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ABSTRACT 

Given a totally real field L of degree g, we construct g Hasse invariants 
on Hilbert modular varieties in characteristic p and characterize their di- 
visors. We show that these divisors give the type stratification defined 
by the action of {~L o n  the ap-elementary subgroup. Under certain con- 
ditions, involving special values of zeta functions, the product of these 
Hasse invariants is the reduction of an Eisenstein series of weight p - 1. 

0. I n t r o d u c t i o n  

Moduli  spaces of abelian varieties possess a rich geometric s t ructure  coming from 

the reflection of properties of the abelian varieties by the moduli  points tha t  

parameterize them. This is even more so in positive characteristic where, beside 

the usual images of other  modular  varieties, the Frobenius morphism allows one 

to define several other strata.  Newton, Hodge, and Ekedahl -Oor t  s t ra ta  are 

part icular  examples. Such stratifications, besides furnishing us with (yet to be 

understood)  elements in the Chow ring, are of importance,  say, to Diophantine 

problems, variat ion of zeta functions, congruences between modular  forms and 

special values of L-functions. 

Usually, the definition of a stratification starts  by finding a locally closed prop- 

erty of abelian varieties, in the sense tha t  the set of moduli  points of abelian 

varieties possessing this proper ty  is locally closed in the moduli  space. In the 

case of the stratifications above this is provided by fixing the Newton polygon, 
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the Hodge polygon, and the isomorphism type of the p-torsion subgroup, respec- 

tively. As a rule, the argument that the property is locally closed runs through 

local deformation theory. One is thus interested in having also a global way to 

define such strata. 

In [8] a stratification of Hilbert moduli spaces parameterizing abelian varieties 

with real multiplication by a totally real field L in positive characteristic p was 

defined (under the technical assumptions of principal polarization and p inert 

in L) by means of the representation of OL o n  the Dieudonn6 module of the 

ap-elementary subgroup of the abelian variety. This data is called the t y p e  of 

the abelian variety. The methods were of local deformation theory. 

The first part of this paper documents the definition and properties of this 

stratification when p is any unramified prime, and the polarization module is 

arbitrary. It may be beneficial to point out some nice properties of this stratifi- 

cation: It is composed of regular varieties; the chow classes can be calculated; it 

determines the whole p-torsion subgroup of an abelian variety corresponding to 

a geometric point on the strata as a group scheme with OL action (though the 

relation between the type stratification to the Ekedahl-Oort stratification on the 

Siegel space is yet to be understood); the Newton polygon of the generic point of 

every component of a stratum is given by a simple formula. The type also turns 

out ([5]) to control the fibers of the forgetful morphism from the moduli space 

of abelian varieties with real multiplication and F0(p) level to the "bare" moduli 

space. 

The second part of the paper is concerned with constructing [L : Q] Hilbert 

modular forms in characteristic p, denoted H(j,i), with the following properties: 
Their divisors are reduced and induce the type stratification; their q-expansion is 

one at every cusp; they factorize the Hasse-Witt determinant with respect to the 

0 L action. We therefore call them pa r t i a l  Hasse  invar iants .  We also establish 

a functoriality property of these modular forms that could be formulated as well 

in terms of pullback of the Chern classes. 

In forthcoming papers [6], [7], we show that the relations (H(j,i) - 1) generate 

the kernel of the q-expansion map in characteristic p and apply this, and geomet- 

ric properties of the stratification, to prove optimal congruences for the values of 

~L at negative integers, and to develop the theory of Hilbert modular forms in 

positive characteristic along lines similar to the elliptic case. 

A particular point that merits mentioning is that the modular forms H(j,i) 

are of non-parallel weight, yet not cusp forms, and hence cannot be lifted to 

characteristic zero. The rest of the paper is devoted to discussing when the total 
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Hasse invariant HL,p = 1-[ H(j,i) (the determinant of the Hasse-Witt  matrix) can 

be lifted to characteristic zero. 

1. A s trat i f icat ion  o f  Hi lbert  m o d u l a r  variet ies  

Let L be a totally real field of degree g over Q, with discriminant dL, ring of 

integers 0 L and different ideal ~D L = ~DL/Q. Let CI(L) (resp. Cl(L) +) denote the 

(resp. strict) class group of L, and let hL (resp. hL +) denote its order. The group 

CI(L) + consists of classes of ideals of L with their natural notion of positivity; 

equivalently, of projective, rank 1 OL-modules 34, endowed with a notion of 

positivity. Let A4 + be the positive cone. 

Let S be a scheme. A HBAV over S is a couple, (A >S, t), consisting of an 

abelian scheme A ~S of relative dimension g and a ring injection, t: 0 L r 
End(A/S), such that the following holds: Let (A~A, AriA +) denote the module 

J~A of OL-linear, symmetric homomorphisms from A to A t (the dual abelian 

scheme), with its natural positive cone, AriA +, consisting of the OL-polarizations. 

We assume A | ./~A ~ At" We refer to [1], Section 1 for more details. If 

S = Spec(R), for some ring R, we shall say that (A >S, t) is a HBAV over R. 

Let n _> 3. There exists a fine moduli scheme, Jt4~-----~Spec(Z[n-1]), parame- 

terizing isomorphism classes of HBAV with full level n structure. It is smooth, of 

relative dimension g, over Spec(Z[(ndL)-~]). Denote by ~r: :~----~Ad~ the uni- 

versal object. We let M ~ '  be the scheme over Spec(Z[n-1]), obtained from M ~  

as a quotient by "forgetting the level structure". The schemes 2~t~' and , ~ r  

agree over Spec(Z[(mn)-l]) .  We get, therefore, a scheme .s over Spec(Z). It 

is a coarse moduli space for HBAV. 

The scheme -/~L is a. disjoint union of components, .A~L(O), where a runs over 

Cl(L) +. The scheme M ~  is a disjoint union of components, Jk4~(a, .) ,  where a 

runs over CI(L) + and * is an additional data controlling the level n structure. 

We have J~L (C1)(C) -~ PGL(OL (~ a)+\g) 9, where ~ denotes the upper half plane. 

More precisely, consider the lattice OL @ a -1 in ]R 2g. Every OL-linear symplectic 

pairing on it is of the form 

Ex ((xl, Yl), (x2, Y2)) = TrL/Q ()~(xly2 -- x2yl)), 

for some A C L. It is integral iff A E a:DL -1. Under the analytic uniformization, 

given by associating to z in ~g the HBAV C a/(OL'Z+a-1), Ex induces a Riemann 

form iff )~ E a:DL -1,/k ~ O. Note that under our conventions, the polarization 

module of 3alL(a) is (a~)L -1, (a~)L-1)+). 
Throughout this paper, p denotes a rational prime such that p /[dL. We shall 

denote a field of q elements by 1~q. 
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LEMMA 1.1: Let (A, 5) be a H B A V  over S. There exists r C 34A + such that 

(deg(r = 1. 

Proo[: This follows from A | A,4A TM A t because A @oL J~A represents the 

functor T ~ A(T)  | .MA, and the morphism A | .MA ~= A t is determined 

by a | ~ ~-~ ~(a) for a E A(T) ,  ~ E J~A  and variable scheme T over S. | 

In [8], a stratification of the moduli space of principally polarized abelian 

schemes in characteristic p with real multiplication was defined under the as- 

sumption that p is inert in L. We indicate how to generalize that to any p not 

dividing dL and to arbitrary polarization modules. 

We let F be the minimal finite field of characteristic p such that 

(1) OL | W(F) = ~ W(F), 
crCEmb( OL ,W (~) ) 

where W(F) denotes the infinite Witt  vectors with coordinates in F. Thus, if 

(2) P =  P l " " P r ,  fi = deg(pi), 

then [F: Fp] = l cm( f l , - . . ,  f~). From now on we consider 2M~ as a scheme over 

Spec(F). 

Let 

{ e ( j # ) : l < j _ < r ,  l < i < f j }  

be the idempotents corresponding to equation (1). Thus, in equation (1) an 

element a E On is mapped to (e(j#)a). We may also interpret the e(j,i)'s as 

W(F)-valued characters on OL, and then we denote them by X(j#). 

We write accordingly, 

1 _< j < r, 1 < i < f j }  

for the embeddings of On into W(F), and we assume the indexing is chosen so 

that 

O" 00"( j , i  ) = O ' ( j , i+ l ) ,  Vj, i, 

where a is the Frobenius homomorphism on W(F) and, by definition, (j, f j  + 1) = 

(j, 1). We shall abuse notation and write e(j,i) and X(j,i) also for the corresponding 

objects rood p. 

Let k _D F be a perfect field. Let (A, ~) be a HBAV over k. Let 

a(A) = Ker(Fr: A )A (p)) A Ker(Ver: A ~A(1/P)). 
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It is a characteristic subgroup of order pC, where a = dimk Hom(ap, A). Let D 

denote the contravariant Dieudonn6 module of a(A), and let us denote the indices 

of the characters appearing in the action of (.0 L on  the a-dimensional k-vector 

space D by 

T(A) = (TI(A),...,T~(A)), Tj(A) C_ {(j, i);1 <_ i < f j} .  

That is, X(j#) appears in the action of OL on D iff (j, i) E "rj(A). We remark that  

by [1], Corollaire 2.9, if X(j,i) appears, then it appears with multiplicity 1. We 

call T(A) the t y p e  of A. 

Given a vector T = (T1,...,T~), where 7j C_ {(j,i);1 < i <  fj}, we let Wr 

be the minimal closed subscheme of M ~  (or .A4L) such that  every (A, ~) over 

a perfect field k, such that T(A) contains T (i.e., 7i(A) contains Ti for all i), is 

parameterized by a point of Wr. To ease notation, we shall write W(j#) for Wr, 

when T is the type (~'1,..., T~) with Ts = 0 if S r j and Tj = {(j, i)}. 

Given a pro-representable functor, G, on local artinian k-algebras, with G(k) 
a singleton, we denote by J:G(k) the corresponding formal scheme representing 

it. Recall that a principal quasi-polarization on a p-divisible group, H, is a 

symmetric isomorphism H )H t. Note the following three points: 

�9 Fix (A, t,) over k with some level n structure, which we shall suppress from 

the notation. Let A E MA + with (deg(A),p) = 1 (Lemma 1.1). Consider the 

functor of local deformations of (A, ~) (resp. (A, t, )~); resp. (A, t, (AriA, MA+)))  

into HBAV (resp. polarized HBAV; resp. HBAV with an ordered polarization 

module). Then the natural maps 

$-(A, t, (AriA, MA+)) ) $-(A, t, A) ) ~C(A, t), 

are isomorphisms. 

�9 Let A(p) be the p-divisible group of A. Let i(p): OL )End(A(p)) and 
~(p) be the induced endomorphism structure and principal quasi-polarization on 

A(p), respectively. Let i(p) @ 1: OL | Zp-----+End(A(p)) be the canonical map. 

Consider the functor of local deformation of (A, t,/~) (resp. (A(p),t (p), A(p)); resp. 

(A(p), t(p) @ 1, ~(p))) into polarized HBAV (resp. principally quasi-polarized p- 

divisible groups with real multiplication by (9L; resp. p-divisible groups with 

(.0 L | Zp  action and (_0 L | ZB linear principal quasi-polarization). Then the 

following maps are isomorphisms: 

:TZ(A, t, )~) ~ J:(A(p), t(p), )~(p)) ---+ $'(A(p), t(p) | 1, ~(p)). 
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�9 The decomposition (2) induces a decomposition 

| = 

j=l,.. . ,r 

which, in turn, induces p-divisible groups A j ,  homomorphisms 

~j: W ( F , j )  )End(Aj), 

and principal quasi-polarizations Aj on Aj ,  such that 

A(p)  = A1 x . . .  x A,., 

and under this isomorphism 

L(p)| X'''XL~; A(p)=A1 x-..Ar. 

We have 

)t'(A(p), L(p), A(p)) -~ ~'(A1, tl, A1) • " " " XSpec(k) 9C(Ar, ~r, A~). 

We remark that the first point can be proved using covariant Dieudonn~ theory 

by writing down explicitly the deformation matrices (see, e.g., [8] for such com- 

putations), or by crystalline techniques (see [11], Proposition 1.9).* The second 

point follows from the Serre-Tate Theorem, while the third is purely formal. 

The deformation theory of (Aj ,  ~j, Aj) was studied in detail in [8]. It is easy 

now to draw the following conclusions for A/[~ (and with small modifications for 
ML): 

* The scheme W~ is regular. 

�9 The generic point of every component of Wr has type T. 

�9 The dimension of Wr is g - H ,  where ITI = ~ = 1  ITJl" 

�9 We have W r  N W e = Wrup,  where T U p -= (T1 U P l , - . . ,  Tr U Pr)- 

�9 The subscheme W ~ defined as 

pD'r, p~'r 

is quasi-affine. 

�9 The components of all the WT's have a natural structure of a g -  1 dimensional 

connected colored simplicial complex. 

* It requires, in fact, that p be unramified in L. 
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�9 Let E be the Hodge bundle over A,t~. Let 

W1 = U W(j#) 
l<j<j, l~i~fj 

be the complement of the ordinary locus. Then, in the Chow ring, 

W1 = ( p -  1) 'c l (E) .  

�9 Let (A1, ~1), (A2, t2) be two HBAV's over an algebraically closed field k of 
characteristic p. We have AI[p] TM A2[p] as groups schemes with COL-structure if 

and only if T(A1) = T(A2). 

�9 The p-divisible groups, up to isogeny, are precisely those of the form 

A j, 
j=l , . . . , r  

where Aj is of the form Ge/fj + G(fj_e)/fj or f j  �9 G1/2. The Newton polygons 

will be denoted accordingly: filj,0 < fifj,1 < "" ". Thus, given a HBAV over k, we 

can associate to it an r-tuple of Newton polygons (71,.-. ,Tr); each 7j is equal 
to ~f~,t for an appropriate t depending on j .  

�9 Let 

= S (fJ + 1)/2, f j  odd, 7-j -= {(j, 1 ) , . . . ,  (j, f j )}  A(Tj.) [ max{Ipl: p c ~-j,p spaced}, else 

(p "spaced" means (j, i) E p ~ (j, i+1)  ~ p). The Newton polygon of the generic 

point of every component of W~ is 

(/3S1,~(~1),-.., PS~,~(T~)). 

2. H a s s e  i n v a r i a n t s  

We formulate a condition for a prime p > 2 and a totally real field L: 

C(L ,p )  : ~ c ( 2 - p )  is notp-mtegval. 
We remark that by a theorem of Siegel, ~L(2--p) is a rational number. Further 

comments on this condition are given in Section 3. 

We recall the definition of "a modular form of weight )f'. For more details see 

[10], Section 1.2, 

Fix a ground ring R0, and let X be an algebraic character of the torus 

I loL/z  Gin. A Hilbert modular form of weight X is an h+-tuple of modular 

forms (f~)a, where a runs over ideals forming a set of representatives for CI(L) +. 
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For every a, fa is a rule associating to a triple (A, t, w) - -  defined over an R0- 

algebra R and consisting of a HBAV (A, t) over R and an O i  | R-basis w for 

WA/R, such that (AJA, MA +) is in the class of a - -  an element 

A(A,~,w) E R. 

The element fa(A, t, w) depends only on the R-isomorphism class of (A, t, w) and 

the rule fa commutes with base-change. Furthermore, for every b E (OL | R) • 

fa(A, ~, bw) = x (b ) - l f~ (A ,  ~, w). 

THEOREM 2. ]: Let p be a rational prime which is unramified at L. 

(1) For every (j, i), where 1 <_ j <_ r and 1 < i < fj ,  there exists a Hilbert 
X -1 1.* modular form, H(j,i), over F, of weight xP(j,i_I ) (j,i) and level The divisor of 

H(j#) is W(j,O. 
(2) The q-expansion of H(j,i) at every cusp is 1. 

(3) Let 
f~ 

HL,p = I I  H H(j,i). 
j = l  i=1 

The divisor of HL,p is W1 - -  the complement of the ordinary locus. I f  p > 2, 

and p > 3 f ig  = 1, and f fC(L ,  p) holds, then HL,p is the reduction rood p of an 

Eisenstein series, EL,p, of parallel weight p -  1. 
(4) Let K be a totally real field, let i: L >K be a field injection. Let Af = 

HomoL (OK, Oi). It is a left OL-module and a right OK-module. Let 

(~: M L  ) M K  

be the morphism defned by 

(A, t ) / S  ~+ (A |  ~can)/S, 

where 

for any scheme T 

(3) 

(A | Af)(T)  = A(T)  @oLAf 

~S, and ~ca,~ is the canonical OK action. Then, 

ff2* HK,p = H[LK,; L]. 

Proof: (1) Let (A, ~) be a HBAV over S, where S is an F-scheme. Denote by 

f :  A-----+S the structure map. By [1], Corollaire 2.9, f.f~lA/s is a locally free 

p --1 * Note that in [5] it is stated erroneously that H(j,0 has weight X(j,0 X(j,~+I). 
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OL ~) Os-module of rank 1. This implies that  the usual definition of modular 

forms (e.g. for parallel weight, as sections of det(E) to some power) agrees with the 

definition above. It is therefore enough to define H(j,i) on quadruples (A, ~, a, w), 

over an F-algebra R, where c~ is a level n structure, and w is a generator for the 

free OL ~ R module f .~lA/R,  where f :  A---+Spec(R) is the structural morphism. 
It will be clear that  the definition does not depend on ~. 

Choose an OL-linear polarization ,~ on (A, ~) of degree prime to p (Lemma 1.1). 

The pairing induced by ~, 

H ~ R ( A / R  ) x H ~ R ( A / R ) - - - ~ R  , 

is a perfect alternating pairing. The elements, 

w(j#) = e(j,i)w, l <_ j <_ r, l < i < f j ,  

1 form a basis for f*~A/R" Let {~(j#)} be the basis for R l f * O n  dual to the basis 
{w(j#) }. Let 

H(j#)(A,  L, a, w) - Fr(~(j,i_l)) 
~l(j#) 

I.e., H(j#)(A, ~, (~, w) is the unique element of R, such that  

Fr0?(j#_~)) = H(j # ) ( A, ~, o~, ~ ) . ~?(j,i) . 

Now, H(j#)(A,L,c~,w) = 0 iff ( j , i )  c Tj(A).  Indeed, if we let 7) = H~R(A ) de- 

note the contravariant Dieudonn6 module of A[p] then the Dieudonn6 module of 
c~(A) is 11) = 7)/(F:D + V:D) and its ( j , i )  component D(j,i) is 7)( j#) /(FT)(j#_l)  + 

VT)(j#+I) ). Let ~(j#-l) denote any lift of ~?(j,i-1) to 7). Since VT:)(j,i+l ) is gen- 
erated by w(j#) we get that D(j#) is non-zero if and only if FT)(j#_I) , which is 

spanned by F~(j,i_l) , is contained in VT)(j,i+I). That is, if and only if FTj(j,i_I) -- 
0. 

One verifies using deformation theory that H(j#) vanishes to a first order along 

W(j#) (see [8], Proof of Theorem 2.3.4, for a similar claim). 

Let s E (OL | R)  x. Using the decomposition, 

oL |  R = |  F) | R = R, 

(J#) 

and denoting the image of s by (X(j#)(s)), we get that the basis for f,121A/R 
obtained from s~ is 

e(j,~)s~ = X(j,~)(s)x(j#), 1 < j <_ r, 1 < i < ft" 
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The dual basis is therefore 

8 -1 X(j,i)( ) ~(j,i), l ~ j < r, l < i < fj .  

Thus, we find 

Fr(x(j,i-1)(8)-l?~(j,i-1)) p -1  Fr(~(J , i -1) )  
= (X(j , i_l)X(j , i ) ) (8  -1  ) x 

X(j,i) (s)- l~(j,~) 7l(j,~) 

That is, H(j,i ) is a modular form of weight X(j,i-1)X(j,i).P -1 
Note that  H(j,i) is independent of the polarization A we have chosen. Indeed, 

any other choice is of the form A/m for some m E L prime to p. The basis dual 

to e(j,i)w is then m~?(j#) and one checks that Fr(m~?(j,i)) = mFr(~(j,i)). 
(2) To compute the q-expansion of H(j,i), we use ga tz  functions as in [9], [12] 

- -  called there "generalized p-adic modular functions". (This "detour", though 

not necessary, will give us a finer result.) Recall that the domain of a Katz 

function is, in our case, quadruples (A, t, a, triv), over an F-algebra R, where 

(A, t) is a HBAV over R, a is a level n structure, and triv is an isomorphism of 

formal groups 

triv: A >G~'~ /I~ @ ~)L -1. 

The invariant differentials on Gmm/R | 7)L -1 are canonically ( R ~ )  | OL, and 

wt~v = triv*(d~qq | 1) 

is a generator for the free (95 | R-module f .~lA/n. 

Every modular form f on A/P yields a Katz function ] by the rule L 

](A,  t, a, triv) = f (A ,  t, a, wt~iv). 

One may construct Tate objects Tb over SpecZ((b; S)) for every b E Cl(L) +, 
which lie on the component J~L( / : )L  b - l )  (see [10], Section 1.1, for the construc- 

tion and notation). Recall that Tb is constructed as the rigid analytic quotient 

of Gm| -1 by a lattice of periods q(b), where _q: b---~Gm |  -1 is a group 

homomorphism. Thus, canonically, 

A 

The q-expansion at Tb of H(j,i), and of the Katz function it defines, H(j#), are 

the same, and both are obtained by evaluating at Tb with its canonical trivial- 

ization. Note, therefore, that  it is enough to prove that the q-expansion of H(j,i) 
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A 

for every component of Ad~ is 1 at one cusp. Since then H(j,i ) is the constant 

function 1, thus has q-expansion 1 at every cusp. That is why we are content 

to specify just one Tate object for every component. It is enough, therefore, to 

calculate the value of H(j,i) at Tb, and we may certainly work over the perfection, 

R, of Fp((b; S)). 

Working over R has the virtue that the Verschiebung morphism, 

Ver: f ,  alA/l~----+ f ,  f21A/R, 

is well defined. Similarly for H ~ R ( A / R  ). 

For every x, y e H ~ R ( A / R  ) we have 

<Fr(x), y> = <x, Ver(y)> p. 

Under the isomorphism 

we get identifications of the tangent and cotangent spaces: 

tT~ ---- tit , | ~ ) L -  1, tYF~ = tit p @ O L : R (~ O L  

(using the canonical differential dq on #p = Spec(R[q]/(q p - 1)) to identify t* q t*p 
with R). Under these identifications, we have 

Ver: R | O L - - + R  | O n ,  Ver(r | a) = r 1/p | a. 

We conclude that  

Ver(  e(j,i)wtriv ) = e(j , i_ l )~Otriv. 

Let {~(j,i) } be the dual basis to {e(j#)wtri. }. Then 

H(j#) (Tb, ~can, a, triv) = (e(j,i)wtriv , Fr(r/(d,/_ 1))) 

= (Ver(e(j,i)wtri~), .l(j,{_l)) p 

= <e(j,i-1)wtriv, ~?(j,i-1)) p 

=i .  

(3) The assertion about the divisor of HL,B follows immediately from part (1). 

It is also immediate that  HL,p is a modular form of parallel weight p - 1. We 

proceed to construct the required Eisenstein series. 

We recall the construction of an Eisenstein series Ea on J~L(a)(C), for every 

ideal class a of Cl(L) +, having p-integrM q-expansion congruent to 1 (mod p) 

at one  cusp of ~4L(a)(C). We then put 

EL,p = (Eo)~ec,(L)+. 
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The q-expansion principle guarantees that EL,p is defined o v e r  J~L X Spec(Qp). 
Moreover, since the q-expansion of HL,p is one at every cusp, it follows that 

at some cusp of .h4L(a), for every a, EL,p (mod p) and HL,p have the same 

expansion; therefore, they are equal (see [4], Chapter X, Section 3, for properties 

of the q-expansion). 

Fix a E Cl(L) +. Let B E Cl(L) and b be an ideal representing B. Following 

the notation of [4], Chapter 1.6, we put 

Gk,B(z) = N(b) k E N(c~z +/~)-k,  
(a,~)~baxb 

where N denotes the norm from L to Q and where the summation is extended 

over non-associated points (cq/~) r (0, 0) in ba x b. We remark that Gk,B is 

independent of the choice of b but depends on the class a, which we suppress 

from the notation. 

According to 1.c., Proposition (6.4) and the remarks on p. 21 there, Gk,B is an 

Eisenstein series of weight k on SL(OL @ a) (in fact on GL(OL (~ a)+), for k > 2 

and also for k = 2 if g > 1. Furthermore, its q-expansion at the cusp "ice" is 

(2~i)kg rI1/2-k (2-ar k ) +  E . . . .  1~. , 2~iT~(,~)~ ~- -- Crk-l,DcBI, l,P)a ML)e ) Gk 'B ( k -  1)!g ~L 

where the summation is over all totally positive t: C al)L -1, and where ~Z)LB is 

the partial zeta function of the ideal class/)LB (see 1.c. for more details). Let 

Ek,a = 2g~L(1 -- k h-1 (-k-- 1)!g rlk-1/2 " (2~i)~g "~L �9 ~ Gk,B. 
BeCl(L) 

The q-expansion of Ek,a is given by 

(4) 1 + 2g~L(1 -- k) -1 E ak-l((~)a-ll)L)e2~iT~(vz)' 
v 

where the summation is over all totally positive v E al)L -1, and for every integral 

ideal b, 

ak_,(b) = E N(c)k-1 
clb 

(the summation is over integral ideals c). Let 

(5) ZL,p = (Ep-l,,,)a. 

(4) We refer to [3] for the proof that A | Af is indeed an abelian scheme 

with real multiplication. One easily verifies that 

[A@OL]V" : [A ~0 L .a['; [*A~OLJkf ~ tSA | OK" 
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In particular, given a triple (A, t, w) over S, consisting of a HBAV (A, ~) and an 

OL Q | co for t~4 , we get a triple 

(A | N, *ca., co | I), 

and co | 1 is an OK @ | for t*A| Since it is clear from the definition 

of A | J~f as a functor that the operation | commutes with base-change 

and is functorial in A, we conclude that the pullback r of a modular form is a 

well defined modular form. Essentially the formula we want to prove is just the 

behavior of the determinant of a "linear" operator under extension of scalars. 

We give a more elaborate argument, though, which yields finer information (see 

equation (6)), even for L = K and L >K an automorphism. 

We introduce the following notation. Let 

P = P l " " P , ,  f j = d e g ( p j )  

be the decomposition of p in L. Let 

i(pj) = ~j,1."gaj,ej; fj,, = deg(pj,t) 

be the decomposition of i(pj) in K.  Then, the embeddings 

o n  ~ WOF) 

(F large enough) are parameterized by indices (j, t, i) where 1 _< j _< r, where 

1 < t < gj and where 1 < i < fj,t. For a fixed (j, t) we may regard the indices 

i as elements of Z/ f j , tZ  on which Frobenius acts by addition of 1. Then the 

embeddings of OL into W(F) which are parameterized by (j, s), where 1 < s < f j ,  
corresponds to the cosets of the subgroup generated by f j , t / fy  in Z/ f j , tZ .  

With this notation, the partial Hasse invariants for K are denoted by H(j,t,i ). 
We claim that 

(6) (~* H(zt,i) = H(j,i). 

Let e(j,i) be the idempotents for the decomposition of OL | W(F) and e(j,t,i ) be 

those of OK | W(F). Under the natural inclusion 

o L ,  w(F) ~ oK | w(~),  

we have e(j,i) = e(j,l,i) + -. .  + e(j,ej #). 

Abusing notation, we write 

H(j,i)(A, ~, co) = e(j,i_l)(Ver(w)/co) p. 
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Similarly, 

H(j,t,i) ( A | Lcan, W | 1) ---- e(j,t,i_ l ) (Ver(w | 1)Ix | 1) p. 

But the inclusion 

is Verschiebung equivariant, and the formula (6) follows. | 

COROLLARY 2.2: We have W1 -- (p - 1) �9 cl(E). More generally, if we let E(j#) 

denote the line bundle which is the (j, i) component of the Hodge bundle and 

A(j,i) the "tautological" Chern class it de/ines, then W(j,i) = pA(j#-I) - A(j#). 

Remarks: (1) For g = 1 the theorem reduces to a theorem of Deligne, where 

the condition C(Q, p) follows from properties of Bernoulli numbers (see below). 

(2) One may call H(j,i) "the partial (j, i) Hasse invariant" (it is an entry of 

the Hasse-Witt matrix in a judiciously chosen basis) and HL,p " t h e  Hasse  

i nva r i an t "  (it is the determinant of the Hasse-Witt matrix). 

3. R e m a r k s  on cond i t i on  C(L, p) 

We assume, to simplify notation, that p > 2. 
1. One knows that if gk ~ 0 (mod p - 1) then 

while if gk ~ 0 

(7) 

valp(~L(1 -- k)) > - 1  - valp(gk), k > 1, k �9 N, 

(rood p -  1), valp(~L(1 -- k)) > 0 (see [13] p. 64).* In particular,  

valp(r  - p))  > - 1  - va lA g) .  

2. Estimates for the denominator of ~L(1 -- 2m), 

wm(L) r  - 2,n)  c Z, 

which were conjectured by Serre and follow from the work of [2] (see [13], Section 

3.7 and [17] p. 73-75 and Afterword), may suggest that often valp(~L(2--p)) <_ --1 

(Note: plW(p_l)/2). 
3. Let p _> 3 and prime to dL. For L/Q an abelian totally real field of degree 

g we may reformulate condition C(L, p) as follows (much of what we say holds 

more generally): We have 

(8) ~L(S) = H L(s,x),  
xex 

* See [6] for optimal congruences and bounds. 
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where X is the group of Dirichlet characters defining L. See [16], Theorem 4.3. 

For e v e r y x a n d n > l , n - 0  ( m o d p - 1 ) , w e h a v e  

(9) Lp(1 - n, X) = (1 - X(p)pn-1)L(1 - n, X). 

See 1.c.p. 57 for this equality and the notation used. Furthermore, L(-, 1) = ~(} 

and by the von-Staudt-Clausen Theorem (1.c., Theorem 5.10), we have 

(lO) valp(4Q(2 - p)) ~-- -1 .  

(In particular C(Q, p) always holds.) We deduce that 

(11) valp((n(2 -- p)) = --1 + E valp(Lp(2 - p, X)), 
Xr 

and hence 

(12) C(L, p) holds r VX E X, X # 1, we have valp(Lp(2 - p ,  X)) = 0, 

because Lp(2 - p, X) is p-integral by 1.c., Corollary 5.13 and furthermore those 

values lie in an unramified extension of Qp. By the same Corollary 

(13) Lp(2 - p, X) - Lp(1, X) (mod p). 

Therefore, C(L, p) is equivalent to Lp(1, X) being a p-adic unit for every X c X 

such that X ~ 1. Theorem 5.24 of 1.c. says 

(14) 1-I Lp( I ' x ) :  I I  ( 1 -  X~))  2g-lhLRp 
xEX,x~:I xcX,x~:I V/~L ' 

where Rp is the p-adic regulator of L. Note that X(P) ~ 0 for p unramified (1.c., 

Corollary 3.6). Thus, for (p, 2dLhL) = 1, we have C(L, p) fails if and only if 
valp(Rp) > g - 1. Using Frobenius's decomposition of the determinant one can 
get yet more precise conditions. 

In particular, for L a quadratic field with fundamental unit e the condition 

C(L, p) holds if and only if val(logp(~)) -- 1. As Kisilevsky pointed out, this is a 

"Wieferich's criterion" phenomena and by [15] (which uses the ABC conjecture) 

expected to happen infinitely often. In fact, one expects it to fail 1/p of the 

times. 

In the following table we give some numerical data supporting this heuristic. 

There are 1029 primes / between i and 10,000 such that the class number of 

Q(x/~) is one, and there are 832 such in the range 10,000-20,000. For every 
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prime p = 3, 5, 7, 11, 13 we give below the number of primes / such that the 

condition C(Q(v~),  p) fails and the class number is one, in the range 1 - 10,000 

and 10,000 - 20,000. We then let a and fl be the quotient of this number by the 

1 . 832 respectively) A- up to 2 decimal places. expected number (3 " 1029 and 

p 1 - 10000 a 10000-  20000 fl 

3 312 0.91 251 0.91 
5 196 0.95 170 1.02 
7 165 1.12 116 0.98 

11 92 0.98 67 0.89 
13 66 0.83 65 1.02 

We also calculated the same data for p = 11 and / running over the primes 

between 1 and 100,000. There are 7647 such ~'s such that Q(v~) has class number 

one. For 629/ ' s  condition C(Q(x/~), p) fails. The ratio between this number and 

the expected number 7647/11 is 0.90. 

4. We observe that valp((L(1--r(p--1))) < 0 for r a positive, prime top,  integer, 

if and only if condition C (L, p) holds. Call temporarily valp ((L (1 - r (p - 1))) < 0 

condition C(L, p, r). 

Using (8), (9) and that for every such r one has valp(4Q(1 - r ( p -  1))) = - 1  (as 

follows from the yon Staudt-Clausen Theorem), we get, using an equation similar 

to (11), that  C(L,  p, r) holds if and only if for every non-trivial )C E X, the p-adic 

integer Lp(1 - r(p - 1)) is a p-adic unit. But by [16], Corollary 5.13, this holds if 

and only if Lp(1, X) is a p-adic unit and hence is equivalent to condition C(L, p). 

Our interest in condition C(L, p) stems from the following 

PROPOSITION 3.1: Assmne that L has class number one. Then, for every positive 

prime to p integer r, the modular form in characteristic p, H~,p can be lifted to 

an Eisenstein series in characteristic 0 i f  and only i f  condition C(L, p) holds. 

Remarks: Note that for sufficiently divisible r, the modular form H~,p lifts to 

some modular form in characteristic zero. This follows from the ampleness of the 

arithmetic sheaf of modular forms. 

Another observation is that for r =pn ro  we have va lp ( (Q(1- r (p -1 ) ) )  _< - 1 - n  

and hence valp((L(1 -- r(p -- 1))) < 0 for n >> 0. For general L this is Leopoldt's 

conjecture. 

Proof." The number of cusps is equal to the class number hL. Thus, for every r, 

Er(p-1),v~ spans the one-dimensional space of modular forms of weight r(p - 1) 

on the component of the moduli space corresponding to DL. 
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Using equat ion (4), we find 

(15) 
2g ~ ( Z N(r  e2~riTr(vz)" 

Er(p-1),l~L = 1-~ ~/(1 - r(p -- 1)) 0 
uE L; >> r 

Note  t ha t  the coefficient of e 2riTr(z) is 29 CL(1-r(p-1)) �9 
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