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H.P.F. Swinnerton-Dyer [SwD] and J.-P. Serre [Se] introduced a certain di¤er-
ential operator µ on (elliptic) modular forms over ¹Fp: In terms of the q-expansion

f =
1X

n=0

anq
n(0.1)

(an 2 ¹Fp) of such a form, µ is given by qd=dq: It lifts, by the same formula, to the
space of p-adic modular forms. This suggests a relation with the Tate twist of the
mod p Galois representation attached to f; if the latter is a Hecke eigenform.

Over C; this operator has been considered already by Ramanujan, where it fails to
preserve modularity “by a multiple of E2": Maass modi…ed it so that modularity is
preserved, sacri…cing holomorphicity. Shimura studied Maass’ di¤erential operators
on more general symmetric domains, as well as their iterations. They have become
known as Maass-Shimura operators, and play an important role in the theory of
automorphic forms [Sh3, chapter III].

At the same time, Serre’s p-adic operator has been studied in relation to mod p
Galois representations, congruences between modular forms, p-adic families of mod-
ular forms and p-adic L-functions. As an example we cite Coleman’s celebrated
classicality theorem, asserting that “overconvergent modular forms of small slope
are classical” [Col]. A key step in Coleman’s original proof of that theorem was the
observation that, although the p-adic theta operator did not preserve the space of
overconvergent modular forms, for any k ¸ 0; µk+1 mapped overconvergent forms
of weight ¡k to overconvergent forms of weight k + 2:

Underlying the p-adic theory is Katz’ geometric approach to the theta opera-
tor, via the Gauss-Manin connection on the de Rham cohomology of the universal
elliptic curve [Ka1] [Ka2]. Broadly speaking, Katz’ starting point is the unit-root
splitting of the Hodge …ltration in this cohomology over the ordinary locus. It is
supposed to replace the Hodge decomposition over C; which can be used to make
a geometric theory of the C1 operators of Maass-Shimura, thereby explaining
their arithmetic signi…cance. This approach has been adapted successfully to other
Shimura varieties of PEL type, as long as they admit a non-empty ordinary locus
in their characteristic p …ber. For unitary Shimura varieties, this has been done by
Eischen [Ei1] [Ei2], if p splits in the quadratic imaginary …eld (and the signature
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is (n; n)). Böcherer and Nagaoka [B-N] de…ned theta operators on Siegel modular
forms by studying their q-expansions.

The assumption that the ordinary locus is non-empty may nevertheless fail. This
is the case, for example, for Picard modular surfaces (associated with the group
U(2; 1)) modulo a prime p which is inert in the underlying quadratic imaginary
…eld. In this case the abelian varieties parametrized by the open dense ¹-ordinary
stratum [Mo] are not ordinary. More generally, this happens for Shimura varieties
associated with U(n;m) if n 6= m, and p is inert ([Hi1], Lemma 8.10). Another
complication present in these examples is the fact that modular forms on U(n;m)
admit Fourier-Jacobi (FJ) expansions at the cusps, which are q-expansions with
theta functions as coe¢cients.

One of the main goals of this paper is to de…ne the theta operator for Picard
modular surfaces at a good inert prime, and study its properties. To explain how
we overcome the need to consider the unit-root splitting of the cohomology of the
universal abelian variety, let us re-examine the case of the modular curve X of full
level N ¸ 3 over Zp ((p;N) = 1). We follow an approach of Gross [Gr], see also [An-
Go], who extended it to Hilbert modular varieties. Let · be a …xed algebraic closure
of Fp; and consider the geometric characteristic p …ber X·: Let A be the universal
elliptic curve over Y = XnC (the complement of the cusps) and let L = !A=Y be
its cotangent bundle at the origin. Then A extends to a semi-abelian variety over
X; and so does L = !A=X : By de…nition, a weight k; level N modular form over ·;
is a global section of Lk over X·; i.e.

Mk(N ;·) =H0(X·;Lk):(0.2)

Let Xord
· be the ordinary locus in X·: Let ¿ : I ! Xord

· be the Igusa curve of
level p, classifying (besides the elliptic curve A and level structure classi…ed by X·)
embeddings of …nite ‡at group schemes ¶ : ¹p ,! A[p]. Let

h 2 H0(X·;Lp¡1)(0.3)

be the Hasse invariant. As the universal ¶ : ¹p ,! A[p] over I induces an isomor-
phism

¿¤L = !A=I = !A[p]=I
¶¤' !¹p=I = OI ;(0.4)

the line bundle ¿¤L is trivialized over I by a canonical section a: In fact, ap¡1 = ¿¤h:
Now, given a ·-valued modular form f 2 H0(X·;Lk); we consider its pull-back

¿¤f to I; divide by ak to get a function on I; and take its di¤erential

´f = d(¿¤f=ak) 2 1I :(0.5)

The Gauss-Manin connection induces the Kodaira-Spencer isomorphism

KS : L2 O(C)_ ' 1X :(0.6)

As ¿ is étale, 1I = ¿¤1
Xord
·

and we may pull KS back to a similar isomorphism
over I: We can therefore look at

ak ¢KS¡1(´f ):(0.7)

This is a section of ¿¤(Lk+2 O(C)_) over I: Since we divided and multiplied by
the same power of a; it descends to Xord

· : A calculation shows that it has at most
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simple poles at the supersingular points Xss
· ; so

µ(f) = h ¢ ak ¢KS¡1(´f )(0.8)

extends to a global section of Lk+p+1O(C)_ over X·; i.e. to a cusp-form of weight
k + p + 1 and level N over ·: Note that µ(f) and ak ¢ KS¡1(´f ) have the same
q-expansions, since the q-expansion of h is 1. It can be checked that µ coincides
with the operator denoted by Aµ in [Ka2].

The absence of the unit-root splitting from the above-mentioned construction can
be “explained” by the use we made of the Igusa curve, which lies over the ordinary
stratum. In the case of Picard modular surfaces at an inert prime p; it is nevertheless
possible to construct an “Igusa surface” lying over the ¹-ordinary part, even though
the ordinary stratum (in the usual sense) is empty. Our construction of the theta
operator is based on the same procedure, but there are now two automorphic vector
bundles to consider, a line bundle L and a plane bundle P: The Verschiebung
homomorphism allows us to project the analogue of KS¡1(´f) (which is a section
of P L) to an appropriate one-dimensional piece.

The resulting operator £ enjoys all the desired properties. It has the right e¤ect
on Fourier-Jacobi expansions, extends holomorphically across the 1-dimensional su-
persingular locus, and compares well with the theta operators on embedded modular
curves. The theory of “theta cycles” [Joc] even presents a surprise (see 4.1).

Table of Contents
1. Background
2. Picard modular schemes modulo an inert prime
3. Modular forms modulo p and the theta operator
4. Further results on £
5. The Igusa tower and p-adic modular forms

Let us now review the contents of the paper in more detail. We denote by K
a quadratic imaginary …eld and by ¹S a compacti…ed integral model of the Picard
modular surface of full level N ¸ 3; associated with K: The surface ¹S is de…ned over
R0 = OK[1=2DKN ] and we may consider its reduction modulo the prime p; which is
assumed to be relatively prime to 2N and inert in K: For simplicity, …x an algebraic
closure · of R0=pR0 and consider the geometric …ber ¹S· = ¹S £Spec(R0) Spec(·):
Let A be the universal semi-abelian variety over ¹S: It is relatively 3-dimensional,
has complex multiplication by OK; and the cotangent bundle at the origin, !A= ¹S ,
is of type (2; 1): This means that if § : OK ,! R0 is the canonical embedding and
¹§ its complex conjugate, then

!A= ¹S = P ©L;(0.9)

where P = !A= ¹S(§) is a plane bundle on which OK acts via §; and L = !A= ¹S(¹§) is
a line bundle on which it acts via ¹§: Scalar modular forms of weight k ¸ 0 de…ned
over an R0-algebra R are by de…nition elements of

Mk(N;R) := H0( ¹SR;Lk):(0.10)

Our main interest is in R = ·: In this case there are homomorphisms of vec-
tor bundles VP : P ! L(p) and VL : L ! P(p) deduced from the Verschiebung
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homomorphism. Here, for any vector bundle V over ¹S·; V(p) stands for its base-
change under the absolute Frobenius morphism of degree p; © : ¹S· ! ¹S·: The
Hasse invariant is the map

h¹§ = V
(p)
P ± VL : L ! L(p

2):(0.11)

Since L is a line bundle, L(p) ' Lp, so h¹§ 2 H0( ¹S·;Lp
2¡1) is a modular form of

weight p2¡1 over ·: The divisor of h¹§ is precisely the supersingular locus Sss ½ ¹S·:
This is a reduced 1-dimensional closed subscheme whose geometric points x are
characterized by the fact that Ax is supersingular (the Newton polygon of its p-
divisible group has constant slope 1=2). The structure of Sss has been determined
by Vollaard [V], following work of Bültel and Wedhorn [Bu-We]. Its irreducible
components are curves whose normalizations are all isomorphic to the Fermat curve
of degree p+ 1. (If N is large enough, depending on p; these components are even
non-singular.) They intersect transversally at …nitely many points, which form the
singular locus of Sss: This singular locus is also the superspecial locus Sssp in ¹S·;
characterized by the fact that x 2 Sssp if and only if Ax is isomorphic to a product
of three supersingular elliptic curves. At x 2 Sssp the maps VP and VL vanish, but
over the general supersingular locus Sgss = SssnSssp they are both of rank 1: The
complement of Sss in ¹S· is the dense, open ¹-ordinary locus ¹S¹: Over a ¹-ordinary
point which does not belong to a cuspidal component, the p-divisible group of Ax is
a product of a height 2 group of multiplicative type, a height 2 group of local-local
type, and a height 2 étale group (all stable under OK). See [dS-G] and Section
2.1.2.

Section 1 is a rather thorough introduction to Picard modular surfaces and mod-
ular forms, that will serve us also in future work. Occasionally (e.g. when we
compute the Gauss-Manin connection in the complex model), we could not …nd a
reference for the results in the form that was needed. We preferred to work them
out from scratch, rather than embark on a tedious translation of notation. This sec-
tion bene…tted in several places from the excellent exposition in Bellaïche’s thesis
[Bel].

In Section 2 we review the geometry of ¹S and the automorphic vector bundles P
and Lmodulo an inert prime p. Here we follow [Bu-We] and [V], and the exposition
in [dS-G]. We construct the Igusa surface of level p. It is a …nite étale Galois cover

¿ : ¹Ig¹ ! ¹S¹(0.12)

of the ¹-ordinary part in ¹S·; with Galois group ¢(p) = (OK=pOK)£: We prove
that it is relatively irreducible, and compactify it over the supersingular locus to
get a normal surface ¹Ig, …nite and ‡at over ¹S·; which is totally rami…ed over Sss:
The Hasse invariant has a tautological p2 ¡ 1 root a over the whole of ¹Ig: Thus
a 2 H0(¹Ig; ¿¤L) and ap

2¡1 = ¿¤h¹§:

In Section 3 we construct the theta operator. We pull back f 2 H0( ¹S·;Lk) to
¹Ig¹; divide by the non-vanishing section ak to get a function, and let

´f = d(¿¤f=ak) 2 H0(¹Ig¹;
1):(0.13)

The Kodaira-Spencer isomorphism over S is an isomorphism of rank two vector
bundles

KS : P L ' 1S :(0.14)
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When we try to extend it to ¹S we …nd out that it has a pole along the cuspidal
divisor C = ¹SnS: Nevertheless, in the characteristic p …ber, the map

(VP  1) ±KS¡1 : 1S· ! L
(p)  L = Lp+1(0.15)

extends holomorphically across C, and even acquires a simple zero there. We pull
it back from ¹S¹ to ¹Ig¹ under the étale map ¿ ; and de…ne

£(f) = ak ¢ (VP  1) ±KS¡1(´f ) 2 H0(¹Ig¹; ¿
¤Lk+p+1):(0.16)

Thanks to the fact that we have multiplied by ak; this section descends to ¹S¹. A
pleasant computation reveals that £(f) has no poles along Sss: We end up with

£(f) 2 H0( ¹S·;Lk+p+1);(0.17)

a weight k + p + 1; level N modular form over ·:
It is curious to note that in the case of modular curves, ak ¢KS¡1(´f) was of

weight k + 2; but had poles at the supersingular points, and only µ(f) = h ¢ ak ¢
KS¡1(´f) extended holomorphically to a weight k + p + 1 modular form. Here,
the projection VP takes care of the shift by p + 1 in the weight, and at the same
time reduces the order of the pole along Igss = ¹Ign¹Ig¹; so that £(f) becomes
holomorphic over the whole surface.

The ultimate justi…cation for our construction comes when we compute the e¤ect
of £ on Fourier-Jacobi expansions, which is essentially a “Tate twist”. The com-
putation uses both p-adic and complex formalisms. It may be possible to perform
it entirely on the “Mumford-Tate object” (see Section 4.5 of [Lan] and [Ei1]), but
we believe that our approach has its own didactical merit.

In Section 4 we compare our theta operator with theta operators on embedded
modular curves. We also discuss theta cycles and …ltrations on modular forms
mod p:

Section 5 brings up p-adic modular forms in the style of Serre and Katz. The
study of overconvergent forms, intimately connected with the study of the canonical
subgroup and Coleman’s classicality theorem, will be the subject of another paper.

Many of the results of this paper, including the construction of the theta opera-
tor, generalize to unitary Shimura varieties associated with U(n¡ 1; 1) for general
n: Another direction in which the set-up could be generalized is to replace K by an
arbitrary CM …eld. This seems to require substantial additional work, apart from
a heavy load of notation, even if the general lay-out would be the same. We refer
the reader to [Hs] for a detailed discussion of some of the topics treated here over
general CM …elds (albeit for a split prime p).

1. Background

1.1. The unitary group and its symmetric space.

1.1.1. Notation. Let K be an imaginary quadratic …eld, contained in C: We denote
by § : K ,! C the inclusion and by ¹§ : K ,! C its complex conjugate. We use the
following notation:

² dK - the square free integer such that K = Q(
p
dK):

² DK - the discriminant of K, equal to dK if dK ´ 1mod4 and 4dK if dK ´
2; 3mod4:



6 EHUD DE SHALIT AND EYAL Z. GOREN

² ±K =
p
DK - the square root with positive imaginary part, a generator of the

di¤erent of K; sometimes simply denoted ±:
² !K = (1 +

p
dK)=2 if dK ´ 1mod4; otherwise !K =

p
dK; so that OK =

Z+Z!K:
² ¹a - the complex conjugate of a 2 K:
² Im±(a) = (a¡ ¹a)=±, for a 2 K:
We …x an integer N ¸ 3 (the “tame level”) and let R0 = OK[1=(2dKN)]: This

is our base ring. If R is any R0-algebra and M is any R-module with OK-action,
then M becomes an OK R-module and we have a canonical type decomposition

M =M(§)©M(¹§)(1.1)

where M(§) = e§M and M(¹§) = e¹§M; and where the idempotents e§ and e¹§ are
de…ned by

e§ =
1 1
2
+

±  ±¡1

2
; e¹§ =

1 1
2
¡ ±  ±¡1

2
:(1.2)

Then M(§) (resp. M(¹§)) is the part of M on which OK acts via § (resp. ¹§). The
same notation will be used for sheaves of modules on R-schemes, endowed with an
OK action. If M is locally free, we say that it has type (p; q) if M(§) is of rank p
and M(¹§) is of rank q:

We denote by

T = resKQGm(1.3)

the non-split torus whose Q-points are K£; and by ½ the non-trivial automorphism
of T, which on Q-points induces ½(a) = ¹a: The group Gm embeds in T and the
homomorphism a 7! a ¢ ½(a) from T to itself factors through a homomorphism

N : T! Gm;(1.4)

the norm homomorphism. Its kernel ker(N) is denoted T1:

1.1.2. The unitary group. Let V = K3 and endow it with the hermitian pairing

(u; v) = t¹u

0
@

±¡1

1
¡±¡1

1
A v:(1.5)

We identify VR with C3 (K acting via the natural inclusion §). It then becomes a
hermitian space of signature (2; 1): Conversely, any 3-dimensional hermitian space
overK whose signature at the in…nite place is (2; 1) is isomorphic to V after rescaling
the hermitian form by a positive rational number.

Let

G =GU(V; (; ))(1.6)

be the general unitary group of V; regarded as an algebraic group over Q: For any
Q-algebra A we have

G(A) =
©
(g; ¹) 2 GL3(AK)A£j (gu; gv) = ¹ ¢ (u; v) 8u; v 2 VA

ª
:(1.7)

We write G = G(Q); G1 = G(R) and Gp = G(Qp): A similar notational
convention will apply to any algebraic group over Q without further ado. If p splits
in K, QpK ' Q2p andGp becomes isomorphic to GL3(Qp)£Q£p : The isomorphism
depends on the embedding of K in Qp; i.e. on the choice of a prime above p in K:
For a non-split prime p the group Gp; like G1; is of (semisimple) rank 1.
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As ¹ is determined by g we often abuse notation and write g for the pair (g; ¹) and
¹(g) for the similitude factor (multiplier) ¹: It is a character of algebraic groups over
Q; ¹ : G!Gm: Another character is det : G! T; de…ned by det(g; ¹) = det(g):
If we let

º = ¹¡1 ¢ det :G! T(1.8)

then both ¹ and det are expressible in terms of º; namely ¹ = º ¢ (½ ± º) and
det = º2 ¢ (½ ± º):

The groups

U = ker¹; SU = ker º = ker¹ \ ker(det)(1.9)

are the unitary and the special unitary group, respectively.
We also introduce an alternating Q-linear pairing h; i : V £ V ! Q (the polar-

ization form) de…ned by hu; vi = Im±(u; v): We then have the formulae

hau; vi = hu; ¹avi ; 2(u; v) = hu; ±vi+ ± hu; vi :(1.10)

1.1.3. The hermitian symmetric domain. The group G1 = G(R) acts on P2C =
P(VR) by projective linear transformations and preserves the open subdomain X of
negative de…nite lines (in the metric (; )), which is biholomorphic to the open unit
ball in C2. Every negative de…nite line is represented by a unique vector t(z; u; 1);
and such a vector represents a negative de…nite line if and only if

¸(z; u)
def
= Im±(z)¡ u¹u > 0:(1.11)

One refers to the realization of X as the set of points (z; u) 2 C2 satisfying this
inequality as a Siegel domain of the second kind. It is convenient to think of the
point x0 = (±=2; 0) as the “center” of X:

If we let K1 be the stabilizer of x0 in G1, then K1 is compact modulo center
(K1\U(R) is compact and isomorphic to U(2)£U(1)). Since G1 acts transitively
on X; we may identify X with G1=K1:

The usual upper half plane embeds in X as the set of points where u = 0:

1.1.4. The cusps of X. The boundary @X of X is the set of points (z; u) where
Im±(z) = u¹u; together with a unique point “at in…nity” c1 represented by the line
t(1 : 0 : 0): The lines represented by @X are the isotropic lines in VR: The set of
cusps CX is the set of K-rational isotropic lines. If s 2 K and r 2 Q we write

crs = (r + ±s¹s=2; s):(1.12)

Then CX = fcrsjr 2 Q; s 2 Kg [ fc1g: The group G = G(Q) acts transitively on
the cusps.

The stabilizer of a cusp is a Borel subgroup in G1: Since G acts transitively on
the cusps, we may assume that our cusp is c1: It is then easy to check that its
stabilizer P1 has the form P1 =M1N1; where

M1 =

8
<
:tm(®;¯) = t

0
@

®
¯
¹®¡1

1
A j t 2 R£+; ® 2 C£; ¯ 2 C1

9
=
; ;(1.13)

N1 =

8
<
:n(u; r) =

0
@
1 ±¹u r + ±u¹u=2
1 u

1

1
A j u 2 C; r 2 R

9
=
; :(1.14)
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The matrix tm(®;¯) belongs to U1 if and only if t = 1; and to SU1 if furthermore
¯ = ¹®=®: The group N1 is contained in SU1: Since N = N1 \ G still acts
transitively on the set of …nite cusps crs, we conclude that G acts doubly transitively
on CX:

Of particular interest to us will be the geodesics connecting an interior point
(z; u) to a cusp c 2 CX: If (z; u) = n(u; r)m(d; 1)x0 (recall x0 = t(±=2 : 0 : 1))
where d is real and positive (i.e. r = Re z and d =

p
¸(z; u)) then the geodesic

connecting (z; u) to c1 can be described by the formula

°ru(t) = n(u; r)m(t; 1)x0(1.15)

= (r + ±(u¹u+ t2)=2; u) (d · t <1).

The same geodesic extends in the opposite direction for 0 < t · d; and if u and r
lie in K; it ends there in the cusp cru: We shall call °ru(t) the geodesic retraction of
X to the cusp c1: As 0 < t <1 these parallel geodesics exhaust X:

1.2. Picard modular surfaces over C.

1.2.1. Lattices and their arithmetic groups. Fix an OK-invariant lattice L ½ V
which is self-dual in the sense that

L = fu 2 V j hu; vi 2 Z 8v 2 Lg :(1.16)

Equivalently, L is its own OK-dual with respect to the hermitian pairing (; ): We
assume also that the Steinitz class1 of L as an OK-module is [OK]; or, what amounts
to the same, that L is a free OK-module. When we introduce the Shimura vari-
ety later on, we shall relax this last assumption, but the resulting scheme will be
disconnected (over C).

Fix an integer N ¸ 1 and let

¡ = ¡L(N) = fg 2 Gj gL = L and g(u) ´ umodNL 8u 2 Lg ;(1.17)

a discrete subgroup of G1: It is easy to see that if N ¸ 3 then ¡ is torsion free,
acts freely and faithfully on X; and is contained in SU1: From now on we assume
that this is the case.

If g 2 G and ¹(g) = 1 (i.e. g 2 U) the lattice gL is another lattice of the same
sort and the discrete group corresponding to it is g¡g¡1: Since U acts transitively on
the cusps, this reduces the study of ¡nX near a cusp to the study of a neighborhood
of the standard cusp c1 (at the price of changing L and ¡).

It is important to know the classi…cation of lattices L as above (self-dual and
OK-free). Let e1; e2; e3 be the standard basis of K3: Let

L0 = SpanOKf±e1; e2; e3g(1.18)

and

L1 = SpanOKf
±

2
e1 + e3; e2;

±

2
e1 ¡ e3g:(1.19)

These two lattices are self-dual and, of course, OK-free. The following theorem
is based on the local-global principle and a classi…cation of lattices over Qp by
Shimura [Sh1].

1The Steinitz class of a …nite projective OK-module is the class of its top exterior power as an
invertible module.
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Lemma 1.1. ([La1], p.25). For any lattice L as above there exists a g 2 U such
that gL = L0 or gL = L1: If DK is odd, L0 and L1 are equivalent. If DK is even,
they are inequivalent.

Indeed, if DK is even, L0 Qp and L1 Qp are Up-equivalent for every p 6= 2,
but not for p = 2:

1.2.2. Picard modular surfaces and the Baily-Borel compacti…cation. We denote by
X¡ the complex surface ¡nX: Since the action of ¡ is free, X¡ is smooth. We
describe a topological compacti…cation of X¡: A standard neighborhood of the cusp
c1 in X is an open set of the form

R = f(z; u)j¸(z; u) > Rg :(1.20)

The set C¡ = ¡nCX is …nite, and we write c¡ = ¡c: We let X¤¡ be the disjoint union
of X¡ and C¡: Let ¡cusp be the stabilizer of c1 in ¡: We topologize X¤¡ by taking
¡cuspnR [ fc1;¡g as a basis of neighborhoods at c1;¡: If c = g(c1) where g 2 U;
we take g(g¡1¡cuspgnR) [ fc¡g instead. The following theorem is well-known.

Theorem 1.2. (Satake, Baily-Borel) X¤¡ is projective and the singularities at the
cusps are normal. In other words, there exists a normal complex projective surface
S¤¡ and a homeomorphism ¶ : S¤¡(C) ' X¤¡; which on S¡(C) = ¶¡1(X¡) is an
isomorphism of complex manifolds. S¤¡ is uniquely determined up to isomorphism.

1.2.3. The universal abelian variety over X¡. With x 2 X and with our choice of
L we shall now associate a PEL-structure Ax = (Ax; ¸x; ¶x; ®x) where

1. Ax is a 3-dimensional complex abelian variety,
2. ¸x is a principal polarization on Ax (i.e. an isomorphism Ax ' At

x with its
dual abelian variety induced by an ample line bundle),

3. ¶x : OK ,! End(Ax) is an embedding of CM type (2; 1) (i.e. the action of ¶(a)
on the tangent space of Ax at the origin induces the representation 2§ + ¹§)
such that the Rosati involution induced by ¸x preserves ¶(OK) and is given
by ¶(a) 7! ¶(¹a);

4. ®x : N¡1L=L ' Ax[N ] is a full level N structure, compatible with the OK-
action and the polarization. The latter condition means that if we denote by
h; i¸ the Weil “eN -pairing” on Ax[N ] induced by ¸x; then for l; l0 2 N¡1L

h®x(l); ®x(l0)i¸ = e2¼iNhl;l
0i:(1.21)

LetWx be the negative de…nite complex line in VR = C3 de…ned by x; andW?x its
orthogonal complement, a positive de…nite plane. Let Jx be the complex structure
which is multiplication by i on W?x and by ¡i on Wx: Let Ax = (VR; Jx)=L: Then
the polarization form h; i is a Riemann form on L; which determines a principal
polarization on Ax as usual. The action of OK is derived from the underlying K
structure of V: As we have reversed the complex structure on Wx; the CM type is
now (2,1). Finally the level N structure ®x is the identity map.

If ° 2 ¡ then ° induces an isomorphism between Ax and A°(x): Conversely, if Ax

and Ax0 are isomorphic structures, it is easy to see that x
0 and x must belong to the

same ¡-orbit. It follows that points of X¡ are in a bijection with PEL structures
of the above type for which the triple

(H1(Ax;Z); ¶x; h; i¸x)(1.22)
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is isomorphic to (L; ¶; h; i) (here ¶ refers to the OK action on L), with the further
condition that ®x is compatible with the isomorphism between L and H1(Ax;Z) in
the sense that we have a commutative diagram

0 ! L ! N¡1L ! N¡1L=L ! 0
# # # ®x

0 ! H1(Ax;Z) ! N¡1H1(Ax;Z) ! Ax[N ] ! 0
:(1.23)

1.2.4. A “moving lattice” model for the universal abelian variety. We want to as-
semble the individual Ax into an abelian variety A over X. In other words, we want
to construct a 5-dimensional complex manifold A; together with a holomorphic map
A! X whose …ber over x is identi…ed with Ax: For that, as well as for the compu-
tation of the Gauss-Manin connection below, it is convenient to introduce another
model, in which the complex structure on C3 is …xed, but the lattice varies.

For simplicity we assume from now on that L = L0 is spanned over OK by ±e1; e2
and e3: The case of L1 can be handled similarly.

Let C3 be given the usual complex structure, and let a 2 OK act on it via the
matrix

¶0(a) =

0
@

a
a
¹a

1
A :(1.24)

Given x = (z; u) 2 X consider the lattice

L0x = Span¶0(OK)

8
<
:

0
@
0
1
1

1
A ;

0
@
¡1
0
¡u

1
A ;

0
@

u
¡z=±
z=±

1
A
9
=
; ½ C

3:(1.25)

The map Tx : C3 ! C3 which sends ³ = t(³1; ³2; ³3) to

T (³) = ¸(z; u)¡1

8
<
:¡³1

0
@
¹uz
(z ¡ ¹z)=±
¹u

1
A¡ ³2

0
@
¹z + ±u¹u
u
1

1
A+ ¹³3

0
@

z
u
1

1
A
9
=
;(1.26)

is a complex linear isomorphism between C3 and (VR; Jx): In fact, it sends Ce1+Ce2
linearly toW?x and Ce3 conjugate-linearly to Wx: It intertwines the ¶0 action of OK
on C3 with its ¶-action on (VR; Jx): It furthermore sends L0x to L: In fact, an easy
computation shows that it sends the three generating vectors of L0x to ±e1; e2 and
e3; respectively. We conclude that Tx induces an isomorphism

Tx : A
0
x = C3=L0x ' Ax:(1.27)

Consider the di¤erential forms d³1; d³2 and d³3: As their periods along any
l 2 L0x vary holomorphically in z and u, the …ve coordinates ³1; ³2; ³3; z; u form
a local system of coordinates on the family A0 ! X: Identifying A0 with A allows
us to put the desired complex structure on the family A: Alternatively, we may
de…ne A0 as the quotient of C3 £X by ³ 7! ³ + l(z; u) where l(z; u) varies over the
holomorphic lattice-sections.

The model A0 has another advantage, that will become clear when we examine
the degeneration of the universal abelian variety at the cusp c1: It su¢ces to note
at this point that the …rst two of the three generating vectors of L0x depend only
on u:

1.3. The Picard moduli scheme.
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1.3.1. The moduli problem. Fix N ¸ 3 and L = L0 ½ V as before. Let R be an
R0-algebra. LetM(R) be the collection of (isomorphism classes of) PEL structures
(A; ¸; ¶; ®) where

1. A=R is an abelian scheme of relative dimension 3
2. ¸ : A ' At is a principal polarization
3. ¶ : OK ! End(A=R) is a homomorphism such that (1) ¶ makes Lie(A=R)

a locally free R-module of type (2; 1); (2) the Rosati involution induced on
¶(OK) by ¸ is ¶(a) 7! ¶(¹a):

4. ® : N¡1L=L ' A[N ] is an isomorphism of OK-group schemes over R which is
compatible with the polarization in the sense that there exists an isomorphism
ºN : Z=NZ ' ¹N of group schemes over R such that

¿
®(

l

N
); ®(

l0

N
)

À

¸

= ºN(hl; l0imodN):(1.28)

In addition we require that for every multiple N 0 of N; locally étale over
Spec(R); there exists a similar level N 0-structure ®0; restricting to ® on
N¡1L=L: One says that ® is locally étale symplectic liftable ([Lan], 1.3.6.2).

In view of Lemma 1.1, the last condition of symplectic liftability is void if DK is
odd, while if DK is even it is equivalent to the following condition ([Bel], I.3.1):
² For any geometric point ´ : R! k (k algebraically closed …eld, necessarily of
characteristic di¤erent from 2), the OK  Z2 polarized module (T2A´; h; i¸)
is isomorphic to (L  Z2; h; i) under a suitable identi…cation of limÃ ¹2n(k)
with Z2:

The choice of L0 was arbitrary. If we took L1 as our basic lattice we would get
a similar moduli problem.

A level N structure ® can exist only if the group schemes Z=NZ and ¹N become
isomorphic over R; but the isomorphism ºN is then determined by ®:
M becomes a functor on the category of R0-algebras (and more generally, on

the category of R0-schemes) in the obvious way. The following theorem is of fun-
damental importance ([Lan], I.4.1.11).

Theorem 1.3. The functor R 7! M(R) is represented by a smooth quasi-projective
scheme S over Spec(R0); of relative dimension 2.

We call S the (open) Picard modular surface of level N: It comes equipped with
a universal structure (A; ¸; ¶; ®) of the above type over S: We call A the universal
abelian scheme over S. For every R0-algebra R and PEL structure inM(R); there
exists a unique R-point of S such that the given PEL structure is obtained from
the universal one by base-change.

We refer to [Lan], 1.4.3 for the relation between the given formulation of the
moduli problem and other formulations due, e.g. to Kottwitz.

1.3.2. The Shimura variety ShK . We brie‡y recall the interpretation of the Picard
modular surface as a canonical model of a Shimura variety. The symmetric domain
X can be interpreted as a G1-conjugacy class of homomorphisms

h : S = resCRGm !GR(1.29)

turning (G;X) into a Shimura datum in the sense of Deligne [De]. In fact hx(i) =
Jx: The re‡ex …eld associated to this datum turns out to be K: Let K1 be the
stabilizer of x0 in G1 and K0f ½ G(Af ) the subgroup stabilizing bL = L bZ. Let
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Kf be the subgroup ofK0f inducing the identity on L=NL: LetK =K1Kf ½G(A):
Then the Shimura variety ShK is a complex quasi-projective variety whose complex
points are isomorphic, as a complex manifold, to the double coset space

ShK(C) ' G(Q)nG(A)=K(1.30)

= G(Q)n(X£G(Af)=Kf):

The theory of Shimura varieties provides a canonical model for ShK over K: The
following important theorem complements the one on the representability of the
functorM:

Theorem 1.4. The canonical model of ShK is the generic …ber SK of S:

Let us explain only how to associate to a point of ShK(C) a point in S(C):
For that we have to associate an element of M(C) to g 2 G(A); and show that
the structures associated to g and to °gk (° 2 G;k 2 K) are isomorphic. Let
x = xg = g1(x0) 2 X: Let Lg = gf(bL) \ V (the intersection taking place in
VA = bLQ) and

Ag = (VR; Jx)=Lg:(1.31)

Note that Jx depends only on g1K1 and Lg only on gfK
0
f ; so Ag depends only

on gK0:
Let ~¹(g) be the unique positive rational number such that for every prime p;

ordp~¹(g) = ordp¹(gp):(1.32)

Such a rational number exists since ¹(gp) is a p-adic unit for almost all p and Q
has class number 1. We claim that

h; ig = ~¹(g)¡1 h; i : Lg £Lg ! Q

induces a principal polarization ¸g on Ag: That this is a (rational) Riemann form
follows from the fact that (u; v)Jx = hu; Jxvi+ i hu; vi is hermitian positive de…nite.
That h; ig is indeed Z-valued and Lg is self-dual follows from the choice of ~¹(g)
since locally at p the dual of gpLp under h; i : Vp £ Vp ! Qp is ¹(gp)¡1gpLp: We
conclude that there exists a unique polarization ¸g : Ag ! At

g such that

hu; vi¸g = exp(2¼il hu; vig)(1.33)

for every u; v 2 Ag[l] = l¡1Lg=Lg and every l ¸ 1: This polarization is principal.
Since gf commutes with the K-structure on VA; Lg is still an OK-lattice, hence

¶g is de…ned.
Finally ®g is derived from

N¡1L=L = N¡1bL=bL gf! N¡1bLg=bLg = N¡1Lg=Lg = Ag[N ]:(1.34)

We note that ®g depends only on gK because Kf ½ K0f is the principal level-N
subgroup, and that it lifts to level N 0 structure for any multiple N 0 of N; by the
same formula. The isomorphism ºN;g between Z=NZ and ¹N(C) that makes (1.28)
work is self-evident (see (1.49)). Let Ag 2M(C) be the structure just constructed.

Let now ° 2G(Q): Then the action of ° on V induces an isomorphism between
the tuples Ag and A°g: Indeed, ° : VR ! VR intertwines the complex structures xg
and x°g; and carries Lg to L°g; so induces an isomorphism of the abelian varieties,
which clearly commutes with the PEL structures.
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This shows that Ag depends solely on the double coset of g in G(Q)nG(A)=K:
One is left now with two tasks which we leave out: (i) Proving that if Ag ' Ag0 then
g and g0 belong to the same double coset, and that every A 2 M(C) is obtained in
this way, (ii) Identifying the canonical model of ShK over K with SK:

1.3.3. The connected components of ShK . Recall thatG0 = SU = ker(º :G! T):
Since G0 is simple and simply connected, strong approximation holds and

G0(A) =G0(Q)G01K0f :(1.35)

HereK0 = K\G0(A), K0f = K\G0(Af ): From the connectedness of G01 we deduce
that

G0(Q)nG0(A)=K 0(1.36)

is connected.
As N ¸ 3; º(K) \K£ = f1g: Here K£ = º(G(Q)); and it follows that

G0(Q)nG0(A)=K0 ,!G(Q)nG(A)=K(1.37)

is injective. We now claim (see also Theorem 2.4 and 2.5 of [De]) that

º : ¼0(G(Q)nG(A)=K) ' ¼0(T(Q)nT(A)=º(K))(1.38)

is a bijection. For º is surjective ([De] (0.2)) and continuous (on double coset spaces)
so clearly induces a surjective map between the sets of connected components. On
the other hand if [g1] and [g2] (double cosets of gi 2G(A)) are mapped by º to the
same connected component in T(Q)nT(A)=º(K); then since G1 is mapped onto
the connected component of the identity in T(Q)nT(A)=º(K); modifying g1 by an
element of G1 we may assume that

º([g1]) = º([g2]) 2 T(Q)nT(A)=º(K);(1.39)

without changing the connected component in which [g1] lies. Once this has been
established, for appropriate representatives gi of the double cosets, g¡11 g2 2G0(A);
so by the connectedness ofG0(Q)nG0(A)=K0, [g1] and [g2] lie in the same connected
component of G(Q)nG(A)=K:

The group ¼0(T(Q)nT(A)=º(K)) is the group

K£nK£A =C
£º(Kf) = K£nK£f =º(Kf ):(1.40)

It sits in a short exact sequence

0! ¹KnUK=º(Kf )!K£nK£f =º(Kf)
cl! ClK ! 0;(1.41)

where UK is the product of local units at all the …nite primes and ClK is the class
group.

1.3.4. The cl and ºN invariants of a connected component. The norm N : K£ !
Q£ satis…es N ± º = ºº½ = ¹; hence induces a map

K£nK£f =º(Kf )! Q£+nQ£f =¹(Kf ):(1.42)

Using the lattice L as an integral structure in V; we see that G comes from a
group scheme GZ over Z; whose points in any ring A are

GZ(A) =
©
(g; ¹) 2 GLOKA(LA)£A£j hgu; gvi = ¹ hu; vi

ª
:(1.43)
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We likewise get that ¹ is a homomorphism from GZ to Gm: The diagram

GZ(Zp)
¹! Z£p

# #
GZ(Zp=NZp)

¹! (Zp=NZp)£
(1.44)

commutes, GZ(Zp) = K0p and the kernel of GZ(Zp) ! GZ(Zp=NZp) is Kp: This
shows that ¹(Kf ) ½ Ẑ£(N); the product of local units congruent to 1modN: But

Q£+nQ£f =Ẑ
£(N) = (Z=NZ)£:(1.45)

To conclude, we have shown the existence of two maps from the set of connected
components:

cl : ¼0(G(Q)nG(A)=K)! ClK(1.46)

ºN : ¼0(G(Q)nG(A)=K)! (Z=NZ)£:(1.47)

These two maps are independent: together they map ¼0(G(Q)nG(A)=K) onto
ClK£ (Z=NZ)£: On the other hand, they have a non-trivial common kernel, which
grows with N; as is evident from the interpretation of K£nK£f =º(Kf) as the Galois
group of a certain class …eld extension of K: The map cl gives the restriction to
the Hilbert class …eld, while the map ºN gives the restriction to the cyclotomic
…eld Q(¹N ): We have singled out cl and ºN , because when N ¸ 3; they have an
interpretation in terms of the complex points of ShK :

Proposition 1.5. Let [g] 2 G(Q)nG(A)=K = ShK(C): Then
(i) cl([g]) is the Steinitz class of the lattice Lg = gf (L̂) \ V in ClK.
(ii) ºN([g]) is (essentially) the ºN;g that appears in the de…nition of ®g (see

1.3.1).

Proof. (i) cl([g]) is the class of the ideal (º(gf )) associated to the idele º(gf ) 2 K£f .
This ideal is in the same class as (det(gf)); because ¹(gf) 2 Q£f , so (¹(gf)) is
principal. But the class of (det(gf)) is the Steinitz class of Lg ; since the Steinitz
class of L is trivial.

(ii) To …nd ºN ([g]) we …rst project the idele ¹(gf) to Ẑ£ using Q£f = Q
£
+Ẑ£:

But this is just ~¹(gf)¡1¹(gf ): We then take the result modulo N; so

ºN([g]) = ~¹(gf )
¡1¹(gf )modN:(1.48)

Now the de…nition of the tuple (Ag ; ¸g ; ¶g; ®g) is such that if u; v 2 N¡1L=L then

h®g(u); ®g(v)i¸g = exp
³
2¼iN hgfu; gfvig

´

= exp
¡
2¼i~¹(gf )

¡1N hgfu; gfvi
¢

= exp
¡
2¼i~¹(gf )

¡1¹(gf )N hu; vi
¢

= exp (2¼iºN ([g])N hu; vi)(1.49)

Part (ii) follows if we identify ºN;g 2 IsomC(N¡1Z=Z; ¹N) with ºN ([g]) 2 (Z=NZ)£
using exp(2¼i(¢)):
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1.3.5. The complex uniformization. Recall that X = G1=K1 and that it was
equipped with a base point x0 (coresponding to (z; u) = (±K=2; 0) in the Siegel
domain of the second kind). Let 1 = g1; : : : ; gm 2G(Af) (m = #(K£nK£f =º(Kf )))

be representatives of the connected components of G(Q)nG(A)=K; and de…ne con-
gruence groups

¡j =G(Q) \ gjKfg
¡1
j :(1.50)

We write [x; gj] for G(Q)(x; gjKf) 2 G(Q)n(X £G(Af )=Kf) = G(Q)nG(A)=K:
Then [x0; gj ] = [x; gj ] if and only if x0 = °x for ° 2 ¡j: The map

ma

j=1

X¡j =
ma

j=1

¡jnX ' ShK(C)(1.51)

sending ¡jx to [x; gj ] is an isomorphism.
Note that ¡1 = ¡ is the principal level-N congruence subgroup in GZ(Z); the

stabilizer of L. Similarly, ¡j is the principal level-N congruence subgroup in the
stabilizer of Lgj ; and is thus a group of the type considered in 1.2.1, except that
we have dropped the assumption on the Steinitz class of Lgj : As N ¸ 3; det(°) = 1
and ¹(°) = 1 for all ° 2 ¡j ; for every j. Indeed, on the one hand these are in K£
and Q£+ respectively. On the other hand, they are local units which are congruent
to 1modN everywhere. It follows that ¡j are subgroups of G0(Q) = SU(Q):

We get a similar decomposition to connected components (as an algebraic sur-
face)

SC =
ma

j=1

S¡j(1.52)

and we write S¤C =
`m

j=1 S
¤
¡j

for the Baily-Borel compacti…cation.

1.4. Smooth compacti…cations.

1.4.1. The smooth compacti…cation of X¡. We begin by working in the complex
analytic category and follow the exposition of [Cog]. The Baily-Borel compacti…ca-
tion X¤¡ is singular at the cusps, and does not admit a modular interpretation. For
general unitary Shimura varieties, the theory of toroidal compacti…cations provides
smooth compacti…cations that depend, in general, on extra data. It is a unique
feature of Picard modular surfaces, stemming from the …niteness of O£K , that this
smooth compacti…cation is canonical. As all cusps are equivalent (if we vary the
lattice L or ¡), it is enough, as usual, to study the smooth compacti…cation at c1:
In [Cog] this is described for an arbitrary L (not even OK-free), but for simplicity
we write it down only for L = L0:

As N ¸ 3; elements of ¡ stabilizing c1 lie in N1:
2 The computations, which we

omit, are somewhat simpler if N is even, an assumption made for the rest of this
section. Let

¡cusp = ¡ \N1:(1.53)

Lemma 1.6. Let N ¸ 3 be even. The matrix n(s; r) 2 ¡cusp if and only if: (i)
(dK ´ 1mod4) s 2 NOK; r 2 NDKZ, (ii) (dK ´ 2; 3mod4) s 2 NOK and
r 2 2¡1NDKZ .

2No confusion should arise from the use of the letter N to denote both the level and the
unipotent radical of P .
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Let M = N jDKj in case (i) and M = 2¡1NjDKj in case (ii). This is the width
of the cusp c1: Let

q = q(z) = e2¼iz=M :(1.54)

For R > 0; the domain R = f(z; u) 2 Xj¸(z; u) > Rg is invariant under ¡cusp and
if R is large enough, two points of it are ¡-equivalent if and only if they are ¡cusp-
equivalent. A su¢ciently small punctured neighborhood of c1 in X¤¡ therefore
looks like ¡cuspnR: As

n(s; r)(z; u) = (z + ±¹s(u+ s=2) + r; u+ s)(1.55)

we obtain the following description of ¡cuspnR: Let ¤ = NOK and E = C=¤; an
elliptic curve with complex multiplication by OK: Let T be the quotient

T = (C£ C)=¤(1.56)

where the action of s 2 ¤ is via

[s] : (t; u) 7! (e2¼i±¹s(u+s=2)=M t; u+ s):(1.57)

It is a line bundle over E via the second projection. We denote the class of (t; u)
modulo the action of ¤ by [t; u]:

Proposition 1.7. Let TR ½ T be the disk bundle consisting of all the points [t; u]
where

jtj < e¡¼j±j(R+u¹u)=M :(1.58)

(This condition is invariant under the action of ¤:) Let T 0R be the punctured disk
bundle obtained by removing the zero section from TR: Then the map (z; u) 7!
(q(z); u) induces an analytic isomorphism between ¡cuspnR and T 0R:

Proof. This follows from the discussion so far and the fact that ¸(z; u) > R is
equivalent to the above condition on t = q(z) ([Cog], Prop. 2.1).

To get a smooth compacti…cation ¹X¡ of X¡ (as a complex surface), we glue the
disk bundle TR to X¡ along T 0R. In other words, we complete T 0R by adding the
zero section, which is isomorphic to E: The same procedure should be carried out
at any other cusp of C¡:

Note that the geodesic (1.15) connecting (z; u) 2 X to the cusp c1 projects in
¹X¡ to a geodesic which meets E transversally at the point umod¤: We caution
that this geodesic in X¡ depends on (z; u) and c1 and not only on their images
modulo ¡:

The line bundle T is the inverse of an ample line bundle on E. In fact, T _ is the
N -th (resp. 2N-th) power of one of the four basic theta line bundles if dK ´ 1mod4
(resp. dK ´ 2; 3mod4). A basic theta function of the lattice ¤ satis…es, for u 2 C
and s 2 ¤;

µ(u+ s) = ®(s)e2¼¹s(u+s=2)=j±jN
2

µ(u)(1.59)

where ® : ¤ ! §1 is a quasi-character (see [Mu1], p.25). Recalling the relation
between M and N , and the assumption that N was even, we easily get the relation
between T and the theta line bundles.

Recall that with any x = (z; u) 2 X we associated a complex abelian variety
Ax; and another model A0x of the same abelian variety (1.27). This allowed us to
de…ne sections d³1; d³2 and d³3 of !A=X: A simple matrix computation gives the
following.
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Lemma 1.8. The sections d³1 and d³3 are invariant under ¡cusp: The section d³2
is invariant modulo the sub-bundle generated by d³1:

Thus d³1; d³3 and d³2mod hd³1i descend to well-de…ned sections in the neigh-
borhood TR ' ¡cuspnR [E of E in ¹X¡:

1.4.2. The smooth compacti…cation of S. The arithmetic compacti…cation ¹S of the
Picard surface S (over R0) is due to Larsen [La1],[La2] (see also [Bel] and [Lan]).
We summarize the results in the following theorem. We mention …rst that as SC
has a canonical model S over R0; its Baily-Borel compacti…cation S¤C has a similar
model S¤ over R0, and S embeds in S¤ as an open dense subscheme.

Theorem 1.9. (i) There exists a projective scheme ¹S; smooth over R0; of rela-
tive dimension 2, together with an open dense immersion of S in ¹S, and a proper
morphism p : ¹S ! S¤, making the following diagram commutative

S ! ¹S

#
p

.
S¤

:(1.60)

(ii) As a complex manifold, there is an isomorphism

¹SC '
ma

j=1

¹X¡j ;(1.61)

extending the isomorphism of SC with
`m

j=1X¡j :

(iii) Let C = p¡1(S¤nS): Let RN be the integral closure of R0 in the ray class
…eld KN of conductor N over K. Then the connected components of CRN are
geometrically irreducible, and are indexed by the cusps of S¤RN over which they
sit. Furthermore, each component E ½ CRN is an elliptic curve with complex
multiplication by OK:

We call C the cuspidal divisor. If c 2 S¤CnSC is a cusp, we denote the complex
elliptic curve p¡1(c) by Ec: Although Ec is in principle de…nable over the Hilbert
class …eld K1; no canonical model of it over that …eld is provided by ¹S: On the
other hand, Ec does come with a canonical model over KN , and even over RN :

We refer to [La1] and [Bel] for a moduli-theoretic interpretation of C as a mod-
uli space for semi-abelian schemes with a suitable action of OK and a “level-N
structure”.

1.4.3. Change of level. Assume that N ¸ 3 is even, and N 0 = QN: We then obtain
a covering map X¡(N 0) ! X¡(N) where by ¡(N) we denote the group previously
denoted by ¡: Near any of the cusps, the analytic model allows us to analyze this
map locally. Let E 0 be an irreducible cuspidal component of ¹X¡(N 0) mapping to the
irreducible component E of ¹X¡(N): The following is a consequence of the discussion
in the previous sections.

Proposition 1.10. The map E0 ! E is a multiplication-by-Q isogeny, hence étale
of degree Q2:When restricted to a neighborhood of E0; the covering ¹X¡(N0) ! ¹X¡(N)
is of degree Q3; and has rami…cation index Q along E; in the normal direction to
E.

Corollary 1.11. The pull-back to E0 of the normal bundle T (N) of E is the Qth
power of the normal bundle T (N 0) of E0:
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1.5. The universal semi-abelian scheme A.

1.5.1. The universal semi-abelian scheme over ¹S. As Larsen and Bellaïche explain,
the universal abelian scheme ¼ : A ! S extends canonically to a semi-abelian
scheme ¼ : A ! ¹S: The polarization ¸ extends over the boundary C = ¹SnS to a
principal polarization ¸ of the abelian part of A. The action ¶ of OK extends to an
action on the semi-abelian variety, which necessarily induces separate actions on
the toric part and on the abelian part.

Let E be a connected component of CRN ; mapping (over C and under the pro-
jection p) to the cusp c 2 S¤C: Then there exist (1) a principally polarized elliptic
curve B de…ned over RN ; with complex multiplication by OK and CM type §; and
(2) an ideal a of OK, such that every …ber Ax of A over E is an OK-group extension
of B by the OK-torus a  Gm: Both B (with its polarization) and the ideal class
[a] 2 ClK are uniquely determined by the cusp c: Only the extension class in the
category of OK-groups varies as we move along E. Note that since the Lie algebra
of the torus is of type (1; 1); the Lie algebra of such an extension Ax is of type (2; 1);
as is the case at an interior point x 2 S: If we extend scalars to C; the isomorphism
type of B is given by another ideal class [b] (i.e. B(C) ' C=b). In this case we say
that the cusp c is of type (a;b):

The above discussion de…nes a homomorphism (of fppf sheaves over Spec(RN ))

E ! Ext1OK(B; aGm):(1.62)

As we shall see soon, the Ext group is represented by an elliptic curve with CM by
OK; de…ned over RN ; and this map is an isogeny.

1.5.2. OK-semi-abelian schemes of type (a;b). We digress to discuss the moduli
space for semi-abelian schemes of the type found above points of E: Let R be an
R0-algebra, B an elliptic curve over R with complex multiplication by OK and CM
type §; and a an ideal of OK: Consider a semi-abelian scheme G over R; endowed
with an OK action ¶ : OK ! End(G); and a short exact sequence

0! aGm ! G ! B ! 0(1.63)

of OK-group schemes over R: We call all this data a semi-abelian scheme of type
(a;B) (overR). The group classifying such structures is Ext1OK(B; aGm):Any Â 2
a¤ = Hom(a;Z) de…nes, by push-out, an extension GÂ of B by Gm; hence a point
of Bt = Ext1(B;Gm): We therefore get a homomorphism from Ext1OK(B; aGm)

to Hom(a¤;Bt). A simple check shows that its image is in HomOK(a
¤;Bt) =

±KaOK Bt, and that this construction yields an isomorphism

Ext1OK(B; aGm) ' ±KaOK Bt:(1.64)

Here we have used the canonical identi…cation a¤ = ±¡1K a¡1 (via the trace pairing).
Although (±K) is a principal ideal, so can be ignored, it is better to keep track of
its presence. We emphasize that the CM type of Bt; with the natural action of OK
derived from its action on B; is ¹§ rather than §:

Thus over ±KaOK Bt there is a universal semi-abelian scheme G(a;B) of type
(a;B); and any G as above, over any base R0=R; is obtained from G(a;B) by pull-
back (specialization) with respect to a unique map Spec(R0)! ±KaOK Bt:

When R = C; B ' C=b for a unique ideal class [b] (with OK acting via §).
Then, canonically, Bt = C=±¡1K b

¡1
(with OK acting via ¹§). The pairing between
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the lattices, b£ ±¡1K b
¡1 ! Z is (x; y) 7! TrK=Q(x¹y): Since the OK action on Bt is

via ¹§;

Ext1OK(C=b; aGm) ' ±KaOK C=±¡1K b
¡1
= C=ab¡1:(1.65)

The universal semi-abelian variety G(a; B) will now be denoted G(a;b): In 1.6.2
below we give a complex analytic model of this G(a; b):

1.6. Degeneration of A along a geodesic connecting to a cusp.

1.6.1. The degeneration to a semi-abelian variety. It is instructive to use the “mov-
ing lattice model” to compute the degeneration of the universal abelian scheme
along a geodesic, as we approach a cusp. To simplify the computations, assume
for the rest of this section, as before, that N ¸ 3 is even, and that the cusp is the
standrad cusp at in…nity c = c1: In this case we have shown that Ec = C=¤; where
¤ = NOK; and we have given a neighborhood of Ec in ¹X¡ the structure of a disk
bundle in a line bundle T : See Proposition 1.7.

Consider the geodesic (1.15) connecting (z; u) to c1: Consider the universal
abelian scheme in the moving lattice model (cf (1.27)). Of the three vectors used
to span L0x overOK in (1.25) the …rst two do not depend on z: As u is …xed along the
geodesic, they are not changed. The third vector represents a cycle that vanishes
at the cusp (together with all its OK-multiples). We conclude that A0x degenerates
to

C3=Span¶0(OK)

8
<
:

0
@
0
1
1

1
A ;

0
@
1
0
u

1
A
9
=
; :(1.66)

Making the change of variables (³01; ³
0
2; ³
0
3) = (³1; ³2 + ¹u³1; ³3) does not alter the

OK action and gives the more symmetric model

Gu = C3=Span¶0(OK)

8
<
:

0
@
0
1
1

1
A ;

0
@
1
¹u
u

1
A
9
=
;(1.67)

(but note that ³02; unlike ³2; does not vary holomorphically in the family fGug; only
in each …ber individually).

Let e(x) = e2¼ix : C! C£ be the exponential map, with kernel Z: For any ideal
a of OK it induces a map

ea : a C! a C£(1.68)

with kernel a  1: As usual we identify a  C with C(§)© C(¹§); sending a 
³ 7! (a³; ¹a³): We now note that if we use this identi…cation to identify C3 with
C© (OK C) (an identi…cation which is compatible with the OK action) then the
¶0(OK)-span of the vector t(0; 1; 1) is just the kernel of eOK : We conclude that

Gu ' fC© (OK C£)g=Lu(1.69)

where Lu is the sub-OK-module
Lu = f(s; eOK(s¹u; ¹su))j s 2 OKg :(1.70)

This clearly gives Gu the structure of an OK-semi-abelian variety of type (OK;OK),
i.e. an extension

0!OK C£ ! Gu ! C=OK ! 0:(1.71)
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1.6.2. The analytic uniformization of the universal semi-abelian variety of type
(a;b). We now compare the description that we have found for the degeneration of
A along the geodesic connecting (z; u) to c1 with the analytic description of the
universal semi-abelian variety of type (a; b):

Proposition 1.12. Let a and b be two ideals of OK: For u 2 C consider

Gu ' fC© (a C£)g=Lu(1.72)

where

Lu = f(s; ea(s¹u; ¹su))j s 2 bg :(1.73)

Then Gu is a semi-abelian variety of type (a;b); any complex semi-abelian variety
of this type is a Gu; and Gu ' Gv if and only if u¡ v 2 ab

¡1
:

Proof. That Gu is a semi-abelian variety of type (a;b) is obvious. That any abelian
variety of this type is a Gu follows by passing to the universal cover C2(§)©C(¹§),
and noting that by a change of variables in the §- and ¹§-isotypical parts, we may
assume that the lattice by which we divide is of the form

a

0
@
0
1
1

1
A© b

0
@
1
¹u
u

1
A :(1.74)

Finally, the map u 7! [Gu] is a homomorphism C!Ext1OK(C=b; aC
£); so we only

have to prove that Gu is split if and only if u 2 ab
¡1
: But one can check easily that

Gu is trivial if and only if (s¹u; ¹su) 2 ker ea = a 1 = f(a; ¹a)ja 2 ag for every s 2 b;

and this holds if and only if u 2 ab
¡1
:

Corollary 1.13. Let N ¸ 3 be even. Let c = c1 be the cusp at in…nity. Then the
map

Ec ! Ext1OK(C=OK;OK  C
£)(1.75)

sending u to the isomorphism class of the semi-abelian variety above umod¤ is the
isogeny of multiplication by N .

Proof. In view of the computations above, and the description of a neighborhood
of Ec in ¹X¡ given in Proposition 1.7 this map is identi…ed with the canonical map

C=NOK ! C=OK:(1.76)

The extra data carried by u 2 Ec; which is forgotten by the map of the corollary,
comes from the level N structure. As mentioned before, according to [La1] and
[Bel] the cuspidal divisor C has a modular interpretation as the moduli space for
semi-abelian schemes of the type considered above, together with level-N structure
(M1;N structures in the language of [Bel]). A level-N structure on a semi-abelian
variety G of type (a;b) consists of (i) a level-N structures ® : N¡1OK=OK ' a¹N
on the toric part (ii) a level-N structure ¯ : N¡1OK=OK ' N¡1b=b = B[N] on the
abelian part (iii) an OK-splitting ° of the map G[N ]! B[N ]:

Over c = c1; when a = b = OK; there are obvious natural choices for ® and ¯
(independent of u) but the splittings ° in (iii) form a torsor under OK=NOK: If we
consider the splitting

°u : N
¡1OK=OK 3 s 7! (s; eOK(s¹u; ¹su))modLu(1.77)
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then the tuples (Gu; ®; ¯; °u) and (Gv; ®; ¯; °v) are isomorphic if and only if u ´
vmodNOK; i.e. if and only if u and v represent the same point of Ec:

1.7. The basic automorphic vector bundles.

1.7.1. De…nition and …rst properties. Recall that we we have denoted by ¼ : A! ¹S
the universal semi-abelian variety over ¹S (over the base ring R0). Let !A be the
relative cotangent space at the origin of A. If e : ¹S !A is the zero section,

!A = e¤(1A= ¹S):(1.78)

This is a rank 3 vector bundle over ¹S and the action of OK allows to decompose it
according to types. We let

P = !A(§); L = !A(¹§):(1.79)

Then P is a plane bundle, and L a line bundle.
Over S (but not over the cuspidal divisor C = ¹SnS) we have the usual identi…-

cation !A = ¼¤1A=S : The relative de Rham cohomology of A=S is a rank 6 vector
bundle sitting in an exact sequence (the Hodge …ltration)

0! !A ! H1dR(A=S)! R1¼¤OA ! 0:(1.80)

Since, for any abelian scheme, R1¼¤OA = !_At (canonical isomorphism, see [Mu1]),
and ¸ : A ! At is an isomorphism which reverses CM types, we obtain an exact
sequence

0! !A ! H1dR(A=S)! !_A(½)! 0:(1.81)

The notation M(½) means that M is a vector bundle with an OK action and in
M(½) the vector bundle structure is that of M but the OK action is conjugated.
Decomposing according to types, we have two short exact sequences

0 ! P ! H1dR(A=S)(§)! L_(½)! 0(1.82)

0 ! L ! H1dR(A=S)(¹§)! P_(½)! 0:

The pairing h; i¸ on H1dR(A=S) induced by the polarization is OS-linear, alter-
nating, perfect, and satis…es h¶(a)x; yi¸ = hx; ¶(¹a)yi¸ : It follows that H1dR(A=S)(§)
and H1dR(A=S)(¹§) are maximal isotropic subspaces, and are set in duality. As !A
is also isotropic, this pairing induces pairings

P £ P_(½)!OS ; L£L_(½)!OS :(1.83)

These two pairings are the tautological pairings between a vector bundle and its
dual.

Another consequence of this discussion that we wish to record is the canonical
isomorphism over S

detP = L(½) det
¡
H1dR(A=S)(§)

¢
:(1.84)
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1.7.2. The factors of automorphy corresponding to L and P. The formulae below
can be deduced also from the matrix calculations in the …rst few pages of [Sh2]. Let
¡ = ¡j be one of the groups used in the complex uniformization of SC; cf Section
1.3.5. Via the analytic isomorphism X¡ ' S¡ with the jth connected component,
the vector bundles P and L are pulled back to X¡ and then to the symmetric
space X; where they can be trivialized, hence described by means of factors of
automorphy. Let us denote by Pan and Lan the two vector bundles on X¡; in the
complex analytic category, or their pull-backs to X:

To trivialize Lan we must choose a nowhere vanishing global section over X. As
usual, we describe it only on the connected component containing the standard
cusp, corresponding to j = 1 (where L = Lg1 = L0). Recalling the “moving lattice
model” (1.27) and the coordinates ³1; ³2; ³3 introduced there, we note that d³3 is
a generator of Lan = !A(¹§): For reasons that will become clear later (cf Section
1.12) we use 2¼i ¢ d³3 to trivialize Lan over X. Suppose

° =

0
@

a1 b1 c1
a2 b2 c2
a3 b3 c3

1
A 2 ¡ ½ SU1:(1.85)

If °(z; u) = (z0; u0) then

z0 =
a1z + b1u+ c1
a3z + b3u+ c3

; u0 =
a2z + b2u+ c2
a3z + b3u+ c3

(1.86)

and

°

0
@

z
u
1

1
A = j(°; z; u)

0
@

z0

u0

1

1
A ; j(°; z; u) = a3z + b3u+ c3:(1.87)

Lemma 1.14. The following relation holds for every ° 2 U1

¸(z; u) = ¸(°(z; u)) ¢ jj(°; z; u)j2:(1.88)

Proof. Let v = v(z; u) = t(z; u; 1): Then

¸(z; u) = ¡(v; v):(1.89)

As v(°(z; u)) = j(°; z; u)¡1 ¢ °(v(z; u)) the lemma follows from (°v; °v) = (v; v):

Let V = Lie(A=X) = !_A=X and W = V(¹§) = L_an (a line bundle). At a
point x = (z; u) 2 X the …ber Vx is identi…ed canonically with (VR; Jx) and then
Wx =Wx = C¢ t(z; u; 1):

Proposition 1.15. For x = (z; u) 2 X let

v3(z; u) = ¸(z; u)¡1

0
@

z
u
1

1
A 2 Wx:(1.90)

Then (i) v3(z; u) is a nowhere vanishing holomorphic section of W; (ii) hd³3; v3i ´
1; (iii) the automorphy factor corresponding to d³3 is the function j(°; z; u):

Proof. Since, by construction, d³3 is a nowhere vanishing holomorphic section of
L (over X), (i) follows from (ii). To prove (ii) we transfer v3(z; u) to the moving
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lattice model and get t(0; 0; 1); which is the dual vector to d³3: To prove (iii) we
compute in VR (with the original complex structure!)

°¤v3(z; u)

v3(°(z; u))
=

¸(°(z; u))

¸(z; u)
j(°; z; u) = j(°; z; u)

¡1
;(1.91)

and recall that since W°(z;u) is precisely the line where the complex structure in
(VR; J°(z;u)) has been reversed, in (VR; J°(z;u)) we have

°¤v3(z; u)

v3(°(z; u))
= j(°; z; u)¡1:(1.92)

Dualizing, we get (x = (z; u))

(°¡1)¤d³3jx
d³3j°(x)

= j(°; x):(1.93)

This concludes the proof.

Consider next the plane bundle Pan: As we will only be interested in scalar-
valued modular forms, we do not compute its matrix-valued factor of automorphy
(but see [Sh2]). It is important to know, however, that the line bundle detPan
gives nothing new.

Proposition 1.16. There is an isomorphism of analytic line bundles over X¡;

detPan ' Lan:(1.94)

Moreover, d³1 ^d³2 is a nowhere vanishing holomorphic section of detPan over X,
and the factor of automorphy corresponding to it is j(°; z; u):

Proof. Since a holomorphic line bundle on X¡ = ¡nX is determined, up to an
isomorphism, by its factor of automorphy, and j(°; z; u) is the factor of automorphy
of Lan corresponding to d³3; it is enough to prove the second statement. Let
U = V(§) be the plane bundle dual to Pan: Let

v1(z; u) = ¡¸(z; u)¡1
0
@
¹uz
(z ¡ ¹z)=±
¹u

1
A(1.95)

and

v2(z; u) = ¡¸(z; u)¡1
0
@
¹z + ±u¹u
u
1

1
A(1.96)

(considered as vectors in (VR; Jx) = Vx). As we have seen in (1.27), these two vector
…elds are sections of U and at each point x 2 X form a basis dual to d³1 and d³2:
It follows that they are holomorphic sections, and that v1 ^ v2 is the basis dual to
d³1 ^ d³2: We must show that the factor of automorphy corresponding to v1 ^ v2 is
j(°; z; u)¡1; i.e. that

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

= j(°; z; u)¡1:(1.97)
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Working in VR = C3 (with the original complex structure)

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

¢ 1

j(°; z; u)
=

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

¢ °¤v3(z; u)
v3(°(z; u))

=
°¤(v1 ^ v2 ^ v3(z; u))
v1 ^ v2 ^ v3(°(z; u))

:(1.98)

But

v1 ^ v2 ^ v3(z; u) = ±¸(z; u)¡1e1 ^ e2 ^ e3;(1.99)

because

det

0
@
¹uz ¹z + ±u¹u z
(z ¡ ¹z)=± u u
¹u 1 1

1
A = ±¸(z; u)2:(1.100)

As det(°) = 1; this gives

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

¢ 1

j(°; z; u)
=

¸(°(z; u))

¸(z; u)
=

1

j(°; z; u)j(°; z; u)
;(1.101)

and the proof is complete.

1.7.3. The relation detP ' L over ¹SK. The isomorphism between detP and L is
in fact algebraic, and even extends to the generic …ber ¹SK of the smooth compact-
i…cation.

Proposition 1.17. One has detP ' L over ¹SK:

Proof. Since Pic( ¹SK) ½ Pic( ¹SC) it is enough to prove the proposition over C: By
GAGA, it is enough to establish the triviality of detPL¡1 in the analytic category.
For each connected component X¡ of SC, the section (d³1 ^ d³2) d³¡13 descends
from X toX¡; because d³1^d³2 and d³3 have the same factor of automorphy j(°; x)
(° 2 ¡; x 2 X). This section is nowhere vanishing on X¡; and extends to a nowhere
vanishing section on ¹X¡; trivializing detP L¡1. In fact, if c is the standard cusp,
d³1 ^ d³2 and d³3 are already well-de…ned and nowhere vanishing sections of detP
and L in the neighborhood

¡cuspnR = (¡cuspnR) [Ec(1.102)

of Ec (see 1.4.1). This is a consequence of the fact that j(°; x) = 1 for ° 2 ¡cusp:
An alternative proof is to use Theorem 4.8 of [Ha]. In our case it gives a functor

V 7! [V] from the category of G(C)-equivariant vector bundles on the compact
dual P2C of ShK to the category of vector bundles with G(Af)-action on the inverse
system of Shimura varieties ShK : Here P2C = G(C)=H(C); where H(C) is the
parabolic group stabilizing the line C¢ t(±=2; 0; 1) in G(C) = GL3(C)£C£; and the
irreducible V are associated with highest weight representations of the Levi factor
L(C) of H(C): It is straightforward to check that detP and L are associated with
the same character of L(C); up to a twist by a character of G(C), which a¤ects the
G(Af )-action (hence the normalization of Hecke operators), but not the structure
of the line bundles themselves. The functoriality of Harris’ construction implies
that detP and L are isomorphic also algebraically.

We de not know if detP and L are isomorphic as algebraic line bundles over S:
This would be equivalent, by (1.84), to the statement that for every PEL structure
(A; ¸; ¶; ®) 2 M(R); for any R0-algebra R; det(H1dR(A=R)(§)) is the trivial line
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bundle on Spec(R). To our regret, we have not been able to establish this, although
a similar statement in the “Siegel case”, namely that for any principally polarized
abelian scheme (A; ¸) over R; detH1dR(A=R) is trivial, follows at once from the
Hodge …ltration (1.81). Our result, however, su¢ces to guarantee the following
corollary, which is all that we will be using in the sequel.

Corollary 1.18. For any characteristic p geometric point Spec(k) ! Spec(R0);
we have detP ' L on ¹Sk. A similar statement holds for morphisms SpecW (k) !
Spec(R0):

Proof. Since ¹S is a regular scheme, detP  L¡1 ' O(D) for a Weil divisor D
supported on vertical …bers over R0: Since any connected component Z of ¹Sk is
irreducible, we can modify D so that D and Z are disjoint, showing that detP 
L¡1jZ is trivial. The second claim is proved similarly.

1.7.4. Modular forms. Let R be an R0-algebra. A modular form of weight k ¸ 0
and level N ¸ 3 de…ned over R is an element of the …nite R-module

Mk(N;R) = H0( ¹SR;Lk):(1.103)

We usually omit the subscript R; remembering that ¹S is now to be considered over
R: The well-known Koecher principle says that H0( ¹S;Lk) = H0(S;Lk). See [Bel],
Section 2.2, for an arithmetic proof valid integrally over any R0-algebra R. A cusp
form is an element of the space

M0
k (N;R) =H0( ¹S;Lk O(C)_):(1.104)

As we shall see below (cf Corollary 1.23), if k ¸ 3; there is an isomorphism Lk 
O(C)_ ' 2¹S  L

k¡3: In particular, cusp forms of weight 3 are “the same” as
holomorphic 2-forms on ¹S.

An alternative de…nition (à la Katz) of a modular form of weight k and level
N de…ned overR, is as a “rule” f which assigns to every R-scheme T; and every A =
(A; ¸; ¶; ®) 2M(T ); together with a nowhere vanishing section ! 2 H0(T; !A=T (¹§));

an element f(A;!) 2 H0(T;OT ) satisfying
² f(A;¸!) = ¸¡kf(A;!) for every ¸ 2 H0(T;OT )£
² The “rule” f is compatible with base change T 0=T:

Indeed, if f is an element ofMk(N;R); then given such an A and !; the universal
property of S produces a unique morphism ' : T ! S over R; '¤A = A; and we
may let f(A; !) = '¤f=!k: Conversely, given such a rule f we may cover S by
Zariski open sets T where L is trivialized, and then the sections f(AT ; !T )!kT (!T
a trivializing section over T ) glue to give f 2Mk(N;R):While viewing f as a “rule”
rather than a section is a matter of language, it is sometimes more convenient to
use this language.

Let R ! R0 be a homomorphism of R0-algebras. Then Bellaïche proved the
following theorem ([Bel], 1.1.5).

Theorem 1.19. If k ¸ 3 (resp. k ¸ 6) then M0
k (N;R) (resp. Mk(N;R)) is a

locally free …nite R-module, and the base-change homomorphism

R0 M0
k (N;R) 'M0

k (N;R0)(1.105)

is an isomorphism (resp. base change for Mk(N;R)).
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Bellaïche considers only weights divisible by 3, but his proofs generalize to all k
(cf remark on the bottom of p.43 in [Bel]).

Over C; pulling back to X and using the trivialization of L given by the nowehere
vanishing section 2¼i ¢ d³3, a modular form of weight k is a collection (fj)1·j·m of
holomorphic functions on X satisfying

fj(°(z; u)) = j(°; z; u)kfj(z; u) 8° 2 ¡j(1.106)

(the Koecher principle means that no condition has to be imposed at the cusps).

1.8. The Kodaira Spencer isomorphism. Let ¼ : A! S be an abelian scheme
of relative dimension 3, as in the Picard moduli problem. The Gauss-Manin con-
nection

r : H1dR(A=S)! H1dR(A=S)OS 1S(1.107)

de…nes the Kodaira-Spencer map

KS 2 HomOS (!A OS !At ;1S)(1.108)

as the composition of the maps

!A = H0(A;1A=S) ,! H1dR(A=S)
r! H1dR(A=S)OS 1S

³ R1¼¤OA OS 1S ' !_At OS 1S ;(1.109)

and …nally using Hom(L;M_N) =Hom(LM;N): Recall that if A is endowed
with an OK action via ¶ then the induced action of a 2 OK on At is induced from
the action on Pic(A); taking a line bundle M to ¶(a)¤M. As the polarization
¸ : A! At is OS-linear but satis…es ¸ ± ¶(a) = ¶(a½) ±¸; it follows that the induced
OK action on At is of type (1; 2), hence !_At is of type (1; 2):

Lemma 1.20. The map KS induces maps

KS(§) : !A(§)! !_At(§)OS 1S
KS(¹§) : !A(¹§)! !_At(¹§)OS 1S(1.110)

hence maps, denoted by the same symbols,

KS(§) : !A(§)OS !At(§)! 1S
KS(¹§) : !A(¹§)OS !At(¹§)! 1S :(1.111)

The CM-type-reversing isomorphism ¸¤ : !At ! !A induced by the principal polar-
ization satis…es

KS(§)(¸¤x y) = KS(¹§)(¸¤y  x)(1.112)

for all x 2 !At(¹§) and y 2 !At(§):

Proof. The …rst claim follows from the fact that the Gauss-Manin connection com-
mutes with the endomorphisms, hence preserves CM types. The second claim is a
consequence of the symmetry of the polarization, see [Fa-Ch], Prop. 9.1 on p.81 (in
the Siegel modular case).

Observe that !A(§)OS!At(§), as well as !A(¹§)OS!At(¹§); are vector bundles
of rank 2.
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Lemma 1.21. If S is the Picard modular surface and A = A is the universal
abelian variety, then

KS(§) : !A(§)OS !At(§)! 1S(1.113)

is an isomorphism, and so is KS(¹§):

Proof. This is well-known and follows from deformation theory. For a self-contained
proof, see [Bel], Prop. II.2.1.5.

Proposition 1.22. The Kodaira-Spencer map induces a canonical isomorphism of
vector bundles over S

P  L ' 1S :(1.114)

Proof. We need only use ¸¤ to identify !At(§) with !A(¹§):

We refer to Corollary 1.29 for an extension of this result to ¹S:

Corollary 1.23. There is an isomorphism of line bundles L3 ' 2S :

Proof. Take determinants and use detP ' L: We emphasize that while KS(§) is
canonical, the identi…cation of detP with L depends on a choice, which we shall
…x later on once and for all.

The last corollary should be compared to the case of the open modular curve
Y (N), where the square of the Hodge bundle !E of the universal elliptic curve
becomes isomorphic to 1Y (N): Over C; as the isomorphism between L3 and 2S
takes d³33 to a constant multiple of dz ^ du (see Corollary 1.31), the di¤erential
form corresponding to a modular form ( fj)1·j·m of weight 3, is (up to a constant)
(fj(z; u)dz ^ du)1·j·m:

1.9. Extensions to the boundary of S.

1.9.1. The vector bundles P and L over C. LetE ½ CRN be a connected component
of the cuspidal divisor (over the integral closure RN of R0 in the ray class …eld KN ):
As we have seen, E is an elliptic curve with CM by OK: If the cusp at which E
sits is of type (a;B) (a an ideal of OK; B an elliptic curve with CM by OK de…ned
over RN) then E maps via an isogeny to ±Ka OK Bt = Ext1OK(B; a  Gm): In
particular, E and B are isogenous over KN :

Consider G; the universal semi-abelianOK-three-fold of type (a;B); over ±KaOK
Bt: The semi-abelian scheme A over E is the pull-back of this G: Clearly, !A=E =
P © L and P = !A=E(§) admits over E a canonical rank 1 sub-bundle P0 = !B :
Since the toric part and the abelian part of G are constant, L;P0 and P¹ = P=P0
are all trivial line bundles when restricted to E. It can be shown that P itself is
not trivial over E.

1.9.2. More identities over ¹S. We have seen that 2S ' L3: For the following propo-
sition, compare [Bel], Lemme II.2.1.7.

Proposition 1.24. Working over KN ; let Ej (1 · j · h) be the connected com-
ponents of C. Then

2¹S ' L
3 

hO

j=1

O(Ej)
_:(1.115)
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Proof. By [Hart] II.6.5, 2¹S ' L
3
Nh

j=1O(Ej)
nj for some integers nj and we want

to show that nj = ¡1 for all j: By the adjunction formula on the smooth surface
¹S; if we denote by K¹S a canonical divisor, O(K ¹S) = 2¹S ; then

0 = 2gEj ¡ 2 = Ej:(Ej +K¹S):(1.116)

We conclude that

deg(2¹S jEj) = Ej:K¹S = ¡Ej :Ej > 0:(1.117)

Here Ej :Ej < 0 because Ej can be contracted to a point (Grauert’s theorem). As
LjEj and O(Ei)jEj (i 6= j) are trivial we get

¡Ej:Ej = njEj :Ej ;(1.118)

hence nj = ¡1 as desired.

1.10. Fourier-Jacobi expansions.

1.10.1. The in…nitesimal retraction. We follow the arithmetic theory of Fourier-
Jacobi expansions as developed in [Bel]. Let bS be the formal completion of ¹S along
the cuspidal divisor C = ¹SnS: We work over R0; and denote by C(n) the n-th
in…nitesimal neighborhood of C in ¹S: The closed immersion i : C ,! bS admits a
canonical left inverse r : bS ! C; a retraction satisfying r ± i = IdC : This is not
automatic, but rather a consequence of the rigidity of tori, as explained in [Bel],
Proposition II.2.4.2. As a corollary, the universal semi-abelian scheme A=C(n) is the
pull-back of A=C via r: The same therefore holds for P and L; namely there are
natural isomorphisms r¤(PjC) ' PjC(n) and r¤(LjC) ' LjC(n) : As a consequence,
the …ltration

0! P0 ! P ! P¹ ! 0(1.119)

extends canonically to C(n): Since L;P0 and P¹ are trivial on C; they are trivial
over C(n) as well.

1.10.2. Arithmetic Fourier-Jacobi expansions. We …x an arbitrary noetherian R0-
algebra R and consider all our schemes over R; without a change in notation.
As usual, we let ObS = limÃOC(n) (a sheaf in the Zariski topology on C). Via
r¤; this is a sheaf of OC -modules. Choose a global nowhere vanishing section
s 2 H0(C;L) trivializing L: Such a section is unique up to a unit of R on each
connected component of C. This s determines an isomorphism

LkjbS ' ObS ; f 7! f=(r¤s)k(1.120)

for each k; hence a ring homomorphism

FJ : ©1k=0Mk(N;R)! H0(C;ObS):(1.121)

We call FJ(f) the (arithmetic) Fourier-Jacobi expansion of f: It depends on s in
an obvious way.

To understand the structure of H0(C;ObS) let I ½ O ¹S be the sheaf of ideals
de…ning C; so that C(n) is de…ned by In: The conormal sheaf N = I=I2 is the
restriction i¤O ¹S(¡C) of I = O¹S(¡C) to C: It is an ample invertible sheaf on C;
since (over RN ) its degree on each component Ej is ¡E2j > 0:

Now r¤ supplies, for every n ¸ 2; a canonical splitting of
0! I=In !O¹S=In

x!O ¹S=I ! 0:(1.122)
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Inductively, we get a direct sum decomposition

O ¹S=In '
n¡1M

m=0

Im=Im+1(1.123)

as OC -modules, hence, since Im=Im+1 ' Nm, an isomorphism

H0(C;OC(n)) '
n¡1M

m=0

H0(C;Nm); f 7!
n¡1X

m=0

cm(f):(1.124)

This isomorphism respects the multiplicative structure, so is a ring isomorphism.
Going to the projective limit, and noting that the cm(f) are independent of n; we
get

FJ(f) =
1X

m=0

cm(f) 2
1Y

m=0

H0(C;Nm):(1.125)

1.10.3. Fourier-Jacobi expansions over C. Working over C; we shall now relate the
in…nitesimal retraction r to the geodesic retraction, and the powers of the conormal
bundleN to theta functions. Recall the analytic compacti…cation ofX¡ described in
Proposition 1.7. Let E be the connected component of ¹X¡nX¡ corresponding to the
standrad cusp c1. As before, we denote by E(n) its nth in…nitesimal neighborhood.
The line bundle T jE is just the analytic normal bundle to E, hence we have an
isomorphism

Nan ' T _(1.126)

between the analyti…cation of N = I=I2 and the dual of T .

Lemma 1.25. The in…nitesimal retraction r : E(n) ! E coincides with the map
induced by the geodesic retraction (1.15).

Proof. The meaning of the lemma is this. The in…nitesimal retraction induces a
map of ringed spaces

ran : E
(n)
an ! Ean(1.127)

where Ean is the analytic space associated to E with its sheaf of analytic functions
Ohol
E , and E

(n)
an is the same topological space with the sheaf Ohol

¹S
=Inan: The geodesic

retraction (sending (z; u) to umod¤) is an analytic map rgeo : Ean(") ! Ean;
where Ean(") is our notation for some tubular neighborhood of Ean in ¹San: On the
other hand, there is a canonical map can of ringed spaces from E

(n)
an to Ean("): We

claim that these three maps satisfy rgeo ± can = ran:

To prove the lemma, note that the in…nitesimal retraction r : E(n) ! E is
uniquely characterized by the fact that the OK-semi-abelian variety Ax = x¤A at
any point x : Spec(R) ! E(n) is equal to Ar±x (an equality respecting the PEL
structures). See [Bel], II.2.4.2. The computations of Section 1.6 show that the same
is true for the in…nitesimal retraction obtained from the geodesic retraction. We
conclude that the two retractions agree on the level of “truncated Taylor expan-
sions”.

Consider now a modular form of weight k and level N over C; f 2 Mk(N;C):
Using the trivialization of Lan over the symmetric space X given by 2¼i ¢ d³3 as
discussed in Section 1.7.2, we identify f with a collection of functions fj on X;
transforming under ¡j according to the automorphy factor j(°; z; u)k: As usual we
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look at ¡ = ¡1 only, and at the expansion of f = f1 at the standard cusp c1;
the other cusps being in principle similar. On the arithmetic FJ expansion side
this means that we concentrate on one connected component E of C; which lies
on the connected component of SC corresponding to g1 = 1: It also means that as
the section s used to trivialize L along E; we must use a section that, analytically,
coincides with 2¼i ¢ d³3:

Pulling back the sheaf Nan from E = C=¤ to C; it is clear that q = q(z) =
e2¼iz=M maps, at each u 2 C; to a generator of T _ = Nan = Ian=I2an, and we
denote by qm the corresponding generator of Nm

an = Iman=Im+1an : If

f(z; u) =
1X

m=0

µm(u)e
2¼imz=M =

1X

m=0

µm(u)q
m(1.128)

is the complex analytic Fourier expansion of f at a neighborhood of c1; then
cm(z; u) = µm(u)qm 2 H0(E;Nm

an) is just the restriction of the section denoted
above by cm(f) to E: The functions µm are classical elliptic theta functions (for the
lattice ¤).

1.11. The Gauss-Manin connection in a neighborhood of a cusp.

1.11.1. A computation of r in the complex model. We shall now compute the
Gauss-Manin connection in the complex model near the standard cusp c1: Re-
call that we use the coordinates (z; u; ³1; ³2; ³3) as in Section 1.2.4. Here d³1 and
d³2 form a basis for P and d³3 for L: The same coordinates served to de…ne also the
semi-abelian variety Gu (denoted also Au) over the cuspidal component E at c1; cf
Section 1.6. As explained there (1.69), the projection to the abelian part is given
by the coordinate ³1 (modulo OK), so d³1 is a basis for the sub-line-bundle of !A=E
coming from the abelian part, which was denoted P0: In Section 1.10.1 above it
was explained how to extend the …ltration P0 ½ P canonically to the formal neigh-
borhood bS of E using the retraction r; by pulling back from the boundary. It was
also noted that complex analytically, the retraction r is the germ of the geodesic
retraction introduced earlier. From the analytic description of the degeneration of
A(z;u) along a geodesic, it becomes clear that P0 = r¤(P0jE) is just the line bundle
ObS ¢ d³1 ½ !A=bS : It follows that P¹ = ObS ¢ d³2modP0:

We shall now pull back these vector bundles to X, and compute the Gauss Manin
connection r complex analytically on !A=X. We write P0 = OX ¢ d³1 for P0;an etc.
dropping the decoration an. Recalling that OK = Z© Z!K we let

®1 =

0
@
0
1
1

1
A ; ®2 =

0
@
1
0
u

1
A ; ®3 =

0
@

u
¡z=±
z=±

1
A(1.129)

and

®01 = ¶0(!K)®1 =

0
@
0
!K
¹!K

1
A ; ®02 = ¶0(!K)®2 =

0
@

!K
0
¹!Ku

1
A ;(1.130)

®03 = ¶0(!K)®3 =

0
@

!Ku
¡!Kz=±
¹!Kz=±

1
A :
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These 6 vectors span L0(z;u) over Z: Let ¯1; : : : ; ¯
0
3 be the dual basis to f®1; : : : ; ®03g

in H1dR(A=OX); i.e.
R
®1

¯1 = 1 etc. As the periods of the ¯i’s along the integral
homology are constant, the ¯-basis is horizontal for the Gauss-Manin connection.
The …rst coordinate of the ®i and ®0i gives us

d³1 = 0 ¢ ¯1 + 1 ¢ ¯2 + u ¢ ¯3 + 0 ¢ ¯01 + !K ¢ ¯02 + !Ku ¢ ¯03;(1.131)

and we …nd that

r(d³1) = (¯3 + !K¯
0
3) du:(1.132)

Similarly, we …nd

r(d³2) = ¡±¡1(¯3 + !K¯
0
3) dz(1.133)

r(d³3) = (¯2 + ¹!K¯
0
2) du+ ±¡1(¯3 + ¹!K¯

0
3) dz:

1.11.2. A computation of KS in the complex model. We go on to compute the
Kodaira-Spencer map on P; i.e. the map denoted KS(§): For that we have to take
r(d³1) and r(d³2) and project them to R1¼¤OA(§)1X:We then pair the result,
using the polarization form h; i¸ on H1dR(A) (re‡ecting the isomorphism

R1¼¤OA(§) = Lie(At)(§) = !_At(§) ' L_(½)(1.134)

coming from ¸), with d³3:
To perform the computation we need two lemmas.

Lemma 1.26. The Riemann form on L0x, associated to the polarization ¸; is given
in the basis ®1; ®2; ®3; ®01; ®

0
2; ®
0
3 by the matrix

J =

0
BBBBBB@

1
¡1

1
¡1

1
¡1

1
CCCCCCA
:(1.135)

Proof. This is an easy computation using the transition map T between L and L0x
and the fact that on L the Riemann form is the alternating form h; i = Im±(; ):

For the formulation of the next lemma recall that if A is a complex abelian
variety, a polarization ¸ : A! At induces an alternating form h; i¸ on H1dR(A) as
well as a Riemann form on the integral homology H1(A;Z): We compare the two.

Lemma 1.27. Let (A;¸) be a principally polarized complex abelian variety. If
®1; : : : ; ®2g is a symplectic basis for H1(A;Z) in which the associated Riemann
form is given by a matrix J, and ¯1; : : : ; ¯2g is the dual basis of H1dR(A); then the
matrix of the bilinear form h; i¸ on H1dR(A) in the basis ¯1; : : : ; ¯2g is (2¼i)¡1J:

Proof. These are essentially Riemann’s bilinear relations. For example, if A is the
Jacobian of a curve C and the basis ®1; : : : ; ®2g has the standard intersection matrix

J =

µ
0 I
¡I 0

¶
(1.136)
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then the lemma follows from the well-known formula for the cup product (»; ´ being
di¤erentials of the second kind on C)

» [ ´ = 1

2¼i

gX

i=1

ÃZ

®i

»

Z

®i+g

´ ¡
Z

®i

´

Z

®i+g

»

!
:(1.137)

Using the two lemmas we get

KS(d³1  d³3) =

¯3 + !K¯

0
3; d³3

®
¸
¢ du(1.138)

=
h¯3 + !K¯

0
3; ¯1 + u¯2 + z±¡1¯3+

¹!K¯
0
1 + ¹!Ku¯

0
2 + ¹!Kz±

¡1¯03i¸ ¢ du
= ¡±(2¼i)¡1du:

Similarly,

KS(d³2  d³3) =

¡±¡1(¯3 + !K¯

0
3); d³3

®
¸
¢ dz(1.139)

= (2¼i)¡1dz:

We summarize.

Proposition 1.28. Let z; u; ³1; ³2; ³3 be the standard coordinates in a neighborhood
of the cusp c1: Then, complex analytically, the Kodaira-Spencer isomorphism

KS(§) : P  L ' 1X(1.140)

is given by the formulae

KS(d³1  d³3) = ¡±(2¼i)¡1du; KS(d³2  d³3) = (2¼i)
¡1dz:(1.141)

Corollary 1.29. The Kodaira-Spencer isomorphism P  L ' 1S extends mero-
morphically over ¹S: Moreover, in a formal neighborhood bS of C; its restriction to
the line sub-bundle P0L is holomorphic, and on any direct complement of P0L
in P  L it has a simple pole along C:

Proof. As we have seen, d³1  d³3 and d³2  d³3 de…ne a basis of P  L at the
boundary, with d³1  d³3 spanning the line sub-bundle P0L: On the other hand
du is holomorphic there, while dz has a simple pole along the boundary.

Corollary 1.30. The induced map

Ã : 1X ! P¹  L(1.142)

(P¹ = P=P0) obtained by inverting the isomorphism KS(§) and dividing P by P0
kills du and maps dz to 2¼i ¢ d³2  d³3:

Proof. As we have seen, d³1 is a basis for P0:

Corollary 1.31. The isomorphism L3 ' 2S maps d³33 to a constant multiple of
dz ^ du:

Proof. The isomorphism detP ' L carries d³1 ^ d³2 to a constant multiple of d³3;
so the corollary follows from (1.141).



A THETA OPERATOR 33

1.11.3. Transferring the results to the algebraic category. The computations leading
to (1.141) of course descend (still in the analytic category) to SC; because they are
local in nature. They then hold a fortiori in the formal completion bSC along
the cuspidal component E. Recall that the sections d³1; d³3 and d³2mod hd³1i
(respectively du and dzmod hdui) are well-de…ned in bSC; because as global sections
de…ned over X they are invariant under ¡cusp (see Lemma 1.8). But the Gauss-
Manin and Kodaira-Spencer maps are de…ned algebraically on S; and both 1bS and
!A=bS are ‡at over R0; so from the validity of the formulae over C we deduce their

validity in bS over R0; provided we identify the di¤erential forms …guring in them
(suitably normalized) with elements of 1bS and !A=bS de…ned over R0: In particular,
they hold in the characteristic p …ber as well.

From the relation

dq

q
=
2¼i

M
dz(1.143)

we deduce that the map Ã has a simple zero along the cuspidal divisor.
Finally, although we have done all the computations at one speci…c cusp, it is

clear that similar computations hold at any other cusp.

1.12. Fields of rationality.

1.12.1. Rationality of local sections of P and L. We have compared the arithmetic
surface S with the complex analytic surfaces ¡jnX (1 · j · m), and the compact-
i…cations of these two models. We have also compared the universal semi-abelian
scheme A and the automorphic vector bundles P and L in both models. In this
section we want to compare the local parameters obtained from the two presenta-
tions, and settle the question of rationality. For simplicity, we shall work rationally
and not integrally, which is all we need. In order to work integrally one would have
to study degeneration and periods of abelian varieties integrally, which is more
delicate, see [La1], Ch.I, Sections 3,4.

We shall need to look at local parameters at the cusps, and as the cusps are
de…ned only over KN ; we shall work with SKN instead of SK: With a little more
care, working with Galois orbits of cusps, we could probably prove rationality over
K; but for our purpose KN is good enough.

If » and ´ belong to a KN -module, we write » » ´ to mean that ´ = c» for some
c 2 K£N :

We begin with the vector bundles P and L: Over C they yield analytic vector
bundles Pan and Lan on each X¡j (1 · j · m). Assume for the rest of this section
that j = 1 and write ¡ = ¡1: Similar results will hold for every j: The vector
bundles P and L are trivialized over the unit ball X by means of the nowhere
vanishing sections d³3 2 H0(X;Lan) and d³1; d³2 2 H0(X;Pan): These sections do
not descend to X¡; but

¾an = (d³1 ^ d³2) d³¡13 2 H0(X¡;detP  L¡1)(1.144)

does, as the factors of automorphy of d³1 ^ d³2 and d³3 are the same (cf Section
1.7.2). Furthermore, this factor of automorphy (i.e. j(°; z; u)) is trivial on ¡cusp;
the stabilizer of c1 in ¡; so d³1 ^d³2 and d³3 de…ne sections of detP and L on bSC;
the formal completion of ¹SC along the cuspidal divisor Ec = p¡1(c1) ½ ¹SC: The
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same also holds for d³1 and d³2mod hd³1i individually (Lemma 1.8). Along Ec;P
has a canonical …ltration

0! P0 ! P ! P¹ ! 0(1.145)

and d³1 is a generator of P0: (Compare (1.63) and (1.71) and note that the projec-
tion to C=OK = B(C) is via the coordinate ³1; so d³1 is a generator of P0jEc = !B .)
As we have shown in Section 1.10.1, this …ltration extends to the formal neighbor-
hood bSC ofEc:The vector bundles P and L; as well as the …ltration on P; are de…ned
over KN . It makes sense therefore to ask if certain sections are KN -rational. Recall
that the cusp c1 is of type (OK;OK):

Proposition 1.32. (i) 2¼i ¢ d³3 2 H0(bSKN ;L). In other words, this section is
KN -rational.

(ii) Similarly 2¼i ¢ d³2 projects (modulo P0) to a KN -rational section of P¹:
(iii) Let B be the elliptic curve over KN associated with the cusp c1 as in Section

1.5.1. Let B 2 C£ be a period of a basis ! of !B = H0(B;1B=KN ) (i.e. the lattice

of periods of ! is B ¢ OK). This B is well-de…ned up to an element of K£N : Then
B ¢ d³1 2 H0(bSKN ;P0) is KN -rational.
Proof. Let E be the component of CKN which over C becomes Ec: Let G be the
universal semi-abelian scheme over E: Then G is a semi-abelian scheme which is an
extension of B£KN E by the torus (OKGm;KN )£KN E: At any point u 2 E(C) we
have the analytic model Gu (1.69) for the …ber of G at u; but the abelian part and
the toric part are constant. Over E the line bundle P0 is (by de…nition) !B£E=E :
As the lattice of periods of a suitable KN -rational di¤erential is B ¢ OK; while the
lattice of periods of d³1 is OK; part (iii) follows. For parts (i) and (ii) observe that
the toric part of G is in fact de…ned over K, and that e¤OK maps the cotangent space
of OK Gm;K isomorphically to the K-span of 2¼id³2 and 2¼id³3.

Corollary 1.33. B ¢¾an is a nowhere vanishing global section of detPL¡1 over
S¡; rational over KN :

Proof. Recall that we denote by S¡ the connected component of SKN whose asso-
ciated analytic space is the complex manifold X¡: We have seen that as an analytic
section B ¢ ¾an descends to X¡ and extends to the smooth compacti…cation ¹X¡:
By GAGA, it is algebraic. Since ¹X¡ is connected, to check its …eld of de…nition, it
is enough to consider it at one of the cusps. By the Proposition, its restriction to
the formal neighborhood of Ec (c = c1) is de…ned over KN :

The complex periods B (and their powers) appear as the transcendental parts
of special values of L-functions associated with Grossencharacters of K. They are
therefore instrumental in the construction of p-adic L-functions on K: We expect
them to appear in the p-adic interpolation of holomorphic Eisenstein series on the
groupG; much as powers of 2¼i (values of ³(2k)) appear in the p-adic interpolation
of Eisenstein series on GL2(Q):

1.12.2. Rationality of local parameters at the cusps. We keep the assumptions and
the notation of the previous section. Analytically, neighborhoods of Ec1 were
described in Section 1.4.1 with the aid of the parameters (z; u): Let bS denote the
formal completion of ¹SKN along E: Let r : bS ! E be the in…nitesimal retraction
discussed in Section 1.10.1. If i : E ,! bS is the closed embedding then r ± i = IdE :
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If I is the sheaf of de…nition of E; then N = I=I2 is the conormal bundle to E;
hence its analyti…cation is the dual of the line bundle T ;

Nan = T _:(1.146)

Consider r¤N on bS: The retraction allows us to split the exact sequence

0!N ! i¤1bS ! 
1
E ! 0(1.147)

using 1E = i¤r¤1E ½ i¤1bS . Thus i
¤1bS = N £

1
E : The map i ± r : bS ! bS induces

a sheaf homomorphism r¤i¤1bS ! 
1
bS ; which becomes the identity if we restrict it

to E (i.e. follow it with i¤). By Nakayama’s lemma, it is an isomorphism. It follows
that

1bS = r¤i¤1bS = r¤N £ r¤1E :(1.148)

Let x 2 E and represent it by u 2 C (modulo ¤). Then q = e2¼iz=M , where
M is the width of the cusp (1.54), is a local analytic parameter on a classical
neighborhood Ux of x which vanishes to …rst order along E. Note that q depends
on the choice of u (see Remark below). It follows that dq; the image of q in Ian=I2an;
is a basis of Nan (on Ux \E). But

2¼i ¢ dz =M
dq

q
(1.149)

(mod hdui) is independent of u (see (1.55)), so represents a global meromorphic
section of r¤Nan; with a simple pole along E ½ bSC: By GAGA, this section is
(meromorphic) algebraic.

Proposition 1.34. (i) The section 2¼i ¢ dz mod hdui is KN -rational, i.e. it is the
analyti…cation of a section of r¤N : (ii) The section B ¢ du is KN -rational, i.e.
belongs to H0(E;1E=KN ):

Proof. The proof relies on the Kodaira-Spencer isomorphism KS(§) (1.141), which
is a KN -rational (even K-rational) algebraic isomorphism between PL and 1S : As
we have shown, it extends to a meromorphic homomorphism from PL to 1¹S over
¹S: Over bS it induces an isomorphism of P0 L onto r¤1E ½ 1bS carrying the KN -
rational section Bd³1  2¼id³3 to ¡B± ¢ du, proving part (ii) of the proposition.
It also carries 2¼id³2  2¼id³3 to 2¼idz; but the latter is only meromorphic. We
may summarize the situation over bS by the following commutative diagram with
exact rows:

0 ! bI P0  L ! bI P L ! bI  P¹  L ! 0
# # KS(§) #

0 ! r¤1E ! 1bS ! r¤N ! 0
:(1.150)

Let h be a KN -rational local equation of E; i.e. a KN -rational section of I in some
Zariski open U intersecting E non-trivially, vanishing to …rst order along E \ U:
The di¤erential ´ = h ¢ (2¼idz) is regular on U; and to prove that it is KN -rational
we may restrict it to bS and check rationality there. But in bS we have a KN -
rational product decomposition 1bS = r¤N £ r¤1E and the projection of ´ to the
second factor is 0, so it is enough to prove rationality of its projection to r¤N : This
projection is the image, under KS(§); of h ¢ (2¼id³2  2¼id³3modP0 L); so our
assertion follows from parts (i) and (ii) of the previous proposition. This proves
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that ´; hence h¡1´ = 2¼idz is a KN -rational di¤erential. An alternative proof of
part (ii) is to note that E is isogenous over KN to B; so up to a KN -multiple has
the same period.

Remark 1.1. The parameter q is not a well-de…ned parameter at x, and depends
not only on x; but also on the point u used to uniformize it. If we change u
to u + s (s 2 ¤) then q is multiplied by the factor e2¼i±¹s(u+s=2)=M ; so although
Ohol
¹SC;x
½ bO¹SC;x and analytic parameters may be considered as formal parameters,

the question whether q itself is KN -rational is not well-de…ned (in sharp contrast to
the case of modular curves!).

1.12.3. Normalizing the isomorphism detP ' L. Let us …x a nowhere vanishing
section

¾ 2 H0(SK; detP L¡1):(1.151)

This section is determined up to K£: From now on we shall use this section to
identify detP with L whenever such an identi…cation is needed. From Corollary
1.33 we deduce that when we base change to C; on each connected component X¡

¾ » B ¢ ¾an:(1.152)

2. Picard modular schemes modulo an inert prime

2.1. The strati…cation.

2.1.1. The three strata. Let p be a rational prime which is inert in K and relatively
prime to 2N: Then ·0 = R0=pR0 is isomorphic to Fp2 : We …x an algebraic closure
· of ·0 and consider the characteristic p …ber

¹S· = ¹S £R0 ·:(2.1)

Unless otherwise speci…ed, in this section we let S and ¹S denote the characterstic
p …bers S· and ¹S·: We also use the abbreviation !A for !A= ¹S etc.

Recall that an abelian variety over an algebraically closed …eld of characteristic p
is called supersingular if the Newton polygon of its p-divisible group has a constant
slope 1=2: It is called superspecial if it is isomorphic to a product of supersingular
elliptic curves. The following theorem combines various results proved in [Bu-We],
[V] and [We]. See also [dS-G], Theorem 2.1.

Theorem 2.1. (i) There exists a closed reduced 1-dimensional subscheme Sss ½ ¹S,
disjoint from the cuspidal divisor (i.e. contained in S), which is uniquely charac-
terized by the fact that for any geometric point x of S; the abelian variety Ax is
supersingular if and only if x lies on Sss. The scheme Sss is de…ned over ·0:

(ii) Let Sssp be the singular locus of Sss: Then x lies in Sssp if and only if Ax
is superspecial. If x 2 Sssp then

bOSss;x ' ·[[u; v]]=(up+1 + vp+1):(2.2)

(iii) Assume that N is large enough (depending on p). Then the irreducible
components of Sss are nonsingular, and in fact are all isomorphic to the Fermat
curve Cp given by the equation

xp+1 + yp+1 + zp+1 = 0:(2.3)
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There are p3 + 1 points of Sssp on each irreducible component, and through each
such point pass p + 1 irreducible components. Any two irreducible components are
either disjoint or intersect transversally at a unique point.

(iv) Without the assumption of N being large (but under N ¸ 3 as usual) the
irreducible components of Sss may have multiple intersections with each other, in-
cluding self-intersections. Their normalizations are nevertheless still isomorphic to
Cp:

We call ¹S¹ = ¹SnSss (or S¹ = ¹S¹ \ S) the ¹-ordinary or generic locus, Sgss =
SssnSssp the general supersingular locus, and Sssp the superspecial locus. Then
¹S = ¹S¹ [ Sgss [ Sssp is a strati…cation.

2.1.2. The p-divisible group. Let x : Spec(k)! S (k an algebraically closed …eld) be
a geometric point of S; Ax the corresponding …ber of A, and Ax(p) its p-divisible
group. Let G be the p-divisible group of a supersingular elliptic curve over k
(the group denoted by G1;1 in the Manin-Dieudonné classi…cation). The following
theorem can be deduced from [Bu-We] and [V].

Theorem 2.2. (i) If x 2 S¹ then

Ax(p) ' (OK  ¹p1)£G£ (OK Qp=Zp):(2.4)

(ii) If x 2 Sss then Ax(p) is isogenous to G3; and x 2 Sssp if and only if the two
groups are isomorphic.

While the p-divisible group of a ¹-ordinary geometric …ber actually splits as a
product of its multiplicative, local-local and étale parts, over the whole of S¹ we
only get a …ltration

0 ½ Fil2A(p) ½ Fil1A(p) ½ Fil0A(p) = A(p)(2.5)

by OK-stable p-divisible groups. Here gr2 = Fil2 is of multiplicative type, gr1 =
Fil1=F il2 is a local-local group and gr0 = Fil0=Fil1 is étale, each of height 2
(OK-height 1).

2.2. New relations between P and L in characteristic p. For proofs and
more details on this sub-section see [dS-G], Section 2.2.

2.2.1. The line bundles P0 and P¹ over ¹S¹. Consider the universal semi-abelian
variety A over the Zariski open set ¹S¹: Over the cuspidal divisor C = ¹SnS; P =
!A(§) admits a canonical …ltration

0! P0 ! P ! P¹ ! 0(2.6)

where P0 is the cotangent space to the abelian part of A; and P¹ is the §-component
of the cotangent space to the toric part of A: This …ltration exists already in
characteristic 0, but when we reduce the Picard surface modulo p it extends to the
whole of ¹S¹: Over the non-cuspidal part S¹ we may set

P0 = ker
¡
!A[p]0 ! !A[p]¹

¢
(2.7)

where A[p]¹ is the p-torsion in A(p)¹ = Fil2A(p): Then P¹ is identi…ed with
!A[p]¹(§):
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2.2.2. Frobenius and Verschiebung. Let A(p) = A£¹S;© ¹S be the base change of A
with respect to the absolute Frobenius morphism © of degree p of ¹S: The relative
Frobenius is an O ¹S-linear isogeny FrobA : A ! A(p); characterized by the fact that
pr1 ± FrobA is the absolute Frobenius morphism of A: Over S (but not over the
boundary C) we have the dual abelian scheme At, and the Verschiebung V erA :
A(p) !A is the OS-linear isogeny which is dual to FrobAt : At ! (At)(p):

We clearly have !A(p) = !
(p)
A , and we let

F : !(p)A ! !A; V : !A ! !
(p)
A(2.8)

be the O ¹S-linear maps of vector bundles induced by the isogenies FrobA and V erA
on the cotangent spaces. We refer to [dS-G] for a discussion how to de…ne V over
the whole of ¹S; despite the fact that V erA is only de…ned over S.

Taking §-components we get the map

VP : P = !A(§)! !
(p)
A (§) = !A(¹§)

(p) = L(p);(2.9)

and taking the ¹§-component we similarly get

VL : L ! P(p):(2.10)

Proposition 2.3. Over ¹S¹ both VP and VL are of rank 1,

P0 = kerVP(2.11)

and the image of VL is a direct sum complement to P(p)0 :

P(p) = P(p)0 © V (L):(2.12)

Recall that over any base scheme in characteristic p; and for any line bundleM;
its base changeM(p) under the absolute Frobenius, is canonically isomorphic to its
pth powerMp:

Corollary 2.4. Over ¹S¹, P¹ ' Lp; P0 ' L1¡p; and Lp
2 ' L. For k ¸ 1 odd,

P(pk) ' Lp¡1 © L: For k ¸ 2 even, P(pk) ' L1¡p © Lp; but for k = 0 we only have
an exact sequence

0! L1¡p ! P ! Lp ! 0:(2.13)

Corollary 2.5. Over ¹S¹; Lp
2¡1;Pp2¡1¹ and Pp+10 are trivial line bundles.

2.2.3. Extending the …ltration on P over Sgss. In order to determine to what extent
the …ltration on P and the relation between L and the two graded pieces of the
…ltration extend into the supersingular locus, we have to employ Dieudonné theory.
The following is proved in [dS-G].

Proposition 2.6. (i) Let P0 = kerVP (this agrees with what was denoted by P0
over ¹S¹). Then outside Sssp; V (P) = L(p) and P0 is a rank 1 submodule.

(ii) Let P¹ = P=P0: Then outside Sssp we have P¹ ' Lp and P0 ' L1¡p.

For VL we similarly get the following.

Proposition 2.7. Outside Sssp, VL maps L injectively onto a sub-line-bundle of
P(p):

At a superspecial point, both VP and VL vanish.
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2.2.4. The Hasse invariant. As we have just seen, the fact that VP and VL are
both of rank 1 “extends” across the general supersingular locus Sgss: However,
while Im(VL) and ker(V

(p)
P ) = P

(p)
0 made up a frame of P over ¹S¹; over Sgss these

two line bundles coincide. To state a more precise result, we make the following
de…nition.

De…nition 2.1. The Hasse invariant is

h¹§ = V
(p)
P ± VL 2 Hom(L;L(p2)):(2.14)

As L(p2) ' Lp2 ; the Hasse invariant is a global section of Lp2¡1, i.e. a modular
form of weight p2 ¡ 1 over ·;

h¹§ 2Mp2¡1(N; ·):(2.15)

It turns out that h¹§ has a simple zero along the supersingular locus Sss. Once
again, this requires a little computation with Dieudonné modules. Equivalently, we
have the following theorem.

Theorem 2.8. The divisor of h¹§ is Sss (with its reduced subscheme structure).

2.3. The open Igusa surfaces.

2.3.1. The Igusa scheme. LetN ¸ 3 as always, and letM be the moduli problem of
Section 1.3.1. Let n ¸ 1 and consider the following moduli problem on ·0-algebras:

² MIg(pn)(R) is the set of isomorphism classes of pairs (A; ") where A 2M(R)
and

" : ±¡1K OK  ¹pn ,! A[pn](2.16)

is a closed immersion of OK-group schemes over R:

It is clear that if (A; ") 2 MIg(pn)(R) then A is …ber-by-…ber ¹-ordinary and
therefore A 2 M(R) de…nes an R-point of S¹: The image of " is then A[pn]¹, the
maximal subgroup-scheme of A[pn] of multiplicative type. It is also clear that the
functor RÃMIg(pn)(R) is relatively representable overM; and therefore as N ¸ 3
andM is representable, this functor is also representable by a scheme Ig¹(pn) which
maps to S¹: See [Ka-Ma] for the notion of relative representability. We call Ig¹(pn)
the Igusa scheme of level pn:

Proposition 2.9. The morphism ¿ : Ig¹(pn) ! S¹ is …nite and étale, with the
Galois group ¢(pn) = (OK=pnOK)£ acting as a group of deck transformations.

Proof. Every ¹-ordinary abelian variety has a unique …nite ‡atOK-subgroup scheme
of multiplicative type A[pn]¹ of rank p2n: Such a subgroup scheme is, locally in the
étale topology, isomorphic to ±¡1K OK  ¹pn ; and any two isomorphisms di¤er by a
unique automorphism of ±¡1K OK  ¹pn : But ¢(p

n) = AutOK(±
¡1
K OK  ¹pn): If we

let ° 2 ¢(pn) act on the pair (A; ") via

°((A; ")) = (A; " ± °¡1)(2.17)

¢(pn) becomes a group of deck transformation and the proof is complete.
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2.3.2. A compacti…cation over the cusps. The proof of the following proposition
mimics the construction of ¹S: We omit it.

Proposition 2.10. Let Ig¹(p
n) be the normalization of ¹S¹ = ¹SnSss in Ig¹(pn):

Then Ig¹(p
n) ! ¹S¹ is …nite étale and the action of ¢(pn) extends to it. The

boundary Ig¹(p
n)nIg¹(pn) is non-canonically identi…ed with ¢(pn)£C:

We de…ne similarly Ig¤¹; and note that it is …nite étale over S¤¹:

Proposition 2.11. Let A denote the pull-back of the universal semi-abelian variety
from ¹S¹ to Ig¹(p

n): Then A is equipped with a canonical Igusa level structure

" : ±¡1K OK  ¹pn ' A[pn]¹:(2.18)

Over C and after base change to RN=pRN the toric part of A is locally Zariski of
the form a  Gm and " is then an OK-linear isomorphism between ±¡1K OK  ¹pn
and a ¹pn :

2.3.3. A trivialization of L over the Igusa surface. From now on we focus on Ig¹ =

Ig¹(p) although similar results hold when n > 1; and would be instrumental in the
study of p-adic modular forms. The vector bundle !A pulls back to a similar vector
bundle over Ig¹: But there

!¹A := !A[p]¹(2.19)

is a rank 2 quotient bundle stable under OK (of type (1; 1)), and the isomorphism
" induces an isomorphism

"¤ : !¹A ' !±¡1K OK¹p
:(2.20)

Now Lie(±¡1K OK  ¹p) = ±¡1K OK  Lie(¹p) = ±¡1K OK Lie(Gm) and by duality

!±¡1K OK¹p
= OK  !Gm ;(2.21)

with 1  dT=T as a generator (if T is the parameter of Gm). Here we have used
the fact that the Z-dual of ±¡1K OK is OK via the trace pairing. This is the constant
vector bundle OK R = R(§)©R(¹§):

Proposition 2.12. The line bundles L; P0 and P¹ are trivial over Ig¹:

Proof. Use "¤ as an isomorphism between vector bundles and note that L = !¹A(
¹§)

and P¹ = !¹A(§): The relation P0 P¹ = detP ' L implies the triviality of P0 as
well.

Note that the trivialization of L and P¹ is canonical, because it uses only the
tautological map " which exists over the Igusa scheme. The trivialization of P0 on
the other hand depends on how we realize the isomorphism detP ' L:

We can now give an alternative proof to the fact that Lp2¡1 and Pp2¡1¹ are
trivial on ¹S¹: Denote by OIg the structure sheaf of Ig¹: By the projection formula,
¿¤(¿

¤L) ' L ¿¤OIg . Taking determinants we get

det ¿¤(¿
¤L) ' Lp

2¡1  det ¿¤OIg:(2.22)

As ¿¤L ' OIg , we get that Lp
2¡1 ' O ¹S . The same argument works for P¹ and for

P0: The fact that Pp+10 is already trivial could be deduced by a similar argument
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had we worked out an analogue of Ig(p) classifying symplectic isomorphisms of G[p]
with gr1A[p]: The role of ¢(p) for such a moduli space would be assumed by

¢1(p) = ker(N : (OK=pOK)£ ! F£p );(2.23)

which is a group of order p + 1: We do not go any further in this direction here.

2.4. Compacti…cation of the Igusa surface along the supersingular locus.

2.4.1. Extracting a p2 ¡ 1 root from h¹§ over Ig¹. Let a be the canonical nowhere
vanishing section of L over Ig¹ which is sent to e¹§ ¢ (1 dT=T ) under the trivial-
ization

"¤ : L = !¹A(
¹§) ' (OK  !Gm)(

¹§) = R(¹§):(2.24)

Here R is any R0=pR0-algebra over which we choose to work. In other words,
a = ("¤)¡1(e¹§ ¢ 1  dT=T ): Dually, a is the homomorphism from Lie(A)(¹§) to
±¡1K Lie(Gm)(¹§) arising from "¡1: Let a(k) = ak 2 H0(Ig¹;Lk):

Proposition 2.13. (i) Let ° 2 ¢(p) = (OK=pOK)£: Then¢(p) acts onH0(Ig¹;L)
and

°¤a = ¹§(°)¡1 ¢ a:(2.25)

(ii) The section a is a p2 ¡ 1 root of the Hasse invariant over Ig¹, i.e.

a(p2 ¡ 1) = h¹§:(2.26)

Proof. (i) This part is a restatement of the action of ¢(p): At two points of Ig¹(R)
lying over the same point of S¹(R) and di¤ering by the action of ° 2 ¢(p); the
canonical embeddings

±¡1K  ¹p ,! A[p](2.27)

di¤er by ¶(°) (2.17). The induced trivializations of Lie(A)(¹§) di¤er by ¹§(°) and
by duality we get (i).

(ii) Since over any Fp-base, V erGm = 1, we have a commutative diagram

Lie(A)(¹§)(p2) V 2¤! Lie(A)(¹§)
# a(p2) # a
±¡1K  Lie(Gm)(¹§) = ±¡1K  Lie(Gm)(¹§)

:(2.28)

Using the isomorphism Lie(A)(¹§)(p2) ' Lie(A)(¹§)p2 we get the commutative dia-
gram

Lie(A)(¹§)p2 h¹§! Lie(A)(¹§)
# a(p2) # a
±¡1K Lie(Gm)(¹§) = ±¡1K Lie(Gm)(¹§)

;(2.29)

from which we deduce that h¹§ = a(p2 ¡ 1).



42 EHUD DE SHALIT AND EYAL Z. GOREN

2.4.2. The compacti…cation Ig of Ig¹. In this section we follow the method outlined
in [An-Go, Sections 6-9] and [Gor] for Hilbert modular varieties. Quite generally,
let L ! X be a line bundle associated with an invertible sheaf L on a scheme X.
Write Ln for the line bundle Ln over X. Let s : X ! Ln be a section. Consider
the …ber product

Y = L£Ln X(2.30)

where the two maps to Ln are ¸ 7! ¸n and s: Let p : Y
pr2! X be the projection

which factors also as Y
pr1! L ! Ln ! X (since X

s! Ln ! X is the identity).
Consider

p¤L = L£X (L£Ln X):(2.31)

This line bundle on Y has a tautological section t : Y ! p¤L;

t : y = (¸; x) 7! (¸; y) = (¸; (¸; x))(2.32)

Here s(x) = ¸n and

tn(y) = (¸n; y) = (s(x); y) = p¤s(y)(2.33)

so t is an nth root of p¤s: Moreover, Y has the universal property with respect
to extracting nth roots from s: If p1 : Y1 ! X, and t1 2 ¡(Y1; p¤1L) is such that
tn1 = p¤1s; then there exists a unique morphism h : Y1 ! Y covering the two maps
to X such that t1 = h¤t:

The map L! Ln is …nite ‡at of degree n and if n is invertible on the base, …nite
étale away from the zero section. Indeed, locally onX it is the map A1£X ! A1£X
which is just raising to nth power in the …rst coordinate. By base-change, it follows
that the same is true for the map p : Y ! X : this map is …nite ‡at of degree n
and étale away from the vanishing locus of the section s (assuming n is invertible).
We remark that if L is the trivial line bundle, we recover usual Kummer theory.

Applying this in our example with n = p2 ¡ 1 we de…ne the complete Igusa
surface of level p; Ig = Ig(p) as

Ig = L£Lp2¡1 ¹S(2.34)

where the map S ! Lp2¡1 is h¹§: From the universal property and part (ii) of
Proposition 2.13 we get a map of ¹S-schemes

Ig¹ ! Ig:(2.35)

This map is an isomorphism over ¹S¹ because both schemes are étale torsors for
¢(p) = (OK=pOK)£ and the map respects the action of this group. We sum-
marize the discussion in the following theorem (for the last point, consult [Mu2],
Proposition 2, p.198).

Theorem 2.14. The morphism ¿ : Ig! ¹S satis…es the following properties:
(i) It is …nite ‡at of degree p2 ¡ 1; étale over ¹S¹; totally rami…ed over Sss:
(ii) ¢(p) acts on Ig as a group of deck transformations and the quotient is ¹S:
(iii) Let s0 2 Sgss(¹Fp): Then there exist local parameters u; v at s0 such that

bOS;s0 = ¹Fp[[u; v]], Sgss ½ S is formally de…ned by u = 0; and if ~s0 2 Ig maps to s0
under ¿; then bOIg;~s0 = ¹Fp[[w; v]] where wp2¡1 = u: In particular, Ig is regular in
codimension 1.
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(iv) Let s0 2 Sssp(¹Fp): Then there exist local parameters u; v at s0 such that
bOS;s0 = ¹Fp[[u; v]], Sss ½ S is formally de…ned at s0 by up+1 + vp+1 = 0; and if
~s0 2 Ig maps to s0 under ¿ ; then

bOIg;~s0 = ¹Fp[[w; u; v]]=(wp2¡1 ¡ up+1 ¡ vp+1)(2.36)

In particular, ~s0 is a normal singularity of Ig:

2.4.3. Irreducibility of Ig. So far we have avoided the delicate question of whether
Ig is “relatively irreducible”, i.e. whether ¿¡1(T ) is irreducible if T ½ ¹S is an irre-
ducible (equivalently, connected) component. Using an idea of Katz, and following
the approach taken by Ribet in [Ri], the irreducibility of ¿¡1(T ) could be proven
for any level pn if we could prove the following:
² Let q = p2: For any r su¢ciently large and for any ° 2 (OK=pnOK)£ there
exists a ¹-ordinary abelian variety with PEL structure A 2 S¹(Fqr ) such that
the image of Gal(¹Fq=Fqr ) in

Aut
³
Isom¹Fq (±

¡1
K  ¹pn ;A[p

n]¹)
´
= (OK=pnOK)£(2.37)

contains °:
See also the discussion in 5.2.5. Instead, we shall give a di¤erent argument valid

for the case n = 1:

Proposition 2.15. The morphism ¿ : Ig ! ¹S induces a bijection on irreducible
components.

Proof. Since Ig is a normal surface, connected components and irreducible compo-
nents are the same. Let T be a connected component of ¹S and Tss = T \ Sss: Let
¿¡1(T ) =

`
Yi be the decomposition into connected components. As ¿ is …nite and

‡at, each ¿(Yi) = T: Since ¿ is totally rami…ed over Tss; there is only one Yi:

3. Modular forms modulo p and the theta operator

3.1. Modular forms mod p as functions on Ig.

3.1.1. Representing modular forms by functions on Ig. The Galois group ¢(p) =
(OK=pOK)£ acts on the coordinate ring H0(Ig¹;O) and we let H0(Ig¹;O)(k) be
the subspace where it acts via the character ¹§k. Then

H0(Ig¹;O) =
p2¡2M

k=0

H0(Ig¹;O)(k)(3.1)

and each H0(Ig¹;O)(k) is free of rank 1 over H0(S¹;O) =H0(Ig¹;O)(0):
For any 0 · k the map f 7! f=a(k) is an embedding

Mk(N;·0) ,! H0(Ig¹;O)(k):(3.2)

Lemma 3.1. Fix 0 · k < p2 ¡ 1: Then we have a surjective homomorphism
M

n¸0
Mk+n(p2¡1)(N;·0)³ H0(Ig¹;O)(k):(3.3)

Proof. Take f 2 H0(Ig¹;O)(k); so that f ¢ a(k) 2 H0(Ig¹;Lk)(0); hence descends
to g 2 H0(S¹;Lk): This g may have poles along Sss; but some hn¹§g will extend
holomorphically to S, hence represents a modular form of weight k + n(p2 ¡ 1);
which will map to f because a(k + n(p2 ¡ 1)) = hn¹§a(k):
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Proposition 3.2. The resulting ring homomorphism

r :
M

k¸0
Mk(N;·0)³ H0(Ig¹;O)(3.4)

obtained by dividing a modular form of weight k by a(k) is surjective, respects the
Z=(p2¡ 1)Z-grading on both sides, and its kernel is the ideal generated by (h¹§¡ 1).

Proof. We only have to prove that anything in ker(r) is a multiple of h¹§ ¡ 1; the
rest being clear. Since r respects the grading, we may assume that for some k ¸ 0
we have fj 2Mk+j(p2¡1)(S; ·0) and f =

Pm
j=0 fj 2 ker(r); i.e.

mX

j=0

a(k)¡1h¡j¹§ fj = 0:(3.5)

But then fm = ¡hm¹§
³Pm¡1

j=0 h¡j¹§ fj
´
; so

Pm
j=0 fj =

Pm¡1
j=0 (1¡ hm¡j¹§

)fj belongs to

(1¡ h¹§):

As a result we get that

Ig¤¹ = Spec

0
@M

k¸0
Mk(N;·0)=(h¹§ ¡ 1)

1
A(3.6)

and

S¤¹ = Spec

0
@M

k¸0
Mk(p2¡1)(N;·0)=(h¹§ ¡ 1)

1
A :(3.7)

3.1.2. Fourier-Jacobi expansions modulo p. The arithmetic Fourier-Jacobi expan-
sion (1.125) depended on a choice of a nowhere vanishing section s of L along the
boundary C = ¹SnS of ¹S: As the boundary ~C = Ig¹nIg¹ is (non-canonically) iden-
ti…ed with ¢(p)£C; we may “compute” the Fourier-Jacobi expansion on the Igusa
surface rather than on S: But on the Igusa surface, a is a canonical choice for such
an s: We may therefore associate a canonical Fourier-Jacobi expansion

fFJ(f) =
1X

m=0

cm(f) 2
1Y

m=0

H0( ~C;Nm)(3.8)

along the boundary of Ig; with every

f 2M¤(N;R) =
1M

k=0

Mk(N;R)(3.9)

(R a ·0-algebra). The following proposition becomes almost a tautology.

Proposition 3.3. The Fourier-Jacobi expansion fFJ(h¹§) of the Hasse invariant is
1. Moreover, for f1 and f2 in the graded ring M¤(N;R); r(f1) = r(f2) if and only
if fFJ(f1) = fFJ(f2):
Proof. The …rst statement is tautologically true. For the second, note that for
f 2 Mk(N;R); fFJ(f) is the (expansion of the) image of f=a(k) in H0( ~C;OcIg)
where cIg is the formal completion of Ig along ~C; while r(f) is the image of f=a(k)
in H0(Ig¹;O): The proposition follows from the fact that by Proposition 2.15 the
irreducible components of Ig¹ are in bijection with the connected components of ¹S;
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so every irreducible component of Ig¹ contains at least one cuspidal component (“q-
expansion principle”). A function on Ig¹ that vanishes in the formal neighborhood
of any cuspidal component must therefore vanish on any irreducible component, so
is identically 0:

3.1.3. The …ltration of a modular form modulo p. Let f 2Mk(N;R); where R is a
·0-algebra as before. De…ne the …ltration !(f) to be the minimal j ¸ 0 such that
r(f) = r(f 0) (equivalently FJ(f) = FJ(f 0)) for some f 0 2Mj(N;R): The following
proposition follows immediately from previous results.

Proposition 3.4. Let f 2Mk(N;R): Then 0 · !(f) · k and

!(f) ´ kmod(p2 ¡ 1):(3.10)

Let !(f) = k¡ (p2 ¡ 1)n: Then n is the order of vanishing of f along Sss: Equiva-
lently, k ¡ !(f) is the order of vanishing of the pull-back of f to Ig along Igss: In
addition, !(fm) = m!(f):

3.2. The theta operator.

3.2.1. De…nition of £(f). We work over · = ¹Fp. Let S be the (open) Picard
surface over · and Ig = Ig(p) the Igusa surface of level p (completed along the
supersingular locus as explained above). To simplify the notation we denote by
Z = Sss = SnS¹ the supersingular locus of S; by ~Z = Igss = IgnIg¹ its pre-image
under the covering map ¿ : Ig ! S; by Z0 = Sgss = SssnSssp the smooth part of
Z; and by ~Z0 = Iggss = IgssnIgssp the pre-image of Z 0 under ¿ :

Let f 2 H0(S;Lk): Then ¿¤f=ak 2 H0(Ig¹;O) has a pole of order at most k
along ~Z; and the Galois group acts on it via ¹§k: Let

´f = d(¿¤f=ak) 2 H0(Ig¹;
1
Ig) = H0(Ig¹; ¿

¤1S):(3.11)

The Kodaira-Spencer isomorphism KS(§) is an isomorphism

KS(§) : P L ' 1S :(3.12)

Let

Ã = (VP  1) ±KS(§)¡1 : 1S ! L(p) L ' Lp+1:(3.13)

We denote by Ã also the map induced on the base-change of these vector bundles
by ¿¤ to Ig and consider Ã(´f ): As ¢(p) still acts on Ã(´f ) via ¹§

k; its action on
akÃ(´f) is trivial, so this section descends to S¹: We de…ne

£(f) = akÃ(´f) 2 H0(S¹;Lk+p+1):(3.14)

A priori, this extends only to a meromorphic modular form of weight k + p+ 1; as
it may have poles along Z.

3.2.2. The main theorem. For the formulation of the next theorem we need to de…ne
what we mean by the standard cuspidal component of ¹S or Ig: Since its de…nition
involves a transition back and forth between C and · we need to …x, besides the
embedding of RN in C also a homomorphism

RN ! ·(3.15)

extending the map R0 ! ·0 ½ ·, and we let P be its kernel (a prime above p).
Recall that according to [Bel] and [La1] the cuspidal scheme C = ¹SnS classi…es

OK-semi-abelian varieties with level N structure. The standard component of C



46 EHUD DE SHALIT AND EYAL Z. GOREN

over C is the component which classi…es extensions of the elliptic curve C=OK by
the OK-torus OK  C£ (thus sits over a cusp of type (OK;OK) in S¤C), together
with a level-N structure (®;¯; °) (see [Bel], I.4.2 and Section 1.6.2), where

® : OK=NOK = OK  Z=NZ!OK  C£(3.16)

is given by 1 (a 7! exp(2¼ia=N)) and
¯ : OK=NOK = N¡1OK=OK ! C=OK(3.17)

is the canonical embedding. (The splitting ° varies along the component.) The
standard component of C over RN is the one which becomes this component after
base change to C. The standard component of C over · is the reduction modulo
P of the standard component of C over RN . Finally, Ig maps to ¹S (over ·) and
the cuspidal components mapping to a given component E of C are classi…ed by
the embedding of ±¡1K OK  ¹p in the toric part of A: Since the toric part of the
universal semi-abelian variety over the standard component is OK  Gm; we may
de…ne the standard cuspidal component of Ig to be the component where the map

" : ±¡1K OK  ¹p !OK Gm(3.18)

is the natural embedding. Here we use the fact that

±¡1K OK  ¹p = OK  ¹p(3.19)

since ±K is invertible in OK=pOK: Let ~E ½ ~C = IgnIg be this standard component.
Theorem 3.5. (i) The operator £ maps H0(S;Lk) to H0(S;Lk+p+1):

(ii) The e¤ect of £ on Fourier-Jacobi expansions is a “Tate twist”. More pre-
cisely, let

fFJ(f) =
1X

m=0

cm(f)(3.20)

be the canonical Fourier-Jacobi expanison of f along ~E (thus cm(f) 2 H0( ~E;Nm)).
Then

fFJ(£(f)) =M¡1
1X

m=0

mcm(f):(3.21)

Here M (equal to NjDKj or 2¡1N jDKj) is the width of the cusp.
(iii) If f 2 H0(S;Lk) and g 2 H0(S;Ll) then

£(fg) = f£(g) + £(f)g:(3.22)

(iv) £(h¹§f) = h¹§£(f) (equivalently, £(h¹§) = 0).

Corollary 3.6. The operator £ extends to a derivation of the graded ring of mod-
ular forms mod p, and for any f; £(f) is a cusp form.

Parts (iii) and (iv) of the theorem are clear from the construction. The proof of
(i), that £(f) is in fact holomorphic along Sss; will be given in 3.4. We shall now
study its e¤ect on Fourier-Jacobi expansions, i.e. part (ii). That a factor like M¡1

is necessary in (ii) becomes evident if we consider what happens to FJ expansions
under level change. If N is replaced by N 0 = NQ then the conormal bundle
becomes the Q-th power of the conormal bundle of level N 0; i.e. N = N 0Q (see
Section 1.4.3). It follows that what was the m-th FJ coe¢cient at level N becomes
the Qm-th coe¢cient at level N 0: The operator £ commutes with level-change, but
the factor M¡1; which changes to (QM)¡1, takes care of this.
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3.3. The e¤ect of £ on FJ expansions. Let E be the standard cuspidal com-
ponent of ¹S (over the ring RN). We have earlier trivialized the line bundle L along
E in two seemingly di¤erent ways, that we must now compare. On the one hand,
after reducing modulo P (the prime of RN above p …xed above) and pulling L back
to the Igusa surface, we got a canonical nowhere vanishing section a trivializing L
over Ig¹; and in particular along any of the p2 ¡ 1 cuspidal components lying over
E in Ig¹: Using ~E as a reference, there is a unique section of L along E which pulls
back to aj ~E : On the other hand, extending scalars from RN to C; shifting to the
analytic category, restricting to the connected component ¹X¡ on which E lies, and
then pulling back to a neighborhood of the cusp c1 in the unit ball X; we have
trivialized LjE by means of the section 2¼id³3; which we showed to be KN -rational.
Lemma 3.7. The sections aj ~E and 2¼id³3 “coincide” in the sense that they come
from the same section in H0(E;L):
Proof. Let A be the universal semi-abelian variety over E: Its toric part isOKGm,
hence, taking ¹§-component of the cotangent space at the origin

Lj ~E = !A= ~E(
¹§) = (±¡1K OK  !Gm)(¹§)(3.23)

admits the canonical section e¹§ ¢ (1dT=T ): Tracing back the de…nitions and using
(1.69), this section becomes, under the base change RN ,! C; just 2¼id³3: On the
other hand, when we reduce it modulo P and use the Igusa level structure " at the
standard cusp, it pulls back to the section “with the same name” e¹§ ¢ (1 dT=T ),
because along ~E (3.18) induces the identity on cotangent spaces. The lemma follows
from the fact that, by de…nition, "¤a = e¹§ ¢ (1 dT=T ) too.

Lemma 3.8. The sections ajp+1~E and 2¼id³2  2¼id³3modP0  L “coincide” in
the sense that they come from the same section in H0(E;P¹  L):
Proof. Let ¾2 (resp. ¾3) be the KN -rational section of P¹ (resp. L) along E, which
over C becomes the section 2¼id³2 (resp. 2¼id³3). We have just seen that modulo
P; when we identify ~E with E (via the covering map ¿ : Ig ! ¹S), ¾3 reduces to a:
To conclude, we must show that the map

V : P=P0 = P¹ ' L(p)(3.24)

carries ¾2 to ¾
(p)
3 : This will map, under L(p) ' Lp; to ap: Along E the line bundles

P¹ and L are just the §- and ¹§-parts of the cotangent space at the origin of the
torus OK Gm; and ¾2 and ¾3 are the sections

¾2 = e§ ¢ (1 dT=T ); ¾3 = e¹§ ¢ (1 dT=T ):(3.25)

Since in characteristic p; V = V er¤ : !Gm ! !
(p)
Gm maps dT=T to (dT=T )(p); for the

OK-torus, V (¾2) = ¾
(p)
3 , and we are done.

To prove part (ii) of the main theorem we argue as follows. Let g = f=ak be the
function on Ig¹ obtained by trivializing the line bundle L:We have to study the FJ
expansion along ~E of Ã(dg)=ap+1; where Ã is the map de…ned in (3.13). For that
purpose we may restrict to a formal neighborhood of ~E. This formal neighborhood
is isomorphic, under the covering map ¿ : Ig¹ ! ¹S¹; to the formal neighborhood
bS of E in S: We may therefore regard dg as an element of 1bS : Now

Ã : 1bS ! P¹ L(3.26)
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is a homomorphism of ObS-modules de…ned over RN so, having restricted to bS,
we may study the e¤ect of Ã on FJ expansions by embedding bSC in a tubular
neighborhood ¹S(") of E and using complex analytic Fourier-Jacobi expansions. We
are thus reduced to a complex-analytic computation, near the standard cusp at
in…nity.

Let

g(z; u) =
1X

m=0

µm(u)q
m(3.27)

where q = e2¼iz=M and µm is a theta function, so that µm(u)qm is a section of Nm

along E (now over C). Then

dg = 2¼iM¡1
1X

m=0

mµm(u)q
mdz +

1X

m=0

µ0m(u)q
mdu:(3.28)

According to Corollary 1.30, Ã(du) = 0; and Ã(dz) = 2¼id³2  d³3: It follows that

Ã(dg) =M¡1
1X

m=0

mµm(u)q
m ¢ 2¼id³2  2¼id³3:(3.29)

Recalling that in characteristic p; 2¼id³22¼id³3 reduced to ap+1; the proof of part
(ii) of the theorem is now complete. For the convenience of the reader we summarize
the transitions between complex and p-adic maps in the following diagram:

= · 1¹S¹=·
KS(§)¡1! P L

\ # modP0
=· 1bS=·

Ã! P¹ L
V1' Lp+1

" modP "
=RN 1bS=RN

Ã! P¹ L
# RNC #

=C 1bS=C
Ã! P¹ L

[ " modP0
=C 1¹S(")=C

KS(§)¡1an! P L

:(3.30)

We next turn to part (i).

3.4. A study of the theta operator along the supersingular locus.

3.4.1. De Rham cohomology in characteristic p. We continue to consider the Picard
surface S over · and recall some facts about de Rham cohomology in characteristic
p. Let U = Spec(R) ,! S be a closed point s0 (R = · = OS;s0=mS;s0), a nilpotent
thickening of a closed point, or an a¢ne open subset of S:We consider the restriction
of the universal abelian scheme to R and denote it by A=R: Let A(p) = R Á;R A
be its base change with respect to the map Á(x) = xp: Let

D = H1dR(A=R);(3.31)

a locally free R-module of rank 6: The de Rham cohomology of A(p) is

D(p) = RÁ;R D:(3.32)
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The R-linear Frobenius and Verschiebung morphisms Frob : A ! A(p); V er :
A(p) ! A induce (by pull-back) linear maps

F : D(p) ! D; V : D! D(p):(3.33)

Both F and V are everywhere of rank 3, which implies that their kernel and image
are locally free direct summands. Moreover, ImF = kerV and ImV = kerF =
!A(p)=R: The maps F and V preserve the types §; ¹§; but note that D(p)(§) =

D(¹§)(p) etc.
The principal polarization on A induces one on A(p), and these polarizations

induce symplectic forms

h; i : D £D! R; h; i(p) : D(p) £D(p) ! R(3.34)

where the second form is just the base-change of the …rst. For x 2 D(p); y 2 D we
have

hFx; yi = hx; V yi(p) :(3.35)

In addition, for a 2 OK
h¶(a)x; yi = hx; ¶(¹a)yi :(3.36)

As V F = FV = 0; the …rst relation implies that ImF and ImV are isotropic
subspaces. So is !A=R:

The Gauss-Manin connection is an integrable connection

r : D! 1R D:(3.37)

It is a priori de…ned (e.g. in [Ka-O]) when R is smooth over ·, but we can de…ne
it by base change also when R is a nilpotent thickening of a point of S (see [Kob],
where R is a local Artinian ring).

We shall need to deal only with the …rst in…nitesimal neighborhood of a point,
R = OS;s0=m2S;s0 : In this case, D has a basis of horizontal sections. Indeed, R =
·[u; v]=(u2; uv; v2) where u and v are local parameters at s0; and

1R = (Rdu+Rdv)= hudu; vdv; udv + vdui

(p is odd). If x 2 D and

rx = du x1 + dv  x2(3.38)

then ~x = x¡ ux1 ¡ vx2 is horizontal, so the horizontal sections span D over R by
Nakayama’s lemma. It follows that if D0 = Dr is the space of hoizontal sections,

R· D0 = D;(3.39)

r = d  1 and we can idnetify D0 = H1dR(As0=·); i.e. every de Rham class at s0
has a unique extension to a horizontal section x 2 H1dR(A=R):

There is a similar connection on D(p): The isogenies Frob and V er; like any
isogeny, take horizontal sections with respect to the Gauss-Manin connection to
horizontal sections, e.g. if x 2 D and rx = 0 then V x 2 D(p) satis…es r(V x) = 0:

The pairing h; i is horizontal for r; i.e.

d hx; yi = hrx; yi+ hx;ryi :(3.40)
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Remark 3.1. In the theory of Dieudonné modules one works over a perfect base.
It is then customary to identify D with D(p) via x $ 1  x: This identi…cation is
only ¾-linear where ¾ = Á, now viewed as an automorphism of R: The operator F
becomes ¾-linear, V becomes ¾¡1-linear and (3.35) reads hFx; yi = hx;V yi¾ : With
this convention F and V switch types, rather than preserve them.

3.4.2. The Dieudonné module at a gss point. Assume from now on that s0 2
Z0 = Sgss is a closed point of the general supersingular locus. We write D0 for
H1dR(As0=·):

Lemma 3.9. There exists a basis e1; e2; f3; f1; f2; e3 of D0 with the following prop-
erties. Denote by e

(p)
1 = 1 e1 2 D

(p)
0 etc.

(i) OK acts on the ei via § and on the fi via ¹§ (hence it acts on the e(p)i via ¹§
and on the f (p)i via §):

(ii) The symplectic pairing satis…es

hei; fji = ¡hfj; eii = ±ij; hei; eji = hfi; fji = 0:(3.41)

(iii) The vectors e1; e2; f3 form a basis for the cotangent space !A0=·: Hence e1
and e2 span P and f3 spans L:

(iv) ker(V ) is spanned by e1; f2; e3: Hence P0 = P \ ker(V ) is spanned by e1:

(v) V e2 = f
(p)
3 ; V f3 = e

(p)
1 ; V f1 = e

(p)
2 :

(vi) Ff(p)1 = ¡e3; Ff (p)2 = ¡e1; Fe(p)3 = ¡f2:

Proof. Up to a slight change of notation, this is the unitary Dieudonné module
which Bültel and Wedhorn call a “braid of length 3” and denote by ¹B(3); cf [Bu-
We] (3.2). The classi…cation in loc. cit. Proposition 3.6 shows that the Dieudonné
module of a ¹-ordinary abelian variety is isomorphic to ¹B(2) © ¹S; that of a gss
abelian variety is isomorphic to ¹B(3) and in the superspecial case we get ¹B(1) ©
¹S2:

3.4.3. In…nitesimal deformations. Let OS;s0 be the local ring of S at s0; m its
maximal ideal, and R = OS;s0=m2: This R is a truncated polynomial ring in two
variables, isomorphic to ·[u; v]=(u2; uv; v2):

As remarked above, the de Rham cohomology D = H1dR(A=R) has a basis of
horizontal sections and we may identify Dr with D0 and D with R· D0:

Grothendieck tells us thatA=R is completely determined byA0 and by the Hodge
…ltration !A=R ½D = R· D0: Since A is the universal in…nitesimal deformation
of A0, we may choose the coordinates u and v so that

P = SpanRfe1 + ue3; e2 + ve3g:(3.42)

The fact that !A=R is isotropic implies then that

L = SpanRff3 ¡ uf1 ¡ vf2g:(3.43)

Consider the abelian scheme A(p): It is not the universal deformation of A(p)0
over R: In fact, the map Á : R! R factors as

R
¼! ·

Á! ·
i! R;(3.44)

and therefore A(p); unlike A; is constant: A(p) = Spec(R)£Spec(·)A(p)0 : As with D;

D(p) = R· D(p)0 ; r = d 1; but this time the basis of horizontal sections can be
obtained also from the trivalization of A(p); and !A(p)=R = SpanRfe(p)1 ; e

(p)
2 ; f

(p)
3 g:
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Since V and F preserve horizontality, e1; f2; e3 span ker(V ) over R in D; and the
relations in (v) and (vi) of Lemma 3.9 continue to hold. Indeed, the matrix of V
in the basis at s0 prescribed by that lemma, continues to represent V over Spec(R)
by “horizontal continuation”. The matrix of F is then derived from the relation
(3.35).

The Hodge …ltration nevertheless varies, so we conclude that

P0 = P \ ker(V ) = SpanRfe1 + ue3g:(3.45)

The condition V (L) = P(p)0 ; which is the “equation” of the closed subscheme Z0 \
Spec(R) (see Theorem 2.8) means

V (f3 ¡ uf1 ¡ vf2) = e
(p)
1 ¡ ue

(p)
2 2 R ¢ e(p)1(3.46)

and this holds if and only if u = 0: We have proved the following lemma.

Lemma 3.10. Let s0 2 Sgss and the notation be as above. Then the closed sub-
scheme Sgss \ Spec(R) is given by the equation u = 0:

3.4.4. The Kodaira-Spencer isomorphism along the general supersingular locus. We
keep the assumptions of the previous subsections, and compute what the Gauss-
Manin connection does to P0: A typical element of P0 is g(e1+ue3) for some g 2 R:
Then

r(g(e1 + ue3)) = dg  (e1 + ue3) + gdu e3:(3.47)

Note that when we divide by !A=R and project H1dR(A=R) to H1(A;O); e1 + ue3
dies, and the image e3 of e3 becomes a basis for the line bundle that we called
L_(½) = H1(A;O)(§). Recall the de…nition of Ã given in (3.13), but note that this
de…nition only makes sense over Spec(OS;s0) or its completion, where KS(§) is an
isomorphism, and can be inverted.

Proposition 3.11. Let s0 2 Z 0 = Sgss: Choose local parameters u and v at s0 so
that in OS;s0 the local equation of Z0 becomes u = 0: Then at s0; Ã(du) has a zero
along Z0:

Proof. Let i : Z 0 ,! S be the locally closed embedding. We must show that in
a suitable Zariski neighborhood of s0; where u = 0 is the local equation of Z0;
i¤Ã(du) = 0: It is enough to show that the image of Ã(du) in the …ber at every
point s of Z 0 near s0; vanishes. All points being alike, it is enough to do it at s0:
In other words, we denote by Ã0 the map

Ã0 : 
1
S;s0
! P¹  Ljs0 ' Lp+1js0 :(3.48)

and show that Ã0(du) = 0: We may now work over Spec(R); where R = OS;s0=m2.
It is enough to show that in the diagram

PR  LR
KS(§)! 1R

# #
Ps0 Ls0 ' 1S;s0

(3.49)

KS(§) maps the line sub-bundle P0;R  LR onto Rdu: Once we have passed to
the in…nitesimal neighborhood Spec(R) we can replace the local parameters u; v by
any two formal parameters for which u = 0 de…nes Z0 \Spec(R): We may therefore
assume, in view of Lemma 3.10, that u and v have been chosen as in Section 3.4.3.
But then (3.47) shows that the restriction of KS(§) to Z0; i.e. the homomorphism
i¤KS(§); maps i¤P0 onto i¤R ¢ du e3. This concludes the proof.
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3.4.5. A computation of poles along the supersingular locus. We are now ready to
prove the following.

Proposition 3.12. Let k ¸ 0; and let f 2 H0(S;Lk) be a modular form of weight
k in characteristic p: Then £(f) 2 H0(S;Lk+p+1).

Proof. A priori, the de…nition that we have given for £(f) produces a meromorphic
section of Lk+p+1 which is holomorphic on the ¹-ordinary part S¹ but may have
a pole along Z = Sss: Since S is a non-singular surface, it is enough to show that
£(f) does not have a pole along Z0 = Sgss; the non-singular part of the divisor
Z. Consider the degree p2 ¡ 1 covering ¿ : Ig ! S; which is …nite, étale over
S¹ and totally rami…ed along Z: Let s0 2 Z 0 and let ~s0 2 Ig be the closed point
above it. Let u; v be formal parameters at s0 for which Z 0 is given by u = 0; as
in Theorem 2.14. As explained there we may choose formal parameters w; v at ~s0
where wp2¡1 = u (and v is the same function v pulled back from S to Ig). It follows
that in 1Ig we have

du = ¡wp2¡2dw:(3.50)

We now follow the steps of our construction. Dividing f by ak we get a function
g = f=ak on Ig with a pole of order at most k along ~Z; the supersingular divisor
on Ig; whose local equation is w = 0: In bOIg;~s0we may write

g =
1X

l=¡k
gl(v)w

l:(3.51)

Then

dg =
1X

l=¡k
lgl(v)w

l¡1dw +
1X

l=¡k
wlg0l(v)dv

= ¡
1X

l=¡k
lglw

l¡(p2¡1)du+
1X

l=¡k
wlg0l(v)dv:(3.52)

Applying the map Ã (extended OIg-linearly from S to Ig), and noting that Ã(du)
has a zero along Z0; hence a zero of order p2 ¡ 1 along ~Z 0; we conclude that Ã(dg)
has a pole of order k (at most) along ~Z0: Finally £(f) = ak ¢ Ã(dg) becomes
holomorphic along ~Z 0; and also descends to S. It is therefore a holomorphic section
of P¹  Lk+1 ' Lk+p+1:

It is amusing to compare the reasons for the increase by p+1 in the weight of £(f)
for modular curves and for Picard modular suraces. In the case of modular curves
the Kodaira-Spencer isomorphism is responsible for a shift by 2 in the weight, but
the section acquires simple poles at the supersingular points. One has to multiply
it by the Hasse invariant, which has weight p¡1; to make the section holomorphic,
hence a total increase by p + 1 = 2 + (p ¡ 1) in the weight. In our case, the map
Ã is responsible for a shift by p + 1 (the p coming from P¹ ' Lp), but the section
turns out to be holomorphic along the supersingular locus. See Section 4.2.

4. Further results on £

4.1. Relation to the …ltration and theta cycles. In part (ii) of Theorem 3.5
we have described the way £ acts on Fourier-Jacobi expansions at the standard
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cusp. A similar formula holds at all the other cusps. We deduce from it that
modular forms in the image of £ have vanishing FJ coe¢cients in degrees divisible
by p: Moreover, for such a form f 2 Im(£), £p¡1(f) and f have the same FJ
expansions, and hence the same …ltration. Note also that if r(f1) = r(f2) then
r(£(f1)) = r(£(f2)): We may therefore de…ne unambiguously

£(r(f)) = r(£(f)):(4.1)

As we clearly have

!(£(f)) = !(f) + p+ 1¡ a(p2 ¡ 1)(4.2)

for some a ¸ 0 we deduce the following result.

Proposition 4.1. Let f 2Mk(N;·) be a modular form modulo p; and assume that
r(f) 2 Im(£): Then

r(f) = r(£p¡1(f)):(4.3)

There exists a unique index 0 · i · p¡ 2 such that

!(£i+1(f)) = !(£i(f)) + p+ 1¡ (p2 ¡ 1):(4.4)

For any other i in this range

!(£i+1(f)) = !(£i(f)) + p+ 1:(4.5)

This is reminiscent of the “theta cycles” for classical (i.e. elliptic) modular forms
modulo p; see [Se], [Ka2] and [Joc]. Recall that if f is a mod p modular form of
weight k on ¡0(N) with q-expansion

P
anq

n (an 2 ¹Fp), then µ(f) is a mod p
modular form of weight k+p+1 with q-expansion

P
nanq

n (Katz denotes µ(f) by
Aµ(f)). One has !(µ(f)) < !(f) + p+ 1 if and only if !(f) ´ 0mod p. In such a
case we say that the …ltration “drops” and we have

!(µ(f)) = !(f) + p+ 1¡ a(p¡ 1)(4.6)

for some a > 0: As a corollary, !(f) can never equal 1mod p for an f 2 Im(µ):
Assume now that f 2 Im(µ) is a “low point” in its “theta cycle”, namely, !(f) is
minimal among all !(µi(f)): Then !(µi+1(f)) < !(µi(f)) + p + 1 for one or two
values of i 2 [0; p ¡ 2]; which are completely determined by !(f)mod p [Joc].

This is not true anymore for Picard modular forms. Not only is the drop in
the theta cycle unique, but the question of when exactly it occurs is mysterious
and deserves further study. We make the following elementary observation showing
that whether a drop in the …ltration occurs in passing from f to £(f) can not be
determined by !(f) modulo p alone. Let f and k be as in Proposition 4.1.

1. If k · p2 ¡ 1 then !(f) = k:
2. If k < p+1 then !(£i(f)) = k+ i(p+1) for 0 · i · p¡ 2; so the drop occurs

at the last step of the theta cycle, i.e. at weight k + (p¡ 2)(p + 1); which is
congruent to k ¡ 2 modulo p:

3. If k < p+ 1 but r(f) =2 Im(£) then starting with £(f) instead of f; one sees
that the drop in the theta cycle of £(f) occurs either in passing from £p¡2(f)
to £p¡1(f), or in passing from £p¡1(f) to £p(f):

4.2. Compatibility between theta operators for elliptic and Picard mod-
ular forms.
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4.2.1. The theta operator for elliptic modular forms. The theta operator for elliptic
modular forms modulo p was introduced by Serre and Swinnerton-Dyer in terms of
q-expansions, but its geometric construction was given by Katz in [Ka1] and [Ka2].
Katz relied on a canonical splitting of the Hodge …ltration over the ordinary locus,
but Gross gave in [Gr], Proposition 5.8, the construction after which we modeled
our £.

Let us quickly repeat Gross’ construction as outlined in the introduction. Let X
be the open modular curve X(N) over ¹Fp (N ¸ 3; p - N) and Iord the Igusa curve
of level p lying over Xord = XnXss; the ordinary part of X: Let ¹X and ¹Iord be the
curves obtained by adjoing the cusps to X and Iord respectively. Let L = !E=X
be the cotangent bundle of the universal elliptic curve, extended over the cusps as
usual. Classical modular forms of weight k and level N are sections of Lk over ¹X:
Let a be the tautological nowehere vanishing section of L over ¹Iord: Given a modular
form f of weight k; we consider r(f) = ¿¤f=ak where ¿ : ¹Iord ! ¹X is the covering
map, and apply the inverse of the Kodaira-Spencer isomorphism KS : L2 ! 1Iord
to get a section KS¡1(dr(f)) of L2 over ¹Iord: When multiplied by ak it descends
to ¹Xord; and when this is multiplied further by h = ap¡1; the Hasse invariant for
elliptic modular forms, it extends holomorphically over Xss to an element

µ(f) = ak+p¡1KS¡1(dr(f)) 2 H0( ¹X;Lk+p+1):(4.7)

4.2.2. An embedding of a modular curve in ¹S. To illustrate our idea, and to simplify
the computations, we assume that N = 1 and dK ´ 1mod4; so that D =DK = dK:
This con‡icts of course with our running hypothesis N ¸ 3; but for the current
section does not matter much. We shall treat only one special embedding of the
modular curve ¹X = X0(D) into ¹S (there are many more).

Embed SL2(R) = SU(1; 1) in G01 via
µ

a b
c d

¶
7!

0
@

a b
1

c d

1
A :(4.8)

This embedding induces an embedding of symmetric spaces H ,! X; z 7! t(z; 0):
One can easily compute that the intersection of ¡; the stabilizer of the lattice L0
in G01; with SL2(R); is the subgroup of SL2(Z) given by

¡0(D) =

½µ
a b
c d

¶
: Djb

¾
:(4.9)

Let E0 = C=OK, endowed with the canonical principal polarization and CM type
§: For z 2 H let ¤z = Z + Zz and Ez = C=¤z: Let Mz be the cyclic subgroup of
order D of Ez generated by D¡1zmod¤z: Using the model (1.27) of the abelian
variety Az associated to the point t(z; 0) 2 X; we compute that

Az ' E0 £ (OK Ez)=(±K Mz)(4.10)

with the obvious OK-structure. The group ±KMz is a cyclic subgroup of OKEz

of order D; generated by ±¡1K  zmodOK  ¤z: The principal polarization on Az

provided by the complex uniformization is the product of the canonical polarization
of E0 and the principal polarization of OK Ez=±K Mz obtained by descending
the polarization

¸can : OK Ez ! ±¡1K Ez = (OK  Ez)
t(4.11)

of degree D2; modulo the maximal isotropic subgroup ±K Mz of ker(¸can):
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It is now clear that over any R0-algebra R we have the same moduli theoretic
construction, sending a pair (E;M) where M is a cyclic subgroup of degree D to
A(E;M); with OK structure and polarization given by the same formulae. This
gives a modular embedding j : X ! S which is generically injective. To make this
precise at the level of schemes (rather than stacks) one would have to add a level
N structure and replace the base ring R0 by RN :

4.2.3. Comparison of the two theta operators. From now on we work over ¹Fp: The
modular interpretation of the embedding j : ¹X ! ¹S allows us to complete it to a
diagram

¹Iord
j! Ig¹

¿ # # ¿
¹Xord

j! ¹S¹

:(4.12)

Note that j(Xss) ½ Sssp; i.e. the embedded modular curve cuts the supersingular
locus at superspecial points.

Lemma 4.2. The pull-back j¤!A=S decomposes as a product !E0 £ (OK !E=X):
Under this isomorphism

j¤L = (OK  !E=X)(¹§)(4.13)

j¤P0 = !E0
j¤P¹ ' (OK  !E=X)(§):

The line bundle j¤P0 is constant, and P¹; originally a quotient bundle of P ;
becomes a direct summand when restricted to ¹X.

Proof. This is straightforward from the construction of j, and the fact that E0 is
supersingular, while E is ordinary over ¹Xord: Note thatOKE=±KM and OKE
have the same cotangent space.

Proposition 4.3. Identify j¤L with !E=X (OK acting via ¹§). Then for f 2
H0( ¹S;Lk) =Mk(N; ¹Fp)

µ(j¤(f)) = j¤(£(f)):(4.14)

Proof. We abbreviate Iord by I and Ig¹ by Ig: The pull-back via j of the tautologi-
cal section a of L over Ig is the tautological section a of j¤L = !E=X : We therefore
have

j¤(dr(f)) = dr(j¤(f))(4.15)

(r(f) = ¿¤f=ak is the function on Ig denoted earlier also by g). It remains to check
the commutativity of the following diagram

1Ig
KS(§)¡1! P L V1! Lp+1

# j¤0 # j¤

1I
KS¡1! j¤L2 £h! j¤Lp+1

:(4.16)

Here j¤0 is the map j
¤1Ig ! 1I on di¤erentials whose kernel is the conormal bundle

of I in Ig. For that we have to compare the Kodaira-Spencer maps on S and on
X: As we have seen in the lemma, P=P0 = P¹ pulls back under j to L(½) (the line
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bundle L with the OK action conjugated). But, KS(§)(P0 L) maps under j¤ to
the conormal bundle, so we obtain a commutative diagram

1Ig
KS(§)Ã P L

# j¤0 # modP0
1I

KSÃ j¤L(½) j¤L
:(4.17)

The commutativity of the diagram

P¹
V! L(p)

# #
j¤L(½) £h! j¤L(p)

(4.18)

follows from the de…nition of the Hasse invariant h on X: Identifying L(p) with
Lp as usual and tensoring the last diagram with L provides the last piece of the
puzzle.

Remark 4.1. The proposition follows, of course, also from the e¤ect of µ and
£ on q-expansions, once we compare FJ expansions on ¹S to q-expansions on the
embedded ¹X: The geometric proof given here has the advantage that it explains the
precise way in which VP  1 replaces “multiplication by h":

5. The Igusa tower and p-adic modular forms

We shall be very brief, since from now on the development follows closely the
classical case of p-adic modular forms on GL(2), with minor modi…cations. A
general reference for this section is Hida’s book [Hi1], although, strictly speaking,
our case (p inert) is excluded there.

5.1. Geometry modulo pm.

5.1.1. The Picard surface modulo pm. Let m ¸ 1; and write Rm = R0=p
mR0 =

OK=pmOK: Let
S(m) = S £Spec(R0) Spec(Rm)(5.1)

so that S(1) = S·0 is the special …ber, and use a similar notation for the complete
surface ¹S(m): Write S(m)¹ (resp. ¹S(m)¹ ) for the Zariski open subset of points whose
image in ¹S(1) lies in S

(1)
¹ (resp. in ¹S(1)¹ ).

The generic …ber (in the sense of Raynaud) of the formal scheme

lim
!
¹S(m)¹(5.2)

is a rigid analytic space which we shall denote by ¹Srig¹ : We shall refer to its com-
plement in ¹Srig (the rigid analytic space associated to ¹S) as the supersingular tube.
Its Cp-points are the points of ¹S(Cp) whose reduction modulo p lies in Sss(¹Fp):

5.1.2. p-adic modular forms of integral weight k. The vector bundles P and L in-
duce vector bundles on ¹S(m) and ¹Srig¹ which we shall denote by the same symbols
(the latter in the rigid analytic category). Let k 2 Z (k may be negative). Let R be
a topological Kp-algebra. We de…ne a p-adic modular form of weight k and tame
level N over R to be an element f of

Mp
k (N ;R) := H0( ¹Srig¹

bKpR;Lk):(5.3)
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Note that Mp
k (N ;R) = RbKpMp

k (N ;Kp): A p-adic modular form f is said to be
overconvergent if there exist …nitely many Kp-a¢noids Xi contained in the super-
singular tube and a section of Lk over ( ¹Srign

S
Xi)bKpR which restricts to f: We

denote the subspace of overconvergent modular forms by Moc
k (N ;R):

Note that if R is not of topologically …nite type over Kp our de…nition of “over-
convergent” is a priori stronger than asking f to extend to a strict neighborhood
of ¹Srig¹

bKpR in ¹Srig bKpR:
The space Mp

k (N ;Kp) is a p-adic Banach space whose unit ball is given by

Mp
k (N ;Op) = limÃ H0( ¹S(m)¹ ;Lk):(5.4)

5.1.3. q-expansion principle. Whether we are dealing with an f 2 H0( ¹S
(m)
¹ ;Lk) or

an f 2Mp
k (N ;Kp) the same procedure as in Section 1.10.2 allows us to associate to

f a Fourier-Jacobi expansion FJ(f) (1.125). Recall however that FJ(f) depends
on the section s 2 H0(C;L) used to trivialize LjC : Note that if f 2 Mp

k (N ;Kp);
the coe¢cients of FJ(f) are theta functions with bounded denominators, since a
suitable Kp-multiple of f lies in Mp

k (N ;Op):
As with classical modular forms, we have the q-expansion principle, stemming

from the fact that C meets every component of ¹Srig¹ :

Lemma 5.1. If FJ(f) = 0 then f = 0:

Corollary 5.2. If f 2 Mp
k (N ;Op) and FJ(f) is divisible by p (in the sense that

every cj(f) 2 H0(C;N j) is divisible by p with respect to the integral structure on
¹S), then f 2 pMp

k (N ;Op):

5.2. The Igusa scheme of level pn.

5.2.1. ¹-ordinary abelian schemes over Rm-algebras. Let m ¸ 1 and let R be an
Rm-algebra. If A 2 S

(m)
¹ (R) ½ M(R) then A is …ber-by-…ber ¹-ordinary, hence

A[pn]¹; the largest R-subgroup scheme of A[pn] of multiplicative type (dual to the
étale quotient A[pn]et), is a …nite ‡at OK-subgroup scheme of rank p2n: Locally in
the étale topology it is isomorphic to ±¡1K OK  ¹pn :

5.2.2. Igusa level structure of level pn. Fix m ¸ 1 and n ¸ 1 and consider the
moduli problem associating to an Rm-algebra R ¹-ordinary tuples A 2 S

(m)
¹ (R)

together with an isomorphism of …nite ‡at group schemes over R

" = "(m)n : ±¡1K OK  ¹pn ' A[pn]¹:(5.5)

This moduli problem is representable by a scheme Ig(pn)(m)¹ ; and the map “forget
"" is a …nite étale cover

¿ = ¿ (m)n : Ig(pn)(m)¹ ! S(m)¹(5.6)

of degree (p2 ¡ 1)p2(n¡1): It extends to a …nite étale cover Ig(pn)(m)¹ of ¹S(m)¹ : The
group

¢(pn) = (OK=pnOK)£ = AutOK(±
¡1
K OK  ¹pn)(5.7)

acts on the covering ¿ as a group of deck transformations via

°(A; ") = (A; " ± °¡1);(5.8)

and the pre-image of the cuspidal divisor C is non-canonically isomorphic to¢(pn)£
C: These constructions satisfy the usual compatibilities in m and n:
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5.2.3. The trivialization of L when m · n. Assume now that m · n: In this case,
multiplication by pn is 0 on R; so the inclusion of A[pn] in A induces an isomorphism
between the cotangent spaces at the origin !A[pn]=R and !A=R: To see it note that
if G is either A[pn] or A its Lie algebra, by de…nition, is the …nite ‡at R-module

Lie(G) = ker (G(R[²])! G(R)) :(5.9)

Here R[²] is the ring of dual numbers over R. It follows that

Lie(A[pn]) = Lie(A)[pn] = Lie(A);(5.10)

and dualizing we get !A=R = !A[pn]=R:
The same holds of course for ¹pn and Gm: The reasoning used for m = n = 1

applies and shows that " induces a canonical isomorphism between Lj
Ig(pn)

(m)
¹

and

O
Ig(pn)

(m)
¹

:We denote by a = a
(m)
n the section which corresponds to 1 2 O

Ig(pn)
(m)
¹

;

i.e. the trivializing section.
The group ¢(pn) acts on a via the character

¹§¡1 : ¢(pn) = (OK=pnOK)£ ! (OK=pmOK)£ = R£m:(5.11)

From now on we take n = m and use a to trivialize L along ~C = ¿¡1(C); the
cuspidal divisor in Ig(pm)

(m)
¹ : If f 2 H0( ¹S

(m)
¹ ;Lk) then ¿¤f=ak is a function on

Ig(pm)
(m)
¹ and we may attach to it a canonical FJ expansion

fFJ(f) =
1X

j=0

cj(f)(5.12)

where cj(f) 2 H0( ~C;N j) as before. This FJ expansion does not depend on any
choice (but is de…ned along ~C and not along C).

5.2.4. Congruences between FJ expansions force congruences between the weights.
Let k1 · k2 be two integers. The following lemma follows formally from the de…n-
itions.

Lemma 5.3. Let fi 2 H0( ¹S
(m)
¹ ;Lki) and assume that f1 is not divisible by p:

Suppose fFJ(f1) = fFJ(f2): Then k1 ´ k2mod(p
2 ¡ 1)pm¡1:

Proof. Let ~T be an irreducible component of Ig(pm)(m)¹ : Then, ¿ being …nite étale,
¿( ~T ) is both open and closed in ¹S(m)¹ , so must be an irreducible component T of
¹S
(m)
¹ . It follows that ¿( ~T ) meets C; hence ~T meets ~C; and the q-expansion principle

holds in Ig(pm)
(m)
¹ : We therefore have an equality

¿¤f1=a
k1 = ¿¤f2=a

k2(5.13)

between functions on Ig(pm)
(m)
¹ : Since the left hand side is not divisible by p by

assumption, so is the right hand side. The group ¢(pm) acts on the left hand side
via ¹§k1 and on the right hand side via ¹§k2 : But these two characters are equal if
and only if k1 ´ k2mod(p

2 ¡ 1)pm¡1; because the exponent of the group ¢(pm) is
(p2 ¡ 1)pm¡1:

In practice, one would like to deduce the same result from congruences between
FJ expansions along C; not along ~C: This is deeper and depends on Igusa’s irre-
ducibility theorem.
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Theorem 5.4. Consider ¿ = ¿
(1)
n : Ig(pn)(1)¹ ! ¹S(1)¹ = ¹S¹;·0 and extend scalars

from ·0 to ·: Let T be an irreducible component of ¹S¹;·: Then ¿¡1(T ) is irreducible
in Ig(pn)¹;·:

Proof. The theorem can be proved by the same method used by Hida in [Hi1, 8.4],
[Hi2], or by the method of Ribet to which we alluded in 2.4.3. In that section, we
proved the theorem for n = 1 by a third method, due to Igusa, studying the image
of inertia around Sss: See also the discussion of the big Igusa tower BigIg below,
which turns out to be reducible.

Theorem 5.5. Let f1 and f2 be mod pm modular forms as above, and assume that
f1 is not divisible by p. Trivialize LjC by choosing a lift of C to ~C (i.e. a section
of the map ¿ j ~C : ~C ! C) and using the trivialization of L along this lift which is
supplied by the section a. Then if FJ(f1) = FJ(f2); k1 ´ k2mod(p2 ¡ 1)pm¡1:

Here FJ(f) =
P1

j=0 cj(f) and cj(f) 2 H0(C;N j). The lift of C to ~C exists
since ~C ' ¢(pm)£C (non-canonically). If we change the lift (locally on the base)
by ° 2 ¢(pm); then FJ(fi) changes by the factor ¹§(°)ki :

Proof. By Igusa’s irreducibility theorem, it is enough to know that FJ(fi) (i = 1; 2)
agree on the given lift of C; to conclude that ¿¤f1=ak1 = ¿¤f2=a

k2 on the whole of
Ig(pm)

(m)
¹ ; hence the result follows by the Lemma. Note that the underlying topo-

logical spaces of Ig(pm)(m)¹ and Ig(pm)
(1)
¹ are the same, hence for the irreducibilty

theorem it is enough to deal with the special …ber.

Corollary 5.6. Let fi 2 Mp
ki
(N ;Op) (i = 1; 2) and assume that f1 is not divis-

ible by p: Trivialize LjC by …xing an OK-isomorphism of the p-divisible group of
the toric part of the universal semi-abelian variety AjC with ±¡1K OK  ¹p1; and
using this isomorphism to identify LjC = !A=C(¹§) with OC : Suppose that with this
trivialization

FJ(f1) ´ FJ(f2)mod p
m:(5.14)

Then k1 ´ k2mod(p2 ¡ 1)pm¡1:

5.2.5. Irreducibility of the Igusa tower and the big Igusa tower. It is possible to
de…ne an even larger Igusa tower (BigIg(pn))n¸1 over · = ¹Fp; of which (Ig(pn))n¸1
is a quotient. If R is a ·-algebra and A 2 S¹(R), then A[pn] admits a …ltration
as in 2.1.2. One can de…ne BigIg(pn) as the moduli space of ¹-ordinary tuples A;
equipped with OK-isomorphisms

"2 : ±¡1K OK  ¹pn ' gr2A[pn]

"1 : G[pn] ' gr1A[pn]

"0 : OK  Z=pnZ ' gr0A[pn]:(5.15)

This would be, in the language of [Hi2], the GU -Igusa tower. If we insist that the
isomorphisms respect the pairings induced on these group schemes by the polar-
ization and Cartier duality (gr0 and gr2 are dual to each other, gr1 is self-dual),
we would get the U -Igusa tower. Both these towers are reducible, by the reasoning
of [Hi1, 8.4.1] or [Hi2], and by the description of the connected components of the
characteristic 0 …ber of the Shimura variety given in 1.3.3. The SU -Igusa tower,
which is irreducible, turns out to be our tower (Ig(pn)): It is also the quotient of
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(BigIg(pn)) under the map “forget "0 and "1": Thus there is no real advantage in
studying the tower BigIg:

5.3. p-adic modular forms of p-adic weights.

5.3.1. The space of p-adic weights. Let

Xp = limÃ
Z=(p2 ¡ 1)pm¡1Z;(5.16)

This is the space of p-adic weights. If k 2 Xp then ¹§k is a well-de…ned locally
Qp-analytic homomorphism of O£p to itself, but note that not every such homo-
morphism is a ¹§k for some k from Xp:

5.3.2. p-adic modular forms à la Serre. We work with ¹S (hence also the cuspidal
divisor C) over the base Op; the p-adic completion of R0: Little is lost by extending
the base further to ON;P, the completion of the ring of integers of the ray class …eld
KN at a prime P above p. After such a base extension the irreducible components
of C become absolutely irreducible. The reader may assume that this is the case.

Consider the p-divisible group of the toric part of the universal semi-abelian
variety AjC . Once and for all …x an OK-isomorphism of it with ±¡1K OK¹p1 ; and
use this isomorphism to identify LjC = !A=C(¹§) with OC : This choice is unique
up to multiplication by O£p on each irreducible component of C. It determines
a FJ expansion FJ(f) for every f 2 Mp

k (N ;Kp) as in (1.125), and is equivalent
to splitting the projection ¿ j ~C : ~C ! C from the boundary of the Igusa tower¡
Ig¹(p

n)
¢1
n=1

to the boundary of the Picard modular surface.
Let k 2 Xp: The space MSerre

k (N ;Kp) will be a subspace of the Banach algebra

FJ p = Kp Op
1Y

j=0

H0(C;N j):(5.17)

It will consist of all the f 2 FJ p for which there exists a sequence (fº); fº 2
Mp

kº
(N ;Kp), (kº 2 Z); with FJ(fº) converging to f, and kº converging in Xp to

k: As we have seen, if the sequence (FJ(fº)) converges, the kº have to converge
in Xp: We shall denote by MSerre

k (N ;Op) the intersection of MSerre
k (N ;Kp) withQ1

j=0H
0(C;N j):

Proposition 5.7. (i) If k 2 Z then MSerre
k (N ;Kp) =Mp

k (N ;Kp): In other words,
we do not get any new p-adic modular forms by allowing limits of p-adic modular
forms of varying weights, if the weights converge to an integral k:

(ii) In the de…nition ofMSerre
k (N ;Kp) we can require fº 2Mkº (N ;Kp) (classical

modular forms of integral weight kº) and still get the same space.
(iii)MSerre

k (N;Kp) is a closed subspace of FJ p: The product of two fi 2MSerre
ki

is in MSerre
k1+k2

:

(iv) If f 2MSerre
k (N ;Op) then its reduction modulo p appears in Mk0(N ;·0) for

some positive integer k0 su¢ciently close to k in Xp:

Proof. Let H¹§ 2Mp2¡1(N ;Op) be a lift of the Hasse invariant h¹§ to characteristic
0. Such a lift exists by general principles, whenever p is large enough. For the
few exceptional primes p we may replace h~§ by a high enough power of it, which is
liftable, and use the same argument. This lift satis…es FJ(H¹§) ´ 1mod p; soH¡1¹§ 2
Mp
1¡p2(N ;Op) is a p-adic modular form de…ned over Op: Indeed, H¹§mod pm 2
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H0( ¹S(m)¹ ;Lp2¡1) is nowhere vanishing over ¹S(m)¹ ; and taking the limit of its inverse
over m we get H¡1¹§ : Suppose, as in (i), that k; kº 2 Z, kº ! k in Xp; and fº 2
Mp

kº
(N ;Kp) are such that FJ(fº) converge in FJ p to f: Replacing fº by fºH

peº

¹§
for suitable eº we may assume that the kº are increasing and are all in the same
congruence class modulo p2 ¡ 1: But then fºH

(k¡kº)=(p2¡1)
¹§

are in Mp
k (N ;Kp) and

their FJ expansions converge to f in FJ p: This proves (i). For (ii) note that if
f 2 H0( ¹S

(m)
¹ ;Lk) then for all su¢ciently large e, fHpe

¹§
extends to an element

of Mk+(p2¡1)pe(N ;Rm) and has the same FJ expansion as f: Thus every p-adic
modular form of integral weight is the p-adic limit of classical forms of varying
weights, and the same is therefore true for Serre modular forms of p-adic weight.
Points (iii) and (iv) are obvious.

5.3.3. p-adic modular forms à la Katz. We now explain Katz’ point of view of the
same objects. Let

V (m)n =H0(Ig(pn)(m)¹ ;O)(5.18)

be the ring of regular functions on Ig(pn)
(m)
¹ : Let

V (m) = lim
!

V (m)n ; V = lim
Ã

V (m):(5.19)

We call V the space of Katz p-adic modular forms (of all weights). Let

° 2 ¢ = O£p = limÃ ¢(p
n)(5.20)

act on V (m) and on V as usual, °(f) = f ± °¡1, and recall that °¡1(A; "(m)n ) =

(A; "(m)n ± °): Thus
°(f)(A; ") = f(A; " ± °)(5.21)

(i.e. ° acts by “right translation”). Let k 2 Xp and de…ne

MKatz
k (N ;Op) = V (¹§k) =

©
f 2 V j°(f) = ¹§k(°) ¢ f 8° 2 ¢

ª
:(5.22)

We similarly de…ne MKatz
k (N;Rm) = V (m)(¹§k):

By the irreducibility of the Igusa tower and the q-expansion principle the FJ
expansion map

V ! FJ p(Op)(5.23)

is injective. It depends on our choice of the splitting of ~C ! C.

Proposition 5.8. For k 2 Xp; there is a natural isomorphism

MSerre
k (N ;Op) 'MKatz

k (N ;Op):(5.24)

Proof. Given k 2 Z and f 2 H0( ¹S
(m)
¹ ;Lk); the functions (¿ (m)n )¤f=(a

(m)
n )k 2 V

(m)
n

for all n ¸ m; and these functions satisfy the obvious compatibility in n; so they
de…ne

fKatz 2 V (m)(¹§k):(5.25)

If k 2 Z; this gives, by going to the inverse limit over m; a map

f 7! fKatz; Mp
k (N ;Op)!MKatz

k (N ;Op):(5.26)

This map is an isomorphism, which can be enhanced to include p-adic weights
k 2 Xp as follows. If kº 2 Z, kº ! k 2 Xp and if fº 2 Mp

kº
(N;Op) are such that
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FJ(fº) converge to f 2 MSerre
k (N ;Op); then reducing modulo pm for a …xed m;

(f
(m)
º )Katz 2 V (m)(¹§kº ): But for a …xed m; for all large enough º;

V (m)(¹§kº ) = V (m)(¹§k);(5.27)

and the sequence FJ(f
(m)
º ) stabilizes, so taking the limit over º we get a well

de…ned (f (m))Katz 2 V (m)(¹§k): Finally, an inverse limit over m gives fKatz 2
MKatz

k (N ;Op): It is by now standard that this gives an isomorphism between
MSerre

k (N ;Op) and MKatz
k (N ;Op): As we have seen earlier, when k 2 Z; this

is also the same as Mp
k (N ;Op):

From now on it is therefore legitimate to denote these spaces by the common
notation Mp

k (N ;Op) and refer to them simply as p-adic modular forms of p-adic
weight k:

5.4. p-adic modular forms of p-adic bi-weights.

5.4.1. The space of bi-weights. A new feature of p-adic modular forms on Picard
modular surfaces, that does not show up in the classical theory of GL2(Q); is that
even if we restrict attention to scalar-valued p-adic modular forms, we sometimes
need to consider classical vector-valued forms to approach them. This phenomenon,
as we shall explain below, does not show up in the mod p theory, but is essential to
the p-adic theory.

The space Xp of p-adic weights can be written as Z=(p2 ¡ 1)Z£Zp; and when
we decompose it in such a way we write

k = (w; j) = (!(k); hki)(5.28)

for the two components. The space of bi-weights X
(2)
p is, by de…nition, the quotient

of X2p modulo the relation

((w1; j1); (w2; j2)) ´ ((0; j1); (pw1 + w2; j2)) ´ ((pw2 +w1; j1); (0; j2)):(5.29)

If k1 and k2 are in Xp, then the character ¹§k1§k2 : ¢ ! O£p depends only on

the image of (k1; k2) in X
(2)
p : Here ¢ = lim

Ã
¢(pn) is also O£p ; but in the rôle of the

Galois group of the Igusa tower. The image of Z2 is dense in X2p; hence also in X
(2)
p :

5.4.2. The line bundle L(k1;k2) over ¹Srig¹ and p-adic modular forms of integral bi-
weights. Let m ¸ 1: The plane bundle P admits a canonical …ltration

0! P0 ! P ! P¹ ! 0(5.30)

over ¹S(m)¹ de…ned by choosing any n ¸ m and setting

P0 = ker(!A[pn]0 ! !A[pn]¹); P¹ = !A[pn]¹(§)

(recall !A = !A[pn]0). We also recall that L = !A[pn]¹(¹§):

If m = 1 we showed that over ¹S(1)¹ ; L ' Pp¹ and P¹ ' Lp: This is no longer true
for general m and we let for (k1; k2) 2 Z2

L(k1;k2) = Lk1  Pk2¹ :(5.31)

Going to the limit over m; this de…nes a rigid analytic line bundle over ¹Srig¹ :
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We de…ne the space of p-adic modular forms of bi-weight (k1; k2) and level N
over Op as

Mp
k1;k2

(N ;Op) = limÃ H0( ¹S(m)¹ ; L(k1;k2)):(5.32)

This is the unit ball of the p-adic Banach space

Mp
k1;k2

(N ;Kp) = Kp Op M
p
k1;k2

(N ;Op) = H0( ¹Srig¹ ;L(k1;k2)):(5.33)

5.4.3. The trivialization of L(k1;k2) over the Igusa tower. As before, …xm; letm · n
and consider the isomorphism

"¤ : ¿¤!A[pn]¹ ' OK OIg(pn)(m)¹
(5.34)

induced by the Igusa level structure " = "
(m)
n . Taking ¹§ and §-types it induces

trivializations

¿¤L ' O
Ig(pn)

(m)
¹

; ¿¤P¹ ' OIg(pn)(m)¹
(5.35)

and we let a = a
(m)
n and ¹a = ¹a(m)n be the sections corresponding to 1. Of course,

the trivialization of L is the one that we have met before.
Let ak1;k2 = ak1¹ak2 : Then we may trivialize ¿¤L(k1;k2) by s 7! s=ak1;k2 to get a

function on Ig(pn)
(m)
¹ . This allows us to de…ne, as usual, canonical Fourier-Jacobi

expansion fFJ(f) (along ~C), and if we make a choice of a splitting of ¿ : ~C ! C; a
Fourier-Jacobi expansion FJ(f) (along C) for every f 2Mp

k1;k2
(N;Kp):

5.4.4. p-adic modular forms of p-adic bi-weights. The yoga of p-adic weights, either
à la Serre or à la Katz, allows us now to de…ne the space

Mp
k1;k2

(N ;Kp)(5.36)

of p-adic modular forms of any bi-weight (k1; k2) 2 X
(2)
p : If we follow Serre, we

de…ne them as elements of the Banach space FJ p via limits of p-adic modular
forms of integral bi-weights. If we follow Katz, we have

Mp
k1;k2

(N ;Op) = V (¹§k1§k2):(5.37)

We let the reader complete the details, which are identical to the case of a single
weight treated before.

5.5. The theta operator for p-adic modular forms. We are …nally able to
de…ne the operator £ on p-adic modular forms. Compare [Ka3, V.5.8]. Let f 2
Mp

k1;k2
(N ;Op): Assume …rst that k1 and k2 are from Z; and reduce modulo pm; to

get f 2 H0( ¹S
(m)
¹ ;Lk1  Pk2¹ ): Take any n ¸ m; pull back to Ig(pn)

(m)
¹ ; divide by

ak1;k2 and consider

´f = d(¿¤f=ak1;k2) 2 H0(Ig(pn)(m)¹ ;1Ig):(5.38)

Apply KS¡1 to ´f : This results in a section of L  P: As explained before, when
we project this section to LP¹ we get a section that is holomorphic along ~C and
even vanishes there (recall KS had a pole along the cuspidal divisor). Multiply
back by ak1;k2 and use Galois descent to descend the resulting section to S(m)¹ :

We may now take the limit over m to get our £; if (k1; k2) 2 Z2: A further limit
over weights, as in the proof of Proposition 5.8, allows us to extend the de…nition to
(k1; k2) 2 X

(2)
p : Using Katz’ approach, where the process of dividing and multiplying
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back by ak1;k2 is already built into the isomorphism with V (¹§k1§k2); £ is nothing
but the map

£ : f 7! (1 pr¹) ±KS¡1 ± d(f)(5.39)

sending V (¹§k1§k2) to V (¹§k1+1§k2+1): Here pr¹ : P ! P¹ is the projection de…ned
over ¹Srig¹ :

Theorem 5.9. Let (k1; k2) 2 X
(2)
p : The operator

£ :Mp
k1;k2

(N ;Op)!Mp
k1+1;k2+1

(N ;Op)(5.40)

de…ned by the above formula, satis…es the following properties (and is uniquely
determined by its e¤ect on q-expansions).

(i) When one reduces Mp
k1;k2

(N ;Op) modulo p; and uses the isomorphism P¹ '
Lp; £ reduces to the operator

£ :Mk(N ; ·)!Mk+p+1(N ;·)(5.41)

on mod p modular forms.
(ii) The e¤ect of £ on the canonical FJ expansion fFJ(f) is given by “q d

dq
"; i.e.

by the formula (3.21).

We omit the proof of (ii), which goes along the same lines as in the mod p theory.
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