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Abstract. We study a line bundle L over an abelian variety X and an isogeny f:X — X
satisfying f*L =L " .'We study the problem of explicitly describing the action of f on global
sections of powers of L and we determine the relations imposed by [ on the 'thetanulwerte'
coming from such sections. In addition, the representation theory of finite and adelic Heisenberg
groups is discussed.

0. INTRODUCTION

Let X be an abelian variety over an algebraically closed field & of characteristic p > 0. Let
L be an ample line bundle of separable type on X ( i.e. deg(L) is prime to p if p> 0).
Assume that there exist an isogeny f: X — X such that f*L = L" forsome n and (deg(f), p)
=1 if p> 0. We say then that f is quasi symmetry of L andif fs= 1 that L is quasi -
symmetric. If n=1 we say that f is a symmetry of L. This phenomenon is interesting in the
context of the general theory of abelian varieties. One can also motivate the interest in such line
bundles by the following observations: :

(1) As explained in detail below, automorphisms of a curve ¢ induce automorphisms of
Jac( €) and the second power of a carefully chosen line bundle L (inducing the natural
polarization of Jac( £)) is stable under all these automorphisms.

(i) If f only satisfies f*¢, = n ¢,, where ¢, : X —> X' is the polarization induced by L,
that 1s, if f is an isogeny of the polarized abelian variety (X, ¢, ) then, as explained in detail
below, if L is symmetric, we have f*L*=(L *)". This shows that the situation we are dealing
with is quite common, and in fact there exist whole families in appropriate moduli spaces
characterized by this property.

(iii) Sections of ample line bundles are given over the complex numbers by Riemann's theta
functions with characteristics. There are various methods by which one can determine a field
containing the values of these functions at points corresponding, for example, to abelian varieties
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with complex multiplication, of the moduli space of abelian varieties with principal polarization.
It is of interest to understand these values as closely as possible.

Before stating some of the results of this paper we recall briefly the definition and basic
properties of finite and adelic Heisenberg groups. For a complete account see [Mum1], [Mum3].
Needless to say, the theory on which we base our results is entirely due to Mumford.

HEISENBERG GROUPS.
DEFINITION. A finite Heisenberg group G is a group for which there exists an exact
sequence

1— k*— G > H — 1
such that k™ is the center of G and H is a finite abelian group.

It follows from the definition that the commutator pairing from H x H to k™ isa
non-degenerate bimultiplicative skew-symmetric pairing and this implies that if p > 0 then (p,
#H) = 1 and that the elementary divisors of H appear in pairs ( We denote the number of
elements of H by d?). In fact these are the only restrictions on H.

The group G always contains a finite group, denoted by G °, characterized as the set of
elements whose d’-th power is trivial. G° sits in the exact sequence

1 Uz G* H > 1
where > is the group of d’-throotsof 1 in k™!

We say that a subgroup K of G isa level subgroup if s induces an isomorphism between
K and n(K), and we say then that K lies above a(K). If F is a subgroup of H then F hasa
level group above it if and only if F' is totally isotropic with respect to the commutator pairing.
In fact, any level subgroup of G is contained in G “, because any level subgroup is of exponent
d. We can always find two maximal isotropic subgroups F, F' of H suchthat H=F ®F '-
one says that F has an orthogonal complement - but it is not true that every maximal isotropic
subgroup has an orthogonal complement. This decomposition enables one to prove that G 1is
determined up to an isomorphism by H.

If G is afinite Heisenberg group then Mumford has proved in [Mum1], in analogy with the
Stone Von-Neumann theorem, that there exists a unique irreducible representation of G on
which k* acts through its natural character. A complete description of the basic representation
theory of finite and adelic Heisenberg groups appears in the appendix.

Finite Heisenberg groups arise as follows :

DEFINITION. Let X be an abelian variety over an algebraically closed field %4 of characteristic p
> 0. Let L be an ample line bundle on X. We say that L is a line bundle of separable type if
(deg(L),p)=1 if p>0(for p=0 every line bundle is of separable type). Given a line bundle
of separable type L one defines the Heisenberg group G(L) associated to it by

Wiet ¢ be the exponentof H, then one may define such subgroups where d * is replaced by ¢”, 2e (or
even e itself if e is odd). The particular choice d” is both canonical and convenient. These remarks follow from
the formula (xy)" = x"y" - [yx]™ V2
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G(L)={¢:L — L1 ¢is an automorphism of L covering translation by x on the base}

Thatis G(L) is the group of automorphisms ¢ of L for which there exists some x such
that ¢ fits into a commutative diagram

P I

9
—_—
AN

e

where we denote by 7' the translation map 7 (y)=x+ y.
There is a short exact sequence
I — k* — G(D) H(L) 0,

where H(L)=Ker ¢,, ¢, (x) = T,*L ® L". The group G(L) is a finite Heisenberg group. We
refer the reader for a proof of this fact (it follows also from the results of the appendix) as well
for a general discussion of these groups to [Mum1] and [Mum3].

DEFINITION. Let A, denote the ring of finite adeles of Q with the component corresponding to
p omitted if p>0. An adelic Heisenberg group is a group G fitting into an exact sequence

1 >k —> G > A — 0,
such that k™ is precisely the center of G or, equivalently, such that £* is contained in the
center of G and the commutator pairing

2 % x
Py x Pt — k

1s non degenerate.

The uniqueness of a skew - symmetric non degenerate pairing on ﬁ\fﬁg implies that every
adelic Heisenberg group is isomorphic to the group
k*x PAFox AE
with the group law
(a, x, 5,) (B, y, ¥,) = (aﬁg(%( txl. Yo~ t352' Y X+ Y, Xty
where :
e A/ L —> k"),
is a fixed isomorphism. We will usually denote this group by G and call it the standard adelic
Heisenberg group.

In contrast to finite Heisenberg groups the representation theory of adelic Heisenberg groups
1s simple. We call a representation of G a representation of order n if k™ acts through the
character o+ «" (the same definition applies to finite Heisenberg groups). In analogy with
the theory of real Heisenberg groups — but in contrast with finite Heisenberg groups — there
exists a unique continuous irreducible representation of order n forevery n=0 (see appendix).

Adelic Heisenberg groups arise from abelian varieties by a ' limiting process ' :

DEFINITION. Let X be an abelian variety over an algebraically closed field % of characteristic
p=0. Let L be an ample line bundle on X of separable type. Let T(X) be the prime-to-p Tate
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module of X, thatis,
X)) = li_rg X[n}
(n.p=1

(if p =0 there is no condition in the limit). Let V(X)=7T(X) ® Q.
Define the adelic Heisenberg group associated with L , G (L), asfollows:

G (L) = set of sequences of the form (x,, ¢,) where :

e N
(x,),c n 1s an element of W(X), the maps ¢, are defined if and only if x,& H(n*L ), and then
¢.€ G(n*L ). If both ¢, and ¢, are defined and m = nd, then d*¢,= ¢, where the pull back is
with respect to d x, = x, *. The group law is given by

(xn’ ¢n)n€ N (vn’ wn )n’:' N ('xn + Vs ¢"0 Wn)ne [V

The group é (L) is an adelic Heisenberg group and there is an exact sequence
1 — k& — G(L) T vx) — o.
(For these facts as well as others stated below see [Muml], [Mum2], [Mum3}). There is a
canonical homomorphic section

o TX) — G (L)
given by (x,), + (x,, ¢, ), where (x,, ¢,), isthe unique element of G (L) such that ¢, is
the identity map. In general o" (7(X)) is not a maximal level subgroup. Actually there is a
natural isomorphism for every n

Normalizer ( o' (n T(X)) ) / o (n T(X)) = G(n*L).
Suppose from now on that L is symmetric. Then there is a canonical section
7 V() — G(L)
constructed as follows : given x& V(X) choose some ye G (L) such that 2 m(y) = x, and put
7(x) =y 8_,(»)"' (for the definition of &_,, which is an automorphism of (I}\ (L), inducing
multiplication by -1 on W(X) and the identity on &*, deduced from multiplication by - 1, see
section 2). This definition does not depend on y and defines a section — though not homomorphic

—to .

REPRESENTATIONS AND BASES. There is a natural action of G(L) on I(X, L):
Let ¢= G(L) cover translation by x andlet s& I'(X, L) be a global section of L. Then
U,(s)=¢os ol
defines an action of G(L) where the center of G(L) acts naturally. In fact this representation is
irreducible. It follows from the discussion of the appendix that choosing a maximal level subgroup
K, a K invariant vector v, (which is unique up to a scalar) and a section 2 for the commutator

® In general if f: X— Y isanisogeny and L isa line bundle on ¥, then for every isomorphism ¢: [
—3 [ covering translation by y on the base and for every x€ X such that fix) =y there is a unique 1somorphism
e fFL ——> f¥I. covering translation by x on the base which is obtained from ¢ We call this isomorphism -

which depends on x - the pull back f¥*¢ with respectto flx)=y.
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map x: G(L) — K* (K* = the characters of K ) we get a basis for I(X, L). Namely,

Ix,L= @ F(X,L),g.
EeK*
where each I(X, L)§ is one dimensional and spanned by U 1) (v)). When K has an orthogonal
complement K ' we can do better. We can choose 2 as the unique isomorphism with K'
induced by the commutator pairing.

The theory of descent shows (loc. cit.) that there is one - one correspondence between level
subgroups K over a fixed subgroup F of H(L) and isomorphism classes of line bundles M on
X/ F suchthat p*M =L, where p:X —> X/ F is the natural projection. Given such M one
associates to it all the automorphisms of L that are of the form p*I. with respect to all x= F.

In this case one can show that I'(X, L) is the direct sum @ p*I'X/F,M) and in fact

- M; p*M=L
fixing some level subgroup K , that corresponds to one of these A 's, this is exactly the

decomposition to eigenspaces of K.

The analogue for adelic Heisenberg groups is as follows : define

(X, L)=lim I' (X, n*L)

where the limit runs over all n primeto p if p> 0, and is taken with respect to the injections
d* : I'(X, n*L) > IX, d*n*L).

Given seI” (X, L) and (x, ¢,), €G (L) define

Ui, (D= noseT
where s ‘I(X, m*L). This 1s a well defined group action of & (L) on I (X, L) and the
fundamental fact is that it is irreducible. There is a one to one correspondence between maximal
level subgroups containing o'(m T(X)) for some m and line bundles of degree one on abelian
varieties rationally isogenous to X whose pull back to X is rationally isomorphic to L (see
[Mum3] p. 62 ff for the definition and properties of rational isogenies). We call such level
subgroups commensurable with o“(T(X)). To any such commensurable maximal level subgroup

N
K and a section X to the commutator map ¥ :G (L) — K* (continuous characters) one can

associate a basis { Uy 5 (v) 1 &€ K* }, where v, € I (X, L) is afixed K invariant vector
(which is unique up to a scalar). We have also a decomposition to eigenspaces
rX D= @ ra.L),
EeK*
and each 1" (X, L), is a one dimensional space spanned by Uy 5 (v). One should notice that for
general level subgroups there is no such decomposition although there are certain families

of related bases that one can construct from some other level subgroups. We will develop this
ideain §3.
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MAIN RESULTS.

In general, the content of this paper is as follows:
§1 contains the general background on quasi - symmetric line bundles neede for the sequel and
the definition of the homomorphisms associated with them.

§2 is devoted to the proof of

THE SYMMETRY THEOREM (PRELIMINARY FORM). Let X be an abelian variety over an
algebraically closed field k. Let L be an ample line bundle of separable type on X. Let L) =
{ge Aut (X) | g*L = L}. Assume that there exists a maximal isotropic subgroup Z of H(L)
which is A L) - invariant and choose some level subgroup Z above Z. Choose some non zero
vector v, € IX, L), = I'(X, L)* and choose a section

G(LY —_ Z* X(1)=1.

Given ge $AL), there exists an automorphism 0, of G(L) lifting the action of g on H(L)
(see §1 below). Let ¢ : g*L — L be an isomorphism (determined up to a scalar). Let T = ¢,
g* € End(I (X, L)).

Then :
(@) There exists a unique character yg %%, characterized by either :
(i) v,(2)""'0Lz) € Z forall z& Z orby
(i) If M is the line bundle on X | Z corresponding to Z then g*M ® M ' corresponds
10 ¥, under
# = 7% = Ker (Pic'X/ Z2) — Pic%X)).
Moreover, the association {g ¥ y,} is a cocycle in Z'( AL, Z%)
(b) There exists scalars b, & p,2 ( xX€ £*), determined by the equation
be xUs o0V = Usoizon Usp vt

T (ng axvx) = ¢(g) ng, Ay bg s Yy gy :

where {v,= Uy, v, } is abasis for I(X,L) and c(g) is a scalar determined by the equality
T, =g Yy, - In particular the matrix describing T, which is given explicitly by the b, 's, is
monomial and unitary.

such that

REMARKS. 1) Note that the underlying permutation of 7' is x > y,-gx. Note also that
b,, = 1.

2) For L very ample, T is actually writing the automorphism g by coordinates. Note that
the indeterminacy up to a scalar of 7" disappears in projective coordinates.

3) Given any finite automorphism g of X we can create an ample line bundle for which g
is a symmetry by taking the ' norm ' of any ample line bundle with respect to g. Since the
resulting line bundle is ample our method applies. In particular we see that for every auto -
morphism g€ Aut(X) of finite order there exists a projective embedding such that the action of
g on X is given by a monomial unitary matrix.
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4) Both in the case of k =T and in the general case we can get from the symmetry theorem
identities between functions. Over C this could be done by trivializing the pull-back of our line
bundle to the universal covering space. In general we may trivialize the pull-back of our line
bundle to V(X) 4la Mumford ([Mum3}).

§3 contains several topics. We discuss the functorial behavior of adelic Heisenberg groups,
projection operators on finite Heisenberg groups and the construction of 'compatible’ bases
toI'(X, n*L). Finally we prove a result analogous to the symmetry theorem for isogenies f: X
— X such that f*L = L” and such that (deg(f), p) =1 if p> 0. The precise formulation
requires too much preparatory work to be stated here. Along the way we state another elegant
version of the symmetry theorem (and an interesting converse to it) and the section closes with
explaining how, under mild restrictions, we can extend our results to isogenies f: X—> Y with
appropriate line bundles.

§4 contains some examples illustrating the theory.

§5 consists of three topics. The extension of the simultaneous construction of bases for I(X,
n*L) to all I(X,L"). The extension of our results to Q - isogenies. A concise dictionary
between the analytic and algebraic theory.

In the appendix we classify all the irreducible representation of finite Heisenberg groups and
determine the decomposition of tensor products of such representations, hence giving an explicit
description of the representation ring. The same results are obtained for continuous representations
of adelic Heisenberg groups. Although for finite Heisenberg groups there might be many non
isomorphic irreducible representations of order 7, for adelic Heisenberg groups there is a unique
irreducible continuous representation of order n for any n €Z - {0}. This is in complete
analogy to the well known case of real Heisenberg groups.

The results are explicit enough to easily determine for example the decomposition of
I(X, L") as amodule of G(L) acting via the natural homomorphism ¢, : G(L) — G(L"), or
of Sym *(I'(X, L)) yielding in this case a new interpretation of the notion of even and odd theta
functions and sheding more light, so we believe, on the multiplication map

X, 0% — X, L")

ACKNOWLEDGMENTS. Many thanks are due to EHUD DE SHAUT for many valuable comments.
A version of this paper was written while enjoying the excellent working conditions of the
Max-Planck-Institut Fiir Mathematik in Bonn in the summer of 1995.
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1. QUASI - SYMMETRIC LINE BUNDLES ON ABELIAN V ARIETIES.

We retain the notation fixed in the introduction. Thus X is an abelian variety over an
algebraically closed field k of characteristic p = 0. L is an ample line bundle of separable type
on X etc.

DEFINITION. Define
KAL) ={geAur(X)| L=g*L},
A" (Ly={(g, ¢)| ¢: L — g*L anisomorphism }.

Note that according to our terminology, L is quasi - symmetric if (L) = {1}. As
customary L is called symmetric if - 1€ oAL).

REMARKS. 1) L) is a finite group.

2) In the sequel we often do not distinguish divisors, line bundles and invertible sheaves.
While this might cause some confusion it has the advantage of making some arguments more
transparent. In this connection we remark that one can define & *(L) for L = divisor, line
bundle, invertible sheaf (in the obvious way) such that under the usual transition between the
different concepts the definitions of the various 2/*(L) agree.

LEMMA 1. There is an exact sequence of groups

1 — k*— (L) — AL —> 1,
where we define

(& XA, ¥)=(gh, h*¢p o).

This sequence always splits.

Proof. The assertion about the exact sequence is easy to check. A quick proof of the second
assertion is obtained by requiring the lifting @ of a& A L) to act as the identity on the fiber of L
in zero. We give a second proof which gives more: ’
First note that it is enough to prove that there exists some divisor D on X, such that L =0 (D)
and such that g*' (D)= D forall ge 2{L). Indeed, given such D, let

a:0 (D)—> L
be an isomorphism. Then for every ge (L) we have

a ! . can. g*a
L——0D)=0g D) —=7g*0 (D) — g*L

which gives us a splitting homomorphism
KAL) —> (L), gr— (g g*aca’).

To find such D start with any divisor F such that L = 0 (F) and such that O¢ supp(F).
The isomorphism g*L = L implies that for all g& (L) there exists a function J, such that
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§*F = F+(f,).

Since 0O¢ supp(F) we also have O supp(g*F) and therefore O¢ supp(f,) and we may
each f, uniquely.

It is easy to check that

g1
isa 1-cocyclein Z'( #AL)”, k(X)* ), where f(x) = f, (h(x)) defines the left action of ofL)®
on k(X). By Hilbert's 90 there exists Qe k&(X)* such that forall g& L)
f = Q8

We take D= F-(£2). Q.E.D.

COROLLARY 1 (of proof). For every line bundle L there exists an L) - invariant divisor D,
suchthat L =0 (D).

REMARK. Assume that every simple component of X is of dimension at least 2. Define K, =

X/ $AL) andlet m: X —> K, be the natural quotient map. Then there exists a divisor F

on K., such thatx*F = D where D is a divisor defining L. Indeed, if we define
ALy={xeX | stab ,, (x)= {1} }.

Since

RL = U Ke@-p

1=ge o (L)

it follows that codim( J{L) )= 2. Therefore, letting X/ =X- AL), K/=X'// oAL) we
have natural isomorphisms CI(X) = CI(X /), CI(K) = CI(K/) and we reduce to proving the same
assertion for D, and proving the existence of such ¥ on K. But, now the map

x: X/ — K/
is étale and finite. For such maps, descent theory tells us that such a divisor F exists. Note,
however, that we can not conclude that there exists a line bundle M on K D) such that #*M = L
(the precise conditions for 2AL) = {x1} were given in [Mum1]) . The essential reason for that is
that on a singular variety the concepts of Weil and Cartier divisors diverge. A concrete example
is given by any ample symmetric L{H, y) such that y is non-trivial. (see §5 for terminology).

THEOREM 3. Let L be an ample line bundle on X. Define
(L) ={ g€ Aur(X) | there exists y(g)e X s.t. g*L =T,
Then : 1) (L) is afinite group.
2) Let S be asubgroup of 4 _(L)* of order s. Then
g — Wg) (mod H(L) for g€,
isa 1- cocycle representing a class in H'(S, X/ H(L)) of order m (s, 2).
3) There exists k& X such that

Y
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g¥T*L" = T*L"™ Jorall ge§,
that is

\
>

i

od T kymy
ESAC I P N

Further, x is unique up to an element of

M G- HE™).
gedd (L)

Proof. 1) Note that since L is ample /L) is precisely the group of automorphisms
preserving the algebraic equivalence class of L. That is, precisely the group of automorphisms
preserving the polarization ¢, which is finite.

2) First note that y(g) is unique mod H(L) and that 24L) preserves H(L). Then

(ghy*L = h*g*L

= Ty *L
= Tyt o PEL
= Tirt genasm™ L
This implies that
Hgh) = hxy(g) + W) (mod H(L)),
where we put A% t=h' (¢) (this is an action of & _(L)* ). This shows that for gES we geta
cocycle in
HY(S, X/ H(L)),

which is killed by s and therefore it is of order m | s. Moreover, we may assume, after
translating L which amounts to changing everything by a coboundary, that L is symmetric.
Therefore g*L is symmetric for every g which implies that 2y(g)e H(L). Explicating these
remarks we see that there exists some T(O € X/ H(L) such that

myg)=(1- g)*.l_co forall ge§
(we denote elements of X/ H(L) by X, ¥ etc.). Choose some k& X such that mic = ;0 . Then
there exists an element Hg)e (X / H(L))[m] = H(L™)/ H(L), such that

T = (1- gk + Fg).

We have :
(1) " = T)"L™ = T guing™L" = Ty pu™L™
(2) g*Tx*Lm = ng'l(x)*g*l‘m = Tg‘{(x)é—(l—g)sx*[‘m = TK*LM‘

That proves the first part of 3). To get the uniqueness assertion we note that if
g¥T _*L" = T _*L",

then the second and fourth expressions of (2) shows that
g*L" = T, *xL

P-gyex’
hence,

(1- g)*x"=y(g) mod H(L").
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Since «x satisfies the same equality we see that
(1-g#m(x-x")e H(L),
therefore,
k-k'€ [ ((1-g=m)~'H(I)
ged (D)
which implies the uniqueness assertion. Q.E.D.

PROPOSITION 4. Let € be a smooth complete curve and let #= Aut(C). We denote by the
same letter also the automorphisms induced by #on Jac(C). Fix some base point c€ & and let
O = O, be the theta divisor with respect to the embedding € “—— Jac( &) determined by the
base point c. Choose some k€ Jac( C) such that T *©, is symmetric and let L=0, (T *6,).
Then

PC HAL?).

Proof. We could have used Theorem 3 but it is better to argue directly using the same rational.
Let L be defined as above. Then for every g& & we have
g*L =T, *L
for some unique y(g). Since L is symmetric sois g*L and therefore 2y(g)e H(L) = {0}. That
is yg)e Jac( O)[2]. Thus,
g*L? = (T, *L)* = o (L Y = L2 Q.E.D.

REMARKS. 1) Proposition 4 shows that there are many examples of line bundles L such that
L) 2 {+1}. Other examples may be constructed using the theory of complex multiplication.

2) Note that in Pic,_,( C) the theta divisor is certainly invariant. The problem Proposition 4
deals with is essentially the problem of non - existence of a common fixed point for &
Example II in §4 shows that the curve y*=x° - 1 has no point fixed by all its automorphisms.
(Indeed, by Lefschetz fixed point formula, the number of fixed points for the automorphism
given there is 2 and these are the points {(0, i), (0, - i)}. On the other hand the fixed points of
the hypereliptic involution are {(0, &) | £° = 1 } ). If there were a point p such that the theta
divisor with respect to p - denoted by ©,- is invariant under all these automorphisms then 6,
= 6,,=T,, ,0, Since the theta divisor is of degree 1 we conclude that g(p) = p forall g
which is impossible. Therefore, Proposition 4 is the best we can hope for in general.

DEFINITION. Let L be a symmetric ample line bundle. Define
ALYy ={feEnd(X) | f*L = L" for some n, ( p,deg(f))=1if p>0},
ENL)={ feEnd(X) | XL = LI"" for some n, (p, deg(f))=1if p>0}.

REMARK. The condition f* L = L' is not too strong. Indeed, if f*L is only algebraically
equivalent to L", then the same considerations as in Proposition 4 show that f¥L” = L*"

Consider now anisogeny f: ¥ —> X andlet L be an ample line bundle on X. The
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following lemma describes the basic functoriality of the adelic Heisenberg groups associated
with line bundles.

LEMMA - DEFINITION 5. 1) There exists a canonical isomorphism
JHD: G — G

fitting into the following commuting diagram

] — k5 — G(f*L) — WY) — 0
sz. [j(ﬁ L) t’(f)

1 — k — GO) — WX — o

2) If fe A L) then the same holds for G(f*L) and G(L) with the obvious modifications.
Assume that fe E(L), ffL = L", then :
3) There is a canonical surjective homomorphism
8 :G(IL)— G

fitting into the following commuting diagram

1 — k& —G (1) V(X) —> 0
L

| — k& —G (L) — UX) — 0.

where a,: k* —> k™ is givenby a,()=1".
4 If fe LAL) then the same holds for G(L) with the needed modifications.

Proof. The definition and the stated properties of j(f, L) appear in [Mum3] Proposition 4.9. To
prove 3) and 4) let
o: ffL— L'

be an isomorphism and

9*: G(L") — G (L)
be the induced isomorphism (which is independent of the choice of ¢) and denote by the same
symbol ¢* the induced isomorphism

¢ G () —G (L),
The definition of 0, is given in either the finite or adelic case by

o =MLy g*os, R

where g,: G(L) — G(L") is given by ¢, (¢)= ¢* and ¢, :G (L) — G (L") is the induced
homomorphism. The verification of the stated properties of this homomorphism is immediate.

Q.ED.

REMARKS. 1) The homomorphisms 0, 8, satisfy
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f06g:6fg.

This follows easily from the definitions.

2) For f multiplication by n (n any integer ) one can check that our § ise

homomorphism 8, defined in [Mum1] p. 308.

II. THE SYMMETRY THEOREM.

From now until the end of this section fix a maximal isotropic subgroup Z of H(L) and a
maximal level subgroup Z above Z.Later we will put further conditions on these subgroups.

Given ge #(L) we can define a new action U® of G(L) on IX, L) by

U, (s) = Uag(z) (s).

Since the scalars still act naturally we have a unique, up to a scalar, intertwining linear operator
T:IX, L) — IX, L),

satisfying

UoT=To Uag(z) , forall ge G(L), s X, L).
This follows from the fact, analogous to the Stone - Von -Neumann theorem for real Heisenberg
groups, that G(L) has a unique irreducible representation of order 1 (see [Mum1] and appendix).
The operator T is determined, up to a scalar, by the fact that it takes a # - invariant vector to a
0,-1(#) - invariant vector and by its equivariance property.

CENTRAL OBSERVATION. Let ¢: g*L — L be an isomorphism. Then
¢ 8% IX, L) — IX, L)
is a linear isomorphism. I claim that this too is an intertwining operator, therefore is equal, up to
ascalarto 7 : ‘
Denote by 7 the map ¢, g*. We have to prove that
{T(Uég(z)s) = U(T(s)).
Claim : Forevery re G(g*L), s€ I1X, L) we have g*( U}.@th,} s)= U, (g*s).
Proof (of claim). Let r=(x, ¢), and j(g, LXr)=(gx, ¥). Then
g (U ys) =g (PosoT, ")
=g*pogrsol,!
= U(g*s).

Then, using the claim, we get

T(Us,08) = TWig 1ys-124 %)
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= ¢ g Uj(g,qur‘zqs )S)
O (f’*-le P4 (g*s)
U7 (s))- Q.ED.

i

l

Our goal is to describe the map T as explicitly as possible. We start with the following ad
hoc but convenient definition :

DEFINITION. Given an algebraic subgroup A € X define Pic(X)" to be the image of Pic(X/ A)
under the natural pull-back homomorphism

Pic(X/A) — Pic(X)
(Note that if A is finite then Pic(X)" is of finite index in Pic(X)).

Until the end of this section we assume that Z is a maximal isotropic subgroup of H(L)
which is o4 L) - characteristic.2!

EXAMPLE. If M is of degree 1 and L=M "Z, then X[n] € H(L) = X[n?] is always maximal
isotropic and an 24 L) - characteristic subgroup.

Consider the exact sequence
(1) 0—> Z xZs x/1z2—> 0

which yields the dual exact sequence
*)

) 0— 7' — X/2 25 x' — 0,
where Z” is by definition the kernel of 7*. This sequence expands to an exact sequence

3 0 — Z" — Pic(X/Z) — Pic(X)* — 0.
All these sequences are sequences of £4{L)” - modules. Taking group cohomology we get

@ (Pic(X)")*" — H'(#(L)”, Z') — H' ()", (X] 2)")
In particular the sheaf L gives us acocycle { g — N, }€ H'((L)*, Z"). By its definition it
is obtained as follows :

Choose some Me Pic(X/ Z) such that 7#*M = L. Then

N,=g"M @M.

Changing the choice of M amounts to changing the cocycle by a coboundary. Now, by the
general theory of descent there is a natural choice of M; Since we have already fixed a level

subgroup Z thereis a unique M corresponding to it, namely, the one that # is the descent data
forit. Let M denote this particular sheaf.

Using the canonical isomorphism Z° = Hom(Z, k*) = Z*, we have a cocycle

¥ Actually everything we would prove works equally well for any subgroup of @/(L), in particular for
cyclic subgroups. The assumption is made only for convenience of presentation.



QUASI - SYMMETRIC LINE BUNDLES 15

{gr—r1,}€ Z(HALY?, Z¥%),
obtained from { g = N, }. On the other hand, for every z& # there is a unique scalar B.(2)

B, (2) 6,(z) € Z
Forafixed g, f, is acharacter of Z, and it is easy to check that
{g— B, 3eZ(AD”, Z%).

PROPOSITION 6. B, = 7, .

Proof. Let us first recal the description of the injection Z* “— Pic(X/ Z). We use [Ser] as a
reference for this. Let neZ* and consider the following diagram, where N, is defined as the
push-out of the first square :

7

> X/ Z > 0

> 7 >X
1L
l
> G, N,

s x1z—o.

0

N, =G, x X/ {((-2),2)1z€Z}. Themap s* is the pull back operation

0 —— G, 2D = X —— 0
|1, r
l l
0— G, D5 xiz— 0.

7D = Dx,,, X ={(gx) | gg D, xeX,p(g)=mn(x)}. In particular:
N, ={ (e, y), x] | (g y)e G, x X/ {(n(-2), D}.ez XX, AMx)=m(y) }.
We have an isomorphism
¢,: N, —> A x X
given by
(e y), x] ¥ (a/1(x-y), %)
(The inverse is just [( ¢, x), x] € (, x)).
We have fixed M and Z The connection between them is as follows : choose an
isomorphism o: #*M—> L, then
Z={(x, T*a oa ") IxeZ}.
Put o, =a®¢,,
a7 (M®N,)=a*M® 7*N, —> L.
We get an explicit description of the level subgroup belonging to M® N, , which we denote by
Z:

Z ={(xTra,oa ) xeZ}
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There is a unique character §, such that for all x Z,

(x, ﬁﬂ(x)‘ Tx*an o an-l )=(x, 7;*(1 o al)
LEMMA. ﬁfl == T}

Let us assume this lemma for a moment and show that it implies the proposition. If 7 is
such that N, = N, (equivalently y,= ), then
M®N, = M®N,=g*M,
hence Z is the level subgroup corresponding to g*M in G(L). By functoriality, the subgroup
corresponding to g*M in G(g*L) is j(g, M) ' (#), and under the isomorphism
¢: G(L)— G(g*L)
it corresponds to (8,)" (£) = J,-1 (H.

Therefore, if y=gx and (y, T,*a o a')e Z we have
Byt () 8,1 (3, Ty¥ao &) = B, (g0) (x, T.*a, 0 0,7 ) € 8,1 (2

However, since 8,1 ()= Z, we have also

B, (x, T*a, 0 a;') € 8,1 (B
Therefore

B, =8B,

and using the Lemma we get
Yg = 77 = ﬁq =gﬁg‘1
whence

v, =(gB,-1) " =B,

(using the cocycle relation).

Proof (of the Lemma). The way to prove that B, = 1 is to compute the action at the fiber of L
at zero, L, of the maps T *ao @' and T *a, o a,'. Consider the following diagrams:

L, «—%— (z*M), L, << me N, = (@ M), ® (w*N,) ),
Ty*oa To*a Ty* ¢
(TFL), < (L¥a*M), (L*L), (XM ® (TFA*N, ),

(all the maps in this diagram are the specialization to the fiber at zero. This is omitted for
typographical reasons). We see that

B, (0= ¢,(0)/ (T* ¢,)0).

This scalar is described by the following diagram
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Al x X 6—21-——— 7T*N,

" I
THA x X) L8 73py

®

Recall that
a*N,={ (e, ), x] | (&, ME G, x X/{(1(-2), D},c; -2 X, alx)=7(y) },
and therefore
T*xN, = { (v, 5) | y€ X, s€ 7N, T(3) = P(s) }.
The isomorphism #*N, — T *a*N, is given by
(o, 2), 2] ¥ (2, [( 2)), 2, + x]).
Similarily,
. A' x X={(a,x) | ack*, xX},
T;*‘(Jl\1 x X)={yv.(a,2)] | X, (a,2)e A" x X, THy)=z}.
THA' x X), is naturally identified with (A' x X), by [0, (a, x)] ¢« (e, x). Hence
diagram (5) at the fibers at zero looks like

(2,00 21— (c,0),0]
sk
(el ), %) > [0, (al 70, )] 2L (0, [(a, 0), x]
Q.E.D.

Let us construct an example showing that {g — vy, }€ H' (/(L)*, Z') is not trivial.

Recall first (see (4) ), the exact sequence
6) (Pic(X)?) ™" — H'((L)*, Z) —> H'(L)",(X! 2)").

LEMMA 7. Let S be a finite cyclic group of order s, § =< o>. Put
X={xeXlx+ox+.+ 0 'x=0}.
Then
H'(S, X) = X /(X)’,
where (X )’ is the connected component of X . In particular, if X is connected then. H'(S,

X) ={0}.

Proof. The kernel of the map

¥ 1n general if f: Z— Y, g: Y= X, and p: N— X is aline bundle then
gEN={(y, hl ye Y, IEN, p(l) = g(y)} with morphism p': g*N— ¥,
JE*N = {(z, ) 1z€ Z, s€ g*N, p'(s)=£2)},and
(g o *N={(z, )| zEZ IEN, p()) = (g o N}
Wehave ffg*N=(gof)*N by (z,(y.H)—(z. D)



EYAL Z. GOREN 18

d-0: X— X
is contained in X[s] and in particular is finite. That implies that (1 - oXX) which is connected
is equal to the connected component (X°. Therefore, by the well known description of H' for
cyclic groups,

HY(S, X) = X/ X7,

and in particular is trivial if X is connected. Q.E.D.

Let us consider now a generic principally polarized abelian variety X. Let M be an ample
symmetric line bundle on X, and take L= M * Then AL)={x1}, H(L)=X[4], and we take
Z =X[2]. Inthat case ., X=X isconnected, and thus

H'((L)7,(X12)") = {0},
further
H'((L)*,Z") = H (L), X[2])
= Hom(Z/2Z,(Z/27)*)
= (Z2/27)*.
From this we conclude that
(Pic(X)") " — H'(#(L)", Z")
is surjective with a non trivial image, which shows that the cocycles {g = 7, } appearing
above are generally non - trivial.

Back to intertwining maps :

Let us review the situation. X is an abelian variety, L an ample line bundle on X of degree
d, Z C H(L) is a maximal isotropic subgroup which is /(L) - characteristic, and Z isa
maximal level subgroup over Z. We denote by x: G(L) — Z* the commutator map, x(2)
=[x z], ke G(L), z€ Z
Decompose I(X, L) according to characters of Z:
nx,n= @ nx.pn,.
YyeZ*
Since we are dealing with a representation of order 1 each component is 1 dimensional (see
appendix). Define
1
= 3 2 Us_ iy
zeZ

¥ is a projection operator on the one dimensional subspace of the 0,-1(%) invariants.

Claim : If ve I'(X, L), then Uy € (X, L)« , for all k& G(L).

Proof. let ze Z, then
UUy =U, ,UU v= x () A2)Uy.

Therefore, since both Z and & o (#) are above Z, and the kernel of x + x* is k™ Z, we
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conclude that for all k€ 8,1 (%), ve I'(X, L), if and only if U ye&I'(X,L),. Thus, there exists a
unique t such that W(I(X, L)) = {0}, and for that T forevery veI'(X, L), we have ¥(v) =
v, thatis
X, L), = 0X, L@,
However, let k€ 8,1 (%), say Kk = §,.1(2), then, identifying Z* with Z*,
v=Uyv
= Uég"(z) 2%
=Ug-10) " Upriwo,-10Y
= (ﬁg«l @)~ "z (gtz) v
- (ﬁg-f L g“lt) @) v.
This implies that for every z& %, (ﬁgq‘l‘g "11:) z) = 1. Therefore B,- g~z =1, or,
T= gﬁg.l :ﬁg'l =Y,-
Choose some section 5
G & —— Z%*, 1=X),
to the commutator map
G(L) — Z*, k — x~.
Choose some non zero v,€ I(X, L),. Then
{v, =Usyv | € £%}
is a basis for I'(X, L). We have
o) = (g, ,
for some c(g)e k™. Let c, , € p,2 # be defined by the equation
Cox2 (Vg 8X) = Og-(Z (X)) 2 (¥g))
There are scalars b, € p,» such that
™ be xUs gy 1 = Us iz ey Us v 1
These scalars appear when computing (v, ):
T(v,) = T(Uég< 63"0:(;0))"1)
= Uag‘x{zw T(v,)
= A Us 1 Vy,

= C(g)'bg‘x Vrg'gx )
We have proved

THE SYMMETRY THEOREM (PRELIMINARY FORM). Let X be an abelian variety over an
algebraically closed field k. Let L be an ample line bundle of separable type on X. Let  $AL) =
{g€ Aut (X) | g*L = L}. Assume that there exists a maximal isotropic subgroup 7 of H(L)
which is L) - invariant and choose some level subgroup # above Z. Choose some

non zero vector v, € IX, L), = IX, LY* and choose a section
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G(L)* B ¥, 2(1)=1.
Given ge AL) ,let ¢ :g*L — L be an isomorphism (determined up to a scalar). Let T =
¢, g* € End(I(X, L)).
Then :
(a) There exists a unique character yg Z%¥, characterized by either :
() 7,2) '8,2) € Z for all z€ Z or by
(i) If M is the line bundle on X1Z corresponding to Z then g*M ® M ' corresponds
to y, under
Z = 7* = Ker (PicA(X/ 2) — Pic(X)).
(b) There exists scalars b, € 1,2 ( X€ £*), determined by the equation
b xUs 4oy 1 = Usizooy Usgey 1

T'(XEEZ‘ a, "’x) = c(g) ng, ayby WVy gy ,

where {v,= Uy, v, } is a basis for (X, L) and c(g) is a scalar determined by the equality
v, =g Vi - In particular the matrix describing T, which is given explicitly by the b, 's, is

such that

monomial and unitary.

COROLLARY 1. Assume that L =0 (D). Then ¢, is multiplication by a function f,. Suppose
further that O¢ supp(D), then there exists a function Q (independent of g) such that f, =Q*/
Q and 0¢ supp(Q). We get then that for all x

Q (gx)
) —‘mvx(gx ) = dg) bg,X Ve g;ﬂx) s
where ¢(g) is a non zero constant. In particular
(10) VX(O) = c(g) bg’xvyg. gng) .

REMARKS. 1) As remarked in the introduction, for L very ample T -is actually writing the
automorphism g by coordinates.

2) Consider in Corollary 1 a special case where y, = 1, which is a kind of ' total symmetry '
with respect to g. Note that for every g we have b, | = 1. Therefore, if v(0) =0 we conclude
that o(g) = 1 and that for every x suchthat gx= x we get

€& by =1 = v,(0)=0.
That is, we get a vanishing result for certain theta constants (see §5 for a classical interpretation).

Our next task is to give an explicit expression to the coefficients b, appearing in the
Symmetry Theorem. Although the method can be carried out in complete generality we will
assume that L = n*M __for some ample line bundle M of degree | and that

Z=X[n], Z=K(n, M)
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(by K(n, M) we mean the level subgroup associated to data n, L, M).

The particular choices made below are not the best from the algebraic point of view. They
are made so that over the complex numbers one gets ' the most classical ' sections and actions.
Other choices will be developed in the next section.

Choose a theta structure
A: GILF G(9),
where
£ 1 g1
G(O=k™ x (@;Z/nl) x (@;Z/nl)
i=1 i=1

with the group law
(o, x, IXB,y, m)=(ape('(nx) (nm)), x+y, 1 +m),
where for any ac Z, e(a) = & “ for { afixed primitive n> - th root of 1. Define ‘the half
commutator* ‘
F((7) () = e (mx)- (rum)).
Define
S={(x,D | xle(Z/ndyr}, S={1,xD!|xle(Z/nly}.
We can always choose A such that A(#= .S
Let us choose a section to the commutator map
G(d) —> .J*
by prescribing a set of representatives to G(8)/ k* .J,
Rep ={ (1, i C) ) | x= (X e X ) 1= (L, s 1), 0<%, L<n },
thereby getting a section
Y = I =(Lay), Vye I
Via A , each automorphism (‘ig of G(L) induces an automorphism, still denoted 6g, on G(0),
hence induces an action on H(J) given by a genuine symplectic matrix Mg Sp(2g, Z/nZ)-
the representation of g on X[rn’]. Therefore we may write, for (o, w) = (a, w,, w,)€ G(6),
6,(a, w)=(amfw), M, w),
where m, satisfies the identity
mfwy+wy)  F(Mpwy, Mwy)
mywy) me(wy) — F(w,wy)
Using {- } to denote fractional part, we get

Z(xy) = 1, {al)+ P},
8,1 () = (my1 () M1 ().

Since

2O M) (3) =[5, M, (oD = [M, T, (0] = (),

we conclude that
2(gx) = 0 {Ma())}).
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Therefore
Ay, 80 = (1, {aly,) + M1 a(0}),
8,1(2(x) ) HAyp) = (my(a(x) F(M-(dx)), a(y,)) » M(alx)) + ay,)).
Whence (using [- ] to denote integral part),
my-a (0)* F ( My (300 alyy))
£x” (F( (M- () )+ ()l {Me-a () + a(y,)}) )

(Mg (x)) + e (ygn) .

Put
0,00 = My-(a () + aly,)
then, after some simple calculations we get

o mela (XD F (w(x)—aly) aly))
ox F ({20}, [ox)])

THE SYMMETRY THEOREM (EXPLICIT FORMI). Under the hypothesis of the Symmetry theorem
and the additional hypothesis made above we have

mg-(a (x) F (wy(x) - a(yg)a(rg))

(11 T(xezz axvx):c(g) XEZZ* FQol o) oD Vyox
If y,= 1, then

_ mg-a(x))
1 T(Z ey = Z o X F M, (e (DY [ My (@ (o) ¥

3. THE QUASI SYMMETRY THEOREM.

We start with a discussion of Gopel structures and the system of bases constructed by them.
We keep the notation used so far. We assume through out this section that I is a symmetric
even ample line bundle of degree 1 (although some of the definitions and results still hold if the
degree 1s bigger). We refer to [Mum3] pp. 60 -61 for the definition of ' even '. We remind the
reader of our conventions made in the introduction: if p = char. k is positive then the ' p -
component ' is taken out of 7(X), V(X) etc. For this reason everything that follows should be
understood under this restriction even if not specifically mentioned. For example in L emmas 8
9, 11 etc. it is tacitly assumed that (n, p) = 1.
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DEFINITION. A Gopel structure on V(X) with respect to L is a pair of maximal isotropic
subgroups V,, V, of WX) such that:
Q) V) = V, @V,
() TX) =T, @T, where T,=TX)NV,.
(iii) o' = t" oneach T,. (See introduction for the definitions of o T*).

Given a Gopel structure we can define a system of bases for the vector spaces I(X, n*L). To
do this we need the following

LEMMA 8. For every n there is a canonical isomorphism
Normalizer ( " (n TIX)) )/ (" (nT(X))) = G(n*L)
given by the projection
K> O > (%, 9,)-

Proof. An easy generalization of [Mum3] Proposition 4.13. Q.E.D.

DEFINITION. Let Z(n) =n T(X), Z(n) = o"(n T(X)) and N(n) = Normalizer (Z(n)). Let
K(n), =t (V)N N®m), Kn),=1t*(V,) N Nn).
Let &, : M(n) — G(n*L) be the homomorphism inducing the isomorphism of Lemma 8. Let
L(n), = ®,(K(n),), Un),= ®,(K(n),).

LEMMA 9. L(n), and Kn), are maximal level subgroups of G(n*L) which are orthogonal
complements of each other.

Proof. Clear. Q.E.D.

We stray from our main course to study projection operators on finite Heisenberg groups:
Let G be afinite Heisenberg group
1 >k~ > G H 0,
and let K be a maximal level subgroup of G, #K = d. Decompose the unique irreducible
representation of G where the center acts naturally, denoted by I', as

r= @r,

pe K*
and fix some non zero 6, € I',. Let { ] Y= K* } be a basis for I" with 6, I',. Denote by
x:G— K*

the ' commutator ' map
y mo X X @=zytyt
Given another maximal level subgroup S, let P be the projection operator on the one
dimensional space I of the S - invariants given by

Pi= 5 2 U,.
ses§
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Finally, let
A(S) ={ YEK*| P(8)=0}.

LEMMA 10. 1) Let s€ §, y= K* then

Ud,erl, .
Define

Ud,=als, y) 0, .
Then
als, s, Y) = als,, Y- x**) als, Y).
2) Assume that K has an orthogonal complement K '. There is an isomorphism
E: K¥ — K'

determined by the commutator pairing. Let

0, = Usy 0
then

P, (s)
a(s, wl): T/me CZ(S, ’4}2)7

where, by definition, y(s)=[s, E(Y)] for any P K*.

3) Let
S=KerxyN§
and let o€ $* be the unique character such that for all s€ S
a(s)-se K

Then, regarding characters of level subgroups B as characters of their projection B to H we
have

AS)={ye K*| 3= a).

Proof. 1)forevery k€ K we have
v U8, =UUU,,>9,

Wk x°(ky U, 8,
(W) U3,
a(s s, Y) 0, 55 = Uy U, 9,
U, a(sy, ¥) 0y, .5
als, Y- x°2) als, Y)oy,. . o5 -
2) Let us compute af(s, ).

a(s, ) 6, = U, 6,

= U, Ugy 9

= Uz Us Ups myy
Y(s) Us@m U, 9,
Yys)als, 1) Ugy 0,5
yl(s) als, 1) Oyys -

1

1

i

i

51

il

i

i
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From this follows the general formula.

3 U8,
seS

3)  P(s,) =

2,0

= 3 alsy)o,,

t

se§
1
= 5 Z ( 2 a(s,zp) 611'_}/ .
vexO\sex i)

- -1
Choose some representatives s.€ x~ (), then

Ps(ﬁw) = ;lg > a(s},s, 1/)))64,},

. ye%:(S)(seKerx ns

]

) (a(sy,w)se

YEX(S)

2 st DY)y,

Ker

using part 1), 2). Notice that this expression is zero if and only if each sum
a,y) T al Dy
seKery NS
is zero and that the vanishing of this sum does not depend on y. Notice also that a(s, 1) isa
character on $ and therefore this sum vanishes if and only if 91z =a(-,1) ' I';. To finish the
proof we need only to check that a(-, 1) = a™'. Let s€ $, then af(s) s€ K whence

a(s, 1) 6, = U,
= ofs)"' Uy, .0,
=ofs)' §, . Q.E.D.

Recall that L is an ample symmetric line bundle of degree 1 on X. The maximal level
subgroup A1) induces maximal level subgroups M(n)= @ (Z1)) on each G(n*L).
We would like to mention two reasons for introducing these groups: The first one is that we can
decompose f (X, L) according to characters of Z(1). This can not be done with respect to T"(V,).
The second reason is that, as we have already commented above, in the complex case the

sections giving the decomposition with respect to A1) are the classical theta functions 6 H

for certain characteristics multiplied by a certain trivial exponent. We should remark that the

sections giving the decomposition with respect to the level subgroup L(n), are no less noble.
*

They are of the form 6 [0] for certain characteristics multiplied by a certain trivial exponent (a

classical example which also demonstrates the relations between the bases to be obtained below,

turns out to be, after some algebro - analytic dictionary has been built, Proposition 1.3 p.124 ,

Mumford / Tata lectures on theta I ).
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Choose some non zero section ©e I'(X, L). It is unique up to a scalar. For every n, n*@ is

the unique up to a scalar invariant section of M(n). Choose a section

3, My — G(n*L)

to the commutator map
X : G(n*L) — M(n)*
and let
0,=n*0, 6,=U; , 0,
Later on we will choose the X 's more carefully and then we will baptize these bases. The

notation a(x, ¥) appearing below is the one used in Lemma 10 1) for K= M(n). S=Ln), (so
K has no orthogonal complement but § does). In the case K = L(n), , § = M(n) (which is
considered in Lemma 10 2), 3) )we will not need a notation for the scalars of Lemma 10.

LEMMA 11. Put s(n), = I_’L(n)l (n*6). Then s(n), = 0.

Proof. In the proof of Lemma 10 the following expression was obtained

P(3,) = — 2( = a(srs,w))aw.

vex($HiseKerxy N S

The derivation of it did not use any orthogonality assumption. Using part 1) of Lemma 10, we
getfor S=L(n),, K=Mn), y=1,0,=n*0, x: G(n*L) —> M(n)*,

Py, (n*0) = = a(s, 1))6,/ :

- a (sy, 1

YEX(L(N)l)( seKer y 1 L(n)y

In this case Ker x=k*M(n)= &,(k* Z(1)) and we see that since 0" =1" on T, we
actually have Ker y N L(n), C M(n). Thereforeif s&€ Ker ¥ M L(n), then
a(s, 1) 6,=U 6, =6,.
Thus
Py, (n*6) = 0. QED.

DEFINITION. For every n define a basis
B(n)y={ s(n),| Y& Ln)*}

of IX, n*L) asfollows: Let

s(n), = PL{n); (n*@),
let

E, Unm)* — Ln,

be the isomorphism determined by the commutator pairing of G(n*L) and let

s(n), = Us (pys(n), .

COROLLARY. Let L(n), [n] = { elements of order n in L(n), }, then
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s(n), = > a(E, (W, D)o u. sw
YO eLohLonm XX

Proof. Note that x induces an isomorphism In), / L(n),[n] = (L(n),). Therefore, for =1
the corollary follows from the proof of Lemma 11. The general case follows by applying U =)
and using part 1) of Lemma 10. Q.E.D.

Let us also record the following

LEMMA 12. n*@ = 2 s(n)y.
peLmn]

Proof. Let us first check that this true up to a scalar. By Lemma 10 3) »n*© =P, (s(n), ) at
least up to a scalar. But

Pun(s) = = Z Ups(n)
meMpu)

= d > > U,U,s(n)
- 5 1
"B eMNLa), meMnLay, M

by Ups (n)

meM®m)NL(n),

i
né

2 s(n)y,.
y e Ln)n

L
n8§
to this sum. By linearity and Lemma 10 used for K= § =

To check the constant apply P,
L(n), we get

Punlos B s(n)y)=Py,(=sh))= —sn),. QED.

y e Ln)in]

LEMMA 13. For every d the bases Z(n) and [(dn) are related as follows : Let o :
dl{dn), | L(dn),|ld] —> L(n), be the natural isomorphism. Denoting by « the induced
isomorphism dL{(dn)* | L(dn), *{d}] —> L(n),*. We have

d*(s(n),) = 2 _s(dn), .
redl{dn),
alr)=v

Proof. The formula up to a scalar follows from the isogeny theorem of Mumford, [Muml]
p.302. The translation to the notation appearing there is as follows :
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Mumford] X, Y |n |M | L | K
Us | x 1d sl la#n*L | nM(dn)

"N
The level structures for every m are completely determined by choosing a free 7 basis for

T,. This yields for L(dn), anisomorphism I{dn), = K(§,,) and L(n), = K(6,) where 0 ,,
and &, are the types (&'n’, dn’, ..., d"n°) and (7, %, ..., n”) respectively. We get then natural
isomorphisms L(dn), = K(6,,)*, L(n), = K(§,)* and therefore uniquely determined theta
structures j,., j, -

Mumford 6L, 6M jL’jM l Kl l K2
Us (2, ..., ), (12, o, O 0 . | (ZIPRPT Y [d) | (21 RT3 H(d]
Mumford K* | K*' o: K*1K,— K(,)
Us A(ZIFn LY | d(Lidn” T)* natural isom.
The conclusion is that up to a scalar is that A §, = 6, where 0, denotes the delta

v,o)=u
function at #,and A is asin [Muml]loc. cit.. We need only verify now that the functions s(n),
are the functions corresponding to the delta functions at points of K(8, ) with the right
normalizations of the isomorphisms B,, appearing there. That is easily checked since the delta
functions are characterized by the way the Heisenberg group acts on them. This proves our claim
up to a scalar. The rest follows by comparing this with the formula for n*© and d*n*@ given
by Lemma 12. Q.E.D.

Given an ample even symmetric line bundle L on X and anisogeny fe& &°(L), say
fFL=L" ! ¢:fFL—> L” an isomorphism,
define a new action U’ of G (L) on r (X, L) by
. . 7 U7, ()= Us, ) (5)
and an action of G(L) on I'(X,L"") by
U'(s)=U £,4(z) (s).

Then, both I" (X,L) and I (X, I'") are irreducible representations of G (L) of order n
and there exists therefore (see appendix) a unique intertwining map
T: I'(X, L) — I'(X, L").

As in the case of automorphisms we have a

CENTRAL OBSERVATION. The linear isomorphism
) A
guf*: L (XD — X, L)
is an intertwining operator for these two actions, therefore equal up to a scalarto 7 .

® There is a Schur lemma for adelic Heisenberg groups. The reason is that every intertwining operator
must take the invariants of a maximal tevel suberoup to themselves and this is a one dimensional space if the level
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Proof. Let 7= ¢,f*. Then
(1 T(Us (N = T(Wjg 1305 1) ()

Claim. Forevery re G (f*L), se I" (X, L) we have

T Uy 1y () = U, (fX(s)).
Proof (of claim). Let r=(r,, ¢,), then j(f,LXr)=(,, ¥,), where ¢, is the pull back by f
of vy, withrespectto fir,)=y,.

FlUG )1 =Flpo s o Tro ' for every k divisible enough

= ¢o fis o T,}'I
=Ug,. 9,0 f55)

Using the claim we get from (1) that

Ty (N = b Uyt gy (59

= Ufn(Z) ( ¢>ﬁf *S)
U, o Z(9)- QED.

1

Following the method of the Symmetry Theorem, the next thing we have to find is some
subgroup of G (L) whose image under each of the maps ¢,. and 0, is a maximal level
subgroup. The operator T is then determined up to a scalar by the condition that it must take
invariant vector of the second level subgroup to an invariant vector of the first.

LEMMA 14. We have the following functorial properties :
1) & ox)=0"(x) ; &, ) = TV (x) .
2) 1, 0¥ ()= ot(mx) 5 m, TV (x) = TH(x) . (see [Muml] for the definition of 1,).
3) If ¢ : L— M is an isomorphism then ¢, o"(x)= 0™(x) and ¢, T"(x) = T"(x).
4) j(f, L) o™ (x)= o"(V(Hx) ; jf, D) v %) = t"(V(Hix) .
5) o o'(x)= o (V(H) x) ; o, tH(x) = T V() x) .
6) Writing every element of GA (L) as A-t"(x) we have for f*L = L",.
o, (& (X)) = At (V) x).

The proof is completely straightforward and therefore omitted.

DEFINITION. Assume that ¢: f*L= L" L ample even symmetric of degree 1. Define
Z={FWIETX} CEL),
MEH=j(, (B CE FD),
F(B),= euf(D) CEL™),
Ap=e; (D))= 06D CEL).
Let ek - %T(X) / T(X) be the quadratic form defined by

subgroup is chosen right. Further, the operator is determined as usual by its action on a single non zero vector.
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o" (2x) = ek (x) TH2x).
(see [Mum3] p.59 ff.).

LEMMA 15. We have
F(B),={ek @) T (W (1) | xETX) ),
and the projection of f¥ %), to G(n*L) is K(f, L) — the Imaximal evel subgroup corresponding
10 the descent data L" = SEL. In particular, f<(2), is a maximal level subgroup of @(L" 2) .
The image of Af) under both &, and 9, is a maximal level subgroup and therefore the map T
is uniquely determined by the property of taking a non-zero invariant vector of &) under the €z
action to a non-zero invariant vector of Z(f) under the 0, action.

Proof. The first assertion follows imediately from Lemma 14 and the definitions. To get the
second, one considers the preimage of K(f, L) in G (an) under the homomorphism

Normalizer ( oL" (X)) —> G(n*L).
Itis a level subgroup which must be maximal by index consideration. But it clearly has the same
invariant vector as f¥(#), does, namely, ¢,/*© where O is a generator of the one dimensional
vector space I(X, L). This implies equality — two maximal level subgroup having the same

projection to H(n*L) and a common non-zero fixed vector are equal. The rest is also easily
verified. Q.E.D.

We keep the assumption fe £°(L), f*L=L" * Let 0= A oK, L)) where the fixed level
subgroup with orthogonal complement is L(n ), — the maximal level subgroup of G(n*L)
constructed before. Then Py, (s(n),) is the unique, up to a scalar, f%#), invariant vector.

Decompose r (X, L) according to eigen spaces of Z,

fx,n= @ rfxun,
Pe £

Choose a section 3: Z —> G (L) andlet ©,= U, (6). Then { O, | Y& #* } is a basis
for f (X, L), each O, spans f (X, 1), andforevery n,

LD(n) = { 0, | v £4(n] }
is a basis for I1X, n*L). Therefore if we had some nice choice of a section we could explicitly
write the vector s(rn), and thus solve the problem of writing the pull back ¢./* explicitly. That
is our next objective.

Before plunging into details, let us explain what we are about to do. We start by choosing a
good theta structure for the big group (? (L) and a section for (? (L) —> Z* (We will assume
that the G&pel structure is obtained from this theta structure. There seems to be no point in
generalizing). We work with some ' indeterminate ' in our section saving its specialization to the
end. That makes the generalization of the case treated below to the general case easier.

Since we have assumed that L is an ample even symmetric line bundle of degree 1 on X
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I that means that there exists, by [Mum3] Proposition 4.20, a theta structure
N
A: GUL) — G,

ATV ) ={(1,z01z& A} AFV,)={(10,21€ A}

A ~
AT ) ={(Lz 0 12€ 7,8}, A(GNT)={(1,0,2)1z€ Z,}},
and el goes over to the function ex where :
ex(x/2,y/2)=(-=1%Y .
This implies that V,, V, is a Gopel structure and that

AD)={(ex(x12,y/2), x, ) x,yE iﬁg 1
AT VX)) ={(L,x, M Ixye Af}
Let .J= A(%). We have -

~ N
AKm))={(1,2,0)Im& Z;}}, AKm),)={(1,0,2)l € Z,}},
whence we get finite theta structures (which is rnot just "taking everything mod n")
A, : G(n*L)y— G(9,)

where
~N N g

x g8, o~ 8 8
Go)=k*x (b2 finZ 7)< (2 in2 )
or simply (under the canonical isomorphism)
G )=k* x (328%/n 78 x (1 7%/ n 275
with the usual group law,
(. x, B, y,m) = (aB £E)° ™ x4y, 1t m)

N g N
by demanding the natural homomorphism between A(K(n),) and (;% Z r /Z ﬂg) (we have to

choose £, so that the commutator pairings agree. Therefore we take &= e(1/ n*)). That is,
denoting by
Py - K AK(m) DAK(n),) = ANZy (0" (nT(X)))) — G(3,)
the natural projection, we have that p, induce the natural projection on A(K(n),). The element
(1, x, y) goes under this homomorphism to 4
PL(Lx, ) = p,((e (%Y 2,0, (1, %,0))
= (e(% 'y x),x,y).
Therefore, the image of . under these theta structures is
pLH={(LxWixye 2/ ni}

which is precisely the same sort of theta structure used in the Symmetry Theorem.

Define
E(x,y)=e(% 'y x).

® This assumption is not essential but it does simplify the calculations below., We remark that every
symmeiric line bundie becomes even symmetric after a translation by a torsion point of order 2. Since no new idea is
involved in treating the more general case we make this assumption.
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Choose as a set of representatives to the cosets G / k*A(#) defined by the commutator
homomorphism
G —> S
the set
REP={((xy)x,»lxyc QNI[0,1)}
where 1: Af x A f —> k> is an arbitrary function having the property
I(x,0)=1(0,x)=1 forall x& Af‘”.
This gives us a section
3. I — G
which we write as
2(y) = (La(y)), a(y)),

and sections
2 (I Indy—> G@,)
which we can write, identifying (.4 / n.J)* with .J*[n], as
2 (P) = (p)) E(a(y)), Ay))

These sections induce sections
3 # —s G (L)
2 Mn)y* —  G(n*L).

One advantage of such theta structures is the simple form which the homomorphisms 0, now

have : By Lemma 14, 6) we have 8,(A 7" (x) ) = A7 - (V(p x). Denoting by M, the matrix
representing V(f) on @\;’” and by D, the induced homomorphism on G we get

D
where (), (x)) =(A, X, y).

(-G =67 )

In the case where f& £AL) is an automorphism we get
d:G(5,) —> G(5,)

40 (6) -0 5) )
() -2

The advantage of this expression is that it is completely explicit once the adic representation of f

where

is known. Because of the usefulness of this result we record it as

LEMMA 16. D, (A, (f)) = (A"lz, M f@)

o) - [ Sl v ).
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Digression - The Symmetry Theorem.

We want to reconsider the Symmetry Theorem. As in the derivation of the explicit form of
the symmetry theorem we take the symmetric line bundle to be n*L where L is of degree one.
Moreover, we assume that L itself is even symmetric. Recall that the intertwining operator

T: IX, n*L) —> I(X, n*L)

was determined by
T©)=0,,
where now we take the basis
e,=U;,9, 0=0,.

¥ 2wy 10

We have
2, (9) = (1) Ea(y)), oy)).
We want to determine 7(@,,). The intertwining property implies that

1(6,)= Uy, ©)

= Us (1) Eatwy. aw))) Y iatry By, o) O
By Lemma 16

8,1 (1 () E(c)), a9)) = (1 (@) E(M,1 o), M, )

Therefore, using [ ], {- }, to denote integral and fractional parts, we get
8,1 (1(a(y): E(o(y)), a() ) (1 (cAy)- Elal(y), ax(y,))

= (1) BEM,+ o)), M1 a() ) (1(cfy,)- E(ey,)). afy,))

= (1 () L(ay) BEM, a(y) E(a(y) F( M1 (), ofy,)), Myr a(9) + cdy,))

= (U(a(y) l(aly)) EM, a(y) E(ofy,)) F( M a(y), ofy,))

(M, a(y) + o(y)h My o)+ ay)1)™,  {Mpr a(@)+ ofy,)})
x (1, My a(y)+ a(y)])

Using the fact that p, () C C?(L) corresponds under the theta structure A, to Mn) = K(n,
L), we conclude that ‘

Us( 1oty e, a))) Uiy oo, o) €1 = Pgy Oy gy
where

b, = lay) (aly) [{Maly)+ ay)})
x E(Mg () E(a(y,) EGM,- a(y) + a(r)})"!
x F( My a(y), oy,)) F({M, 1 o) + aly)} (M, ay) + a(y)])!
Clearly a good choice of [ is I(x, y) = E(x, y)"'. Making this choice we get
b, , = E(cd) " E(M,: o)) (M1 a(y), aly,))
X F({M+ a(@) + a(y)}, M, a(y) + a(y)])™
Put as hefore
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w, (P)= Mo o)+ ofy,)

then we get the familiar expression

b, , = m1 () Flo () - ay,), oy)) Flop} [oyD .
Finally, note that

V=B B=(ml 97

() = £ (4 ()£ (G))

That is

THE SYMMETRY THEOREM (EXPLICIT FORM II). Let L be an ample even symmetric line
bundle of degree one on X. Let Z = X[n] and let Z= K(n, L)be the maximal level subgroup of
G(n*L) lying above Z and cor?seponding to the descent data n, L ( Z = M(n) in our new
terminology). Choose some non zero section 6, € IX, L) and let ©, = n*0,. Choose a section 2
to the commutator map as described above
GniLy —=— Z*
Given g€ SAn*L) let ¢ : g*n*L — n*L be an isomorphism. Let T = ¢4 g*. Then

there exists a constant c¢(g) such that

T a, © = ¢(g) a,b, . 0©.. ,
( UEZ* vy ) (8 wezft" v Py Ty gy
O, } isabasis for IX, n*L). We have

re((G)) = £ (M ()£ (6))

Further, the scalars bgy , are given by

b, , = m1 () Flo ) - oy,), o)) Flo )}, loyD

where {6,=Uy,,

where

w (Y) = Mg aly)+ ofy,)

and

m () =EM,» () E(a(y) ', Elx,y)=e (% y-0).

COROLLARY 1. Assume that n*L = @ (D), then ¢, is multiplication by a function f.
Suppose further that O¢ supp(D), then there exists a function € such that fg =£¥ /€ and O&
supp(€). We get then that for all x

Q(gx)
ox) @w(gx) = c(g) bg,w ng. gw(x) ;

where ¢(g) is a non zero constant which is independent of . In particular,
@11;(0} = C(g) bg, P @yg‘ g?;';(o)
Assume that y,=1 then, if ©;(0) =0 and therefore og)=1,we get
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Q(gx) _ EM yy)
Q(x) Oylex) = E (o)) Ogy(x)
E{

M- 1 (o))
91!;(0) = Egj (GTED)] 4 @gw(o)

EXAMPLE. To illustrate this theorem take the simplest case g =-1. Then by our
assumption :
v, =1, ay,)=0, m =1, -Dy=y"' forevery .
It follows that b, , =1 forevery . Therefore, there exists a constant ¢(- 1), independent of
1, such that
T®)=06,.

for every 1. This implies that we may normalize ¢ such that

Pu(- D¥(O,)= (- 1) 1
for every ¢ where (- 1) = {x1}.

Using this one can get [Muml] ' Inverse Formula' p.331, [Mum3] Cor. 6.21 p.114, or
[Kem] Theorem 4 p.71. We can get the exact constant which is 1 under the conditions of
Corollary 1.

The Symmetry Theorem and the Quasi-Symmetry theorem allow a certain converse. For
convenience we assume that L is a symmetric line bundle of degree 1. It will be more convenient
to formulate this converse by using algebraic theta functions which we now define.

The section - allows us to turn sections sE I (L) into functions F — algebraic theta functions
— on V(X). This is done as follows: Choose a trivialization of L at zero & L(0)— k. an
isomorphism. If 7(x) = (x,, ¢,), then

F(x)= ¢, (s(x)),

where n is any such that ¢, is defined (see [Mum3]). Let © be the unique, up to a scalar,
global section of L, then F', has the following property (loc. cit.):

Fox+a)= ek (al2) éal2,x) F ox), x€ V(X), a& T(X).
It is not difficult to check that given g& (L) we have the expected identity

Fpry ) = F(803)

and in particular ((@)F (x) = F,.5(x) = F{g(x)) where 1s ¢(g) is a root of unity which is equal
to one if Fg(0)= 0.

Now starting from an arbitrary operator ME Sp(V(X)) (symplectic w.r.t. the & pairing)

we define an automorphism
8, Gy— G,
by the formula
8 (A 7)) = A T(M).
We twist the natural representation U to a representation U by defining

M o
U™ = Uy
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We get a unique, up to a scalar, intertwining operator
T, N (— 1),
such that
UoT, =T, oU".
(This is how the metaplectic group arizes). However, generally , it does not hold that
Fp, (x) = F (Mx).

CONVERSE THEOREM. Assume that F ((x) = F(Mx) and that M is integral, i.e. M(T(X)) = T(X).
Then there exists g& (L) such that T is the intertwining operator resulting from g. That is, if ¢

g*L = L then, up to a scalar, T = ¢, g*. In particular, letting V(g) denote the adic representation
of g, we have F ((x)= FV(g)x).

Proof.
Claim 1. For every s€ I"(L) we have Fy(x) = F (Mk).
Proof of Claim 1. One can show (loc. cit.) that
Fy, . 0@ =2 e"(y/2, x) F(x - y).
We get therefore
Frone® = F5 1 1))
= Flury, o®)
= &My 12, x) Fo(x- M'y)
= & (y/2, Mx) Fy(Mx - y)
= F, Mx).

Claim 2. Let s, ..., s, be a basis of (X, M) where M is any symmetric very ample line bundle.
Then for every x& X, , for every lifting of x to x"& V(X),

(Fsl(x’\): el Fsﬂ(x’\)) =(5,(0): .0 5,(xX)).
Proof of Claim 2. Let x& X, , x* = (x,), € V(X), x;, = x. Note that if &' is any trivialization of

M(x,) then (s,(x): ...: 5,(x)) = (&' (5,(x)): ...: €' (5,(x))). Thus the claim reduces to the fact that the
following diagram is commutative for a suitable &' (which is trivial):

-1
TUX, M) DX, My—> M) T8 a0y <25 o) £ &

i can. e //
X, M) — M(x) g

Now, assume that F j(x) = F (Mx). If 5,,.., 5, are a basis for I1X, 2*L) (2*L = L and hence very
ample) we have for every x& X,

(F, (M) oo F (M) = (5,(0): ..t 5,(0)).
Equivalently

(Fregy (M 7xN): ot Frog (M) = (5,00): 2 5,(%)).
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Claim 3. The integrality of M implies that is s€ I{X, 2*L) then T(s)& I(X, 2*L).
Proof of Claim 3. First of all it follows easily from the definitions that o"(2T{X)) fixes I(X, 2*L).

In fact, if we decompose ﬁX, L) according to the characters of the maximal level subgroup Z =

dTX)

o) N
I'x,D= @ XD, ,
ye 2*
each summand is one - dimensional and easy dimension count shows that I'(X, 2*L) is precisely

the invariants of o"27T(X)).
Now, because s is 0'Q27T(X)) invariant 7(s) is 9,;'(0"(2T(X))) invariant. But 0'QT(X)) =
7(27(X)) and therefore 6M‘1(OL(2T(X))) = 5M'] (FQRTX))) = 7RM T(X)) = T"CTX)) = " RTX)).

We get that the integrality of M implies that 7{(s,)& I'(X, 2*L) again. Hence,
(T(s,XM'x): ... : T(s XM 'x)) = (5,x): ... 5, (%))
That is, if we define a new embedding of X into P(IX, 2*L)) by
x == (T(s Xx): ... : T(s,Xx)),
then the image of X under this embedding intersect the image of X under the original embedding

along X

tor

and thus the images are equal. Hence the map

(s,(x): .t 5, (x)) V> (T(s Xx): ... . T(s,Xx))
is an automorphism (note that (7(s,)(0): ... :T(s J(0)) = (T(s X M'0): ... :T(s XM'0)) = (5,0): ...:
5,(0))). Q.E.D.

End of Digression. Back to the general discussion of endomorphism !
Define a basis for I" (X, L) by
{0,=U;,, 0| p& &} '
Where now 2 is the particular section we have specified given by the choice of REP and the
theta structure. As before, this basis has the property that
LD(n) = {6, | yeZ{nl}
is a basis for I'(X, n*L) forevery n.
Recall that we had the sections
= Un)* — Ln),
and the bases Z(n) to I'(X, n*L) were defined using X :
Bny={sn),= Uz oy s(m) 1 Y€ Lin), * }.
Write
E,@)=(1,0, (y).
Using the explicit description of X we can make the conections between the bases more
explicit then before.
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LEMMA 17. 1) sy, = X .69y,
Y eMn),

where M(n), = M(n) N L(n), . (Note that this is an equality in f (X, L)).

2) Given p& I(n)* define p' € M(ny* ("extension by zero") as

P i, € M) * &> M(n)* = M(n),* ® M(n),*.
Put for y=M(n)*, p< I(n),* and | as above
— . . 0 -1 0 -1
@, ) =E(@()  Hew) - E(a@)+ () 1) 1{atw)+ (0 ) 1)

F{aw) + (50 ) 3 Ta)+ (0 ) 1)

where |- ], {- } denote integral and fractional parts respectively. Then

s(n) =L D, (y, e .
( )p ”gwe%(n); I(W P) yrp?

3) Choose 1(x,y)=E(x,y)" then, putting ®(y,p)= @ (Y, p), we have
2w, p)=Fl{aw)+ (,0 ) 3. la()+ (0 ) 1)

Proof. We defined s(n),= PL(,I)1 (©). Since under the theta structure A, we have
ALW)={0,x0x€ltz/n7)? 3},

we may take as representatives to A, (I(n),) / A, (M(n),) elements of REP which are of course

the image under & of A (M(n),)*. Therefore (recall that @ =n*@ in f X, L)

U,o

n% ze ny, *

Py, (O) =

-y S UgyU.©
nzgz(w);q;ex\/l(n); zeMm, e

= L > Us oy ©
¥ sy pesmy, P

=L ¥ @
ey ey

2) By definition s(n),= U, , gy 5(n),. Thus
s(n), = Uy o py 5(),
_ 1
= Uy, Be) T E 2 UZW) 2

I () p eMn,

=L 3 Uioa . )
né 3 () e My, (1,0, B(p)) ( Kody)y E{edy)), aly))
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To get the formula we want, we calculate (using that F (. ())=1 )
(1,0, fp)) ( Kex(w)) E(oy), ay))
= (E(a(y) La(w)), a@)+ (0 ) )
= (E(a(y)) (o) F{a)+ (,0 ) Llaw)+ (,0) D aw)+ () )
x (Lia@w+ (0] 1)
=@y, 1{a@)+ (0] NEQaw)+ (0 ) 1 L)+ (0] )

x (1, ta@)+ () 1)
Whence

sn) = ¥ &y, p)O,, ;. E.D.
( 4 ns we[\,j(n); l w p) 'll}‘p? Q

REMARK. A classical case of the transformation formulas we have just proved is (for the right
choice of /) the change of basis inverse to the change of basis given in Mumford / Tata lectures
on thetal p. 124

THE QUASI SYMMETRY THEOREM. Let X be an abelian variety over an algebraically closed
field k of characteristic p=0. Let L be an ample even symmetric line bundle of degree 1 on
X. Let f: X — X be a quasi symmetry of L, ¢:f*L—> '’ an isomorphism. Fix a theta
structure as above and let the groups L(n),, and the bases 2n), be defined as above. Let A,
A, be the system of theta structures obtained above and let % : HTX)* — G (L) be the
section constructed by the set of representatives REP and A.

Let K(f, L) be the maximal level subgroup associated with the descent data f*L = L, and
let A(K(f, L)) be defined with respect to L(n),. Then the map

ouf ¥ (X, L) — I" (X, n*L)
is an intertwining operator with respect 1o the 6, and ¢, action (and hence is uniquely
determined by taking a #(f) invaraint vector under the &,action ~that is a éf" (Z(f)) invariant
vector under the natural action — to a Z(f) invariant vector under the €, action) and therefore
equal up to a scalar to the intertwining map determined by the equality in I (X, L)
Guf* O= PK(f, 0 s(n),,

where we A(K(f, L)) is arbitrary. We have

s, =L 2 Oy, p)0O,
I ngweMm); v.p yrp

or 1(x,v)=Ex,y)'), where
Y
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Py, p)= F{a() + (0 )} Tatw) + (0 ) 1)

REMARKS. 1) Perhaps some general apologetic remarks are in order. In a sense this theorem as
stated is not the final detailed answer to the problem of writing ¢.f *. However, it seemed to us
that this is as detailed as is worthwhile to give in this general setting. We have studied each
magnitude appearing in this formulation in detail (the connection between the bases, the projection
operator etc.) so as to offer sharpened tools to compute any specific problem. The following
remarks elaborate this point.

2) We regard here K(f, L) as an ' atom '. We do not decompose this data further and
explicate Py, s(n),. The same attitude is manifested with regard to writing the general formula
for ¢f *. Both of these details clearly could be supllied by some tedious computations. However,
over the complex numbers, using the Appell - Humbert formalism, we shall give in §5 an explicit
description of K(f, L) just to illustrate the technique.

3) The natural idea would be to give a criterion stating when Py 1y 6, is non zero and save
the detour of going through the groups L(n),. However, this does not seem to exists. The reason
is that Z is very far from having an orthogonal complement, which enables us to decompose

f (X, L) with respect to it but a nice Lemma as LLemma 10 does not exist. When we take a
maximal level subgroup with an orthogonal complement as ° (V,), we have Lemma 10 but we

can not decompose I (X, L) with respect to it. However, we can do it on finite levels with the
groups L(n),. The resulting bases are well enough connected to the base with respect to # and
nicely related (by the isogeny theorem) to make sense, and to be practical for an explicit
computation. Some interesting examples, where these computations may be of interest are given
by Prym varieties and Fermat curves (for automorphisms) and by Humbert surfaces and elliptic
curves with C.M. (for isogenies). A detailed study of such examples is a topic for another paper.

It is very important to deal also with a more general situation than considered above. Consider
the following situation :
Let X, Y be abelian varieties over %, and
i X—>Y
an isogeny of degree prime to p. Suppose that there exists an ample even symmetric line bundle
L on Y of degree 1, and an ample even symmetric line bundle M on X of degree 1, such that
f*L = M
(n 1s determined, of course, by f). In this situation the question is how to write the sections f*s,
s € I(Y, L) as sections of M relative to the bases that we have constructed (which are
independent of f! ). The situation we have dealt with above is when X =Y, L = M and is
therefore a special case of this more general setting. It is amusing to note that the more general
case is, under mild restrictions on f, a special case of the special case. Indeed, consider the line
bundle N= p*M® p,*L on X xY, and let
E: XxY— XxY
be the composition
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Id x xfY Id. x -1 8
Xy 224, Xxpicﬂ(nj——[——» YxPiCO(X)——-—ﬁ/’—e YxX 25 xx ¥

where per.(y,x) =(x, y).

LEMMA. Assume that either deg [ is odd or that for some g, f=g 2, then E*N = N
Proof. We have E(x,y)=((¢,, ' of " o ¢, Xy), f(x)). Therefore
E*N = p*f*\L@®p, (¢ ' of " o ¢, F*M
=p*M ®pX(¢y ' of " o M.

Hence, it is enough to prove that
(@ ' of "o FM=L"

First of all )
Ty of " 0@ M = (¢ of " 0@ of *M
= n*M
= M"z.

We have also f*L' = M »*. It follows that L" and M =(¢, ' of ~ o¢,Y*M are algebraically
equivalent. Therefore

e = M
and since both are symmetric it is enough to prove ([Mum3] Lemma 4.25) that e = el (here
we think of e, as a function on 7{X)/27(X) rather than on %—T(X)/T(X)). Now the functorial

properties of the sections o, T stated in Lemma 14 show that universally
e§ D(x) = P(V(g)x)

(where g is anisogeny between abelian varieties, D an ample symmetric line bundle etc.).
Whence,

e (y) = e (Vg of * 04,) ().
If f=g <2 then n satisfies n® =deg f and therefore is even. Hence e# =1. We also have that f~
=g" 2 and therefore V(¢,,;' of ~ o¢,) kills T(Y)/2T(Y) whence effi=1.
If, on the other hand deg f is odd then the map

V) : T(X) 1 2T(X) — T(Y) 1 2T(Y)
is surjective. Take some x& T(X) satisfying V(fXx) = y mod 27(X). Then,

e (y)

I

e (V@' of " o) (V(fXX)))
ex'( V(‘f’z&»{i of T o¢ of )(x))

= e nx)

= efM(x)

2
e (x)

it

1
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= e{/D(x)

et ()"

€4V( Hx)"

ef (y). Q.ED.

It

REMARK. The conditions of the L.emma are necessary. For a typical example let E be an elliptic
curve, w& E[2] anon zero point and let Y= E/ <w>. Denote by f the natural projection E——
Y.let a B be generators of E[4] suchthat 2 a = .

Let L be the line bundle of degree 1 on Y defined by the 2 torsion point f{lcr). Then f*L is
defined by the divisor {¢, a+ w} and we can take as a symmetric line bundle M such that f*L
= M the line bundle defined by the point OEE. Both M and L are symmetric. If we identify
E and Y with their duals in the canonical way we find that the dual map f " : Y— E is the
composition )

El«w> — E/E2] — E
where the last arrow is the isomorphism induced from multiplication by 2 on E. The line
bundle f*M is defined by the divisor {0,0+¢ }, ¢ is the non zero point of E[2]/«w>. Then
f7*M is not isomorphic to L* and ones see (following the proof of the Lemma) that the Lemma
does not hold in this case.

Now consider the sequence
i
X S Xx¥ 2 xx Y,
where i(x) = (x, 0). Then, of course,
*EXN = M,
but note that this requires a choice of a trivialization of *p,*L", which is determined up to a

scalar and whose effect on global sections is evaluation at zero.
(i) By Kunneth formula I{Xx Y, p *M ® p,*L) = I[(X, M) ® I'(Y, L).
(i1) The map
ECNX XY, p*M® p*L) — NXx Y, p*M' ® pL") =X, M) ® I'(Y, L"),
is well understood by the Quasi Symmetry Theorem (More on that below).
(iii) The map i* is just evaluating 7 in s®1 at zero.

(iv) The composition i*&* = (0, f{x)) is'the map we seek '.

Note that the map &£* which evantually gives us the map f* uses the descent data of both f
and f 7. In general the whole structure needed for the study of £ is obtained as the product of
the structures for L and M. Or — to use another sloppy formulation — the theory of theta
functions is multiplicative. That means, e.g., that

G(piM® piL) =« G(MYxG (L) {(a, = VYl a€k *}
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and therefore that Gopel structures for L and M induce a Gopel structure for p *M® p,*L.
Moreover the two systems of level subgroups K/(n),, L,(n);, K,(n), L,(n), can be "multiplied"
to get such system for p, *M® p,*L etc.

4. EXAMPLES

In this section we give three examples. All of them concern Riemann surfaces. The first one
is the case of a cyclic unramified covering of a Riemann surface. The second is the curves y * =
x**2 -1 and the third is y* =x” - 1. We work over the complex numbers and use topological
arguments and pictures. However, there should be no difficulty writing everything in arbitrary
characteristic. We start by determining the representation on the first homology group.

I. A CycLic COVERING.

Let Zbe a Riemann surface of genus g=> 1. Let 4, .., §,, 1, ..., 1, be a symplectic basis
for H, (B Z). Let Cbe the cyclic covering of order n of % obtained by 'unwinding 77, n
times '.
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With respect to the symplectic basis for H ( & Z) given by

{0, 6,502 0y 802 .00 o, 8, 8, %00, )

g-13 Ygr o Vo

) 1 2 n 1 z n 1 2 n
Moo M M5 s M5 Mo My s s ey M 5 M5 e My s

the generator of the cover automorphism group, 7, which is ' raising one level 'is given by
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IL y2=x%*2-1,

In every hyperelliptic curve : y®=f(x), the automorphism 1t
y p— y’ x> x

induces multiplication by -1 on H, (& Z). Therefore we examine only the automorphism 5

determined by
y | —d y, X 2 Cx’

¢ = exp(2i (28 +2)).

We consider this curve, which is of genus g, as a two - sheet covering of P*(C), obtained
by branch cuts. The following diagram demonstrates this as well as giving a basis for H, (& Z)
- dotted lines denote curves on the lower sheet while whole lines denote curves on the upper
sheet. For simplicity we demonstrate only the case g =4, the other cases being similar.
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i s

The second picture describes the images of the basis elements after applying the automorphism
m. That is, for example, the label A, in the lower picture denotes the image of A, under & The

matrix representing st with respect to the basis A, A,, u,, , is

—

—1-1-1-1
0 0-1-1-1
0 0-1-1
00 0-1
IR
0-11 0 0
00 -11

In general, choosing the bases similarily, we get that the matrix representing 7 is given by

0B
cC o ’
where
~1 -1 =1 -1 1 0 0 0
0 -1 -1 ~1 -1 1 0 0
B: N C:
0 0 =1 =1 0 | 1 0

0 0 R ~1 0 N ¢ ~1 1
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I y>=x?-1.
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complex multiplication by Z[Z ]. Using similar description of the curve and picking a

wn
—
2,
[ty
jab)
-

basis for H( & Z) one gets that the automorphism s determined by
yr—y, x> &,
where = exp(2nai/p) is givenfor p=3 by

)

and for p>3 by

3)
C 0 ’
where
0 0 0 -t
A= 0 9 0 —'1
0 0 0o -1
0 0 0 -1

In each one of these examples we take as the even symmetric line bundle on the appropriate
Jacobian the line bundle determined by the period matrix of these homology bases with respect
to the standard map by some ' dual basis ' of I'( &§ Q :). By this we mean that the image is of
the form (t,1), T€ $ - the appropriate Siegel upper space. This gives also a decomposition of
the period lattice (7, I )YZ*® to t Z8 @ Z¢ and thus a very specific line bundle — which will
denoted by L — the one obtained from the trivial line bundle on C# by dividing by the factor of
automorphy

a(A, v)= (A exp(x Hy, A) + z H, 2)
where
H=(Im7) ',
XA = exp(ati ImH (A 1)),
using the decomposition A = A, + A, obtained from C¢= R ®1Z* ® R ® Z°(see [LB]).

In order to derive the explicit form of the Symmetry theorem in these examples, let us
compute the expressions appearing in it. We will compute the formulas for 7', Recall that

m () )=E M) VECE) )

E((}) )=e(% ‘xy).

where

I. The matrix M_ is of the form
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and therefore m_ = 1. Hence also m,-1 = 1 and this implies that y,- = 1, because y,1=m_ 1 |,.
Thus @, -1 (y) = M a(y), which has no integral part. Therefore

I 1
D, -1, = 1

forall .
This implies that up to a scalar ¢.* : f X,L) —> f (X, L) is given by

T( 2 a, w): 2 a, 6,4,

Ye £ P e £

a simple permutation matrix.

II. The matrix ]%;z is of the form

EM,() )=E(() ),
m.((5) )= E(() )™

However, note that for G‘,) in Z we get
n(() )= eyt

This implies that y_1 =1. The constants b -

and B =-"C"'. In this case

and

.y are given by

bery= B ) F ({2 8 )l [ 8 )etw] )
which are completely explicit roots of unity appearing the formula

T > a ): > Ay b1 O .
(wez* w P £ ”l’w Y

II. The matrix M, is of the form

(&%)
C 0
where A, B, C are as defined above. In this case
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(72 (*x-"C(Ax+ By)))

ALt o 23y
2 A )7‘1“./{3 1)

I
i

Py

I
i
~~

N\,

Thus
m () )=¢ (- % xy+x}))
which is not trivial on Z. Infact

() ) =eCex).

One can write now the symmetry formula explicitly.

5.CONCLUDING REMARKS.

This section is devoted to three topics. The first is the construction of compatible theta
structures allowing one the simultaneous construction of bases for I{X, L") for all n. This
construction furnishes the necessary background for extending our results to isogenies f such
that f*L= L" where n needs not be a square. The second topic is the extension of our results to
Q-isogenies. That is to elements of Q®End(X). The third topic is a short dictionary between the
algebraic and analytic languages in case the ground field is the complex numbers.

I. SIMULTANEOUS BASES.

One of the main points of our approach to the problem of writing quasi symmetries by
explicit formulae is the possibility of a simultaneous construction of bases for all the spaces I(X,
n*L). Conceptually, their nice behavior is a result of a certain compatability of the theta structures
defining them. Our purpose now is to define and explain this compatibility and extend it in a way
that allows us to extend our simultaneous construction to all the spaces I{X, L").

DEFINITION. Let L be an ample symmetric line bundle of separable type on an abelian abelian
variety X. A symmeiric theta structure for L is an isomorphism
A: (L) — G(9)
such that
Aod =D oA
where D | is the automorphism of G(6) defined by
D (o, x,h=(a,-x,-1)
(See [Muml] pp.316-7). A symmelric theta structure for (L, L") (or a compatible pair of theta
structures ) is a pair of symmetric theta structures

A G — G(nd)
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A, G(L) — G()

such that
Aoceg=Fo
“n " %n n o 1,
Alo Tln: Hno An‘

For a definition of ¢, 1,, E,, H, see loc. cit. pp. 309-310, 316.

In general the existence of such a compatible pair is not a trivial matter. The case n =2 is
discussed thoroughly by Mumford, loc. cit. §2. However, in the case we are considering it is easy
to prove the existence.

Let L be an ample even symmetric line bundle on X. Define three homomorphisms for the
standard adelic Heisenberg group G —denoted 2,, &, #{—by

L(x, =(a-x-1), £(o,x, D=(a" nx, 1), H(a,x 1)=(a",x, nl).
Define a theta structure
A Gy — G

by

. A, (0)= &AR)
where A, : G(I) — G is a symmetric theta structure as used in §3 after Lemma 15 (its
existence is guaranteed by our assumptions on L ) and z is an element such that £,(z) = x. Since
Ker £= p,=Ker (g, :GA (L) — (’?\ (L") ) this is well defined. It is easy to check that we have
indeed defined a symmetric theta structure.

Consider the pair (A, 4,, ) of symmetric theta structures for ((? wn, G (Lrmy). It is
obviously compatible for ¢,, & . To verify the 75,, # compatibility it is enough to verify this
for elements of the form 7"(x) where M = L"or L™ . Now

A ) = Ale, 7)) = GATX)
and therefore, using the identity 7 (7 M) =t Lm(nx) (which is part of the content of Lemma
14) we get
A7) = EA @ my)).
On the other hand,
KA N = & H, GA ).
Put, /)= 7/ & . Thatis,
Lt x, = (o, mx, mi).
We have to prove that
LUATH)) = A (T (my)).

However, one can easily check that
mi+m

mt—m
La,xh=(a,x)" 2 (D _(axl) 7 .
It follows that

A o) = Al @™ o))
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= AT I )
= A(zHmy))

Now, for any n we have an induced isomorphism
G(L") = Ny n(0" (T(X)) 1 (& (T(X)))
=Ny &INICELH)
= G(né)
(.Swas defined in §3 after LEMMA 15), where 8 = (1, 1, ..., 1). The last isomorphism is the
following:

N N
N E(F) = {(a, x DI xE (T EGT )%
and the isomorphism is established by sendmo the maximal level iuboroups
{(1,x,0) le(Zf)g} {(1,0,)1 IE(n '}
to their obvious images i in G(nd) (the group law on G(nd) is defined using the n-th root of unity
e(1/n) - compare §3 loc.cit..). Further, the maps between the various G(nd) induced from the
maps o), €,, #,,are precisely the maps D ,, E,, H, and therefore we have suceeded in constructing
compatlble pa1rs of theta structures for (L", L™) for all n, m. At last, one can also Verlfy that

under the isomorphism G(L"2 ) = G(n*L) the theta structure just constructed for G(L” ) agrees
with the one constructed previously for G(n*L).

II. VIRTUAL SYMMETRIES.

Suppose that f= Q®End(X) . Then usually for x© X fix) does not make sense. Thus it is
not clear what, if at all, f*s, s& I(X, L), should mean. However, when X is a complex abelian
variety, say X = C8/ A then we may identify I(X, L) with certain holomorphic functions on
C¢ and then we may define f*s by f*s(x) = s(fx)) (using the same notation for the complex
representation of f).

On the other hand f is not far from being an isogeny. There exists a natural number n such
that nf= End(X). For such an n, nf is an isogeny, for every x& X, (nf Xx) is meaningful and
(nfy*s is defined with the usual meaning. Now, it is not difficult to convince oneself that the
natural embedding

(X, n*1) & 1(X, L)

1

is the right way to define the action of 7 . This will be further justified when we discuss how

this is reflected in the associated algebraic theta functions.

DEFINITION. Let f= (Q®End(X) )*. Let n be such that nf€End(X) and assume that (nf)*L =
n*L (such f will be called henceforth a virtual symmetry of L). Define the map

[ f’“(x L — ﬁx I
as the composition of the maps (nf)*: I+ (X Ly — F (X, n*L) and the natural embedding /:
(X, n*l)y — F(X, L.
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Recalling the definition of IQ(X, L) it is easy to see that this is well defined and generalizes
the usual natural definition for symmetries f& End(X)* of L. Notice that any automorphism f
preserving the polarization determined by L is a virtual symmetry for L (in virtue of the
symmetry of L). Therefore we also obtain somewhat more flexibility in the treatment of
automorphisms as well. We remark that it is easy to generalize this definition for certain other
f& Q®End(X) (obtaining thereby also the same kind of flexibility) or to the relative situation
discussed in the end of §3. We leave that to the reader.

The map (nf)* is an intertwining operator for the action of (l}\(L) via £, and 9, as we
have already seen. Recall (Lemma 14) that 6,9371(3:) = 7((nfXx)). Therefore we make the following

DEFINITION. For a virtual symmetry f define

8,: (D) — G(D)
by

8,k 7)) = & wf00).

Let us verify that this is an automorphism. Since ¥(x) (y) = €*(x, y/2) ®x+y), we need only to
check that €(x, y/2) = e"(f{x), f(y)/2). Changing variables to nx, ny and using that (nf)*L = n*L

we get
(fi), finy)/2) = E(nfX0, (XY)/2)
= &7z, yI2)
=e"(x, yI2)
= ef(nx, nyl2) .

For any virtual symmetry f we may twist the action of (’}'\(L) by 9
UV.=U

S f(:) "

LEMMA. f* is an intertwining operator :

fro U= Uof*.

Proof. For scalars A& k™ the assertion is clear. Therefore it is enough to check it for elements
of the form ¥{(nx), x€ V(X).

feeu rj::(m )= freu rhufe )

Io(nf) *oU Wy 1y

! oUe,,: (z I1(J\c))0(nf) *
I onn*L(x)o(nf> * B

1

i

i

Therefore we need only to check that
I OUTn‘L(X> = U’l’ ‘{{i’?}f }c[.
This is essentially Lemma 14, 4). Q.E.D.
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In characteristic p = 0 we do not have a universal covering space for X. However, Mumford

showed that to a large extent W(X) is the right substitute. For any s& ﬁX, L) he defined the
algebraic theta function F, on V(X) (see §3 "Digression - The Symmetry Theorem "). Therefore
we should check that

F.(x) = F,(flx).

Having verified this we may safely claim that our definitions are right. Recall the definition of
F_ (afull discussion appears in [Mum3] ):
We fix an isomorphism
e: [(0) — &k,
thereby fixing for any isogeny % (and in particular for % equal multiplication by ») an
isomorphism
h*[(0) = L(0) — k.
can.,

Given xEV(X), let 7(x)=(x,, ¢,), and sE ﬁX, L) we defined
F(x)= &9, s(x,)

(n divisible enough such that both s is represented by some s,& I(X, n*L) and ¢& G(n*L)).
An important interpretation of this definition is as follows : for every n " evaluation at zero"
defines a linear functional
&: (X, n*L) — n*L(0) = L(0) — k.
They induce a linear functional
£ X, D) — k
One can prove (loc. cit. ) that
F(x)= U, ,5).
Given anisogeny 4: X — X we have an induced functional (via A*L(0) = L(0))
w* &2 X, h*L) — k,
and it is clear that
h* dh*s)= 4s).
Therefore we see that
Fp. () = h* QUpr,  h*s)
=% Qh*U o yS)
= QU nw®)
= F (h(x)).
In particular
Fog(®) = F((nfX).
I claim that the embedding 1: IQ(X, n*l) — f(X, L) has the effect
F, ., (nx) = F(x).
From the definitions it follows that F, (0) = F(0). Let us use the identity
FU):M(S)()C) =Ae(y X2y F{x-y)
(loc. cit. Lemma 5.7) to conclude that
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Fs(x) = FUTR*L(,I)(S)(O)
=F; (UpreLg () )(0)
. (8
YU e gy (T (HVY/

= F[(S)(rlx) .

Finally, we get
Fpy (1) = F gy o (0) = Fop (& )= F(f0).

We summarize all this by

THEOREM. Let f be a virtual symmetry. The map f* : ﬁX, L) — ﬁX, L) defined as the

composition of (nf)y* : X, L)——> I\X, n*L) and the natural embedding I : I{X, n*I) —>

ﬁX, L) is an intertwining map for the usual action and the 6f— twisted action of (?(L) where 6f
is the automorphism of GA( L) defined by O(x: () = A T(f(x)).

We have an identity of theta functions

. Flay () = F, ().

REMARK. Over the complex numbers, for the line bundle L(H, x) (see below), f is a virtual
symmetry if and only if f*H = H. This is because we are dealing with symmetric line bundles
only. In the case where X is a simple abelian variety with C.M. by a C.M. field K, the condition
f¥H = H is equivalent to the condition Ny (f) = 1. If we take f to be an isogeny then fis a root
of unity (and thus, usually, just +1), where if we allow fto be a general virtual symmetry then fis
precisely of the form g/p(g) — p is complex conjugation (and there are infinitely many such fs).
This new abundance of virtual symmetries is one of the motivations for the introduction of this
concept.

I OVEr C.

This section follows in terminology and notation the book [L.B]. Since our general description
of the theory over € is well known and most of the proofs of our new contributions are easy to
prove, we will not offer any proofs to the assertions below. The purpose of this section is to be a
"pocket dictionary” for practitioners of the classical theta functions theory which are not well
versed with Mumford's language.

Let A be alattice (i.e. discrete maximal rank subgroup) in €. Let (H, x) be an Appell-Humbert
data. Recall that this means that H is a Hermitian form on €° — which we shall assume to be
non-degenerate — and that y is a semi-character on A:

A= O A+ ) = XAy x(Ay) exp(iE(2,, 1)

where E = Im H.
Given such a data, define a factor of automorphy a = a,, ,, on Ax C¢ by
(1) a(A, V)= ) exp(zH, ) + 5 H(}, 1)).

The lattice A acts on the trivial line bundle €¢x € over C* by

A¥v, h=(v+ A, alA, v) D),
defining an ample line bundle L= L(H, ) of degree /det E on X = C#/A. The global sections of
this line bundle, I(X, L), are identified with holomorphic functions @ on C?# satisfying
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v+ A) =a(A, v): &v).

The Appell-Humbert data satisfies the following idenetities

- L(H,, %) ® L(H,, x,) = LH, + Hy, %,%,);

—fFLH, 30 = L(FH, [*x);

— L(H, x) i1s symmetric if and only if the image of )y is contained in {+1}.
One can extend the definition verbatim to degenerate matrices and in particular get Pic’(X) =
(L, %) | xE A*}.

Define a group structure on £ x C8 by

Lo, wi B, x] = [ af exp(sd(x, w)), x +w].

We call this group G (L) and denote by G (L)q its subgroup consisting of all elements [a, w]
where w& Q®A. Define also
G ={{a, w]: o= C, wE A"},
T(L) = {[a(w, 0), w] : wE A}
(A* is with respect to E).
Note that G (L); actson €C¢x C by
[a, wilv, 1] = [v + w, a- exp(tH(v, w))- {].
Now, one easily proves that G(L)*/T(L) is canonically isomorphic to G(L) and that the formula
A¥[v, f] = [a(A, 0), Al v, 1]
holds. We also remark that the commutator pairing € of G(L) is given by
é(a, wl, [B x]) = exp(-2m E(w, x))
(and if L = L(H, ) is symmetric one verifies that we have ek (x) = x(2x) for x&= %—A). The action
of G(L) on the global sections of Lis )
([a, wleXx) = o exp(mH(x-w ,w)) &x- w).

Given a totally isotropic decomposition A = A, @ A, with respect to E, we define a semi-

charcter )}’ on A by
%) = exp(i E(v,, v,)), ,

where the decomposition v = v, + v, is deduced from €% = (R® A, )®(R®A,). Then the resulting
line bundle L = L(H, °) is a symmetric line bundle. Given any other semi-charcter y for H, we
can find some ¢& ¢ such that

2) x(v) = %(v) exp(2mi E(c, v)).
We note that ¢ is not unique, but once it is chosen we can extend the definition of the factor of
automorphy a, ., given by (1) to elements of A" by using (2) as the definition of the extended
semi-character (i.e.x” and exp(2mi E(c, v)) have the obvious extension and we use (2) to extend
%)- We define the theta function ©= @7 ,, on Cfby

o) = expl~mH(v, ¢) - %H(c, ) + %}.{v +C, v +c))
N oA 7T
xiegAl exp (zz(H* BYv+c, &) - 5(H - B(4, ?\,))
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where B is the C-linear extension of Hlpg, .

The decomposition of A induces a decomposition A* = A*® A,". Define
K, = {la(w,0), wl: wE A}, i=1,2.
(Note the "hidden" dependence on the choice of ¢).
One can readily verify the following statements:
- eI (C¢ A, L(H, ).
— K, are mutually orhtogonal maximal level subgroups of G(L).
— Ois K, invariant.
— Define for u€ A*/A,,
O, =la(-u,0),-ulo,
then {©, | uE A*/A,} is a basis for I{C¢/A, L(H, ))) and for [, w]E G(L)
[a, wlO, = a-e'(u-w,, w,y aw,0)" 6, .

A special important case is as follows:

Given € 5, we define:
— alattice A = (tDZ?%,
— an abelian variety X = C*/A,,
— a principal polarization H, = (Im ©)",
— adecomposition A, =T Z%, A, =175,
— a symmetric form B, — the € - linear extension of H g, — B (v, ) = V(Im 7w,
— a semi-character x°(v) = exp(wiE (v,, v,)), E,=Im H,
— a basis for A, consisting of the columns of (t 1),
—aline bundle L, =L(H, ) on X..

we define the functions @, , . for W& 7(n 27%) by

Oy, 0,7 = [Qpe e (-0, 0), - Ol O e 1wy
Then {©,, , ; : WE T(n *Z8/Z%)} is a basis for ITX,, n*L ). We have

Qn, , r(z) = exp(‘%}j BT(Z, Z)) @[“(’;](nzz, I’ZZ’C)

where w = Tw' and for g, € € R, @[:,] is Riemann's theta function

8[;,](2, )= Nezzg exp{zm%‘(fv’ +e)t(N+ e+ (N+e)z+e ’)}.

Coming back to the more general situation, let L be a symmetric line bundle L = I(H, x) on X
= C%A. Then given an automorphism g of X, the Appell-Humbert theorem implies that g is a
symmetry of L(H, x) if and only if g*H = H, g*x = x. Assuming this is the case we can show that
ég[ag wl=la gwl.
Also
gl wlg,=1a", wlgen, M.10 wlgn = Lo, nwlg,,
and if w& m *A then
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¥, Wl = 12 WIRL G ey
Picking a symplectic basis (0, ®,) of A and letting w,, ..., w,, be the columns of (w, w,), W, =
~N

Q®A, x = (x/n), y+ is in V(X) and

: T
T = ([CXP& H(E 2), %] G(ﬂ*L))nE N
We have the natural embedding
i: GWy— G
given by
[a, x] — (lo, X/n]G(n*L))rE Nt

The ¢, 17,, 0, formulas are immediately deduced from their finite counterparts.

For a concrete example of the system of maximal level subgroups consider again the line
bundle L on X,. We have
G(n*L) = {la w]: o= C, we (v IXn>Z)*}
with the group law
la, w1 a, w,] = [o,a, exp(am® H(w,, w))), w, +w,].
The subgroups of G(n*L,)
L(n), = {[a(w, 0), w] : wE v Z° @I Z*},

L(n),= {[a(w, 0), w] : wE TZ*® I;lz-zg 1S

M(n) = {[atw,0), w] : wET 7% @ I17° },
(a= a(n*},'n*xor)) are maximal level subgroups. L(n),, I(n), are mutually orthogonal and M(n) is the
level subgroup defining L from n*L. The subspaces V, = T Q%, V, = I Q2 induce a Gopel structure
on G (L), which gives a Gopel structure on G (L) via i and extension of aclars. The Gopel
structure is inducing the system {L(n), : i = 1, 2},. We have already described how the bases of
(X, nw*L,) with respect to L(n),, L(n), look like. The basis with respect to M(n) and the section
used in the symmetry theorem (for the obvious theta structure) is

{exp -f%fB,(z, z))' @[d”](nz, T): ¢ '€ 75, 0<¢, € <(n, - n)} .

gin

Consider the following situation: we have two lattices A, 2 A, yielding an exact sequence
0—> AJA—> CIA— €4 A —> 0.
Let L, = L(H, x) be some line bundle on C¥A,. Let L = i*L,. Let K be the corresponding level
subgroup og G(L). Then

() L=IH, x,;

(i) K={la, (A, 0), Al: A= A/A};

(iii) Let L = L(H, ) be a line bundle on C#/A, and let K = {[t(4), A] : AE A} be a maximal
level subgroup of G(L) where A, is a lattice containing A. Let L, be the line bundle on C¥HA,
defined by the descent data K (i.e. i*L, = L). Then L, = L(H, x*) where x* , = x and x*(}) =
{Aexp(E H(A, 7).




EYAL Z. GOREN 58

APPENDIX. REPRESENTATIONS OF FINITE AND A DELIC HEISENBERG GROUPS

Al. THE FIRST CLASSIFICATION

This section gives a 'primary’ classification of the irreducible representations of finite Heisenberg
groups. We fix the following notation :
k - an algebraically closed field.
G - afinite Heisenberg group sitting in the exact sequence
1— kK— Gt—> H — 1

where the order of H is d°.
K - a maximal level subgroup of G.
a, - the homomorphism k*—> k™ givenby 7+ t".
B* - the character groﬁp of a group B.
B[n], B" - the subgroup of elements of order » and the subgroup of n-th powers,

respectively, of an abelian group B.

DEFINITION. Let U: G — GL(V) be a representation of G ona k- vector space V. We say
that (V, U) is oforder n if k™ acts through «,.

Let (V, U) be afixed irreducible representation of order n of G.Decompose V according
to eigenspaces of K
V=0©® Vy
xK*
and choose some x, such that V. = {0}.

LEMMA ALl. @ Vi 1S anon-zero G-invariant subspace of V , hence equalto V.

xE K

Proof. We have a group isomorphism
Gk K—> K*, yr— x’
where
x(@) =1z, 5}
1,,-1

and [z, y]=zyz 'y"'. Itis easy to check that
U}( Vw) = Vw. (Xy)ﬂ . Q.E.D.

Choose a set theoretic section o : K*— G to the map y — x’. We shall always
assume that the image of o is contained in G°. This is possible since £*G"=G.
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LEMMA Al1.2. 1) VX0 is an irreducible representation of kKX K*[n]) henceforth denoted by

p.
2) (V,U) = Indiot,p(P) -
Proof. First of all, k*Ko(K*[n]) or p. Ko(K*[n]) do act on each Vx X and we denote this
action by p, .. Thus p, = p. Second, we note that the representation theory of G is governed
by that of G° and the representation theory of k*Ko(K*{n]) by that of pKXK*[n]). This
. . G . Ge . .

means for example that we can identify Ind G(K*[nb(p) with Ind ”deo(K*[nD(p) and the first is
irreducible with respect to G if and only if the second is irreducible with respect to G*.
Conveniently, we may work with characters of finite groups. Assuming that 2) is true we get by

Frobenius duality:

1 =<, CD&,>

=< ¢U’ qj[ndfp>

(Al.1)
= <¢U1A’ ¢P>
= <<Ppm,@p>
xE K&
=<, <Dp>+XEZK*n<<Dp , D> .

x=1

where A = uKo(K*[n]), and @ denotes the character of the appropriate representation. This
proves 1) and the obvious fact that the different p, . are all non-isomorphic (although they
induce the same representation).

To prove 2) we use the well known interpretation of V'= Indfoo(K*[nD(p) as

Vi= @giVXO
where {g,} are representatives of G /k*Ko(K*{n]). An element g& G acts.on a vector gy by
g gv= gj(p%(r)v) if gg, =g, r€ k*Ko(K*[n}). Define a G - linear transformation

Vi—>V
by
gv U,y eV, ).
Since {VX @f}X‘E k' are permuted by G transitively, dim(V) =[G : K*KAK*[n])]- dim( VXO) =
dim({V"). Since the image is an irreducible representation, this is an isomorphism. Q.E.D.

LEMMA A13. Let (W, p) be an irreducible representation of k™KA(K*[n}) of order n such
that pl, - = o) ld, for some xe K*, then (V,U) = Indfxgdm@(p) is an irreducible

representation of G of order n.
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Proof. Set
V=0ogW
where {g} are representatives of G /k*Ko(K*{n]). An element b€ K actson gW by

= o, x5 (b) b)

= x&" (b) x(b).
That means that if we decompose V to eigenspaces of K then g;W=Vgr .Each gW is a

representation of k *Ko(K*{n]) , henceforth denoted p, , which clearly can not contain a

representation isomorphic to p as can be seen by observing the way K acts. Using the same
computation as in (2.1) we get

<P, ;> = < @p, Qf'p> + {%} < CDP&, (Dp>
g &K KAK*¥{n)

= 1. QE.D.
We summarize all we have proved by

THEOREM Al.4. Let G be a finite Heisenberg group, K a maximal level subgroup of G and
o: K¥— G° a set theoretic section to the map y > x°.

(1) Let p be anirreducible representation of k ‘Ko(K*{[nl), then p | s isotypical, equal
to a,x with some multiplicity and

V. 0) = lndl?"Ko(K*[n])(p)

is an irreducible representation of order n of G. Further, every irreducible representation of
G is obtained in this fashion.

(2) If p and p' are two irreducible representations of order n of k™KXK*[n]) then

I oy = I g (P )
ifand only if p and p' belong to the same orbit under the G - action given by
(g, p) = gp: gp(b) = plg 'bg).

(3) Given an irreducible representation U of G on a k -vector space V one obtains the
full orbit of the representations p associated to it by (2) by letting k KK K*[n}) act through
U on the various K - eigenspaces of V.

(4) Every irreducible representation of G° is of order n for some n. Hence these
representations for 1 <n<d?® are generators for the representation ring of G*.

Proof. We have already proved everything except for the last assertion. To see it is true,
decompose an irreducible representation of G° according to characters of p,. and note that
since 2 is central each one of them is G° invariant. Hence, there exist a unique eigenspace of
2 on which the action is given by some ¢, . Q.ED.
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We conclude this section by a lemma that follows immediately from Frobenius duality.

LEMMA Al.5. Let p be an irreducible representation of k*Ko(K*[n]) such that p Lo =

axId, forsome yeK*,then p appears dim(p) times in Ind’;:Kc’(K*["D(anx).

A2. CLASSIFICATION WITH RESPECT TO A MAXIMAL LEVEL SUBGROUP
WITH AN ORTHOGONAL COMPLEMENT

We keep the notation of §A1. We shall assume through out this section that K has an
orthogonal complement. Thus, we may choose o as a homomorphism into G °_and henceforth

we assume this has been done. In this section we use the results of §1 to get an explicit

classification of the irreducible representations of order n of G.

LEMMA A2.1 Every irreducible representation p of order n of k*KX(K*[n]), such that
P | ok = 0% for some x& K*, is 1-dimensional and is of the form
plaxo(y)) = d')x)T(yP) ac k™, x€ K, ye K¥{[n],
for a suitable Te (K*[n])*.
Conversely, given any n, x€ K*, te (K¥[n])* we have an irreducible 1-dimensional
representation p of order n of k”Ko(K*[nl) defined as above.

Proof. Let (V, p) be an irreducible representation of order n of & *Ko(K*[n]). We consider it
as a representation of K*[n] via o and decompose it according to characters
V= @ aV,
Te K¥ nf*
where a, are the multiplicities. It is easy to see that each V, is k“Ko(K*{n]) invariant. That
proves the first part of the lemma.
To prove the second part we need only check that p as defined is a homomorphism :

ploxo(Pax, oY) = plaa[x, ", o)l o(y)o(y))))
=(aa,)" Yo Ju Yy, ).
where we used [x,", a(@)]" =Ix,", ay"H]=1. Q.E.D.

We may now rephrase and explicate THEOREM A1.4.

THEOREM A2.2. Let K be a maximal level subgroup with an orthogonal complement. The
irreducible representations of order n of G ( G° ) are in one to one correspondence with triples
(n, % t) (I <n<d? respectively) where ycK*/K*", te (K*[n])*.

The representation corresponding to (n, %, T ) is Indgxg G(K*m}(an;(c} At is of dimension

r(n) = #K*" and is denoted by (W, . ., Py ,..,)- Iis character, denoted by @, . ., is given by
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(A2.1) (I)(,,'X,,)(axc(w» =r(n)d'x(x)d ) lx[n)(x)' 11<*{n)(1l))

AT Iy

Fix n, m. Put d(n) = #K*[nl, s=(n,m), a,,=d d(s)*/d(n)d(m)d(n+m). Let @ be the

character of W, . . @W, o)) and choose some Be K*¥[n + m]* whose restrictionto K*[s]
is T, gy then
(A22) Wer 0 00@Wom 3 ) = D @ o Worr m oo o) -

XEK*S/K*n+m
TeK¥[n + mp*s

Proof. While translating Theorem A1.4 one should note that the G action on (n, X,, T) changes
onlyy, to some ),¥' and leaves 7 intact. To see this is the case, use the decomposition

appearing in Lemma Al.1 of W, . ., as @ Vi - Suppose that K*[n] actson V, by,
xe K+
Uy = ANV VeV, V ne K*[nl.

Taking any y€ G we need to verify that the same holds for Uyv. Indeed,

UamyUy¥ = UyUy-tomy?
= Uy Uys(omy: otV
= Uy (o)™ t(m)v)
=ty .

It remains to prove the assertions concerning the characters. Itis easy to see, using the decomposition
of W with respect to K* that dim(W, . )=r(n) and that

nt)

ac k™ actsas o'l ,

xe K actsas x(x)- diag x,(x), .-, X1 where {x, - X = K*,

ye K*\ K¥{n] acts as a permutation matrix of a permutation with no fixed points,
ye K*[n] acts by ()1,

Hence,if &, . }(axo(zp)) is non-zero we must have & K¥[n] and then
@, . (oaxo(y) = Oy (X AX)).

Ae KT
Since K*" is dual to K[n] we get (A2.1).

To compute @ we first note that only characters corresponding to representations of order n
+m can appear in the decomposition of @. We have thus to compute < o, @, . > only for
h=n+m, yeK*, ve K¥n+ m]*. Secondly, we note that

W axo(y)) = " "M eI G B 1y Loy (W)
by the general formula for tensor products and the equality K{n] 0 K{m] = K[s], K*[n] N K*m]
= K*{s]. Therefore
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1
<@,¢’(n+m,x.1:)> = E‘_{ Z (p(g)'@(nnhm,x,r)(g_l)
g

1
PL > Yaxo(y)) D m,y, r)(a_ x, gl I~ Lyr b

a, X,

_ r(n)’(m;';n +m 3 {[x, P~ O M0l (e Himm(y)l (- 1 ks K*[S](w)}
Y

_ d L 1
T d(n)d(m)d(n+ m)(xz X (X))(wez TR (zp)).

€ Kls] K*[s]

The last expression is zero unless both XX 'l =1 and 7,57 'l =1 . If both happen then
this expression is equal to d- d(s)* ! dnyd(m)d(n + m). Any such x is of the form x.& &€ K*.
Any such 7 is of the form fn where 71 is in the dual of K*[s] in K*[n + m]* whichis just
K*[n + m** and BE€ K*[n + m}* isa character whose restriction to K*[s] is 7,7, lgu Thus

we get

(A2.3) &b = > a, D ,
e 1, m =+ 1,56 Pr)
Te K¥n+ mf**

which proves (A2.2). Q.E.D.

A3. REPRESENTATIONS OF ADELIC HEISENBERG GROUPS

NOTATION.

k - an algebraically closed field of characteristic p = 0.

A - the adele ring of Q.

A, - the subring of A of finite adeles without the p - component if p > 0.

7 5
e - anisomorphism A /L, — k7,
G - theset k*x Afx J’\f with the multiplication rule, turning G into a group,

given by (A x,, ) (1 Y, Vo) = (A e(%(txt' Ya- txz' yz))’ Xy, X+ Vo)
o - the group homomorphism £/~ G given by
o(x,, ) = ((- )™, x,, x,).
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DEEINITION. Let (V, p) be a representation of G. We say that (V, p) is a continuous
representation of G if for every vE V there exists an m, depending on v, such that for every

. o 28\ we havy a =
x&m C( ?.fg) we have p{./‘C} V=V

Define now G° = k*,, x A/ with the same group law. We say that a representation (V, p)
of G° is of order n, nEZ - {0} if k*_  acts through the character a,, a() = 1". We remark
that given an ample symmetric line bundle L and a theta structure

A: Gy —G
we have A7(k™, x A= k7, t* (X)) and we may define G (L) in the obvious way.
Therefore one may talk of representations of "adelic" order n& 206G (Ly.

THEOREM A3.1. (1) There is a unique irreducible continuous representation of G° of order n,
for every n& 2 - {0}. This representation is henceforth denoted by V.

(2) For n =0 there is one to one correspondence between irreducible continuous representations
of order O of G and continuous characters of A*. The representation corresponding to Y&
Hom (A2, k*) is denoted by V.. We denote by V, the representation

® Vo, v -

y € Hom o (A5 )

®) D Vo y®@Vor = Vo o
i) Vi @V, =V,
iii) V. ®V, = @V, ,, aninfinite countable sum if n+r=0, and V,®V, =V, if n
+r=0.
Proof. The existence and uniqueness for n=1 are proved in [Mum1] Proposition 5.2. To get
the clain for a general n define for every nel - {0} amatrix M(n) EGSp(2g. A, )by M(n)=

( (I) n(}) . Define a surjective homomorphism

&n): G° — G, &n)(a,x)= (', M(n)x).
Since the multiplier of M(n) is equal to n, this is indeed a homomorphism. Now given a
representation (V, p) of order n define a new representation p' of G° by the formula
p @)= p ) ().
One easily verifies that this is a continuous representation of order 1 of G’ Thatis &n) gives
a bijection between representations of order 1 and order n. This proves (1).

Since (2) is clear we have to prove only (3). Parti)is clear and ii) follows from (1 —
check irreducibility by tensoring with V-1, . In part iii) the only question is with what
multiplicity does V,,, appear in V, ®V,. Itis not difficult to check that in an irreducible
representation of order n the dimension of the invariants under a maximal level subgroup is
precisely Inlf. Choose the maximal level subgroup Z =0 EAZfZg) and decompose both V, and
V. with respectto of Zﬁ) :

Vs @00y 2 V= @0
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T'herefore
" ®" - ( : ) (L 3’K(> ;‘ -1 Q-EE.I).
" " P ef*(r@* ’)# ( T )

REMARKS. 1) Theorem A3.1 has an exact analogue in the theory of real Heisenberg groups. See
[CR] §2.2.

2) The analogue theorem for G and representations of order n&Z hold of course.

A4. APPLICATIONS TO THE THEORY OF THETA FUNCTIONS.

This section gives some applications of the theory developed so far. The applications given
are mainly decompositions of certain global sections of line bundles on abelian varieties as
modules of finite and adelic Heisenberg groups.

1) We have a homomorphism
g, : G(L) — G(L®")
given by ¢ —> ¢®". ¢, restrictsto a, on k* and induces by passing to quotients the natural
embedding of H(L) into H(L®").Via ¢, we have a sequence of G(L) modules

nx L% — Sym"(INX, L) — IX, L°").

2) Assume that L is symmetric. One can define a homomorphism
n,: G(L®") — G(L)
(see [Mum1]) which induces the homomorphisms ¢, on k™ and multiplication by n on H(L®").
It turns I'(X, L) into a representation of order n of G(L®").

3) For L symmetric we have for every integer n amap 9,: G(L) — G(L) which is equal
to o, . on k* and induces multiplication by n on H(L). That gives a representation of order
n* of G(L).

The maps described above satisfy the identities
i) 6,=n,0¢, for 6,: G(L) —> G(L), n,: G(L®")y —> G(L), ¢,: G(L) —> G(L®").
ii) 8,=¢,0m, for §,: GIL®") — G(L®"), n,: GUIP"y — G(L), &,: G(L) — G(L®").

There are analogous maps €, 13,, 8, for adelic Heisenberg groups. These maps are obtained
from the previous ones in a standard fashion and have similar properties.
We get representations of G(L) ( (L) ) of orders n and n* via g, and §,, respectively.

There are also representations of order n of G(L)( C? (L)) on IX, L®) and Sym"(I(X, L)).
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We now study them.

I X, L)® asa G(L) module of order n.

Choose a maximal level subgroup K(L) of G(L) which has an orthogonal complement. We
know that there is a unique irreducible representation of order 1 of G(L) - W, , in our
notation. It is of dimension d, where & = #H(L). Since d = deg(L) = dim(IX, L)), we
conclude Mumford's observation that I'(X, L) is the aforementioned representation. Therefore, if
@ is the character of the G(L) actionon I(X, L)®" then @= &, " Using (3.1) we get

D oxa(P)) =r(1)™ o™ L () L (P,
where, as before, r(n)=#K*", d(n)=#K*[n].

Otherwise said :

) & if x=0and Pp=1.
(A4.1) P ox()) =

0 otherwise.

Now, we simply compute the ' inner products ':

1
<R B> =y D @) Py

(cxo(y)e GLY
— 1 —1
- 'Z;Z 2 qa)' ®(n,x’ r)(a )

aE ty?

dn—l

T odn)
Therefore,
dn—l
F(X, L)®n puuen @ %)—" "V(H’X7 ’L') -

ye K(D* K(Ly*?
T & K(Ly*[n}*

IL I'(X, [®") asa G(L)module of order n, via &,
Choosing a set theoretic splitting we may write G(L) = k*x H(L) and the group law is given
by
(ot by Xy hy) = (a0, Fi(hy, by ), b+ hy).
F, is a normalized 2 - cocycle :
(a) F,(h, h,)F(h+ h,, hy)=F(h, h+ h)F (h, , hy).
(b)y F,(0,0)=1.
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The homomorphism &,: G(L) — G(L®") can be written as
(a, h) ¥ ('~ s(h), h),

sthy b)) Fidhy, o)
s(hs(hy — Fy(hy, b
Note that s (0) = 1. Now, the character of the natural action of G(L®) on I'(X, L®") is just

@, | ,, Thus, we have
aD if x=0 and y=1.
Do) =

0 otherwise.

where D?=#H(L®) = n*- #H(L) = n** &, thatis D=d-n’.
Therefore, if @ is the character of the €, action of G(L) on I'(X, L®"), then:

a"™D if h=0.
(A4.2) N a, h)= {
0 otherwise.
We can compute now the multiplicity of each @, ., in P.
_ 4 -1
< @, ¢(n,x,r) > = 'C?Z Z @((x’ h)’ qs(n,x,-c)((a’ h) )
(o, e G(LY
1 -1
ARG
AE g2
ns
Cdn)
We conclude that
g
(A43) X L% = @ = Wago

xe KLy KL+
T € KL)*{nl*

1. Sym*(I'(X, L)) as a representation of order 2 of G(L).

Recall the basic decomposition :

nx,n= @ kv,

ye k¥

where v, isarbitrary, v.=U__ v, and o is taken to be a homomo hism into G(L). The
1 Xy, v, ot p
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vector space SymXI'(X, L)) has a basis {v,v, | % TE€ K*} andis d(d+ 1)/2 dimensional. The

action of G(L)" is given by :

M
?N

a
xe K actsby xt(x) on vy, .
e K* acts by vy, m—> v, v, .

Denoting by @ the character of Sym*(INX, L)) we see that

Haxao(P)) = a* >
15e 3 {6 Tr = {x¥, P}

If the order of 1 isnot 1 or 2 then there are no such couples {x, t}. Distuinguishing cases a

xr(x) .

short computation gives
(A4'4) (ﬁaxo(w» = 1//2 a’d- 1K{2](X)' 1@[2](1!’)' QK-X) (1 K*[g](w) +d lxm(x))-

Let us compute the multiplicity of which an irreducible representation of order 2, W,

appears in SymXI'(X, L)) :
N E}%ﬂ D axo(y) By, , oo Ix, oyl ~'x lo(y)™!)

x € K2}
Y E K21*
42 did+1) "2 1
. d _ _
=t = b 5 Yo 12) 3o ')

peER2
(x, y) € KI2] x KI2* \ {1, D}

i

el (—1 ¥ > W) xLxy r*(zp))

(A4.5) Y0 7 o e
(x, ) EKI2] = K2

PYE K*[2] x € K2

: (d+ > rl(w)( ) WI(x)))

—fd+ X r"i(w)( ) x(wx”lm)))

YE K¥[2) Y € K2+

1
= smfd o X T
o Y EKH2] st

Wl = x| s

Consider the last expression of (A4.5). Let us denote by K*[2], the subgroup of all characters
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e K*[2] whose restriction to K[2] is trivial. Then if #K*[2], > 1 then this aforementioned
expression is equal to Y5- r(2) no matter what x is. Let us denote by K*[2], the subgroup of
K[2]* obtained by restricting the elements of K*[2] to K[2]. That is we have an exact sequence

res.
1 — K*[2], — K*[2] — K*[2],—> L

If K*[2], = {1} then since #K*[2] = #K[2] = #K[2]* we have K*[2]_ = K[2]*. That implies
that in this case the last expression of (A4.5) is equal, for any Xx:
1
sy (@ + AT rz))
which equal to ¥2(1(2) + x| k). To sum up:

The representation W,, ., appear with the following multiplicity in Sym (X, L)) :
i) ¥2-r(2) i KM2], = 1,
i) 0@+ t0clse)) ¥ KH2) = {13

IV. I'(X, L) as arepresentation of order n of G(I®"), via n,.
It is obvious that this is an irreducible representation. The determination of which (n, X, T)
belong to this representation is a ' combinatorial problem ' which we do not consider here.

V. IX, L) as a representation of order n* of G(L),via &,.
Choosing a splitting of G(L) asin II we can write the homomorphism 6, as
(a by = (™ s(h), nh)
where s is a character of H(L).
The character @ of the aforementioned representation is given by

d- o’ s(h) if nh=0.
(A4.6) Ha, x, 1) :{

0 otherwise.

We can easily compute now the product

1
<D By > == 2 st o) rn?) x0T O
d HE g2
xe Kn}
{ & K¥{n}

2
=’(Z>~ S s (rx) Y+ o) -
x e Kinj

le K¥{n]
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The last expression is zero unless s = x x T on K[n] x K*[n]. If this happens then this
expression is equal to r(n*)- d(n)’*/ d = d(n)*/ d(n*). Fix some x, T such that s =) x 7 then
I(X, L) as a representation of order n* of G(L) decomposes as follows :

dny?
(A4.7) rxn= @ W g
X€ K** K*”z
7€ K¥RT"

With regard to adelic Heisenberg groups we have the following assertlons :
1) I (LCX)’) is the unique irreducible representation of order n of G (L) acting via
(ii) F (L) is the unique irreducible representation of order n of G (I®") acting via 71, ;
(i11) f (L) is the unique irreducible representation of order n® of C? (L) actingvia 6, ;
(iv) r (L)® is a countable multiplicity the unique irreducible representation of order n of G
(L). The same is true for Sym" (f (L)).

The irreducibility of these representations follows immediately from the fact that the homo -
morphisms through which they are obtained are all surjective and from the fundamental result

([Mum?2] Proposition 5.3) stating that for every ample invertible sheaf M, r (M) is the unique

irreducible continuous representation of order 1 of G (M). Their uniquness follows from Theorem
A3.1.

As an immediate consequence of (i) we get the following corollary (compare[Mum?2]
Theorem 7.1 ) : Choose an non-zero section s€ r (L), , where the decomposition is with respect
to a maximal level subgroup Z of G (L). Then, denoting by U the action of G (L) on r (L),
we have that { (U,s)"| z€Z } span r (I®"). Indeed, these generators are permuted - up to scalar
factors - by the £, action of GA (L).
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