must have t ≥ m + i. In this case also ` = 0

by 18.12. Part (i) follows.

1.b) If k ≡ 0 mod p−1
etp

, then 18.10 implies that k ≡ 0 mod
⌈
pn−1

ewp

⌉
. Therefore,

n− 1− valp(e
w
p ) ≤ valp(k) and we get that t ≥ m+ i− 1− valp(e

w
p )− valp(k).

The same holds for k′ and we conclude that

valp(p
−`β) ≥ m+ i− 1− valp(e

w
p )− `−min

{
valp(k), valp(k

′)
}
.

However, by 18.12, ` ≤ max
{
valp(k), valp(k

′)
}

+ valp(e
w
p ) + 1. Put together

this yields
valp(p

−`β) ≥ m− 1− 2valp(e
w
p )− valp(kk

′).

This proves Part (ii).
2) If p = 2, H is a subgroup of index e2 of Z∗2. By 18.11 its image H in

(
Z∗2/2

nZ2

)∗

is killed by
⌈

2l(n)

e2

⌉
, but not by any smaller power of 2. Thus, val2(k) ≥ l(n) −

val2(e2) = l(m + 2 − t) − val2(e2). Recall that t ≥ 0 and m ≥ 1. Thus, t ≥
m− val2(e2)− val2(k). Therefore,

val2
(
2−`β

)
≥ m− val2(e2)− `−min

{
val2(k), val2(k

′)
}
.

Using 18.12, we find that l(`)− val2(e2) ≤ val2(k) and therefore,

` ≤ 2 + max
{
val2(k), val2(k

′)
}

+ val2(e2).

Part (iii) follows from the last two displayed formulas.

18.14 Remark. For p = 2, one can improve the results given the precise structure
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of the completions of L at primes above 2 e. g., when 2 is inert; c.f. [Go2].

19 Numerical examples.

19.1 Example 1. Consider the field L = Q(
√

3). It is a real quadratic field of
discriminant 12, equal to the totally real subfield of the cyclotomic field obtained
by adjoining to Q the roots of unity of order 12. The following table provides some
information on the decomposition of rational primes in L.

p decomposition etame
p eWild

p

2 ramified 1 2
3 ramified 2 1

5, 7, 17, 19, 29, 31 inert 1 1
11, 13, 23, 37 split 1 1

The results of the Section 11 imply that the only odd primes at which ζL(1− k)−1

can have positive p-adic valuation n are the primes p such that (p − 1)|k, and
then n− 1 is at most the power of p dividing k. For the prime p = 2, we find that
if n is the valuation at 2 of 2gζL(1 − k)−1 , then val2(k) ≥ l(n) − 1. In this case,
the ε in 18.11 is 1 since −1 is not a norm from Q[

√
3]. Hence, the bound may be

improved to val2(k) ≥ l(n). For example, taking k = 18 the prediction is that the
only odd primes at which ζL(−17)−1 may have positive valuation n are 3, 7 and 19
and that valuation can be at most 3, 1 and 1, respectively. At 2 the valuation can
be at most 1. Indeed:

ζL(−17) =514802473837215246476827/7182

=2−1 · 3−3 · 7−1 · 11 · 19−1 · 43867 · 1066866320794499171.

Another interesting value is the denominator of ζL(−35), which is

denominator
(
ζL(−35)

)
= 22 · 33 · 5 · 7 · 13 · 19 · 37.

We consider the congruences involving 2−2ζL(1−2) and 2−2ζL(1−26). Congruences
are predicted for the primes 2, 3, 5, 7, 13. The prediction is

val2
{
(1− 22−1)2−2ζL(1− 2)− (1− 226−1)2−2ζL(1− 26)

}
≥ 3− 2− 2− 2 = −3.

Using ζL(−1) = 1/6 and

ζL(−25) = 59603426243912408678663547473670548011/6

one verifies the congruence since the valuation is −1.

For the prime 3 the prediction is

val3
{
(1− 3)2−2ζL(−1)− (1− 325)2−2ζL(−25)

}
≥ 1− 0− 1− 2 · 0 = 0.

This indeed holds, since the valuation is 0. For the prime 7, we expect

val7
{
(1− 49)2−2ζL(−1)− (1− 4925)2−2ζ(−25)

}
≥ 0 + 1 = 1,
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which holds, since the valuation is 1. For the prime 13 the predicted congruence is

val13
{
(1− 13)22−2ζL(−1)− (1− 1325)22−2ζL(−25)

}
≥ 0 + 1 = 1.

This is verified, since the valuation is 1.

19.2 Example 2. Consider the cyclic cubic totally real field L of discriminant 49,
equal to the totally real subfield of the cyclotomic field of roots of unity of order 7.
The following table provides some information on the decomposition of rational
primes in L.

p decomposition etame
p eWild

p

7 ramified 3 1
2, 3, 5, 11, 17, 19, 23, 31, 37 inert 1 1

13, 29 split 1 1

The results of Section 11 imply that if p is odd, not equal to 7, then the only
odd primes at which ζL(1 − k)−1 can have positive p-adic valuation n are the
primes p such that (p − 1)|k and then n − 1 is at most the power of p dividing k.
If p = 7, then ζL(1 − k)−1 can indeed have positive 7-adic valuation n (k is even)
and then n−1 is at most the power of 7 dividing k. For the prime p = 2, letting n :=
val2(2

3ζL(1−k)−1), we find that val2(k) ≥ l(n). This implies that val2(denom.ζL(1−
k)) ≤ val2(k) − 1. For example, taking k = 10 the prediction is that the only odd
primes at which ζL(−9)−1 may have positive valuation n are 3, 7 and 11, and that
valuation can be at most 1 in each case. At 2, the valuation cannot be positive.
Indeed:

ζL(−9) = −1141452324871/231 = −3−1 · 7−1 · 11−1 · 1141452324871.

We consider congruence for 7 for 2−3ζL(1 − 2) and 2−3ζL(1 − 14). The expected
congruence is

val7

{
(1− 73(2−1))2−3ζL(1− 2)− (1− 73(16−1))2−3ζL(1− 14)

}
≥ −1− 1 = −2.

It holds because the denominators of both values,

ζL(−1) = −1/21, ζL(−13) = −5589087133015782866737/147

are not divisible by 73. For 2 the expected congruence is

val2
{
(1− 8)2−3ζL(−1)− (1− 815)2−3ζL(−13)

}
≥ 2− 2− 2− 2 · 0 = −2.

This is visibly true, because both zeta values have odd numerator. For p = 13, the
expected congruence is

val13
{
(1− 13)32−3ζL(−1)− (1− 1325)2−3ζL(−13)

}
≥ 0 + 1 = 1.

This holds, since the valuation is 1.

19.3 Example 3. Take the non-Galois totally real cubic field L = Q[x]/(x3−9x−6).
It has discriminant 23 · 35. The prime 2 decomposes as P2

1P2 and therefore e2 = 1.
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The prime 3 decomposes as P3, the field L3 is cubic non-Galois and, therefore,
et3 = ew3 = 1. We conclude that if an odd prime divides the denominator of ζL(1−k)
with valuation n, then k ≡ 0 modulo (p−1)pn−1. Analogously, if n is the valuation
at 2 of 23ζL(1− k)−1, then val2(k) ≥ l(n). For example, if k = 6, we find

ζL(−5) = −2 · 3−2 · 52 · 7−1 · 184669 · 512249.

The prime 7 decomposes as a product of two prime ideals in L and et7 = ew7 = 1.
The expected congruence for 2−3ζL(1− 2) and 2−3ζL(1− 14) is

(1− 7)(1− 72)2−3ζL(−1) ≡ (1− 715)(1− 730)2−3ζL(−13) (mod 7).

Using that ζL(−1) = −70/3 and

ζL(−13) = −433461315504312280903563360244187028747610/3

are both divisible by 7, the congruence follows trivially. For the values 2−3ζL(1−4)
and 2−3ζL(1− 16) we again predict

val7
{
(1− 73)(1− 76)2−3ζL(−3)− (1− 715)(1− 730)2−3ζL(−15)

}
≥ 1.

The zeta values are ζ(−3) = 2556221/15 and

ζL(−15) = 83822500848624173596590790551322515127580563498549957/1020,

which are both 7-adic units. The congruence holds, though, since the valuation is 1.
For the prime 2, we predict that

val2
{
(1− 23)(1− 43)2−3ζL(−3)− (1− 215)(1− 415)ζL(−15)

}
≥ 2− 2− 6 = −6.

This holds, since the valuation is −5. Again for the prime 2 we predict

val2
{
(1− 2)22−3ζL(−1)− (1− 217)22−3ζL(−17)

}
≥ 4− 2− 2− 2 · 0 = 0.

Using

ζL(−17) =−
(
3647421225841578953319613809666454838832065018732125543

06326430
)
· 3591−1

one verifies that the valuation is 1. In particular, the congruence holds.
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20 Comments regarding values of zeta functions.

We make a few remarks on values of zeta functions. We have no real theorem to
offer here, but rather we would like to point out some facts concerning Bernoulli
numbers that are interesting in the context of this manuscript. The connection to
zeta functions rests on the identity

ζ(1− 2k) = −B2k

2k
, k ≥ 1.

To begin with, consider the question of which normalized Eisenstein series E2k for
the modular group SL2(Z) are congruent to one modulo p. Here p is a fixed odd
prime. Since the Eisenstein series has the form

1 +
2

ζ(1− 2k)

∞∑

n=1

σ2k−1(n)qn,

the question is for which k does p divide the denominator of ζ(1 − 2k)? (As an
aside we mention that this means that there is an element of order p is the 4k − 1
stable homotopy groups of the spheres. Cf. [MiSt, App. B]; note that Bn in their
notation is our B2n). The Kummer congruences imply that this is the case iff 2k ≡ 0
(mod p− 1) and then

valp(ζ(1− 2k)) = −1− valp(2k);

see [Se, §1.1]. Assume, for argument’s sake, that k is prime. Then p−1 is either 1, 2,
k or 2k. Apart from p = 2, 3, assuming k > 3, we are left only with the possibility
that p = 2k + 1, i. e., that k is a Germain prime! There are infinitely many primes
that are not Germain primes (take k to be a prime congruent to 1 mod 6), hence
the order of the denominator of ζ(1− 2k) does not grow to infinity with k. In fact,
one can prove that if all the prime factors of k are congruent to 1 modulo 6 then
the denominator of ζ(1− 2k) is equal to 12 ([MiSt, App. B, Pb. B-1]).

Let p ≡ 1 (mod 4) and let K = Q(
√
p). Let χ =

(
·
p

)
be the corresponding

Dirichlet character. Let ω be the Teichmüller character, then χ = ω(p−1)/2. We note
also that the discriminant of L is p and is equal to the conductor fχ of χ.

20.1 Proposition. Let p be a prime congruent to 1 modulo 4 and let K := Q(
√
p).

Assume Vandiver’s conjecture ([Wa, p. 159]). Then for any integer r ≥ 1 we have

valp(ζK(1− r(p− 1))) = −1− valp(r).

Hence, in this case, the Hasse invariant in characteristic p lifts to the Eisenstein
series EK,p−1.

Proof: We have the identity

ζK(1− r(p− 1)) = ζQ(1− r(p− 1)) · L(1− r(p− 1), χ).

Therefore, the claim would follow if we prove that valp(L(1 − r(p − 1), χ)) = 0.
Using [Wa, Thms 4.2, 5.11] we get that for any n ≥ 1

Lp(1− n, χ) = (1− χω−n(p)pn−1) · L(1− n, χω−n).
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Applying this formula in our situation we get

valp(L(1− r(p− 1), χ)) = valp(Lp(1− r(p− 1), χ)).

By [Wa, Cor. 5.13], for any integers m,n we have Lp(m,χ) ≡ Lp(n, χ) mod. p
and both numbers are p-integral. It is thus enough to prove for a single integer m
that Lp(m,χ) is a p-adic unit. Using the results cited above we find

valp(Lp(1− (p− 1)/2, χ)) = valp(L(1− (p− 1)/2, χω(p−1)/2))

= valp(ζ(1− (p− 1)/2))

= valp(B(p−1)/2).

The assertion valp(B(p−1)/2) = 0 is known as the Ankeny-Artin-Chowla conjec-
ture and was verified for p < 1011 by A. J. van der Poorten, H. te Riele and
H. Williams in [vdP]. This conjecture is a consequence of Vandiver’s conjecture.
See [Wa, Thm. 5.34].

20.2 Proposition. Let p be a prime congruent to 1 modulo 4 and let K = Q(
√
p).

For every odd integer r ≥ 1

valp(ζK(1− r(p− 1)/2)) = −1− valp(r).

Hence the partial Hasse invariant defined in 7.12 admits a lift to char. 0, the Eisen-
stein series EK,(p−1)/2.

Proof: We have

ζK(1− r(p− 1)/2) = ζQ(1− r(p− 1)/2) · L(1− r(p− 1)/2, χ).

Note that r(p− 1)/2 6≡ 0 mod p− 1 and therefore

valp(ζK(1−r(p−1)/2)) = −1−valp(r) ⇔ valp(L(1−r(p−1)/2, χ)) = −1−valp(r).

However,

Lp(1− r(p− 1)/2,1) = (1− ωr(p−1)/2(p)pr(p−1)/2−1)L(1− r(p− 1)/2, ωr(p−1)/2)

= L(1− r(p− 1)/2, χ),

and therefore,

valp(L(1− r(p− 1)/2, χ)) = valp(Lp(1− r(p− 1)/2,1)).

Using [Wa, Ex. 5.11], we write

Lp(s,1) =
p− 1

p
· 1

s− 1
+ a0 + a1(s− 1) + a2(s− 1)2 + . . . ,

where ai ∈ Zp for every i. In particular, valp(Lp(1− r(p− 1)/2,1)) = −1− valp(r).
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