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This paper is about Hilbert modular forms on certain Hilbert modular varieties
associated with a totally real field L. Let p be unramified in L. We reduce to the
inert case and consider modular forms modulo pm. We study the ideal of modular
forms with q-expansion equal to zero modulo pm, find canonical elements in it, and
obtain as a corollary the congruences for the values of the zeta function of L at
negative integers. Our methods are geometric and also have applications to lifting
of Hilbert modular forms and compactification of certain modular varieties.
� 2001 Academic Press

1. INTRODUCTION

1.1. The contents of this paper. The subject of this paper is the study of
Hilbert modular forms on Hilbert modular varieties and some applications.
The modular varieties are those parameterizing abelian varieties of dimen-
sion g with a given action of the ring of integers of a totally real field L of
degree g over Q and certain level structures, some indigenous to charac-
teristic p. We shall be particularly interested in the case where the domain
of the modular form is the modular variety modulo pm. This allows us to
study q-expansions modulo pm.

The Hilbert modular forms we consider are modular forms in the sense
of Katz [12]. Their weights are given by characters of a certain algebraic
group over OL , which is a torus over OL[disc&1

L ]. Over the complex
numbers this just boils down to discussing Hilbert modular forms of
possibly non-parallel weight.

We assume a priori that the prime p we are dealing with is non-ramified
in L. However, one immediately reduces to the case where the prime is
inert. This is a well known principle and we refer the reader to [5] to see
how this works. Assume, henceforth, that p is inert.
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Denote the graded ring of Hilbert modular forms of +N-level
((N, p)=1), defined over Wm(F), by �/ # X M(Wm(F), /, +N). We refer the
reader to Section 1.2 for precise definitions. In brief: Wm(F) is isomorphic
to OL�( pm); a +N -level means an OL-equivariant embedding of D&1

L �+N

into the abelian variety.
The main question we ask is: what can one say on the kernel of the

q-expansion map on �/ # X M(Wm(F), /, +N)?
While in characteristic 0 the kernel is trivial, the situation is different in

characteristic p. A well-known theorem of P. Swinnerton-Dyer asserts that
for g=1 and m=1, the kernel is generated by Ep&1&1, where Ep&1 is an
Eisenstein series of weight p&1 (see (2.21) for the definition of Ek for any
L), and a well-known theorem of P. Deligne asserts that Ep&1 modulo p
is the Hasse invariant.

Our results are a generalization of these theorems for general totally real
fields and any m. One of the psychological shifts one has to make is to
completely abandon the method of obtaining relations by reducing from
characteristic zero and to work solely modulo pm. Indeed, the question of
whether or not E( p&1) pr&1 belongs to this kernel depends, for a given r,
on the field (and need not hold), and for all r>>0 is equivalent to
Leopoldt's conjecture.

For m=1, that is, modulo p, our results are a direct and precise analog
of the above theorems. The complement of the ordinary locus was studied
by F. Oort and the author in [7]. It turns out that it canonically decom-
poses as a union � g

i=1 W[i] (see Section 1.2).

Theorem 1 (Theorem 2.1). Let p be inert in L. There exist Hilbert
modular forms h1 , ..., hg , over F, of weights / p

g /&1
1 , / p

1 /&1
2 , ..., / p

g&1 /&1
g

respectively (hi being of weight / p
i&1 /&1

i ), such that

(hi)=W[i] .

(In particular, the divisor of hi is reduced.) The q-expansion of hi at every
cusp of M*(F, +N) is 1. Let h=h1 } } } hg . Then h is a modular form of weight
Norm p&1. It has q-expansion equal to 1 at every standard cusp and its
divisor is reduced, equal to the complement of the ordinary locus.

We remark that h is up to a sign the Hasse invariant, i.e., the determi-
nant of the Hasse-Witt matrix, and that if g>1 the hi 's never lift to charac-
teristic zero!

We then prove (compare Theorem 2.3)

Theorem 2. Let p be inert in L. The kernel of the q-expansion map
modulo p is the ideal generated by [h1&1, ..., hg&1].
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Regarding the situation modulo pm, our results are less complete. Let Im

be the kernel of the q-expansion map modulo pm. We are able to identify
the quotient �/ # X M(Wm(F), /, +N)�Im and find some canonical elements
in Im that are a generalization of the hi 's. See Theorem 3.8. After adding
level structure one can determine the kernel of the q-expansion map
modulo pm completely. See Proposition 3.12.

We provide several applications. One is to construct an explicit compac-
tification of Hilbert modular varieties with +p-level, which is non-singular
in codimension one. See Theorem 2.9. A second application is to show that
there exists a notion of filtration for non-parallel modular forms.

Another application is classical. Let `L be the Dedekind zeta function of
L. Recall that by a theorem of C. L. Siegel the values of `L(1&k), for k�2
an integer, are rational numbers and are equal to zero if k is odd. From
a modern perspective this is quite immediate. There exists an Eisenstein
series Ek with rational Fourier coefficients and constant coefficient
2&g`L(1&k). One considers the modular form of weight k given by
Ek&E _

k for an automorphism _. It turns out that this ``rational influence''
of the higher coefficients on the constant coefficient can be refined to an
``integral influence''. This was proved and developed in the case g=1 by
J.-P. Serre [17], and in general by P. Deligne and K. Ribet in [4], [16].
In truth, our methods are not that far from Deligne-Ribet's methods [4],
[16] (who, in turn, follow ideas of N. Katz [9�12] and J.-P. Serre [17]),
but our approach is more geometric and is based on [7], [5]. The conclu-
sion of the congruences is clearly in ``Serre's style''.

Corollary 1 (Corollary 3.11). Let p be inert in L. Let k�2.

(1) Let p{2; if k#0 (mod p&1) then

valp(`L(1&k))� &1&valp(k),

and `L(1&k) is p-integral if k�0 (mod p&1).

(2) If p=2, then

val2(`L(1&k))�g&2&val2(k).

Corollary 2 (Corollary 3.15). Let p be inert in L. Let k, k$�2 and
k#k$ (mod ( p&1) pm).

(1) If k�0 (mod p&1) then

(1& p g(k&1)) `L(1&k)#(1&p g(k$&1)) `L(1&k$) (mod pm+1).
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(2) If k#0 (mod p&1) but p{2, then

(1& p g(k&1)) `L(1&k)#(1& p g(k$&1)) `L(1&k$) (mod pm&1&valp(k } k$)).

(3) If p=2 then

(1&2 g(k&1)) `L(1&k)#(1&2 g(k$&1)) `L(1&k$)

(mod 2m+ g&2&val2(k } k$)).

The derivation of the congruences rests on the following Criterion 3.10:
``Let �/ f/ # Im . Then there exist a/ in some Wm(F)-algebra such that

�/ a//(u)#0 (mod pm) for all u # (OL �( pm))_ and a1 = f1 .''
It is interesting to note that this criterion allows an inverse in some

sense. Given such polynomial relations one obtains relations between
values of zeta functions, provided certain restrictions are satisfied.

1.2. Definitions and notation. Let L be a totally real field of degree g
over Q. Let OL be its ring of integers, DL the different ideal and dL the dis-
criminant. Let c be a fractional ideal of L. Let p a rational prime that is
inert in L. Let F be a fixed field of p g elements. Let W(F) be the ring of
infinite Witt vectors over F and _ its Frobenius automorphism.

All schemes in this paper are over Z[d &1
L ].

v A HBAS (Hilbert-Blumenthal abelian scheme) over S is a triple

A
�
=(A, @, *) (1.1)

consisting of an abelian scheme ? : A � S, an embedding of rings
@ : OL

/�EndS(A), a polarization * : (MA , M +
A ) � (c, c+) identifying the

OL-module MA of symmetric homomorphisms from A to its dual with c

such that the cone of polarizations M +
A is mapped to c+. Furthermore, we

require that t*A�S be a locally free OL �OS -module of rank 1. In particular,
the relative dimension of A is g. Here tA�S stands for the locally free sheaf
of OS-modules of rank g given by Lie(A�S), and t*A�S=s*01

A�S , where
s : S � A is the identity section, is the dual of tA�S . We shall employ this
notation for a general group scheme ? : G � S. If ? is proper then also
t*G�S=?

*
01

G�S .
By a non-vanishing differential on a HBAS A

�
, we mean an OL �OS basis

to t*A�S . Every HBAS possesses a non-vanishing differential Zariski locally
on the base.

v A +N-level structure on a HBAS is a closed immersion of S-group
schemes,

D&1
L �Z +N

/�A, (1.2)
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equivariant for the OL -action. Here OL acts canonically on D&1
L �Z +N from the

left. If p | N this implies that A is ordinary at every fiber of characteristic p.

v Let T be the split torus over W(F) associating to a W(F)-algebra
R the group

T(R)=(OL �Z R)_. (1.3)

Let [_1 , ..., _g] be the embeddings of L into W(F), ordered cyclically with
respect to the Frobenius automorphism _ of W(F) : _ b _i=_i+1 (the sub-
scripts read mod. g). Once we fix a choice of _1 , we have a canonical
isomorphism

OL �ZW(F)=�
g

i=1

W(F). (1.4)

That gives a canonical isomorphism T=G g
m and, in particular, a canonical

isomorphism

T(R)=�
g

i=1

R_, R # W(F)&Alg. (1.5)

We let /1 , ..., /g denote the projections of T on its g components.

v Let X be the group of characters of T. It is the free abelian group
on /1 , ..., /g . We write X multiplicatively:

X=[/r1
1 } } } / rg

g : ri # Z]. (1.6)

It is a principal homogeneous space for the group Z[Z�gZ]. We denote by
1 the trivial character and by ``Norm'' the product /1 } } } /g .

Let X(1) be the subgroup of X generated by the elements / p
i /&1

i+1 :

X(1)=(/ p
1 /&1

2 , / p
2 /&1

3 , ..., / p
g /&1

1 ). (1.7)

It is the subgroup of X consisting of all characters trivial on (OL �( p))_ via

(OL �( p))_/�T(F)=�
g

i=1

F_. (1.8)

Similarly, we let X(m) be the subgroup of X consisting of all characters
trivial on (OL �( pm))_. See Section 3.2.

v Let B be a W(F)-algebra. Let / # X. A HMF (Hilbert modular
form) over B, of weight /, and +N-level is a rule,

(A
�
, ;, |)�R [ f ((A

�
, ;, |)�R) # R, (1.9)
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associating to a HBAS A
�

over a B-algebra R, endowed with a +N -level ;
and a non-vanishing differential |, an element f ((A

�
, ;, |)�R) of R. One

requires that f ((A
�
, ;, |)�R) depends only on the R-isomorphism class of

(A
�
, ;, |), commutes with base-change, and satisfies

f ((A
�
, ;, :&1|)�R)=/(:) f ((A

�
, ;, |)�R), \: # (OL �R)_. (1.10)

See [12, Sect. 1.2]. We let M(B, /, +N) denote the B-module of HMFs over
B, of weight / and +N -level.

v In [7], a stratification of Hilbert modular varieties in characteristic
p was obtained by means of a type, assuming p is inert and principal
polarization. (In [5], the reader can find how to define this stratification
under less restrictions.) We recall that for every HBAS A

�
over a perfect

field k containing F there is associated a type {(A
�
), which is a subset of

[1, ..., g]. It simply encodes the structure of the Dieudonne� module of the
:-group of A

�
, :(A

�
), as an OL �k-module. For k a perfect field this :-group

is Ker(F ) & Ker(Ver). In this case, the Dieudonne� module D(:(A)) of :(A
�
)

is a k-vector space, of dimension between 0 and g, on which OL �k acts.
As D(:(A)) is contained in the Dieudonne� module of the kernel of
Frobenius, i.e., in the relative cotangent space, it follows that D(:(A)) is a
sub-sum of �g

i=1 k=OL �k. The type {(A) is defined by the identity

D(:(A))= �
i # {(A)

k. (1.11)

For every subset { of [1, ..., g], one lets W{ be the closed reduced sub-
scheme of the moduli space, universal for the property ``the type contains
{''. It has codimension |{|. We have W{ & W_=W{ _ _ . For a rigid level
structure, W{ is regular.

Lemma 1.1. Let N�4. The moduli problem of HBAS with +N-level over
Z[d &1

L ]-schemes is rigid.

Proof. Let A
�

be a HBAS. Let D be the centralizer of L in End(A)�Q.
It is known that D is either L, a CM field such that D+=L, or a quater-
nion algebra over L that is ramified everywhere at �. See [2], Lemma 6.

Let OD=D & End(A
�
). If ! # OD is an automorphism of A preserving the

polarization, then !!*=1, where V is the unique positive involution of D.
Hence, ! is of finite order. It follows that the field L(!) is either L, or a CM
field whose totally real subfield is L, and that ! is a root of unity of order
n. The case of L(!)=L is just the case of !=\1 and is easily dispensed
with. We assume that L(!){L. Hence, [L(!) : Q]=2g. Equivalently,
1<,(n), ,(n) | 2g and L & Q(!)=Q(!)+.
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If ! preserves a +N -level structure, it follows that N g | deg(1&!). Hence,
n is a prime power. Say n=lr, l a prime. Then deg(1&!)=l2g�,(n). Since
,(n)>1, this is divisible by a g-th power if and only if ,(n)=2. On the
other hand, ,(n)=lr&1(l&1). This implies r=1 and l=3, or r=2 and
l=2. Both imply N<4. K

v Let B be a W(F)-algebra. We let M (B, +N) be the moduli space
over Spec(B) of HBAS with +N -level. It is the base change to Spec(B) of
M (W(F), +N). We let M*(B, +N) denote its minimal Satake compactifica-
tion. We let M (B, +N)ord be the ordinary locus of M (B, +N)��the base
change of M (W(F), +N) from which the non-ordinary locus of M (F, +N)
was deleted. We let M*(B, +N)ord be the ordinary locus of M*(B, +N).
Note that if p | N we have M (B, +N)=M (B, +N)ord and M*(B, +N)=
M*(B, +N)ord. The morphism M (B, +N)ord � M*(B, +N)ord is an open
immersion whose complement consists of finitely many sections over
Spec(B)��the cusps.

For every (N1 , N2)=1, with N1�4, N2 a power of p, and p nilpotent in
B, the map

M (B, +N1N2
)ord � M (B, +N1

)ord (1.12)

is an e� tale Galois covering with Galois group canonically isomorphic to
(OL �(N2))_ and M*(B, +N1

)ord is the quotient of M*(B, +N1N2
)ord by the

action of (OL�(N2))_.

v Let A be a commutative ring with 1. Let M, M$ be finitely
generated free abelian groups, N=Hom(M, Z) and N$=Hom(M$, Z). Let
Gm=Spec(A[q, q&1]). We consider the torus

G(M ) :=Spec(A[M])

=Spec(A[xm : m # M]�(x0&1, xmxm$&xm+m$ \m, m$ # M)). (1.13)

As a functor on schemes over A we may identify it with the functor
N�Gm�A , where

(N�Gm�A)(R) :=N�Z R_, R # A&Alg. (1.14)

One verifies that

Lie(G(M)�A)=N�Lie(Gm �A)=N�A } q
�
�q

, (1.15)

and hence,

t*G(M )�A=M�t*Gm �A=M�A }
dq
q

. (1.16)
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See [1], Expose� II. In the last isomorphism m�a } dq
q corresponds to

ax&mdxm.
Let , : M � M$ be a homomorphism. It induces a homomorphism of

group schemes 8 : G(M$) � G(M ), whose effect on functions is xm [ x,(m).
The induced map

8* : t*G(M )�A � t*G(M$)�A (1.17)

is given, innocently enough, by (dxm�xm) [ (dx,(m)�x,(m)). Alternately,
m�a } dq

q [ ,(m)�a } dq
q .

Consider now the case M=M$=OL and ,=[:], the map of multiplica-
tion by an element : # OL . That is, we consider the group scheme
D&1

L �Gm over A, which is the torus

Spec(A[OL])=Spec(A[xm : m # OL]�(x0&1, xmxm$&xm+m$ \m, m$ # OL)).
(1.18)

Thus, [:] acts on functions by xm [ x:m. The identification of t*DL
&1

�Gm �A

with OL �A } dq
q agrees with the action of OL . In particular, the differential

1�
dq
q generates t*DL

&1
�Gm �A as an OL �A-module.

Let N be prime to p. Given a HBAS with +Npn -level, say (A
�
, ;N_;p n),

we define

[:](A
�
, ;N_;pn)=(A

�
, ;N_(;pn b [:])). (1.19)

We let (OL�( pn))_ act on functions f on M (B, +Npn) by

([:] f )(A
�
, ;N_;pn)= f ([:](A

�
, ;N_;pn)). (1.20)

2. MOD p

Let N�4 and prime to p. Recall that M*(B, +N) denotes the base
change to B of the whole moduli space of HBAS with +N -level compactified
at infinity. For B an F-algebra, we let W[i] be the closed reduced sub-
scheme of M*(B, +N) where the type contains i. See above and [7] for
more details.

Theorem 2.1. There exist HMFs h1 , ..., hg , over F, of weights / p
g /&1

1 ,
/ p

1 /&1
2 , ..., / p

g&1 /&1
g respectively (hi being of weight / p

i&1 /&1
i ), such that

(hi)=W[i] . (2.1)
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(In particular, the divisor of hi is reduced.) The q-expansion of hi at every
standard cusp of M*(F, +N) is 1. Let h=h1 } } } hg . Then h is a modular form
of weight Norm p&1. It has q-expansion equal to 1 at every cusp and its
divisor is reduced, equal to the complement of the ordinary locus.

We refer the reader to [5] for complete details and discussion of the
partial Hasse invariants hi . For completeness, we sketch the proof of the
theorem. The following lemma follows immediately from the discussion in
[7].

Lemma 2.2. Let A
�

be a HBAS over a perfect field k containing F.
Assume that A

�
is not ordinary. Then the p-divisible group A

�
( p) of A

�
is local

and a universal display over Spec(k[[t1 , ..., tg]]) for its infinitesimal defor-
mations as a HBAS is given by

8=\A+TC
C

B+TD
D + . (2.2)

Here A, B, C and D are g_g matrices that are Teichmu� ller lifts to
W(k[[t1 , ..., tg]]) of the display 80=( A (mod p)

C (mod p)
B (mod p)
D (mod p)) of A

�
, and can be

chosen to be of the form

a1

A=\a2 + (2.3). . .

ag

(Similarly for B, C, D.) The matrix T is diagonal, with diagonal elements
T1 , ..., Tg , where Ti is the Teichmu� ller lift of ti .

Let

e1 , ..., eg (2.4)

be the idempotents of OL �F. Given (X
�
, |) �R we get a basis [e1|, ..., eg |]

for t*X�R . Let ['1 , ..., 'g] be the basis of tX�R dual to that basis. Let F be the
Frobenius morphism. It is induced by a choice of prime-to-p OL -polariza-
tion that identifies tX�R with H 1(X, OX). Put

hi ((X
�
, |))=F'i&1 �'i . (2.5)

One verifies that indeed F'i&1 is a multiple of 'i and that hi is a modular
form of weight / p

i&1 /&1
i . See [5]. Moreover, if R=k is a perfect field, by
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the theory of displays the matrix A+TC modulo p gives the action of
Frobenius on the tangent space of the universal local deformation of X

�
.

One finds that ai (mod p) is, up to a unit of the base, hi (X
�
, |), and that

ai+Tici (mod p) is, up to a unit of the base, hi of the universal deforma-
tion with some choice of a non-vanishing differential on it. On the other
hand, one can prove that ai=0 if and only if i # {(X

�
). We see that

(hi)=W[i] . K

The divisor of the total Hasse invariant h is precisely the non-ordinary
locus. It is also well known that the line bundle whose sheaf of sections are
modular forms of parallel weight 1 is ample. It follows that M*(F, +Npn)ord

is affine for n�0. Let RNpn denote the ring of regular functions on
M*(F, +Npn)ord. Since M*(F, +Npn)ord is normal and the cusps are zero
dimensional, if g>1 the ring RNpn is also the ring of regular functions on
M (F, +Npn)ord.

Theorem 2.3. Let N�4 and let p be inert in L.

1. There exists a natural surjective homomorphism

r : �
/ # X

M(F, /, +N) � RNp , (2.6)

whose kernel I is precisely the kernel of the q-expansion map. The ideal I is
graded by X�X(1) and

I=(hi&1 : i=1, ..., g). (2.7)

2. Under the isomorphism �/ # X M(F, /, +N)�I$RNp provided above,
we have

�
/ # X(1)

M(F, /, +N)�I$RN . (2.8)

Proof. Let ? : (A
�

u, ;u) � M (F, +Np) be the universal object. Let

0=t*(A
�

u, ;u) � M (F, +Np) (2.9)

be the relative cotangent bundle at the origin. Via ;u we get an isomorphism

0$t*D L
&1

�+p � Spec(F) �F OM (F, +Np) . (2.10)

Hence 0 has a canonical generator |can : The image of (1� dq
q )�1. The

idempotents [e1 , ..., eg] (see (2.4)) give a decomposition

0=�
g

i=1

0(/i), |can=�
g

i=1

a(/ i). (2.11)
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In the case g=1 the line bundles 0(/i) and the sections a(/i) naturally
extend to M*(F, +Np)ord as follows from the existence of a universal gener-
alized elliptic curve over M*(F, +Np)ord. Given any / # X, /=/r1

1 } } } /rg
g , we

put

0(/)=}

g

i=1

0(/ i)
�ri, a(/)=}

g

i=1

a(/i)
�ri. (2.12)

Clearly a(/) is a canonical section of 0(/) (|can is non-vanishing!).
Let f # M(F, /, +N). We write f also for the pull-back of f to M (F, +Np)

(M*(F, +Np) if g=1). Let

r( f )= f�a(/). (2.13)

We extend the definition linearly and obtain a ring homomorphism

�
/ # X

M(F, /, +N) � RNp . (2.14)

It can be interpreted as follows. Given (A
�
, ;N_;p)�R , we have

r \: f/+((A
�
, ;N_;p))=: f/\A

�
, ;N , (;p*)&1 \1�

dq
q ++ . (2.15)

From Equation (2.15) we can conclude two facts:

v The map,

�
/ # X

M(F, /, +N) � RNp , (2.16)

is W(F)_-equivariant, where : # W(F)_ acts on f # M(F, /, +N) by [:] f =
/(:) f. Indeed r([:] f )(A

�
, ;N_;p)=/(:) r( f )(A

�
, ;N_;p)=/(:) f (A

�
,;N ,

(;p*)&1 1� dq
q ) = f (A

�
, ;N , :&1 } (;p*)&1 1� dq

q ) = r( f )(A
�
, ;N_;p b [:])=

[:](r( f ))(A
�
, ;N_;p).

v Let B be a W(F)-algebra. Let Std be the standard cusp of
M*(B, +Npn). It is the Tate object D&1

L �Gm�q
�
(c&1), with its canonical

OL-action and polarization (see [12] for details), and with its visible
+Np n -level structure and non-vanishing differential. Evaluation at that
object is a q-expansion map.

Taking again B=F and n=1 and employing (2.15), we see, using the
theory of toroidal compactifications [2], that the following diagram com-
mutes:
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�
/ # X

M(F, /, +N) RNp

q-expansion (2.17)

OM V (F, +Np), Std

It follows that I is the kernel of the q-expansion map.
The group X�X(1) is naturally identified with the group of F-valued

characters of (OL �( p))_��the Galois group of M*(F, +Np)ord �
M*(F, +N)ord. Note that since (OL �( p))_ is of order prime to p, we have

RNp= �
� # X�X(1)

R�
Np , (2.18)

where f # R�
Np if for every : we have [:] f =�(:) f.

Given such f, choose some lift / of � to X and define first a meromorphic
modular form g in M(F, /, +N) by

g= f } a(/). (2.19)

In terms of points,

g(A
�
, ;N , |)= f (A

�
, ;N_;p) } / \(;p*)&1 \1�

dq
q +

| +, (2.20)

for any +p -level ;p . This shows that g is indeed of +N -level. Clearly,
r(g)= f and g has no poles on the ordinary locus. It follows that g$= g } hk

is a holomorphic modular form for k>>0. Here h is the total Hasse
invariant from Theorem 2.1.

Because I is the kernel of the q-expansion, it follows that for every i,
hi&1 belongs to I. In particular:

v r(h)=1 and hence r(g$)= f and the map r is therefore surjective.

v (h1&1, ..., hg&1)�I.

We next show that I=(h1&1, ..., hg&1). Suppose that r(�m
i=i f i)=0. By

multiplying by various hj&1 we may assume that fi is of weight �i and
for i{ j we have �i {�j (mod X(1)). But, since the map r is W(F)_-
equivariant, it follows that each r( fi)=0, because they fall into different
summands of (2.18). However, on each M(F, /, +N) the map r and q-expansion
map are injective. It follows that each fi=0.

To conclude the proof it only remains to prove part 2. But this follows
immediately from Equation (2.18) and the fact that I is generated by
elements with weights in X(1). K
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Remark 2.4. Let R=�# # 1 R# be a ring graded by an abelian group 1.
Let 10 be a subgroup of 1. Let J be an ideal generated by elements in
�# # 10

R# . Then J is an ideal graded by 1�10 : Let $ # 1. If a finite sum
�# # 1 f# # J, then �# # $+10

f# # J.

Although the following corollary will be superseded by Corollary 3.15
below, we include it to demonstrate the principle of deriving congruences
between zeta values from modular forms, as well as to set notation.

Corollary 2.5. Let L be a totally real field. Let p be a rational prime
that is unramified in L. Let k�2.

1. If k�0 (mod p&1) then `L(1&k) is p-integral.

2 If k�0 (mod p&1) and k#k$ (mod p&1) then `L(1&k)#

`L(1&k$) (mod p).

Proof. There exists an Eisenstein series of parallel weight k (i.e., weight
Normk)

Ek=1+2 g `L(1&k)&1 : ck&1, :q:, (2.21)

where : runs over a lattice depending on the cusp at which the q-expansion
is created and the ck&1, : are sums of (k&1)-powers of certain rational
integers depending on : and the cusp but not on k. More precisely, under
appropriate choices, the q-expansion on a component of the moduli space
has coefficients

ck&1, :={_k&1((:) a&1DL)
0

: # (aD&1
L )+

otherwise,
(2.22)

where for any integral ideal b we let _k&1(b)=�OL#c#a N(c)k&1. See [5]
and (3.51). We let

Ek*=2&g `L(1&k) } Ek . (2.23)

If 2&g `L(1&k) is not p-integral, then Ek&1#0 (mod p). If k#% 0
(mod p&1) then Normk{1 (mod X(1)). This and the fact that I is graded
by X�X(1), imply that 1 # I, which is a contradiction.

Assume that k�0 (mod p&1). Then : :=2&g(`L(1&k$)&`L(1&k))
belongs to Zp . Because the coefficients ck&1, : (mod p) depend only on
k (mod p&1) we have

Ek*&E*k$&:#0 (mod p). (2.24)
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But, using the grading, this implies that : (mod p) belongs to I. That is,
:#0 (mod p). Hence,

`L(1&k)#`L(1&k$) (mod p). (2.25) K

The following corollary identifies, via the map r, certain subrings of
�/ M(F, /, +N) and RNp .

Corollary 2.6. Let H be the kernel of the Norm map (OL�( p))_ �
(Z�( p))_. Let R&

Np be the ring of regular functions of the scheme M*(F, +Np)�H.
We have isomorphisms

�
�

k=0

M(F, Normk( p&1), +N)�(h&1)$RN , (2.26)

�
�

k=0

M(F, Normk, +N)�(h&1)$R&

Np . (2.27)

Proof. Let X&/X be the characters trivial on H. Clearly, X&=
(Norm, X(1)). It follows immediately from the theorem that

�
/ # X(1)

M(F, /, +N)�I$RN , �
/ # X&

M(F, /, +N)�I$R&

Np . (2.28)

Thus, the assertion is that

�
/ # X(1)

M(F, /, +N)�I$ �
�

k=0

M(F, Normk( p&1), +N)�(h&1), (2.29)

and

�
/ # X&

M(F, /, +N)�I$ �
�

k=0

M(F, Normk, +N)�(h&1). (2.30)

In both cases the inclusion # is clear. Thus, the claim amounts to that for
any element / # X& (resp. X(1)) we may find suitable non-negative ri 's such
that / } (/ p

1 /&1
2 )r1 } } } (/ p

g /&1
1 )rg is a power of Norm. This is clear. K

The notion of filtration plays an important role in theory of elliptic
modular forms, e.g., in the weight part of Serre's conjecture. The following
corollary yields an analogous filtration on Hilbert modular forms.

Corollary 2.7. Given a q-expansion b(q) which is a q-expansion of
some HMF of +N -level at, say, the standard cusp, there exists a unique
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HMF f0 such that the set of all modular forms with q-expansion b(q) is
the set

{ f0 } `
g

i=1

hai
i : ai�0= . (2.31)

We call the weight of f0 the filtration of the q-expansion b(q).

Proof. If f and g have the same q-expansion then r( f )=r(g), and vice
versa. We are given that b(q) is a q-expansion of some Hilbert modular
form of weight, say, /. Let f $ be a function on M*(F, +Np) such that
f $ # R/

Np and in the local ring of the appropriate cusp f $=b(q). Then all the
meromorphic modular forms having q expansion b(q) are of the form
f $ } a(/) } > hai

i where the ai # Z. But the divisor of h i is the reduced effective
divisor W[i] . Therefore, there is a choice a1* , ..., ag* such that f0= f $ } a(/) }
> ha*i

i is holomorphic and non-vanishing on some component of every
W[i] . It follows that every other holomorphic form with the same q-expan-
sion is a multiple f0 } > g

i=1 hai
i with a i�0. K

We remark that certain variants are possible. For example, for a
q-expansion arising from a HMF of parallel weight one can define its
``parallel filtration''.

The modular forms a(/) have other interesting applications. We now dis-
cuss how they may be used to construct a compactification with nice
properties of M*(F, +Np)ord��the Satake compactification of the moduli
space of HBAS over F-algebras together with +Np -level.

Lemma 2.8. We have an equality of modular forms on M (F, +Np)ord:

a(/i)
p g&1=h pg&1

i+1 h pg&2

i+2 } } } h p
i&1 hi . (2.32)

Proof. Indeed, both sides are modular forms on M (F, +Np)ord of the
same weight, namely / p g&1

i , and the same q-expansion, namely, 1.

Let, therefore,

bi=a(/i)
pg&1, (2.33)

be the modular form on M (F, +N) of weight / p g&1
i and q-expansion 1. We

fix i and consider the scheme

M$=M (F, +N)[b1�( pg&1)
i ]. (2.34)

We explain our notation and terminology:
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The map of global sections

1(M (F, +N), 0(/ i)) � 1(M (F, +N), 0(/ p g&1
i )) (2.35)

is induced from a morphism of schemes over M (F, +N)

:: 0(/i) � 0(/ pg&1
i ), (2.36)

given locally by taking ( p g&1)-powers along the fiber. We define
M$=M (F, +N)[b1�( pg&1)

i ] to be the fiber product with respect to the maps
: and bi :

M$=0(/i) X
0(/i

pq&1)

M (F, +N ). (2.37)

Let p2 : M$ � M (F, +N) be the projection and consider the line bundles
p2*0(/i) and p2*0(/ pg&1

i ) on M$. Let su be the tautological section

su: M$ � p2*0(/i), (2.38)

and let p2*bi be the induced section

p2*bi : M$ � p2*0(/ p g&1
i ). (2.39)

The equation

(su) p g&1= p2*bi (2.40)

holds on M$. In fact M$ has the following universal property: Given a scheme
f: S � M (F, +N) and s # 1(S, f *0(/ i)) such that s pg&1= f *bi , there exists
a unique morphism g : S � M$ over M (F, +N) such that s= g*su. We leave
the verification of this fact to the reader.

One also sees easily that (OL �( p))_, identified with F_, acts faithfully on
M$. The morphism M$ � M (F, +N) is (OL �( p))_-equivariant and exhibits
M (F, +N) as the quotient for this action.

We conclude from Lemma 2.8 and the universal property the existence of
an (OL�( p))_-equivariant open immersion

M (F, +Np) � M$. (2.41)

Note the identity

a(/i&1) p a(/i)
&1=hi . (2.42)

We have a(/i)=a(/i&1) p�h i . A priori this is a meromorphic modular form
on M$. But raising both sides of the equation to the p g&1 power, and
using Lemma 2.8, we find it must be holomorphic. It follows that M$ does
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not depend on i. Finally, we let M be the scheme obtained from M$ and
M*(F, +Np) by glueing along M (F, +Np).

Theorem 2.9. There exists a scheme M and a proper morphism f : M �
M*(F, +N), an open immersion M*(F, +Np)ord � M, and a faithful (OL�( p))_

action extending the one on M*(F, +Np)ord such that f exhibits M*(F, +N) as
the quotient by this action. In particular, f is finite.

The scheme M is defined by the equation

s p g&1=h pg&1

i+1 h p g&2

i+2 } } } h p
i&1 hi (2.43)

and is independent of i. The map f is ramified precisely along the complement
of the ordinary locus, and is totally ramified there. The singular locus of M

is of pure codimension 2 and is the pre-image of �i{ j W[i, j ] .

Proof. The theorem follows from the discussion above; One has to also
note that since the divisor of the modular form (hi) is reduced and equal
to W[i] , Equation (2.43) becomes an Eisenstein polynomial in the local
ring of every component of W[i] , for every i. A similar local calculation
yield the identification of the singular locus. K

Remark 2.10. One of the reasons to introduce M is that certain notions
regarding modular forms are better formulated on M. For example, the
notion of filtration is translated into the notion of order of vanishing along
the divisors W[i] in M (Cf. [8]). The problem of existence of modular
forms of a specified weight, or filtration, can be viewed as a ``Riemann�
Roch problem'' on M. The theta operators %i defined by Katz [12] can be
viewed as the operators taking f # R�

Np to (df )i�KS(a(/2
i )). Here |

�
=

?
*

01
(A

�
U, ;U

Np)�M(F, +Np) is the relative cotangent space at the origin of the universal

object, KS: |
�

}OL 2 � 01
M (F, +Np)ord�F is the Kodaira�Spencer isomorphism,

}OL
means the second tensor power as an OL �OM (F, +Np)ord line bundle,

and (df ) i is the /2
i isotypical component. These ideas will be pursued in a

future work.

3. MOD pm

3.1. Construction of modular forms. Assume that N�4 and, as before,
p is inert in L. Following Katz [9], we let

Tm, n={M*(Wm(F), +Np n)ord

M (Wm(F), +Npn)ord

g=1
g>1,

T*m, n={M*(Wm(F), +Npn)ord

M*(Wm(F), +Npn)ord

g=1
g>1,

(3.1)
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where Wm(F) is the ring of Witt vectors of length m over F. For every
n, the morphism Tm, n � Tm, 0 is e� tale Galois with Galois group equal to
(OL �( pn))_. For every m, n, the morphisms Tm, n � Tm+1, n and T*m, n �
T*m+1, n are closed immersions and Tm, n=Tm+1, n �Wm(F). The scheme
T*m, n is an affine scheme because the invertible sheaf of modular forms of
parallel weight is ample and has a global section (some lift of hn) whose
divisor is the non-ordinary locus, and Tm, n is smooth over Wm(F), for
every m, n. We let Vm, n be the ring of regular functions of Tm, n (equiv-
alently, T*m, n). Note that V1, 1=RNp and V1, 0=RN in the notation of
Section 2. The schemes Tm, n and the rings Vm, n all fit into the following
commutative diagrams:

b b b b b b

a a a A A A

T1, 2
/� T2, 2

/� T3, 2
/� } } } V1, 2 �� V2, 2 �� V3, 2 �� } } }

a a a , A A A (3.2)

T1, 1
/� T2, 1

/� T3, 1
/� } } } V1, 1 �� V2, 1 �� V3, 1 �� } } }

a a a A A A

T1, 0
/� T2, 0

/� T3, 0
/� } } } V1, 0 �� V2, 0 �� V3, 0 �� } } } .

We let

Tm, �=�
n

Tm, n , T�, �=�
m

Tm, � (3.3)

(similarly for T*m, n), and

Vm, �=�
n

Vm, n , V�, �=�
m

Vm, � . (3.4)

Lemma 3.1. 1. Fix 1�i�g. For every m�n there exist a modular form
a(/i)=am, n(/i) on Tm, n of weight /i . It has q-expansion equal to 1 at the
standard cusp Std.

2. The a(/i)=am, n(/i) are compatible in the following sense :

a. Under the map f : Tm, n+n$ � Tm, n we have

f *am, n(/i)=am, n+n$(/i). (3.5)

b. Under the map f : Tm, n � Tm+m$, n , where m+m$�n, we have

f *am+m$, n(/i)=am, n(/ i). (3.6)
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Proof. Let (A
�

u, ;u
N _;u

p n) � Tm, n be the universal object. Note that

t*DL
&1

�+p n � Wm(F) $OL � t*+pn � Wm(F) . (3.7)

(See the discussion in Section 1.2.) The invariant differentials t*+pn � Wm(F) are
contained in

01
+p n � Wm(F)=Wm(F)[q]�(q pn

&1, pnq pn&1) } dq. (3.8)

The differential |=q p n&1 dq is invariant and pn|=0. Thus, m�n if and
only if t*DL

&1
�+p n � Wm(F) is a free OL �Wm(F)[q]�(q p n

&1) module of rank 1.
Since we assume that m�n, it follows as in the proof of Theorem 2.3 that
the relative cotangent space of (A

�
u, ;u

N _;pn) � Tm, n is a free OL �OTm, n

module of rank 1 with a canonical generator |can��``the pull-back of
(1�

dq
q )�1''.

Let [e1 , ..., eg] be the idempotents as in (2.4). Let

a(/i)=ei } |can . (3.9)

It is a modular form of weight /i . The compatibility assertions are easily
reduced to the following simple observations:

v The canonical map

D&1
L �+pn�Wm(F)

/�D&1
L �+p n+n$�Wm(F) (3.10)

induces an isomorphism of the relative cotangent spaces.

v The canonical map

D&1
L �+pn�Wm+m$ (F)

/�D&1
L �+p n�Wm(F) (3.11)

induces an isomorphism t*DL
&1

�+pn�Wm+m$ (F) }Wm+m$ (F) Wm(F)$t*DL
&1

�+p n �Wm(F) .
K

The following corollary follows immediately:

Corollary 3.2. Let /=/r1
1 } } } / rg

g # X. Define for m�n

a(/)=a(/1)r1 } } } a(/g)rg. (3.12)

Then the a(/) are ``independent of (m, n)'' and define a modular form a(/) on
T�, � . This modular form is of weight / and has q-expansion 1 at the
standard cusp Std of T*�, � .

The group (OL �Zp)_ acts as automorphisms of T*m, n . This action is
given on Tm, n in terms of points:

[:](A
�
, ;N_;pn) [ (A

�
, ;N_(;pn b [:])). (3.13)
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Of course the action factors through (OL�( pn))_. We let

[:]: T*m, n � T*m, n (3.14)

denote the automorphism induced by :. The morphism [:] induces an auto-
morphism of modular forms (a diamond operator). This may be seen as
follows: The modular forms of weight / are sections of 0(/) (see (2.11), (2.12)).
Let pr: Tm, n � Tm, 0 be the natural projection. Then ``pr*0(/)=0(/)''.
Indeed, (A

�
u, ;u

N _;u
pn)$(A

�
u, ;u

N)_Tm, 0
Tm, n . But [:]*pr*=(pr b [:])*=

pr*. Moreover, the formula for the action on a modular form f is

([:] f )(A
�
, ;n_;p n , |)= f (A

�
, ;N_(;pn b [:]), |). (3.15)

Lemma 3.3. Let : # (OL �( pm))_. Let a(/) be the modular form on Tm, n

constructed above. Then

[:] a(/)=/(:)&1 a(/). (3.16)

Let c(/)=cm(/) be the minimal non-negative integer such that

pc(/)(1&/)(t)#0 (mod pm), \t # (OL �( pm))_. (3.17)

Then pc(/)a(/) is invariant under (OL �( pm))_, and in particular, a(/) is
invariant under (OL �( pm))_ if and only if / is the trivial map (mod pm).

Proof. Let /=/r1
1 } } } /rg

g . In terms of points we have

a(/)(A
�
, ;n_;pn , |)= `

g

i=1
\ei } (;*pn )&1 \1�

dq
q +<e i } |+

ri

. (3.18)

The assertion (3.16) and the rest of the Lemma follow easily. K

Let X(m) be the characters in X that are trivial on (OL �( pm))_ under the
composition

(OL �( pm))_/�(OL �Wm(F))_=T(Wm(F)) w�
/

Gm(Wm(F))=Wm(F)_.

(3.19)

We shall discuss X(m) further below. For now, note that X(m+1)/X(m),
and if j is the maximal non-negative integer such that / # X( j ) then

c(/)=max[m& j, 0]. (3.20)

We say that an element / of X(m) is p-positive if in its expression as

/=(/ p
g /&1

1 )r1 (/ p
1 /&1

2 )r2 } } } (/ p
g&1 /&1

g )rg, (3.21)

every ri�0.
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Corollary 3.4. Fix an integer m�1. Let c(/)=cm(/) be defined as
above.

1. For every / # X there exists a modular form pc(/)a(/) on Tm, 0 of
weight / (a(/) is given by (3.12)). Its q-expansion at every standard cusp is
pc(/). In particular, for every / # X(m), the modular form a(/) is a modular
form of weight / and q-expansion 1 on Tm, 0 .

2. Let / # X(m). The modular form a(/) extends to the non-ordinary
locus, i.e., it is a modular form over M (Wm(F), +N) (and M*(Wm(F), +N) if
g=1), if and only if the character /=(/ p

g /&1
1 )r1 (/ p

1 /&1
2 )r2 } } } (/ p

g&1 /&1
g )rg is

p-positive. Furthermore,

a(/)=hr1
1 } } } h rg

g (mod p). (3.22)

Proof. It follows from Lemma 3.3 that pc(/)a(/) is a modular form on
Tm, 0 , of weight /, and that its q-expansion at every standard cusp is pc(/).
This is clear if one thinks of a modular form as in (1.9).

Consider a(/) (mod p). It has the same weight and q-expansion as the
r.h.s. of Equation (3.22) and that proves the equation. The divisor of a(/)
on Tm, n intersects the special fiber in the divisor of hr1

1 } } } hrg
g . But according

to Theorem 2.1 we have

(hr1
1 } } } h rg

g )=r1W[1]+ } } } +rgW[g] . (3.23)

Hence, this divisor is effective if and only if each ri�0. K

3.2. Digression on X(m). We consider now more closely the group X(m).
Let us change notation. Let G=(_) be a cyclic group of order g. Let Z[G]
be the group ring of G and Zp[G] be the group ring of G over Zp . The
group W(F)_ is a module over Z[G], where _ acts as _��the Frobenius.

v Assume first that p{2.
We have

W(F)_=+_U1 , (3.24)

where + is the cyclic group of order p g&1 consisting of the roots of unity
in W(F), and Um are the units congruent to 1 modulo ( pm). Clearly, as a
Z[G] module,

+$Z[G]�( p g&1, p&_)=Z[G]�( p&_). (3.25)

By a theorem of Krasner [13, Theorem 17] U1 is a free Zp[G]-module of
rank 1. Hence,

Wm(F)_=+_U1�Um $+_U1 �U p m&1

1 (3.26)
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and it follows that as a Z[G]-module

Wm(F)_$Z[G]�( p&_)�Z[G]�( pm&1)$Z[G]�( pm&1( p&_)). (3.27)

In other words:

X(m) $(/ pm

1 /&p m&1

2 , ..., / pm

g /&pm&1

1 ). (3.28)

Note that these are p-positive generators.

v Assume now that p=2. We have

W(F)_=+_U1=+_[\1]_U, (3.29)

where + are the 2 g&1 roots of unity and U is a torsion free subgroup of
U1 .

Assume that g is odd. Then by [13, Theorem 17] we have

U$Zp[G]. (3.30)

Thus, for m=1,

W1(F)_$Z[G]�(2&_), (3.31)

and for m�2

Wm(F)_$Z[G]�(2&_)�Z[G]�(_, 2)�Z[G]�(2m&2). (3.32)

The group X(m) is thus the intersection of ideals (2&_) & (_, 2) & (2m&2).
We have (2&_)/(_, 2), (2m&2)/(_, 2) if m>2 and (2m&2)#(_, 2) if
m=2. Thus,

X(m)={(2&_)
(2m&2(2&_))

m=1
m�2.

(3.33)

In any case X(m) has naturally chosen p-positive generators,

x, x_, ..., x_ g&1, (3.34)

where x is 2&_ or 2m&2(2&_), depending on the case.
If g is even, the situation is more complicated. The decomposition (3.29)

still holds, but U can not always be chosen to be a G-module. We allow
ourselves simply to remark that X(1) is the free abelian group generated by
/2

1 /&1
2 , ..., /2

g /&1
1 and the notion of positivity is the one obtained by iden-

tifying X(1) with Z g by sending /2
i /&1

i+1 to the i-th standard basis element.
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The group X(m) is a sub-lattice and is therefore automatically generated by
2-positive elements. Without going into the details of its structure, we let

�1 , ..., �g (3.35)

be 2-positive generators for it. For the applications we give, the following
observation suffices:

Remark 3.5. The character Normk belongs to X(m) if and only if
2e(m) | k, where 2e(m) is the exponent of the group (Z�(2m))_. I.e.,
e(m)=m&1 for m=1, 2, and m&2 for m>2.

3.3. The q-expansion map mod pm. In this section we study the kernel
of the q-expansion map on Hilbert modular forms modulo pm and level
prime to p. Our results are not complete in the sense that we fail to
produce a complete set of generators for the kernel Im of the q-expansion
map. However, see Theorem 3.8 and Remark 3.13. We do obtain enough
information on Im to deduce, after introducing a ``technical device'', the
classical congruences and estimates on values of `L at negative integers. See
Corollaries 3.11 and 3.15 below.

We remark that our techniques apply to more general L-functions. But
the true difficulty now is in the construction of Hilbert modular forms with
a q-expansion whose constant term is the desired special value and whose
higher coefficients have integrality and congruence properties. For this see
[4] and [19].

Definition 3.6. Let / # X and consider it as a character /: (OL �( pm))_

� Wm(F)_. Let

V/
m, m=[ f # Vm, m : [:] f =/(:) f , \: # (OL �( pm))_]. (3.36)

Let V K
m, m��the ``Kummer part'' of Vm, m��be given by

V K
m, m= :

/ # X�X(m)

V /
m, m . (3.37)

Remark 3.7. Note that if m>1 the inclusion V K
m, m

/�Vm, m is always
a strict inclusion and the sum in (3.37) is never a direct sum.

Theorem 3.8. 1. There exists a natural surjective homomorphism of
rings

r : �
/ # X

M(Wm(F), /, +N) � V K
m, m . (3.38)

Let Im be the kernel of r. Then Im is equal to the kernel of the q-expansion map.
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2. Let I $m be the ideal Im & �/ # X(m) M(Wm(F), /, +N). The map r
induces an isomorphism

�
/ # X(m)

M(Wm(F), /, +N)�I $m$Vm, 0 . (3.39)

3. If p{2, the ideal Im contains the ideal (a(/ pm+1

1 /&p m

2 )&1, ...,
a(/ pm+1

g /&pm

1 )&1) , and if p=2, it contains (a(�1)&1, ..., a(�g)&1)
(where for g odd we have generators as in (3.34), and for g even the gener-
ators are as in (3.35)).

Proof. The proof follows the same lines as the proof of Theorem 2.3.
We shall therefore be brief.

The map r is defined as in Theorem 2.3. Namely, if f # M(Wm(F), /, +N),
we let r( f )= f�a(/). Using Corollary 3.2 we see that f and r( f ) have the
same q-expansion, and since Vm, m is irreducible, we conclude that Im is the
kernel of the q-expansion map. Certainly Corollary 3.4 implies that if p{2,

Im $(a(/ p m+1

1 /&p m

2 )&1, ..., a(/ pm+1

g /&p m

1 )&1) , (3.40)

and if p=2,

Im $(a(�1)&1, ..., a(�s)&1). (3.41)

Moreover, one verifies that the map r is (OL �Zp)_-equivariant, where
([:] f ) = /(:) f for f # M(Wm(F), /, +N), and ([:] f )(A

�
, ;N _;pn) =

f (A
�
, ;N_(;pn b [:])) for f # Vm, m . This shows that the image of r is con-

tained in V K
m, m . On the other, a construction as in Theorem 2.3, shows that

r is surjective onto V K
m, m .

It remains only to note that the equivariance also implies (3.39). K

Remark 3.9. For m>1, it is not true that I $m generates Im . This has to
do again with (3.37) not being a direct sum.

The following Criterion follows directly from the methods of the proof of
Theorem 3.38. Weak as it seems, it will suffice to derive the classical con-
gruences between values of `L (and more generally, of suitable L-functions).

Criterion 3.10. Let �/ f/ # Im . Then there exist a/ in some Wm(F)-
algebra such that

:
/

a//(u)#0 (mod pm), \u # (OL �( pm))_, (3.42)

and a1 = f1 .

Proof. Consider the relation �/ r( f/)=0. Evaluate it at a point and let
the Galois group act. K
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Corollary 3.11. Let k�2.

1. Let p{2; if k#0 (mod p&1) then

valp(`L(1&k))� &1&valp(k), (3.43)

and `L(1&k) is p-integral if k�0 (mod p&1).

2. If p=2, then

val2(`L(1&k))�g&2&val2(k). (3.44)

Proof. 1. The case k�0 (mod p&1) was treated in Corollary 2.5.
Assume k#0 (mod p&1). Let Ek be the Eisenstein series as in (2.21). Let

l=max[&valp(2&g`L(1&k)), 0]. (3.45)

If l=0 there is nothing to prove. Assume therefore that l>0 and consider
the congruence

Ek&1#0 (mod pl). (3.46)

Then Criterion 3.10 says that for some a in a Wl(F) algebra, the polyno-
mial a } Norm(x)k&1 is identically zero on (OL�( pl))_ or, equivalently, the
polynomial axk&1 is identically zero on (Z�plZ)_��a cyclic group of
order ( p&1) pl&1. Taking x=1 we see that a=1. It follows that pl&1

divides k and, hence, valp(k)�l&1�&valp(2&g`L(1&k))&1.

2. When p=2 one argues the same and obtains that axk&1 is identi-
cally zero on (Z�2lZ)_. Analysis of the structure of this group yields the
result. K

3.4. Adding level p-structure. In this section we briefly discuss modular
forms of level +N (for (N, p)=1) together with an extra level structure of
either the form +p m , or the form 10( p). The first additional level structure
already appeared above as involving the target of the q-expansion map
modulo pm. It will now appear in the level of the modular forms themselves.
This will clarify the nature of the ideal Im of Theorem 3.8.

The second level structure is introduced to derive the precise congru-
ences between, say, values of the zeta function, that are needed to construct
the p-adic zeta function. The same technique would work for a wide variety
of L-functions.

Adding +pm level. Let us consider the graded ring of modular forms
�/ # X M(Wm(F), /, +Npm) on the scheme Tm, m . The ring of modular forms on
Tm, 0 , �/ # X M(Wm(F), /, +N), embeds in the ring �/ # X M(Wm(F), /, +Npm)
by pull-back via the canonical projection Tm, m � Tm, 0 .
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Proposition 3.12. Let Im(Npm) be the kernel of the q-expansion map on
�/ # X M(Wm(F), /, +Npm). Then

Im(Npm)=(a(/)&1 : / # X) , (3.47)

and

Im(N )=Im(Npm) & �
/ # X

M(Wm(F), /, +N)/Im(Npm)1, (3.48)

where Im(Npm)1 stands for the elements of Im(Npm) invariant under the
Galois group (OL �( pm))_.

Proof. First, by Corollary 3.2 indeed a(/)&1 belongs to Im(Npm). Sup-
pose that the q-expansion of �/ f/ is zero. Then we may replace an f/ by
f/+ f/ (a/&1). Repeating this as necessary we obtain a modular form g of
parallel positive weight whose q-expansion is zero. Hence, g is zero. That
is �/ f/ # (a(/)&1 : / # X) . The rest is clear. K

Remark 3.13. The proposition above clearly demonstrates the problem
of determining Im(N ) explicitly. The elements in Im(Npm)1 need not extend
to a holomorphic modular form on Tm, 0 .

Adding 10 ( p) level. By a 10( p) level structure on a HBAS A
�

we mean
a finite flat subgroup scheme H/A[ p], OL -invariant and of order p g. Such
a subgroup is automatically isotropic with respect to any OL -polarization.
We refer the reader to [14], [18] and [6] for details. However, it may
benefit the exposition to recall some basic facts without proofs.

Let us denote the Satake compactification of the fine moduli scheme
representing HBAS with level +N and level 10( p), over Wm(F)-algebras, by
Sm (m��). Let us denote by S ord

m the ordinary locus. The scheme S1 has
two ``horizontal'' components, denoted S F

1 and S V
1 , that correspond to tak-

ing as H the kernel of Frobenius or the kernel of Verschiebung, respec-
tively. The natural morphism

? : S1 � M*(Wm(F), +N) (3.49)

induces an isomorphism, S F
1 � M*(Wm(F), +N), and a totally inseparable

morphism of degree p g, S V
1 � M*(Wm(F), +N). The scheme S1 has many

other components parameterized by the type and the geometric fibers of ?
are stratified by projective spaces.

Consider the restriction of the section M*(Wm(F), +N) � S F
1 to T*1, 0 ,

where as above, T*1, 0 stands for the ordinary part of M*(Wm(F), +N). Let
S F, ord

m be the open subscheme of Sm consisting of ordinary HBAS A
�

with
H being the connected part A[ p]. We have the following commutative
diagram in which the vertical arrows are isomorphisms:
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�www#S F
1 S F, ord

1
/� S F, ord

m � T*m, 1

(3.50)

M*(Wm(F), +N) �# T*1, 0
/� T*m, 0 .

Let {=({1 , ..., {g) # H g. Consider the modular form

Ek*({)=2&g`L(1&k)+ :
& # OL+

\ :
c | (&)

Norm(c)k&1+ e2?iTr(&{). (3.51)

It is a modular form of weight Normk on SL2(OL �D&1
L ), a fortiori on

M*(C, +N), if the polarization module c (see Section 1.2) is chosen to be OL

with its natural notion of positivity. The coefficient of e2?iTr(&{) can also be
written as _k&1((&)), where for every integral ideal b we let

_k&1(b)= :
OL $c | b

Norm(c)k&1. (3.52)

The function _k&1 is multiplicative:

_k&1(bc)=_k&1(b) _k&1(c), (b, c)=1. (3.53)

It follows that for every prime ideal q, an ideal b/OL prime to q, and any
r�0, we have

_k&1(qr+1b)&q f (k&1)_k&1(qr b)=_k&1(b), (3.54)

where q is the rational prime below q and f =f (q�q).
Retaining our assumption that p is inert in L, let us put

_k&1, p( prb)=_k&1(b), ( p, b)=1. (3.55)

We then obtain the expansion

E-
k ({1 , ..., {g ) =

def Ek*({1 , ..., {g )&p g(k&1)Ek*(\{1 , ..., p{g ) (3.56)

= (1&p g(k&1)) 2&g `L (1&k)+ :
& # OL+

_k&1, p ((&)) e2?iTr(&{).

(3.57)

The point important to us is that all the coefficients (except the constant
one) are (k&1) powers of natural numbers that are prime to p. Hence, the
following facts hold:
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Let k, k$�2 and k#k$ (mod( p&1) pm). Let

l=max[&valp(2&g`L(1&k)), &valp(2
&g`L(1&k$)), 0], (3.58)

and put

r=max[valp(k), valp(k$)], r$=min[valp(k), valp(k$)]. (3.59)

Note the following points: (i) If p{2 then 0�l�1+r; (ii) If p=2 then
0�l�r+2; (iii) If k � 0 (mod p&1) then l=0. They all follow from
Corollary 3.11.

We may further assume, w.l.o.g., that if p=2 then val2(k)�val2(k$) and
that k and k$ are even. Let

i={1
2

p{2
p=2.

(3.60)

Let

:= pl((1& p g(k&1)) 2&g`L(1&k)&(1& p g(k$&1)) 2&g`L(1&k$)). (3.61)

Then : # Zp and

plE -
k& plE -

k$&:#0 (mod pm+i+l). (3.62)

(The congruence means congruence of q-expansions.)
Now, the point is that plE -

k , plE -
k$ and : are modular forms over C

of level 10( p) having integral q-expansion, hence are modular forms on
Sm+i+l , hence on S F, ord

m+i+l . Therefore, plE -
k , plE -

k$ and : are meromor-
phic modular forms on T*m+i+l, 0 with poles supported on the complement
of the ordinary locus (the poles coming from the singularities of Sm).
Criterion 3.10 holds also for meromorphic modular forms and we obtain
that there exist a, b such that

aplxk&bplxk$&:#0, \x # (Z�( pm+i+l))_. (3.63)

Since for every x # (Z�( pm+i))_ we have xk=xk$ (mod pm+i), we deduce
that there exists a c in a Wm+i -algebra such that cxk&:#0 (mod pm+i)
for every x in (Z�( pm+i))_. Taking x=1 we see that the following holds

:(xk&1)#0 (mod pm+i), \x # (Z�( pm+i))_. (3.64)

Remark 3.14. The reader notices that we ``lose'' information by going
from (3.63) to (3.64). We remark that the congruences obtained are ``good
enough'' for the purposes of p-adic interpolation.
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We separate cases:

(i) k�0 (mod p&1). Then l=0, and one gets that :#0 (mod pm+1).

(ii) k#0 (mod p&1) but p{2. We observe that

valp(k)+1=min[valp(xk&1) : x # Z, p |% x]. (3.65)

We therefore obtain that valp(:)�m+1&(r$+1)=m&r$.
(iii) k#0 (mod p&1) and p=2. (We still assume that k is even,

since k odd implies that k$ is odd and we get `L(1&k)=`L(1&k$)=0).
Observe:

val2(k)+2=min[val2(xk&1) : x # Z, 2 |% x]. (3.66)

Therefore, val2(:)�m+2&(r$+2)=m&r$.
We observe that m&r$&l�m&i&(r+r$). We may therefore sum up

the discussion above in

Corollary 3.15. Let k, k$�2 and k#k$ (mod( p&1) pm).

1. If k � 0 (mod p&1) then

(1& p g(k&1)) `L(1&k)#(1& p g(k$&1)) `L(1&k$) (mod pm+1). (3.67)

2. If k#0 (mod p&1) but p{2, then

(1& p g(k&1)) `L(1&k)#(1& p g(k$&1)) `L(1&k$) (mod pm&1&valp (k } k$ )).

(3.68)

3. If p=2 then

(1&2 g(k&1)) `L(1&k)#(1&2 g(k$&1)) `L(1&k$) (mod 2m+ g&2&val2(k } k$)).

(3.69)

4. LIFTING OF q-EXPANSIONS

Proposition 4.1. Any modular form f # M(Wm(F), /, +N) can be lifted
to T�, � .

Proof. Clearly the regular function f�a(/) # Vm, m /Vm, � can be lifted
to V�, � . Indeed, Vm, �=V�, � �Wm(F). On the other hand, by
Corollary 3.2, a(/) itself lifts to T�, � . K
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A much more subtle question is that of lifting a modular form
f # M(Wm(F), /, +N) to a modular form in M(W(F), /, +N). For example,
take m=1. The modular forms hi do not lift, because any non-cusp form
of finite level must have parallel weight. Or, any modular form of finite
level must have non-negative weights. This does not contradict Proposi-
tion 4.1. The level there is infinite. The following theorem says, heuristi-
cally, that the hi 's are the prototype of modular forms that can not be
lifted. The geometric explanation for this phenomenon is that the line
bundle 0(/), for / not a multiple of Norm, does not extend to a line bundle
over the minimal compactification, though it does extend to a line bundle
over any smooth toroidal compactification.

Theorem 4.2. Let B be any W(F)-algebra and let Bm=B�Wm(F). Let
Im be the kernel of the q-expansion map as in Theorem 3.8. The map

�
/ # X

M(B, /, +N) � �
/ # X

M(B1 , /, +N)�I1 (4.1)

is surjective. The map

�
/ # X

M(B, /, +N)cusp � �
/ # X

M(Bm , /, +N)cusp�Im (4.2)

is surjective.

Proof. The proof uses the following lemma:

Lemma 4.3 ([15], Proposition 6.11). If f # M(B1 , /, +N) has some
q-expansion in which the constant term is non-zero then / # X(1).

Thus, if f is not a cusp form then for a suitable g # I1 we have that f +g
is of weight Normk for some k>0, which we may take as large as needed.

Let us put T S=M*(W(F), +N)��the moduli space of HBAS over W(F)-
algebras with +N -level with its Satake compactification. Recall the notation
(2.12). It is well know that 0(Norm) extends to T S and that 0(Norm) is
an ample line bundle (our level is rigid). It follows that for k large enough
every section of 0(Normk) can be lifted. We may therefore restrict our
attention to cusp forms.

Let D/�T S be the cusps and T 0=T S&D. Let T tor be a smooth
toroidal compactification. We have a commutative diagram

T 0 � T tor

b (4.3)

T S.
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The map b is proper and the other two maps are open immersions. Let Dtor

be the pre-image of D.

Lemma 4.4. There exists a quasi-coherent sheaf S(/) on T S whose
global sections are cusp forms of weight /.

Theorem 4.2 follows immediately from Lemma 4.4. For k large enough
all the higher cohomology of S(/)�0(Normk) vanishes and there are
thus no obstructions to lifting. It remains to prove the lemma:

There exists a semi-abelian variety with real multiplication

(A, ;N) w�
? T tor. (4.4)

Let 0=t*(A, ;N ) � T tor and define 0(/) as usual (on T 0 this agrees with our
previous definition). Let I be the ideal sheaf defining Dtor. Let

S(/)=?
*

(0(/)�I). (4.5)

The sheaf S(/) is quasi-coherent sheaf on T S. We need only show that
its global sections are cusp forms. The map from 1(T S, S(/))=
1(T tor, 0(/)�I) to 1(T 0, 0(/))/M(W(F), /, +N), given by restriction, is
clearly injective. It has image contained in the cusp forms. Indeed, if
f # 1(T S, S(/)) and f� its image, then the q-expansion of f� is none-other then
f viewed as an element of the structure sheaf of the completion of T tor

along I. For this one needs to choose a particular trivialization of 0(/) in
a neighborhood of the component of Dtor under consideration. See [3],
Main Theorem.

Conversely, a cusp form f� , viewed as a section of 1(T 0, 0(/)), or
1(T 0, S(/)) extends to an a priori meromorphic section f of 1(T S, S(/)),
whose expression as an element of the structure sheaf of the completion of
T tor along I has zero constant coefficient. That just means that locally
around Dtor it belongs to I. See loc. cit. (x). K

Remark 4.5. The point of Theorem 4.1 is that it says that every HMF
modulo p, say f, can lifted to characteristic zero, in the sense that its
q-expansion can be lifted. I.e., though often one can not lift the modular
form f itself, there does exist a modular form g of characteristic zero and
weight equal to the weight of f modulo X(1), whose q-expansion is equal
to the q-expansion of f modulo p.

Practically the same proof gives the following:
Let f be a modular form over Wm(F) whose constant coefficient in one

q-expansion is a unit. Then f has weight in X(m) and its q-expansion lifts
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to a q-expansion of a HMF over W(F) of the same level and weight in
X(m). A similar statement holds for cusp forms.

In fact the method of the proof allows one to control the difference
between the weights of f and the ``lift'' if one has an effective bound on k
such that H1(T S, S(/)�0(Normk))=0.

5. TABULATION OF SOME ZETA VALUES

Remark 5.1. The computations were done using PARI and are subject
to the following reservations: (i) My lack of expertise in such calculations.
(ii) The validity of a factor being a prime. In particular, almost surely,
those huge numerators which are not decomposed at all are composite. (iii)
However, the factorization of the denominator is always into primes.

We explain how the data was obtained by giving an example. To obtain
`Q(- 7)(&31) first raise the real precision of PARI by writing ``"p 150.''
Execute the command ``f=zetakinit(x ^ 2&7);'' (that creates the data that
PARI needs in order to calculate values of the zeta function of Q(- 7)).
Writing ``x=zetak(f, -31)'' gives the real number

x=85915187317986217088414870447749176723

5740853295481011573359732.500490196078

43137254901960784313725490196078431372

5490196078431372549019607843137254999.

Note that Corollary 3.43 gives a bound on the denominator of the
rational number approximated by x. Thus, one knows that y=x_32! must
be an integer. Writing ``y=x*32!'' we get

y=22606935144296765680860441138044034718

24035695198359578560196240784639781684

83155015635042304000000.00000000000000

0000000000000000000000000000000000025.

The command, ``factor(round(y)�32!)'' yields the value given in the table
below.
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