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1. Introduction

Let € be an elliptic scheme (i.e. an abelian scheme of relative dimension one) over
Spec O,, where O, is the ring of integers of some number field M. Assume that £ has
complex multiplication by the full ring of integers of some quadratic imaginary field
K and that M 2 K. Then a well known criterion of Deuring states that given a prime
ideal P of O, the reduction of € mod P, Ep, is supersingular if p = PNZ is either
ramified or inertin K and ordinary if p splits in K.

Let X be an abelian variety over a finite field [F and let [F* be an algebraic closure
of [F. Let fX) be the p-rank of X[p([F*), so that p"® is the number of geometric points
in X[p] - the kernel of multiplication by p on X. Let @, . be the finite local-local
group scheme Spec [F[x)/(x). Let a(X) = dimpHom(a, 5, X®F?). The criterion
above describes (/('E',p), a(gp)) solely in terms of the decomposition of p = PNZ in
K.

While in the case of elliptic curves E over [ we have ({E), a(E)) € {(1, 0), (0, 1)}

(and both possibilities always occur), the situation for surfaces is more involved. If X
is an abelian surface over [F then (£X), a(X))E€ {(2, 0), (1, 1), (0, 1), (0, 2)} and all
possibilities do occur. Let X be an abelian scheme of relative dimension two over
Spec O, Assume that X has complex multiplication by the full ring of integers of a
quartic primitive C.M. field X (i.e. K does not contain a quadratic imaginary subfield).
In the first part of this paper we determine (X ), a(X,)) for a prime ideal p of O,
such that p = PNZ is unramified in the Galois closure of K. For example:
Theorem 1. Let K/Q be a cyclic quartic C.M. field. Let A/Q be an abelian surface.
Assume that A has complex multiplication by O,. Let P be a prime of Q, p, =
PNy, p=pNL. Assume that p is unramified in K. Then the reduction of A mod P,
Ap ,and(fAg ), a(Ap)) are determined by the decomposition of p in Oy as follows:
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(1) Ifp=P,P,P; P, then Az is ordinary and simple,(As ), a(As)) =(2,0).

(2) If p= P, P, then As is isomorphic to the product of two supersingular elliptic
curves, (f(A,;- ), a(As))=(0,2).

(3) If p= P, then As is isogenous, but not isomorphic, to a product of two
supersingular elliptic curves, (f(Ag ), a(As )N =(0, 1).

Theorem 2 deals with the non-cyclic case which is a bit more complicated. These
theorems may be known to the experts and some special cases are scattered in the
literature. The usefulness of such theorems and the lack of references convinced us
that it may be worthwhile to publish them.

These theorems do not take into account polarizations. Analogous results with
polarizations are a complete mystery. They would have far reaching applications (see
[DSG]). Consider a particular case: assume that X is an abelian scheme of relative
dimension two over Spec J,,and that A X—— Pic%( X/, ) is a principal polarization.
Let P be a prime ideal of U, and assume further that a(X ) = 2. Then by [01] X =
E, x E, (over some extension of U,/P) where the E/s are supersingular elliptic
curves. Assume that C is a stable curve of genus two over Spec J,, such that (X, A)
= (PicAC/0,), ¢p), & = G(C) and ¢.(x) = T*ERL". Then it is easy to see that
(X, Ap) = (E, x E,, A, x A,), where A is the unique principal polarization on E,, if
and only if, Cp is a reducible curve whose two components are isomorphic to E, and
E, and intersect transversely at their zero points. This observation and its relevance to
understanding the values of certain modular forms on Siegel's upper half space of
genus two in special points (see [DSG]) led us to the second part of this paper.

The second part of this paper is concerned with establishing the existence of curves of
genus two whose stable models have everywhere good reduction. As a corollary of
our method we get

Corollary . For every genus g > 1 there exist infinitely many stable curves over Ou[}]
with everywhere good reduction.!

We remark that this result follows easily from [MB] (see also [R]) - I thank the
referee for bringing it to my attention. However, the method presented here has some
virtues: it is elementary, explicit (at least to some extent) and yields information on
the field of definition of the constructed curves.

Acknowledgments. I would like to thank E. DeShalit for many enlightening discussions
regarding the content of this paper. I would like to thank the referee for his careful
reading of the manuscript and for many interesting comments and corections which
affected in various ways the final shape of this paper.

" The method can be extended to cover characteristic 2 as well.
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2. Reduction of Abelian Surfaces with Complex Multiplication.

Let X be an abelian variety over a finite field [F of characteristic p. We have the
following results ([O1], [02]): (i) 0 < fX) < dim X; (ii) 0 < a(X) < dim X; (iii)) 0 <
a(X) <= fiX) <dim X; (iv) Xis [F*isomorphic to a product of supersingular elliptic
curves if and only if a(X) =dim X.

Let A be an abelian variety over a number field M, Galois over Q. Assume that A
has complex multiplication by the full ring of integers U, of a C.M. field K and let @
be its C.M. type. Assume that M 2 K, P is a prime ideal of M such that p = PNZ is
unramified in M and that A extends to an abelian scheme ¢ over Spec (J,)),. Let abe
a generator, lifting Frobenius, of the decomposition group of P in M and denote the
decomposition of Emb(M, C) induced by &, @ by @, Bagain. Put F = G,/p. Then:

The product criterion ([E] Proposition 2.4). g,, is isomorphic over [F*to a product
of supersingular elliptic curves if and only if o® = P.
Let Y be a scheme over a finite field [F. Let F,; Y—> Y®the Frobenius morphism.

We write F* for the composition Fy»oF, etc. The same abuse of notation is used for
the Verschiebung morphism. The following lemma will be used repeatedly.

Lemma. Let A be an abelian variety over a finite field [F of characteristic p. Assume
that the Frobenius morphism F: A — A® satisfies F*= ep’ for some i and &
Aut(A). Then, denoting the Verschiebung by V, we have V* = ¢™'p'. In particular A[p]
is a local-local group scheme.

Proof. Indeed, V¥ep' = VF'F* = p®. Hence (V¥ - p'e’ Jep' = 0. Therefore, since ep' is
surjective, we getV* = ¢’'p’. This implies that both Frobenius and Verschiebung are
nilpotent on A[p] and therefore that A[p] is a local-local group scheme ([Ma] Proposition
1.5 - note that A, and A, should be interchanged there). Q.E.D.

Proposition 2.1. Let X/Q be an abelian variety with complex multiplication by the
full ring of integers O, of a C.M. field K, v,;: O,—> End(X). Let ® be the C.M. type
and assume that @ is not induced. Let K* be the reflex C.M. field obtained from (K,
®) and let H be the Hilbert class field of K*. Let P be a prime ideal of O,,. Then there
exists an abelian variety A and v, : O,— End(A), both defined over H, ﬁ-isomorphic
to (X, ) and having good reduction at P.

Proof. Since @ is not induced, X is simple ([L] Chapter I, Theorem 3.4) and therefore
there exists a polarization x on X compatible with t;: O, — End(X) (see [S] §1).
Using loc. cit. Theorem 11 and (use loc.cit. Proposition 7) we get that there exists a
triple (A, A, t,) which is 6—isomorphic to (X, x, 1) and (A, A, t,) is defined over M -
the moduli field of (A, A, t,). Moreover H 2 M ([L] Chapter V, Theorem 4.1).

We claim that we may take A as to have good reduction at P. Indeed, since End(A)
= G,, Proposition 7 in [S] holds trivially. The proof of this proposition implies that
for every given prime p€ Z we can find a decomposition of U = ‘GIJ U(K,) (where

My,

U(K,) = O, “and M, is the set of finite valuations of K) as U= p x W where p is the
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group of roots of unity in K embedded diagonally in the non-archimedian part of AZ
and where W 2 U(K,) for all vl p. One checks that the Grossencharacter of A
constructed in [S] Theorem 11 (ii) will be unramified at every v& M, ,such that Vi p
(see the paragraph preceding the cited theorem). By [SeT] Corollary to Theorem 6, A
has good reduction at such a v. Q.E.D.

Let X— § be an abelian scheme of relative dimension g. For every b€ End(X/S)
let X[b] be the closed S-sub-group-scheme Ker(b). It is a flat S-group-scheme whose
formation commutes with base change. Given a set B C End(X/S) let X[B] =

X[b] (a finite intersection in fact). It is also a flat S-sub-group-scheme whose
?grmation commutes with base change. Now suppose that End(X/S) is the ring of
integers of a C.M. field K of degree 2g.If b, b, b, are ideals of End( X/S) such that b
=b,b, and b,, b, are relatively prime then X[b] = X[b ]®X[b,]. Indeed, the map
X[0,]®X[b,]—> X[b] has kernel X[b,Ub,] which is trivial. One reduces to checking
surjectivity after base change to an algebraically closed field where it follows from
the fact that deg X[b] = Ny.ob for every ideal b ((L] Chapter 3, §2).

Theorem 1. Let K/Q be a cyclic quartic C.M. field. Let A/Q be an abelian surface.
Assume that A has complex multiplication by O, ,; O, — End(A). Let P be a
prime of Q. p, = PNO,, p = pNZ. Assume that p is unramified in K. Then the
reduction of A mod P, As,and (fAs ), a(As )) are determined by the decomposition
of pin Qas follows:
(1) Ifp=p,P.P;P,, then As is ordinary and simple,(fAg ), a(As)) = (2, 0).
(2) Ifp= P, P, then Aj is isomorphic to the product of two supersingular elliptic
curves,(f(Ag ), a(Ag )) = (0, 2).
(3) Ifp=P,, then As is isogenous, but not isomorphic, to a product of two
supersingular elliptic curves, (f(Ag ), a(Ag))=(0, 1).
Proof. We may assume that A and t, are as in Proposition 2.1 w.r.t. P= PNJ,, (note
that K =K*). We can assume that @ = {1, T} where Tis a generator of Gal(K/Q). Let k
1

= O, /P and F, be the power of Frobenius fixing k. Let p = :[_Il p,, be the decomposition
n=

!
of p into prime ideals in O, Then A[p]= @ Al P, as group schemes over Spec G,
By [ST] II1.13 Theorem 1, the ideal gner=1¢|=rated byF, in End(A,) is a power of
No(P).

(1) We have = 4. Say AP, = P;, ,- Since No(P,) = P," ©(P,) = P,P, we
conclude that F, has trivial kernel in its action on A[P,]J®A[P,]. That is, in the
algebraic closure of k, the étale part of A,[p] is of order p°. Thus A, is ordinary.
Furthermore, A, is not isogenous to a product of elliptic curves:

If A, is isogenous to a product of elliptic curves, say E, x E,, then they must be
ordinary. By looking at the endomorphism rings we conclude that E, is isogenous to
E,. Thus, End"(El x E,) = ML), L an imaginary quadratic extension of Q. We have K
— M,(L). If the image of K (still denoted by K) does not contain L then KL is a
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commutative algebra of degree 8 over Q, hence equal to M,(L) which is a contradiction.
Therefore K contains L which is absurd because the unique quadratic sub-field of K is
real.

(2) We haver =2, ©(P,) = P,. Therefore N,(P,) = P, T(P,) = P, P, = p. Using
the lemma we get that A,[p] is local-local. Therefore, since for a commutative local-local
k-group-scheme the a-number is always positive, we have a(A,[p]) = a(A,[P,]) +
a(Ap[P,]) 2 2. Hence, A, is isomorphic to a product of supersingular elliptic curves.

(3) We have A[p] = A[P,]. By the same arguments A,[p] is local-local and therefore
a(Ap[p)) = 1, fA[p]D) = 0. Now, let o be the Frobenius of P in Gal(H/Q). Then o
restricted to K is equal to T or 7 (it is here that we use > that we can find a model of X
over a field in which p remains unramified). Hence o®N@® = {1}, { <}, respectively.
The product criterion shows that A, is not a product of supersingular elliptic curves
and in particular a(4,) = 1. It follows that A, is isomorphic to E x E/ap where Eis a
supersingular elliptic curve and @, is suitably embedded (see [KO] Theorem 1.2.).Q.E.D.

Let K be a non-cyclic primitive quartic C.M. field. Then ([ST] I1.8.4) the Galois
closure L of K satisfies Gal(L/Q) = <x, y: 2, y* xvxy> - the dihedral group of order 8.
The classification of C.M. types of K shows that by changing y to y' and by twisting
by complex conjugation we can always assume that K is the fixed field of x and that
the C.M. type is {1, y}. The situation we will be considering is the following: Let
X/ﬁ be an abelian surface with ¢, : ( — End(X) for K as above. Let H be the
Hilbert class field of K* and P a prime of Q. Put M= HL, P= PNM, p,= POL, P
= PNK*, p = PNZ. We denote the decomposition group of P, in Gal(L/Q) by D =
D(P,). We will have to consider all possible decompositions of p in K and K*. This is
completely determined by D. We will use the following notation: after D is fixed we
can index the primes dividing p in L by representatives {g} of the cosets {gD} in
Gal(L/Q). That is, if q=gP,, we denote q by P,

Theorem 2. Let the notation be as above. Assume that p is unramified in L. Then the
reduction of Xmod P, X , is as follows:
(1) IfD={1} then X is ordinary, AX5), a(X5))=(2,0).
(2) IfD={1, x} then X5 is intermediate, i.e. (R Xz ), a(X5))=(1, 1).
(3) IfD={1, xy} then X is supersingular and isomorphic to the product of two
supersingular elliptic curves, (X ), a(X;)) = (0, 2).
(4) IfD={1,xy'}then X5 is is intermediate, (X5 ), a(Xg))=(1,1).
(5 IfD={1,xy’}then X5 is ordinary,(fXz ), a(X;5)) = (2,0).
(6) IfD={1, y’} then X is supersingular and isomorphic to the product of two
supersingular elliptic curves, (X5 ), a(X5))=(0,2).
(7) IfD={1,y,y*, Y’} then X is supersingular, isogenous but not isomorphic to
a product of two supersingular elliptic curves, (X ), a(Xg))=(0, 1).
Moreover, X is simple if and only if f(Xg ) = 1.
Proof. We briefly explain some of the cases (the arguments are similar to those
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appearing in Theorem 1). First we may assume that X = A given with ¢, : O, —
End(A) defined over M as in Proposition 2.1. Consider the following easily verified
data

Case 1

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*
p

Ne(P)

Xp}

Case 2

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*
p

New(P)

Xpl

Case 3

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*
p

No(P)

Xlp]

Case 4

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*
p

Ne(P)

Xlp

Case §

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*

{1}

g€Gal( LQ) p‘

(P PXP,pPXP,PXP2P,,)

(PP X P,PX PP X PP,

(plpxy3)

(P PXPsP.)

XIP, P,JOXIP,P o IOXIP, P, OXIP,:P, ]

{1, x}

P, P,p,sPy

P, py’(p,py’)

(plpy)( py’py’)

P.p,)

PAP,py

XIp,1OX[ P 1OX(P,P,)

{1, xy}

P, p,P,Py
(PP, XPsPy)
(P,P,)P, Py
(plp,2)

P
X[p,p,I®XIP,:P ]

{1.x7}

PiP,PePy
(p|py2)pypy‘

(D.D,J)( pypf)

(plpy’) )

(plpy’)p,}

XIP, P,IOXIP, 1OXIP, ]

{Lxy'}
P.P,PP,y
(P,P,XP,P,)
p, py’( pyp,})




p

Ne.(P)

X1p]

Case 6

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*
p

Noe(P)

Xipl

Case 7

D=D(p,)
Decomposition of p in L
Decomposition of p in K
Decomposition of p in K*
p

No.(P)

Xlp]

Abelian Surfaces

P,
(plpy")
XIp, P 1@XIp, Pyl

{1,v}

P.P.P,P,
(P.PXP,P,)
(PP, XP.P)
(P.P,)

P

XIP, P,I&XIP, P,)]

{Ly. . v}
PP,

14

14

p2

p
Xlpl
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To indicate how one concludes the assertions of the theorem, first note that in any
case where the decomposition of Ny(P) into prime ideals does not contains every
prime ideal appearing in the decomposition of p in K, we can conclude that X,[p] is
not killed by any power of Frobenius and hence X,[pl,,,. is non-trivial and its order
can be read in this fashion from the decomposition of X[p]. Also note that if X[p] = G,
@ G, then a(X,[p]) = a(G, ;) + a(G, ;). This settles cases (1), (2), (4), (5). In cases (3),
(6), (7) we get that X,[p] is local and in fact, by the Lemma, local-local. Therefore in
cases (3), (6) the a-number is evidently 2 and from [O1], X, is isomorphic to a
product of two supersingular elliptic curves. Only in case (7) we need the product
criterion. In this case the Frobenius o of O,/P is induced from a generator & of D,
i.e. from either yor y'. But §® = & (® = {1, y}). Therefore X, is not isomorphic to a
product of supersingular elliptic curves although by [KO] it is isogenous to such a
product. The last assertion of the theorem follows from considering the endomorphism
rings as in the proof of Theorem 1. QED.

Remark. Note that in case (5) above, and only in this case, X,[p] decomposes further
than the decomposition coming from the decomposition of p in the C.M. field.

3. Curves with Good Reduction.
Let K be a field. Let C/K be a stable curve of genus 2. Then C is of one of the
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following types (see [NU]):
O An irreducible smooth curve.
(II)  Two smooth genus 1 curves intersecting transversely at one point.
(Illa) An irreducible curve with one node.
(IIDHb) A smooth genus 1 curve intersecting transversely at one point a rational
curve with one node.
(IV)a) An irreducible rational curve with two nodes.
(IV)b) Two rational curves with a node intersecting transversely at one point.
(IV)c) Two smooth rational curves intersecting transversely at three points.

Let E/K be an elliptic curve and PE E(K) - E[2]. Assume that Char(K) = 2. Let &
K(E) be a rational function such that div(f) = [P] + [-P] - 2[0.] ([ P] is the divisor
associated to P). There exists a unique smooth curve C =C(E, +P) whose function
field is k(EX/T) and we have a natural separable morphism of degree 2, C— E,
ramified precisely at two points IT, —ITof C which project to P, -P, respectively (in
"—IT" the minus sign is a formal symbol). Let o€ Aut(C) be the corresponding
involution. Let ¢ be the hyperelliptic involution of C and = o ot. One can verify that
Cl/<t> is again an elliptic curve (in fact we can assume that (E, +P) = (¥ = + A +
Bx + 1, (0, 1)). Then C: y* = X°® + Ax* + Bx* + 1 where C— E is given by (x, y)
(&%, y) and C/<t>is ¥ = X* + B + Ax + 1).

Let (R', P') be a d.v.r. with quotient field K’ such that Char(R' /p") = 2", Let E/K'
be an elliptic curve and PE E(K") - E[2]. Then there exists a d.v.r. (R, P) 2(R', P")
with quotient field K such that E extends to a stable elliptic curve € P over Spec R.
We assume that R is chosen so that C(E, +P) extends to a stable curve C(E, +P) over
Spec R. We use the subscript — to denote reduction mod P.

Proposition 3.1. Let C = C(E, £P). Assume that €, is smooth. Then:
(@) IfP & E (2] then C is of type (1) (i.e., smooth).
(b) IfP,=0¢, then Cis of type (II).
(o) IfPE Ep[2] - {ng} then Cp is of type (1l1)a).
Proof. The involutions o, 7, ¢ extend uniquely to involutions X, T, I of C ([DM]
Lemma 1.2). Now, there are.some points to keep in mind:
(i) There is a surjective homomerphism Pic®(C/R)— E;
(ii) The involutions X, T, I, do not act as the identity on any component of Cp
(follow the argument-of [B] p. 176).
(iii) The quotient C/X ts:properand flat over R with reduced 1-dimensional geometric
fibers and is of genus 1.
We see, using (i), that Cp can only be of types (1), (II), (IIl)a) or (III)b). It follows
from (ii) that if Cp is of type (I)b) then C /X is of genus 0, which contradicts (iii).
Therefore Cp is of type (1), (II) or (IID)a). If Cp is of type (III)a) then (ii) and (iii)

B The method can be extended to include Char(K") = 2, Char (R'/ ph=2.

® By this we mean that & is either smooth orsirreducible with one node.
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compel X, to exchange the two components. We see therefore that

(iv) The quotient C/X is proper and flat over R with reduced and irreducible one
dimensional geometric fibers and with node singularities at worst (see [B] Lemma
3.1).

It follows that C/X'is isomorphic to €. Observe that

(v) If C is of type (I) then X, has two fixed points; If C, is of type (II) then X,
yields an isomorphism of the two components and has a unique fixed point - the
intersection point of the two components; If Cp is of type (Il)a) then X has a
unique fixed point - the singular point (consider the induced map from the
normalization of C_to E)).

It follows from (v) that

(vi) The points IT,,, - I, are the only fixed points of 2 and they project to Py, -P,
respectively.

Another point, needed to decide between the cases (b) and (c) is that the fixed points

of T, denoted by IT*, —IT*, both project to the zero point of E and hence

(vii) The fixed points IT*,, —IT*, of T, project to the zero point of E’p.

Case (a). Follows immediately from (v), (vi).

Case (b). It follows from (v) and (vi) that C is not of type (I). Assume that C, isof

type (IlI)a). Denote by A, A ;, Ajx, A ;. the closure of the points IT, - IT, IT*, = IT* in

C. Consider the function /T € K(C) as a rational function on C. Since C, is irreducible,

its divisor is div(/T) = A+ Ap—Ap —A g+ Cp. After extending K if necessary

we can thus assume that div(/T) = A, + A, - A, — A, Therefore /T defines a

rational function on C whose restriction to C is a constant s = 0. Since Z*/T =- /T

we get that -s=(- /), = (2¥T), =24/, = Z,*s= 5. A contradiction.

Case (c). It follows from (v) and (vi) that Cp is not of type (I). If Cp is of type (II)

then the only fixed point of both X, and T is the intersection point of the two

components. Then (vii) implies that IT,, ~IT, project to OEp‘ A contradiction. Q.E.D.

Corollary. For every genus g = 1 there exist infinitely many stable curves over
Spec @u[,.l;] with everywhere good reduction.

Proof. For g = 1 this is well known. In fact any elliptic curve with complex multiplication
will do.

Let g=2 and put N = g - 1. Let L be a quadratic C.M. field in which every prime
dividing N splits. Let E/K be an elliptic curve with complex multiplication by the full
ring of integers of a C.M field L where K is suitable number field containing L. We
can assume that K C C and that the C.M. type of E is the identity.

Let g > 2 be any prime that splits in L, g = q,0,. We have E{q] = E[q J®E[q,]. Let
a, be a generator of E[q)] and P = o, + a,. Let C = C(E, +P) and m: C— E the
associated double covering.

For any prime Q of Uy, if Q + g then the reduction mod Q gives an isomorphism
Elq] = E,[q] and in particular P, & Ey[2]. If Q1 q, then by the theory of complex
multiplication the reduction mod Q is injective on E[Q,] (and the zero map on E[Q, ]).
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Thus P, is of order q. The same argument works for Q | q,. Hence, it follows from
Proposition 3.1 that after a suitable finite extension K, 2 K, C extends to a smooth
curve C over Spec Uy .

Let S = Spec Oy, BE S a closed point, S(P) its residue field. Let A = Pic%(C) and
of = Pic’( C/GK,) the abelian scheme extending A. We consider henceforth ¢f as an
abelian scheme over Spec Og. We claim that there exists an abelian scheme B/S and
an isogeny W: B — of of degree N such that Ker W is étale over S (equivalently
(Ker ¥)®S(P) is étale for every B): Indeed, let E/S be the elliptic scheme extending
E.Let p, .., p, be the prime divisors of N. Let p, = p: pf be the decomposition of p; in

L. We have ; ,
e {1 o] f 5]

Each summand is a cyclic group. Let a, (resp. a,) be a generator of the first (resp.
second) summand and let a= a, + a, Let H' be the cyclic subgroup of E of order N
generated by a and H' the unique flat subgroup-scheme of € whose generic fiber is
H'. The same argument as above shows that H' is étale over S. The covering 7 : C
— € induces a homomorphism x*: £ — of whose geometric fibers are closed
immersions ([M]). It follows that #*: € — of is a closed immersion and we see
that we can find a subgroup-scheme ¥ of ¢, étale over S. Let H be the generic fiber
of H and choose a subgroup scheme T of A such that H@® T = A[N]. Then T extends
to a unique flat subgroup-scheme T of o and ¥[N] = H®T. Let B = o{/T . The
canonical homomorphism ¢ — f/{[N] « { factors through B and the induced
homomorphism has kernel [N}/ T = H.

Let D = C x4 B. For every B, D, —> C, is étale and Dy is a smooth
irreducible curve (see [Se] §1V.2) of genus N x (genus( C,,) -1) + 1 = g. Moreover D
— Cis clearly flat and of finite type. It follows that D — C is étale and that D
is a stable curve of genus g with everywhere good reduction. Q.E.D.

Remarks. 1) The referee pointed out that the corollary can also be derived from a
theorem of Moret-Bailly ([MB], Theorem 1.3) and it also follows from Rumely's
theory ([R] Theorem 1). The same is true for the corollary stated below. Note, however,
that in both corollaries the construction is (in a certain sense) explicit and yields
information on fields of definition.

2) One can use Proposition 3.1. to prove the following corollary:

Let M be a number field and let R, S be two disjoint sets of prime ideals of O,,.
Then there exists a finite extension N 2 M and a stable curve C over Spec O such
that for every prime P of O, we have: (i) If PNO& RUS then C is of type (1); (ii) If
PNGER then T is of type (I1); (iii) If PNOE S then C is of type (11)a).
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