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1.1. The Upper 1/2 plane. Let

H = {z ∈ C : Im(z) > 0},

be the upper half plane. It is a (non-compact) Riemann surface and its automorphism group as
a Riemann surface is

Aut(H) = PGL2(R)+ = PSL2(R) = SL2(R)/{±I2},

where the plus sign denotes matrices with positive determinant. A fundamental result of Riemann
states that every simply connected connected Riemann surface is isomorphic to C,P1(C) or H.
In fact, any punctured Riemann surface, R (namely R ⊆ R with R a compact Riemann surface
and R−R a finite set of points), which is hyperbolic, that is,

2− 2 · genus(R)− ] punctures < 0,

has H as a universal covering space.

1.2. The group SL2(R) acts transitively on H. The stabilizer of i is{(
a b
−b a

)
: a2 + b2 = 1

}
∼= SO2(R).

We therefore have an identification:

H ∼= SL2(R)/SO2(R).

The involution
(

0 1
−1 0

)
has i as an isolated fixed point. One concludes that H is a hermitian

symmetric space.
1
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1.3. Lattices. Consider lattices L ⊆ C. By choosing a basis, we may write

L = Zω1 ⊕ Zω2,

and, without loss of generality, Im
(
ω1
ω2

)
> 0. We would like to classify lattices up to rescaling.

The quantity τ = ω1
ω2

doesn’t change under rescaling, but depends on the choice of basis. Given

another choice of basis aω1 + bω2, cω1 +dω2,
(
a b
c d

)
∈ GL2(Z), such that aω1+bω2

cω1+dω2
∈ H, then in fact(

a b
c d

)
∈ SL2(Z) and

aω1 + bω2

cω1 + dω2
=
aτ + b

cτ + d
.

One concludes that SL2(Z)\H classified lattices up to rescaling. (The inverse map is of course
τ 7→ Lτ := Zτ ⊕ Z.) The Riemann surface SL2(Z)\H is isomorphic to C; one such isomorphism
is provided by the modular function j, j(τ) = 1

q + 744 + 196884q + . . . , q = e2πiτ .

1.4. Elliptic curves. An elliptic curve over C is isomorphic as a complex analytic manifold
to C/L, where L ⊂ C is a lattice, and vice-versa. The lattice L is uniquely determined up to
rescaling. One concludes that there is a bijection:

{Elliptic curves/C} / ∼= ←→ SL2(Z)\H.

Given a subgroup of SL2(Z) of finite index, one can ask if the complex manifold Γ\H has also
an interpretation as a parameter space. The answer is always yes, but it’s easier to explain the
objects being parameterized in the case of the following subgroups. Let N ≥ 1 be an integer and
let

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : N |c

}
,

and

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) : N |c,N |(a− 1), N |(c− 1)

}
.

We then have

Y0(N) := Γ0(N)\H ←→ {(E,H) : E/C ell. curve, H ⊂ E cyclic gp of orderN}/ ∼=,

and

Y1(N) := Γ1(N)\H ←→ {(E,P ) : E/C ell. curve, P ∈ E of exact orderN}/ ∼= .

(One says that (E1, H1) ∼= (E2, H2) if there is an isomorphism ϕ : E1 → E2 such that ϕ(H1) = H2;
similarly for points of order N .) The maps in one direction are τ 7→ (C/Z ⊕ Zτ, 〈 1

N 〉) and
τ 7→ (C/Z⊕ Zτ, 1

N ).

1.5. Integral models. There are (reduced) schemes over Z, Y0(N),Y1(N), with the following
properties:

(1) Yi(N)→ Spec(Z) is a relative quasi-projective curve with connected geometric fibers.
(2) Yi(N)⊗Z C ∼= Yi(N) as complex manifolds.
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(3) For every algebraically closed field k there is a natural bijection between Yi(N)(k) and
isomorphism classes of pairs (E, ∗) (where ∗ is either a cyclic subgroup of order N , or a
point of exact order N) defined over k. One says that Yi(N) are coarse moduli schemes.

(4) Yi(N)→ Spec(Z[1/N ]) is smooth.

The notion of a cyclic group H of order N when char(k)|N just means that H doesn’t contain
E[m] for any m > 1; the notion of a point of exact order N is more subtle and one needs the
notion of Drinfeld level structures as in Katz-Mazur.

For N ≥ 3, Y1(N) is a fine moduli scheme, which means that in property (3) above one can
replace k by any scheme.

Let p be a prime and N1 a positive integer such that p - N1. Let N = pN1. The fibre of Y0(N)
over Fp, namely, the reduction of Y0(N) modulo p, is a union of two copies of Y0(N1) ⊗ Fp,
crossing transversely at the supersingular points - the points corresponding to (E,H) where E is
a supersingular elliptic curve. The morphism Y0(N)→ Y0(N1) (obtained by taking the “prime
to p” part of the subgroup) is an isomorphism on one of the components of Y0(N) and purely
inseparable of degree p on the other component. Given a point (E,H) ∈ Y0(N1)(Fp) its two
preimages in Y0(N) are (E,H × Ker(Fr)) and (E,H × Ker(Ver)), where Fr : E → E(p) is the
Frobenius morphism and Ver : E → E(1/p) is the verschiebung morphism. We note that E is
supersingular if and only if Ker(Fr) = Ker(Ver) and that explains why the two components
intersect exactly above the supersingular points.

1.6. The modular polynomial. There is a morphism

Y0(N)→ Y0(1)× Y0(1), (E,C) 7→ (E,E/C).

Consider the image of Y0(N) under this morphism. Since Y0(1) is the j-line, and the image
is closed (extend the map to X0(N) and use properness), the image is given by a polynomial
ΦN (j, j′), where we use j′ for the coordinate on the second copy of Y0(1). There is a lot that can
be said about this polynomial, using “pure thought”. For example, the existence of dual isogeny
implies it’s symmetric. The existence of this whole set up over Spec(Z) implies that it is a polyno-

mial with integer coefficients. For fixed j, the polynomial has degree ψ(N) = N
∏
p|N

(
1 + 1

p

)
in

j′ as there are ψ(N) cyclic subgroups {Ci} of degree N in an elliptic curve, and the coefficient of
j′ψ(N) is ±1 (because the same argument can be made in any characteristic). Since the j(E/Ci)
are typically distinct (consider the corresponding τ ’s in the upper half plane modulo Γ0(N) for
example), the polynomial is reduced. Since X0(N) is irreducible, the polynomial is irreducible.

The actual computation of the modular polynomials is not an easy matter due to the huge size
of the coefficients. For N = 2 one obtains

(1.6.1) Φ2(x, j) = x
3

+ j
3 − x

2 ∗ j
2

+ 1488 ∗ (x
2 ∗ j + x ∗ j

2
) − 162000 ∗ (x

2
+ j

2
)

+ 40773375 ∗ x ∗ j + 8748000000 ∗ (x + j) − 157464000000000,
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while for N = 3, one obtains

(1.6.2) ΦN (x, j) = x
4

+ j
4 − x

3 ∗ j
3

+ 2232 ∗ (x
3 ∗ j

2
+ x

2 ∗ j
3
) − 1069956 ∗ (x

3 ∗ j + x ∗ j
3
) + 36864000 ∗ (x

3
+ j

3
)

+ 2587918086 ∗ x
2 ∗ j

2
+ 8900222976000 ∗ (x

2 ∗ j + x ∗ j
2
) + 452984832000000 ∗ (x

2
+ j

2
)

− 770845966336000000 ∗ x ∗ j + 1855425871872000000000 ∗ (x + j).

We remark that this plane model of Y0(N) is in general highly singular.

1.7. Further reading.

• Charles, D.; Lauter, K.: Computing modular polynomials. LMS J. Comput. Math. 8 (2005),
195–204 (electronic).

• Deligne, P.; Rapoport, M.: Les schémas de modules de courbes elliptiques. Modular functions of
one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 143–316.
Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973.

• Katz, N. M.; Mazur, B.: Arithmetic moduli of elliptic curves. Annals of Mathematics Studies,
108. Princeton University Press, Princeton, NJ, 1985.

• Lang, S.: Elliptic functions. With an appendix by J. Tate. Second edition. Graduate Texts in
Mathematics, 112. Springer-Verlag, New York, 1987.

• Silverman, J. H.: The arithmetic of elliptic curves. Corrected reprint of the 1986 original. Grad-
uate Texts in Mathematics, 106. Springer-Verlag, New York, 1992.

• Silverman, J. H.: Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathe-
matics, 151. Springer-Verlag, New York, 1994.
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2.1. Complex modular forms. Let Γ ⊆ SL2(Z) be either Γ0(N) or Γ1(N), although much of
the discussion will work for any congruence subgroup Γ. A modular form of level Γ and weight
k is a holomorphic function

f : H→ C,

such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀γ =

(
a b
c d

)
∈ Γ.

Define a function j : Γ× H→ C by

j(γ, τ) = cτ + d.

For any integer k, j(γ, τ)k is a cocycle in Z1(Γ,O×H ), also called a factor of automorphy. This
means that j(γ, τ)k never vanishes and it satisfies the identities

j(γ1γ2, τ)k = j(γ1, γ2τ)k · j(γ2, τ)k, γ1, γ2 ∈ Γ.
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2.2. A factor of automorphy allows us to define a line bundle on Γ\H. We take the trivial line
bundle T = H×C over H and glue (τ, α) to (γτ, j(γ, τ) ·α). The cocycle relation guarantees that
this glueing process is consistent. If Γ is torsion free (which is the case for Γ1(N) for N > 3), one
obtains a line-bundle E on Γ\H. The sections of Ek are modular forms of weight k.

In fact, the line bundle E is directly connected to the family of elliptic curves over Γ\H. Recall
that to τ ∈ H we have associated the elliptic curve Eτ = C/Lτ , where Lτ = Z⊕Zτ . Therefore, the
line bundle T is naturally identified with the relative tangent space of the family of elliptic curves
E → H (a family whose fiber at τ is Eτ ). If γ ∈ Γ and γτ = aτ+b

cτ+d then Eγτ = C/ 1
cτ+d(Z ⊕ Zτ)

and there is an isomorphism Eγτ → Eτ induced by multiplication by j(γ, τ). It follows that the
relative tangent space at the origin of the family

Γ\E → Γ\H

is defined by the factor of automorphy j(γ, τ)−1. And so E is the relative contangent bundle of
that family; it is sometimes called the Hodge bundle.

Suppose that N > 3. The scheme Y1(N) then is a fine moduli scheme and so carries a universal
family of elliptic curves π : E → Y1(N). Let E = π∗Ω1

E /Y1(N) be the Hodge bundle. We can then

say that for any scheme R the modular forms of weight k and level Γ1(N) are the sections
H0(Y1(N)⊗Z R,E⊗k). This gives our previous definition over C.

2.3. Katz’s definition. Katz defines a modular form f of weight k and level Γ over a ring R
to be a rule associating to a triple (E, ∗, ω) over an R-algebra S (where ∗ is either a point of
order N , or a cyclic subgroup of order N) an element f(E, ∗, ω) ∈ S that depends only on the
isomorphism class of (E, ∗, ω), commutes with base-change and satisfies

f(E, ∗, λω) = λ−kf(E, ∗, ω).

(The idea is that we use ω⊗k to trivialize E⊗k.)

This definition has several advantages:

(1) It works also when Γ is not torsion free and allows us a very general notion of a modular
form, in particular, a modular form over a finite field.

(2) It allows us to define algebraically the notion of q-expansion (see below).
(3) It allows us to construct certain modular forms, notably, the Hasse invariant.

Consider the situation over the complex numbers. Given a lattice L we can associate to it an
elliptic curve and a differential (C/L, 2πi · dz). The lattice is determined by the isomorphism
class of E only up to a scalar. However, if we change the lattice L to the lattice λL then, under
the isomorphism C/L→ C/λL the differential dz on C/L is identified with the differential λ−1dz

on C/λL. We conclude that to give a complex elliptic curve with a differential (E,ω) is the same
as to give a lattice in C. Therefore, a modular form in the sense of Katz becomes a function on
lattices

L 7→ f(L) := f(C/L, 2πi · dz).
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We then have f(λL) = f(C/λL, 2πi · dz) = f(C/L, λ · 2πi · dz) = λ−kf(C/L, 2πi · dz) = λ−kf(L).
We conclude that as a function on lattices a (Katz) modular form of weight k satisfies

f(λL) = λ−kf(L).

Conversely, given a homogenous function of lattices f of weight k, put

f(τ) = f(〈1, τ〉), τ ∈ H.

Then, for γ =
(
a b
c d

)
∈ SL2(Z) we have, f(τ) = f(〈1, τ〉) = f(〈cτ + d, aτ + b〉) = f((cτ +

d)〈1, γτ〉) = (cτ + d)−kf(γτ) and so

f(γτ) = (cτ + d)kf(τ).

This gives a more direct way to connect between Katz’s definition of modular forms and modular
forms as certain functions on the upper half plane. The more precise connection is through
viewing modular forms as sections of the k-th power of the contangent bundle and realizing the
Katz’s definition is nothing but writing it down explicitly by choosing a trivialization of that
bundle (the ω in the definition).

2.4. q-expansion. If Γ = Γ0(N) or Γ1(N) then γ = ( 1 1
0 1 ) ∈ Γ, γτ = τ + 1, and we conclude

that a modular form of weight k satisfies:

f(τ + 1) = f(τ).

Therefore, f has an expansion

f(τ) =
∑
n∈Z

an(f)qn, q = e2πiτ .

Let H∗ = H ∪ P1(Q). There is a way to extend the topology of H to H∗ such that the quotient
X0(Γ) (or X1(Γ)) is a compact Riemann surface. The points Xi(Γ)− Yi(Γ) are finite in number
and are called cusps. For example, a basis of open neighborhoods at ∞ are {Im(z) > N}. Under
this construction, the q-expansion given above is nothing else then the Laurent expansion of a
function in a neighborhood of the point at infinity. Such a Laurent expansion exists at every
cusp. One says that f is a holomorphic modular form if at every cusp the Laurent expansion
is a Taylor expansion, namely, there are no negative powers of the parameter. In particular, at
infinity, f(τ) =

∑
n≥0 an(f)qn. This complex vector space is denoted Mk(Γ). One says that f

is a cusp form if it is holomorphic and at every cusp there is no constant term in the Taylor
expansion, and in particular, at infinity, f(τ) =

∑
n>0 an(f)qn. This complex vector space is

denoted Sk(Γ).

2.5. Tate curve. The q-expansion, initially an analytic concept, is in fact an algebraic concept.
The family of elliptic curves Eτ , τ ∈ H, Eτ = C/Lτ , Lτ = Z ⊕ τZ can be “exponentiated”. Via
the exponential map, z 7→ e2πiz the lattice Lτ is mapped to the multiplicative group 〈q〉, where
q = e2πiτ and Eτ ∼= C×/〈q〉. We now have a family of elliptic curves C×/〈q〉, parameterized by
q such that 0 < |q| < 1. We get a relative elliptic curve, defined by coefficients that are power
series in q, and in fact, are in Z[[q]] - a fact one proves by a long calculation. This curve is called
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the Tate curve ETate. This “odd” coincidence of getting a family of elliptic curves, initially over
the unit disc, but in fact over power series ring, was one of the motivating reasons for Tate to
develop his theory of rigid analytic spaces! On this elliptic curve the relative differential 2πi · dz
on the family of elliptic curves Eτ becomes the differential dtt , t = e2πiz, which is algebraic. Given
a modular form f defined over a ring R, we are then perfectly entitled to evaluate it at the
elliptic curve (ETate ⊗ R, dtt ) and get a value lying in R ⊗ Z((q)) ⊆ R((q)). The fundamental fact
is that when R is the complex numbers, this is precisely the q-expansion of the modular form f .
Thus, the construction of the Tate curve, in conjunction with Katz’s point of view, allows us
to define q-expansions algebraically, and in particular, over a field of positive characteristic. It
makes then perfect sense to define a modular form defined over some ring R to be holomorphic
if the q-expansions obtained by evaluating at the Tate curves, with all possible level structures,
give elements of R[[q1/N ]] and not just R((q1/N )) (the definition of level structures on the Tate
curve may necessitate passing to a larger ring where we adjoin q1/N ).

Besides this achievement, one obvious corollary of this method is that the Fourier coefficients
of a modular form f defined over Q (say) are bounded. Indeed, the q-expansion lies in Z((q))⊗ZQ.

2.6. Dimension formulas. There is yet another geometric interpretation for modular forms.
To simplify the exposition we just deal with even weight modular forms and assume that Γ ⊆
SL2(Z) is a torsion free subgroup of finite index, XΓ = Γ\H∗. Let f be a modular form of weight

2 and level Γ. For γ =
(
a b
c d

)
∈ GL2(R) we have

d(γτ) =
det(γ)

(cτ + d)2
· dτ,

and it follows that the holomorphic differential f(τ)dτ is Γ-invariant. Since Γ is torsion free we
may identify the holomorphic Γ-invariants differentials on H with holomorphic differentials on
Γ\H. Consider the situation at infinity. We have q = e2πiτ and so dτ = 1

2πi ·
dq
q . So, locally,

f(τ)dτ =

(
1

2πi

∑
n∈Z

an(f)qn
)
dq

q
.

We conclude that holomorphic modular forms of weight 2 correspond to sections of Ω1
XΓ

(cusps)
(the sheaf meromorphic differentials with, at most, simple poles that are supported on the cusps),
and that cusp forms of weight 2 correspond to sections of Ω1

XΓ
(the sheaf of holomorphic differ-

entials). Generalizing these considerations we find that

M2k(Γ) = H0(XΓ,Ω⊗kXΓ
(k · PΓ)),

where PΓ is the divisor which is the sum of the cusps (each with multiplicity 1), and

S2k(Γ) = H0(XΓ,Ω⊗kXΓ
((k − 1) · PΓ)).

Applying the Riemann-Roch formula, one finds the dimension formulas.
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Theorem 2.6.1. Let Γ ⊆ SL2(Z) be a torsion-free, finite index subgroup. Let ε∞ = deg(PΓ) be
the number of cusps of Γ and g the genus of XΓ. Then,

dim(M2k(Γ)) =


(2k − 1)(g − 1) + k · ε∞ k ≥ 1,
1 k = 0,
0 k < 0,

and

dim(S2k(Γ)) =


(2k − 1)(g − 1) + (k − 1) · ε∞ k ≥ 2,
g k = 1,
0 k ≤ 0.

We remark that there are closed formula for the genus. For example, for p = 2, 3, X0(p) has
genus 0 and for a prime p > 3,

g(X0(p)) =
p+ 1

12
− 1

4

(
1 +

(
−1
p

))
− 1

3

(
1 +

(
−3
p

))
(Legendre symbols). The group Γ0(p) is usually not torsion free, but we further remark that
these considerations can be extended to provide closed dimension formulas for any weight k ≥ 2
and any Γ.

2.7. Hecke operators. Consider the case of Γ = Γ0(N) or Γ1(N). Thinking about a complex
modular form f of level Γ in Katz’s language, we may define for every prime ` 6 |N ,

(T`f)(E,C, ω) =
1
`

∑
H

f(E/H,C +H/H,ωH),

where the summation is over all subgroups of order ` of E and ωH is the differential on E/H

that pulls back to ω under the projection map E 7→ E/H. The definition is a little problematic
in the sense that the subgroups need not be defined over the same base as E, but the argument
that it works is not hard. On the other hand, it has the advantage that it extends to modular
forms over any base ring R easily, as long as ` is invertible in R. A quick calculation over the
complex numbers gives

(T`f)(τ) = `k−1f(`τ) +
1
`

`−1∑
a=0

f

(
τ + a

`

)
.

Suppose that f =
∑

n anq
n is of level Γ0(N) then, using the last formula, one calculates that

T`f(q) =
∑
n

a`nq
n + `k−1

∑
n

anq
`n, (` - N).

The formula is correct for modular forms over any base in which ` is invertible and is proven
through Tate curves. In addition, one may also define Hecke operators for `|N , by

(T`f)(E,C, ω) =
1
`

∑
H

f(E/H,ωH),
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where the sum now is over subgroups H such that H ∩ C = {0}. The effect on q-expansion is
now

(T`f)(q) =
∑
n

a`nq
n, (`|N).

These operators are usually called U operators and denoted U` instead of T`. The family of
operators U` for all ` (including `|N) form a commutative algebra. The operators T`, ` - N are
semi-simple and can be simultaneously diagonalized.

2.8. Modular forms as functions on adele groups. Let Z∞ = R× embedded diagonally
in GL2(R)+ and K+

∞ = SO2(R) =
{
kθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ [0, 2π)

}
. The group GL2(R)+ acts

transitively on the upper half plane H and the stabilizer of i is Z∞K+
∞. We find that

H = SL2(R)/K+
∞ = GL2(R)+/Z∞K

+
∞.

Let f ∈Mk(Γ), where Γ ⊆ SL2(Z) is congruence subgroup. We define a function

φf : GL2(R)+ → C,

by
φf (g∞) = j(g∞, i)−kf(g∞(i)).

Note that f can be recovered from φf and so we get an injective linear map of Mk(Γ) into the
space of complex valued functions on GL2(R)+.

Lemma 2.8.1. The function φ = φf has the following properties:

(1) φ is a smooth (i.e., C∞) function on GL2(R)+.
(2) φ(γg∞) = φ(g∞),∀γ ∈ Γ.
(3) φ(g∞kθ) = e−iθkφ(g∞), kθ ∈ K+

∞.
(4) φ(g∞z) = φ(g∞) sgn(z)k, z ∈ Z∞.
(5) If f is a cusp form then φ is cuspidal: for every g∞ ∈ GL2(R)+ we have∫ 1

0
φf (( 1 x

0 1 ) g∞) dx = 0.

(6) φ satisfies a certain “slow-growth” condition.

2.9.

Theorem 2.9.1. (A special case of the Strong Approximation Theorem) Let G be a simply
connected semi-simple algebraic group over Q such that G(R) is non-compact. Then G(Q)G(R)
is dense in G(A).

The group SLn is semi-simple, so, in particular, for every compact open subgroup Kf ⊂
SLn(Af ), one finds that

SLn(A) = SLn(Q)SLn(R)Kf .

We remark that for a general reductive group G over a number field F the number of double
cosets G(F )\G(AF )/G(AF,S∞) is finite. One can prove that for the group GLn the number of
double cosets GLn(F )\GLn(AF )/GLn(AF,S∞) is equal to the class number of F and so strong
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approximation in its simplest form fails. On the other hand, the strong approximation theorem
allows the following conclusion. Let Kf ⊂ GLn(Af ) be a compact open subgroup such that

det(Kf ) = Ẑ×. Then

GLn(A) = GLn(Q)GLn(R)+Kf .

Furthermore,

GLn(Q)\GLn(A)/Kf
∼= ΓKf

\GLn(R)+, ΓKf
= GLn(Q) ∩GLn(R)+Kf .

Let n = 2. Define the subgroups K(N),K1(N) and K0(N) of GL2(Af ) as the subgroups of
elements (Mp)p such that we have Mp ∈ GL2(Zp) and if pa||N , a > 0, then also Mp is congruent
to ( 1 0

0 1 ), ( 1 ∗
0 1 ) and ( ∗ ∗0 ∗ ), respectively. Note that only K0(N) satisfies the requirement on the

determinant.
Suppose that n = 2 and Kf satisfies the determinant condition. It is easy to see that ΓKf

is
a congruence subgroup. Suppose that f is a modular form of weight k and level ΓKf

. Then the
function φf : ΓKf

\GL2(R)+ → C we have previously defined may be transported to a function,
still denoted φf , on GL2(A) as follows:

φf (γg∞k) = φf (g∞) = j(g∞, i)−kf(g∞(i)),

where γ ∈ GL2(Q), g∞ ∈ GL2(R)+, k ∈ Kf .

The function φ = φf : GL2(A)→ C is well defined. Indeed, one checks that if γ1g1k1 = γ2g2k2

then g2 = γ−1
2 γ1g1 where in the right hand side we mean the projection on the infinite component

and γ−1
2 γ1 = (g2g

−1
1 )(k2k

−1
1 ) and so is in ΓKf

. It follows that φf (g2) = φf (γ−1
2 γ1g1) = φf (g1).

Lemma 2.9.2. The function φf has the following properties.

(1) φ(γg) = φ(g),∀γ ∈ GL2(Q).
(2) φ(gkf ) = φ(g),∀kf ∈ Kf .
(3) φ(gkθ) = e−ikθφ(g),∀kθ ∈ K+

∞.
(4) φ is invariant under Z+

∞.
(5) φ satisfies a slow growth condition.
(6) If f is a cusp form then φ is cuspidal: for all g ∈ GL2(A) we have∫

Q\A
φ (( 1 x

0 1 ) g) dx = 0.

(7) Ωφ = −k
2 (k2 − 1)φ, where Ω is the suitably normalized Casimir operator.

2.10. The case of Γ1(N). Modular forms on the group Γ0(N) with a character χ are of great
interest. The problem is that such modular forms are actually modular forms on Γ1(N) but the
group K1(N) doesn’t satisfy the determinant condition and so we can not transfer them in the
same way to GL2(A). We thus modify our definitions slightly.

Let f is a modular form of weight k and character χ on Γ0(N). We may view χ is a character
on K0(N) and we let

(2.10.1) φ(γg∞k) = φ(g∞)χ(k), k ∈ K0(N),
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where φ(g∞) = j(g∞, i)−kf(g∞(i)) (a function on Γ1(N)\GL2(R)+, transforming under χ with
respect to Γ0(N).) One can then prove that φ = φf satisfies:

φ(zg) = χ(z)φ(g), ∀z ∈ Z(A) = A×Q,

where χ is interpreted as a unitary grossencharacter.

Proposition 2.10.1. There is an isomorphism

Sk(Γ0(N), χ) ∼= A0(GL2)(hol, k,N, χ),

where A0(GL2)(hol, k,N, χ) is the space of functions on GL2(A) which satisfy the following con-
ditions:

(1) φ(γg) = φ(g), ∀γ ∈ GL2(Q).
(2) φ(gk) = χ(k)φ(g),∀k ∈ K0(N).
(3) φ(gkθ) = e−ikθφ(g), ∀kθ ∈ K+

∞.
(4) φ is invariant under Z+

∞.
(5) φ satisfies a slow growth condition.
(6) φ is cuspidal: for all g ∈ GL2(A) we have∫

Q\A
φ (( 1 x

0 1 ) g) dx = 0.

(7) Ωφ = −k
2 (k2 − 1)φ, where Ω is the suitably normalized Casimir operator.

Remark 2.10.2. One can show that these conditions imply that |φ| is in L2(Z(A)GL2(Q)\GL2(A))
and that for z ∈ Z(A) we have

φ(zx) = χ(z)f(x),

where χ is viewed as a Hecke character (use the decomposition A×Q = Q×R×,+Ẑ×). This gives

two different choices to developing the theory of automorphic forms: (i) via L2 theory; (ii) via
a more intrinsic notion of extending the space A0(GL2)(hol, k,N, χ) just enough as to make it a
(g,K∞)×G(Af )-module.

2.11. Eisenstein Series. Let

Γ(N) =
{
γ =

(
a b
c d

)
: γ ∈ SL2(Z), γ ≡ I2 (mod N)

}
.

Let k ≥ 3 be an integer and c, d ∈ Z. Let

Gk(τ ; c, d;N) =
∑

′

m≡c (mod N)
n≡d (mod N)

(mτ + n)−k.

(The prime indicates that (m,n) = (0, 0) is omitted, if it occurs at all.) This Eisenstein series
is a modular form of weight k for the group Γ(N). It depends only on (c, d) (mod N). In
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fact, if γ ∈ SL2(Z) then Gk(τ ; c, d;N)|kγ := j(γ, τ)−kGk(γτ ; (c, d);N) = Gk(τ ; (c, d)γ;N). As a
consequence, for any Γ ⊇ Γ(N) (e.g., Γ0(N),Γ1(N)) the function∑

γ∈Γ/Γ(N)

Gk(τ ; c, d;N)|kγ

is a modular form of weight k on Γ (possibly zero).

2.12. Theta functions. Let B a positive definite symmetric bilinear form on Rn , represented
relative to the standard basis e1, . . . , en, by a matrix A with integer entries and even diagonal
entries. Write A = tMM and let L be the lattice in Rn generator by the columns of M . The
matrix A is the called the Gram matrix of L. The dual lattice L∨ of L, namely {x ∈ Rn : x · ` ∈
Z, ∀` ∈ L}, has generator matrix tM−1 (here the dot refers to the usual inner product on Rn).The
Gram matrix of L∨ is then A−1 = M−1 · tM−1; it’s symmetric and positive definite. Note that
L is an even lattice: for ` ∈ L, ` · ` ∈ 2Z.

The associated theta function is

ΘL(q) =
∑
`∈L

q`·`/2, q = e2πiτ .

Then

ΘL(q) = ΘA(q) :=
∑
a∈Zn

q
1
2
A[a] =

∞∑
n=0

r(n)qn,

where A[a] = taAa and r(n) = ] {a ∈ Zn : 1
2A[a] = n}. If we let Q(a) = 1

2A[a] then Q is an
integer valued quadratic form on Zn, whose associated bilinear form Q(x + y) −Q(x) −Q(y) is
A, and r(n) = ] {a ∈ Zn : Q(a) = n} are the representation numbers for the quadratic form Q.

For a matrix A as above, the minimal N such that NA−1 is integral (this is the exponent of
the finite group L∨/L), is called the level of A (or L). Assume that also NA−1 has even integral
entries and n = 2k is an even integer. The main theorem is the following.

Theorem 2.12.1. ΘA(q) is a modular form on Γ0(N), of weight k and a quadratic character(
D
·
)
, where D = (−1)k det(A). That means that for γ =

(
a b
c d

)
∈ Γ0(N) we have

f(γτ) =
(
D

d

)
j(γ, t)kf(t).

(So, in particular, f is a modular form on Γ1(N)).

2.13. Quaternion algebras. Let R be a maximal order in the quaternion algebra Bp,∞ - “the”
quaternion algebra over Q ramified only at p and∞. Choose a basis e1, . . . , e4 for R and consider
the matrix

A = (Tr(eiēj))i,j ,

where Tr is the reduced trace from Bp,∞ to Q and x̄ = Tr(x) − x. As is easily verified, the
matrix A is a 4 × 4 symmetric positive definite matrix, with integral entries and even diagonal
entries. Its determinant is p2. The level of A is p and it turns out that pA−1 has again even
diagonal entries.
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Example. Let p be a prime congruent to 3 mod 4. Then

Bp,∞ =
(
−1,−p

Q

)
.

Thus, B = Q⊕Qi⊕Qj ⊕Qk, where

i2 = −1, j2 = −p, ij = −ji = k.

We have Tr(a+ bi+ cj + dk) = 2a. A maximal order is given by Z[1, i, (i+ j)/2, (1 + k)/2], and
the Gram matrix relative to this basis is

A =


2 0 0 1
0 2 1 0
0 1 (p+ 1)/2 0
1 0 0 (p+ 1)/2

 .

One checks that

pA−1 =


(p+ 1)/2 0 0 −1

0 (p+ 1)/2 −1 0
0 −1 2 0
−1 0 0 2

 .

In fact, the construction can be generalized even further. Let a be a left ideal for a maximal
order. Then the quadratic form

qa : a→ Z, q(x) = Norm(a)−1Norm(x),

is integer valued and the associated bilinear form is represented by a matrix A having integral
entries, even diagonal entries, determinant p2, level p, and pA−1 also has even diagonal entries.
(We remark that Norm(x) = xx̄ and Norm(a) is the Z-module generated by all the norms of
elements of a.) Running over all ideals a for all maximal orders we get a collection of theta
functions Θqa that are modular forms of weight 2 and level Γ0(p). The positive solution to
Eichler’s basis problem says in this case that these theta series span M2(Γ0(p)).

The construction can be generalized to modular forms of higher weight by using harmonic
polynomials, and at the same time to modular forms of higher level by using Eichler orders
instead of maximal orders.
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• Bump, D.: Automorphic forms and representations. Cambridge Studies in Advanced Mathemat-

ics, 55. Cambridge University Press, Cambridge, 1997.
• Bump, D.; Cogdell, J. W.; de Shalit, E.; Gaitsgory, D.; Kowalski, E.; Kudla, S. S.: An introduction

to the Langlands program. Lectures presented at the Hebrew University of Jerusalem, Jerusalem,
March 12–16, 2001. Edited by Joseph Bernstein and Stephen Gelbart. Birkhuser Boston, Inc.,
Boston, MA, 2003.

• Diamond, F.; Shurman, J.: A first course in modular forms. Graduate Texts in Mathematics,
228. Springer-Verlag, New York, 2005.
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3

This section is concerned with presenting several ways in which modular forms modulo p, or
the structure of modular curves modulo p, interact with characteristic zero phenomena.

3.1. La méthode des graphes. This method, utilized by Mestre and Oesterlé, makes use of
the structure of quaternion algebras to quickly compute bases for modular forms on Sk(Γ0(pN1)),
where N1 is prime to p. To illustrate the idea, we shall assume that k = 2 and N1 = 1 and p > 2.
Recall that by the solution to Eichler’s basis problem all modular forms of weight 2 and level
Γ0(p) are spanned by theta series of ideals for maximal orders in the quaternion algebra Bp,∞.
The theta series are associated to the norm form on such an ideal a, scaled by Norm(a)−1. It is
thus clear that the theta series depend only on the λ1aλ2, where λi ∈ B×p,∞.

Let R1 be a maximal order of B×p,∞. There is a supersingular elliptic curve E1 over Fp2 ,
such that R1

∼= End(E1). Consider left ideals a of R1, up to the equivalence a ∼ aλ, where
λ ∈ B×p,∞. The number of ideal classes is finite and is equal to the number of isomorphism

classes of supersingular elliptic curves over Fp, i.e., the number of supersingular j-invariants.
Denote this number by ~ and let E1, . . . , E~ be representatives for the supersingular elliptic
curves over Fp. Every supersingular elliptic curve Ei, furnishes us with a projective rank 1 left
R1-module, Hom(Ei, E1), with a natural quadratic form – the degree of the isogeny. It turns
out that the isomorphism classes of these quadratic modules are precisely the ideal classes for R1

with the scaled norm form. Given such an ideal a, its right order is another maximal order,
corresponding to End(Ei) under the interpretation above.
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Fix representatives I1, . . . , I~ for the ideal classes of R1. Let Ri be the right order of Ii. One
can show that for every j the ideals I−1

j Ii are representatives for the ideal classes of Rj and we
can think about them as coming from Hom(Ei, Ej) (j fixed).

Let n ≥ 1 be an integer and form the n-th Brandt matrix B(n) = (B(n)ij), whose ij entry
is the number of isogenies in Hom(Ei, Ej) of degree n divided by |R×j |. One can phrase that

in terms of the ideals I−1
j Ii. The fundamental fact is that the representation of the Brandt

matrices on the vector space, which we can interpret as the vector space on the basis consisting
of supersingular j-invariants, is isomorphic to the representation of the Hecke algebra on modular
forms of weight 2 on Γ0(p), where the `-th Hecke operator corresponds to B(`). The method of
graphs is concerned with quickly constructing the matrices B(n).

Suppose one looks for eigenforms, i.e., eigenvectors for the Hecke algebra; these are of the
utmost importance in connections with Galois representations and L-series. Such an eigenform
is an eigenform also of the operator T2, and, conversely, if it is an eigenform of the operator T2

then it is an eigenform for every operator in Z[T2] (a subring of the Hecke ring), and is thus likely
to be an eigenform of the whole Hecke algebra. Thus, for many cases, it is enough to construct
the operator T2. Looking at B(2), we notice that it is a matrix in which the sum of any row or
columns is 3 (the number of subgroups of order 2 of an elliptic curve) and the entries are non-
negative integers. We can think about B(2) as providing an oriented graph structure on vertices
corresponding to supersingular j-invariants. It turns out that this graph is Ramanujan – an
excellent expander – which implies that by adjoining to a vertex its neighbors, and then to these
neighbors their own neighbors, and so on, one exhausts the graph after about log of the number
of vertices. Begin therefore with a supersingular j-invariant and calculate all the j-invariants that
are 2-isogenous to it (one uses the modular polynomial Φ2(j, j′). The first step requires solving
a cubic polynomial, but the rest of the steps require solving only quadratic polynomials as one
of the edges “goes back”) and so on. This way, very quickly, one calculates all the supersingular
j-invariants and, at the same time, the matrix of B(2).

3.2. Modular forms of weight 1. Modular forms of weight one that are eigenforms provide one
with a finite image Galois representations. In that context we have the Artin conjecture saying
that two dimensional complex Galois representations all arise from modular forms of weight 1;
many cases are known.

It is thus an interesting problem to compute the space of modular forms of weight 1 and of
a given level. Although this is a finite dimensional vector space there isn’t a formula for its
dimension. The extension of the Riemann-Roch technique to modular forms of weight 1 gives no
information.

Using Katz’s language we can define the following in characteristic p.

• Let k be a perfect field of characteristic p. Let σ : k → k, σ(x) = xp. Let V : E → E(1/p)

be the dual isogeny to the Frobenius isogeny F : E(1/p) → E. It induces a linear map

V ∗ : H0(E,Ω1
E(1/p)/k

)→ H0(E,Ω1
E/k),
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and so, since H0(E,Ω1
E(1/p)/k

) = H0(E,Ω1
E(1/p)/k

)⊗k,σ−1 k, a σ−1-linear map

H0(E,Ω1
E/k)→ H0(E,Ω1

E/k),

that we denote, by abuse of notation, also V .
We now define

h(E,ω) = [V (ω)/ω]p.

One proves that h is a modular form of weight p − 1 called the Hasse invariant. For
example, Note that h(E, λω) = [V (λω)/λω]p = λ−(p−1) · [V (ω)/ω]p. Calculating the
modular form on the reduction of the Tate curve modulo p, one calculates that V (dq/q)
is dq/q and one finds that h has q-expansion 1, though it’s not the constant modular
form 1. In fact, considering the q-expansion map on the graded ring of elliptic modular
forms of level Γ0(N), (N, p) = 1, one finds that the kernel is the principal ideal (h− 1).
• Given a modular form f , let F (f) be the modular form defined by

F (f)(E,ω) = F (E(p), ω(p))

(the base change of the object (E,ω)). If one considers the effect on this operation on
the Tate curve one finds that if f(q) =

∑
n anq

n then F (f)(q) =
∑

n anq
pn. Note that

if f has weight k then F (f) has weight pk (use that (λω)(p) = λpω(p)).

Edixhoven provided an explicit constant B, in fact B = ψ(N)/12, such that if g ∈ Sp(Γ1(N),Fp)
is such that an(g) = 0 for all n ≤ B not divisible by p, then g = F (f) for some f ∈ S1(Γ1(N),Fp).
This way, the computation of modular forms of weight 1, can be reduced to the computation of
modular forms of weight p.

3.3. Hilbert modular forms. Almost everything mentioned so far has a generalization to
Hilbert modular forms. Some initial references are given below.

3.4. Further reading.
• Andreatta, F.; Goren, E. Z.: Hilbert modular forms: mod p and p-adic aspects. Mem. Amer.

Math. Soc. 173 (2005), no. 819.
• D. X. Charles, E. Z. Goren and K. E. Lauter: Families of Ramanujan graphs and quaternion

algebras. To appear in special AMS-CRM volume ”Groups and Symmetries” in honor of John
McKay.

• Deligne, P.; Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. École Norm. Sup. (4) 7 (1974),
507–530 (1975).

• Duke, W.: The dimension of the space of cusp forms of weight one. Internat. Math. Res. Notices
1995, no. 2, 99–109 (electronic).

• Edixhoven, B.: Comparison of integral structures on spaces of modular forms of weight two, and
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and appendix B by Gabor Wiese. J. Inst. Math. Jussieu 5 (2006), no. 1, 1–34.

• Freitag, E.: Hilbert modular forms. Springer-Verlag, Berlin, 1990.
• Garrett, P. B.: Holomorphic Hilbert modular forms. The Wadsworth & Brooks/Cole Mathematics
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• Mestre, J.-F.: La méthode des graphes. Exemples et applications. Proceedings of the international
conference on class numbers and fundamental units of algebraic number fields (Katata, 1986),
217–242, Nagoya Univ., Nagoya, 1986.

• Nicole, M.-H.: Superspecial abelian varieties and the Eichler basis problem for Hilbert modular
forms. (English summary) J. Number Theory 128 (2008), no. 11, 2874–2889.

• Nicole, M.-H.: Superspecial abelian varieties, Theta series and the Jacquet-Langlands correspon-
dence. (McGill Thesis, June 2005)

• Pizer, A.: An algorithm for computing modular forms on Γ0(N). J. Algebra 64 (1980), no. 2,
340–390.

• Wiese, G.: Thesis. Available from http://maths.pratum.net/


