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This paper is about Hilbert modular forms on certain Hilbert modular varieties
associated with a totally real field L. Let p be unramified in L. We reduce to the
inert case and consider modular forms modulo p™. We study the ideal of modular
forms with g-expansion equal to zero modulo p™, find canonical elements in it, and
obtain as a corollary the congruences for the values of the zeta function of L at
negative integers. Our methods are geometric and also have applications to lifting
of Hilbert modular forms and compactification of certain modular varieties.
© 2001 Academic Press

1. INTRODUCTION

1.1. The contents of this paper. The subject of this paper is the study of
Hilbert modular forms on Hilbert modular varieties and some applications.
The modular varieties are those parameterizing abelian varieties of dimen-
sion g with a given action of the ring of integers of a totally real field L of
degree g over Q and certain level structures, some indigenous to charac-
teristic p. We shall be particularly interested in the case where the domain
of the modular form is the modular variety modulo p™. This allows us to
study g-expansions modulo p™.

The Hilbert modular forms we consider are modular forms in the sense
of Katz [12]. Their weights are given by characters of a certain algebraic
group over (;, which is a torus over (,[disc;']. Over the complex
numbers this just boils down to discussing Hilbert modular forms of
possibly non-parallel weight.

We assume a priori that the prime p we are dealing with is non-ramified
in L. However, one immediately reduces to the case where the prime is
inert. This is a well known principle and we refer the reader to [5] to see
how this works. Assume, henceforth, that p is inert.
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Denote the graded ring of Hilbert modular forms of uy-level
((N, p)=1), defined over W, (F), by @, cx M(W,(F), x, uy). We refer the
reader to Section 1.2 for precise definitions. In brief: W, ([F) is isomorphic
to O, /(p™); a uy-level means an (), -equivariant embedding of D; ' @ uy
into the abelian variety.

The main question we ask is: what can one say on the kernel of the
g-expansion map on @, .x M(W,(F), x, un)?

While in characteristic O the kernel is trivial, the situation is different in
characteristic p. A well-known theorem of P. Swinnerton-Dyer asserts that
for g=1 and m =1, the kernel is generated by E, _; —1, where E,_; is an
Eisenstein series of weight p — 1 (see (2.21) for the definition of E, for any
L), and a well-known theorem of P. Deligne asserts that £, ; modulo p
is the Hasse invariant.

Our results are a generalization of these theorems for general totally real
fields and any m. One of the psychological shifts one has to make is to
completely abandon the method of obtaining relations by reducing from
characteristic zero and to work solely modulo p™. Indeed, the question of
whether or not E,_,,,,—1 belongs to this kernel depends, for a given r,
on the field (and need not hold), and for all »r>>0 is equivalent to
Leopoldt’s conjecture.

For m =1, that is, modulo p, our results are a direct and precise analog
of the above theorems. The complement of the ordinary locus was studied
by F. Oort and the author in [7]. It turns out that it canonically decom-
poses as a union (J£_; Wy, (see Section 1.2).

THEOREM | (Theorem 2.1). Let p be inert in L. There exist Hilbert
modular forms hy, .., hy, over F, of weights y2xi " x¥xz"s o x2_1 25"
respectively (h; being of weight y? |y "), such that

(hi) = W{i}-

(In particular, the divisor of h; is reduced.) The g-expansion of h; at every
cusp of M*(F, py) is 1. Let h="hy ---h,. Then h is a modular form of weight
Norm?~!. It has g-expansion equal to 1 at every standard cusp and its
divisor is reduced, equal to the complement of the ordinary locus.

We remark that % is up to a sign the Hasse invariant, i.e., the determi-
nant of the Hasse-Witt matrix, and that if g > 1 the 4,’s never lift to charac-
teristic zero!

We then prove (compare Theorem 2.3)

THEOREM 2. Let p be inert in L. The kernel of the g-expansion map
modulo p is the ideal generated by {h,—1, .., h,—1}.
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Regarding the situation modulo p™, our results are less complete. Let 7,
be the kernel of the g-expansion map modulo p™. We are able to identify
the quotient @, .x M(W,(F), 1, un)/1,, and find some canonical elements
in 7, that are a generalization of the 4,’s. See Theorem 3.8. After adding
level structure one can determine the kernel of the g-expansion map
modulo p™ completely. See Proposition 3.12.

We provide several applications. One is to construct an explicit compac-
tification of Hilbert modular varieties with u,-level, which is non-singular
in codimension one. See Theorem 2.9. A second application is to show that
there exists a notion of filtration for non-parallel modular forms.

Another application is classical. Let {; be the Dedekind zeta function of
L. Recall that by a theorem of C. L. Siegel the values of {,(1 —k), for k=2
an integer, are rational numbers and are equal to zero if k is odd. From
a modern perspective this is quite immediate. There exists an Eisenstein
series E, with rational Fourier coefficients and constant coefficient
278,;(1 —k). One considers the modular form of weight k& given by
E, — E{ for an automorphism o. It turns out that this “rational influence”
of the higher coefficients on the constant coefficient can be refined to an
“integral influence”. This was proved and developed in the case g=1 by
J.-P. Serre [17], and in general by P. Deligne and K. Ribet in [4], [16].
In truth, our methods are not that far from Deligne-Ribet’s methods [4],
[16] (who, in turn, follow ideas of N. Katz [9-12] and J.-P. Serre [17]),
but our approach is more geometric and is based on [ 7], [5]. The conclu-
sion of the congruences is clearly in “Serre’s style”.

COROLLARY 1 (Corollary 3.11). Let p be inert in L. Let k =2.
(1) Let p#2; if k=0 (mod p—1) then
val,({ (1 —k)) = —1—val,(k),

and {;(1 —k) is p-integral if k%0 (mod p—1).
(2) If p=2, then

valy({ (1 —k)) =g —2 —valy(k).

COROLLARY 2 (Corollary 3.15). Let p be inert in L. Let k, k' =2 and
k=k' (mod (p—1)p™).

(1) If k#£0(mod p—1) then

(1=p== D) (1-k)=(1—p** =) (1 -K)  (mod p™*").
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(2) Ifk=0(mod p—1) but p+2, then
(1= p D) (1 =)= (1= p=¥ D) (1K) (mod pm =1~ ahE4)),
(3) If p=2 then
(1 =256 £, (1 =) = (1 =259 D) {41 —k)

(mod 2m+g—2—va12(k-k’)).

The derivation of the congruences rests on the following Criterion 3.10:
“Let 3, f, €l,,. Then there exist a, in some W,([F)-algebra such that
2 @, x(u)=0(mod p™) for all ue (O, /(p™))™ and ay = f,.”
It is interesting to note that this criterion allows an inverse in some
sense. Given such polynomial relations one obtains relations between
values of zeta functions, provided certain restrictions are satisfied.

1.2. Definitions and notation. Let L be a totally real field of degree g
over Q. Let @, be its ring of integers, D, the different ideal and d;, the dis-
criminant. Let ¢ be a fractional ideal of L. Let p a rational prime that is
inert in L. Let F be a fixed field of p# elements. Let W([F) be the ring of
infinite Witt vectors over F and ¢ its Frobenius automorphism.

All schemes in this paper are over Z[d [ '].

e A HBAS (Hilbert-Blumenthal abelian scheme) over S is a triple
A=(4,1,4) (L.1)

consisting of an abelian scheme n:A4— S, an embedding of rings
1: O, = Endg(A4), a polarization A1: (M, M T)— (¢, ¢*) identifying the
(O -module M, of symmetric homomorphisms from A4 to its dual with ¢
such that the cone of polarizations M } is mapped to ¢ ™. Furthermore, we
require that t% ¢ be a locally free ¢, ® Os-module of rank 1. In particular,
the relative dimension of 4 is g. Here t 4/ stands for the locally free sheaf
of (Os-modules of rank g given by Lie(A4/S), and tj/szs*.QL/S, where
s:8— A is the identity section, is the dual of t,,s. We shall employ this
notation for a general group scheme n: G— S. If n is proper then also
tﬂé/S:n*QlG/S‘

By a non-vanishing differential on a HBAS A, we mean an (), ® (g basis
to t% . Every HBAS possesses a non-vanishing differential Zariski locally
on the base.

o A pupy-level structure on a HBAS is a closed immersion of S-group
schemes,

D' ®; iy A, (1.2)
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equivariant for the (J; -action. Here (; acts canonicallyon D; ' ®, u, from the
left. If p | N this implies that A4 is ordinary at every fiber of characteristic p.

e Let T be the split torus over W([F) associating to a W/([F)-algebra
R the group

T(R)=(C, ®; R)™. (1.3)

Let {0, .., 0,} be the embeddings of L into W(F), ordered cyclically with
respect to the Frobenius automorphism ¢ of W(F):0-0,=0;,, (the sub-
scripts read mod. g). Once we fix a choice of o,, we have a canonical
isomorphism

P

O @z W(F) =D W(F). (1.4)

i=1

That gives a canonical isomorphism T = G#, and, in particular, a canonical
isomorphism

T(R)=@ R*, ReW(F)—Alg. (1.5)

We let y,, .., x, denote the projections of T on its g components.

e Let X be the group of characters of T. It is the free abelian group
on yy, .., X~ We write X multiplicatively:

X={y - yg:r,el}. (1.6)

It is a principal homogeneous space for the group Z[ Z/gZ]. We denote by
1 the trivial character and by “Norm” the product y; --- y,.
Let X(1) be the subgroup of X generated by the elements y? x3';:

X =hasoabas s a2 xi . (1.7)

It is the subgroup of X consisting of all characters trivial on (¢, /(p))* via

(O /(p))" = T(F)=D F~. (1.8)

Similarly, we let X(m) be the subgroup of X consisting of all characters
trivial on (@, /(p™))*. See Section 3.2.

e Let B be a W(F)-algebra. Let yeX. A HMF (Hilbert modular
form) over B, of weight y, and uy-level is a rule,

(A’ ﬁ’ w)/R '_)f((fila ﬁ’w)/R)ERa (19)
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associating to a HBAS 4 over a B-algebra R, endowed with a u,-level
and a non-vanishing differential w, an element f((4, f, w),z) of R. One
requires that f((4, f, w),z) depends only on the R-isomorphism class of
(4, p, w), commutes with base-change, and satisfies

(4, B o o)) = x(@) (4, B, ) g), Ve (O, @R)*. (1.10)

See [ 12, Sect. 1.2]. We let M(B, y, 1) denote the B-module of HMFs over
B, of weight y and u,-level.

e In [7], a stratification of Hilbert modular varieties in characteristic
p was obtained by means of a fype, assuming p is inert and principal
polarization. (In [5], the reader can find how to define this stratification
under less restrictions.) We recall that for every HBAS A over a perfect
field k& containing F there is associated a type 7(4), which is a subset of
{1, ..., g}. It simply encodes the structure of the Dieudonné module of the
a-group of 4, a(A4), as an O, ® k-module. For k a perfect field this a-group
is Ker(F) n Ker(Ver). In this case, the Dieudonné module D(a(A4)) of a(A4)
is a k-vector space, of dimension between 0 and g, on which ¢, ® k acts.
As D(a(A)) is contained in the Dieudonné module of the kernel of
Frobenius, i.e., in the relative cotangent space, it follows that D(a(A4)) is a
sub-sum of @%_; k=0, ®k. The type t(A4) is defined by the identity

D(a(d))= @ k. (1.11)

iet(A)

For every subset 7 of {1, ..., g}, one lets W, be the closed reduced sub-
scheme of the moduli space, universal for the property “the type contains
7”. It has codimension |7|. We have W, W_=W__,. For a rigid level
structure, W, is regular.

LemmA 1.1. Let N >4. The moduli problem of HBAS with ux-level over
Z[d ;' -schemes is rigid.

Proof. Let A be a HBAS. Let D be the centralizer of L in End(4) ® Q.
It is known that D is either L, a CM field such that D* =L, or a quater-
nion algebra over L that is ramified everywhere at co. See [2], Lemma 6.

Let Op =D nEnd(4). If £€ Oy is an automorphism of A preserving the
polarization, then ££* =1, where * is the unique positive involution of D.
Hence, ¢ is of finite order. It follows that the field L(&) is either L, or a CM
field whose totally real subfield is L, and that ¢ is a root of unity of order
n. The case of L(&) =L is just the case of {= +1 and is easily dispensed
with. We assume that L(&)# L. Hence, [L(&): @] =2g. Equivalently,
1 <¢(n), p(n)|2g and L Q&) =Q(&) ™.



HILBERT MODULAR FORMS MODULO p™ 347

If & preserves a uy-level structure, it follows that N8| deg(1 — ¢&). Hence,
n is a prime power. Say n=/", / a prime. Then deg(1 — &) = /%/*™_ Since
¢(n)>1, this is divisible by a g-th power if and only if ¢(n) =2. On the
other hand, ¢(n)=¢"""(¢—1). This implies r=1 and /=3, or r=2 and
¢ =2. Both imply N<4. |

e Let B be a W([F)-algebra. We let .# (B, uy) be the moduli space
over Spec(B) of HBAS with uy-level. It is the base change to Spec(B) of
M(W(F), uy). We let 4*(B, uy) denote its minimal Satake compactifica-
tion. We let .# (B, iuy)° be the ordinary locus of .# (B, uy)—the base
change of .# (W(F), uy) from which the non-ordinary locus of .Z (F, )
was deleted. We let .#*(B, 1) be the ordinary locus of .#*(B, y).
Note that if p|N we have .# (B, uy)= .4 (B, uy)® and A*(B, uy)=
M*(B, 11y)°¢ The morphism . (B, uy)®— M*(B, uy)® is an open
immersion whose complement consists of finitely many sections over
Spec(B)—the cusps.

For every (N, N,) =1, with N, >4, N, a power of p, and p nilpotent in
B, the map

M (B, fty,n,) "™ — M (B, py,)™™ (1.12)

is an étale Galois covering with Galois group canonically isomorphic to
(Op/(N,))* and ,/%*(B,,uNl)Ord is the quotient of /%”‘(B,,u]\,lj\,z)"wl by the
action of (0 /(N,))*.

e Let 4 be a commutative ring with 1. Let M, M’ be finitely
generated free abelian groups, N=Hom(M, Z) and N' =Hom(M', 7). Let
G,,=Spec(A[ ¢, ¢~']). We consider the torus

G(M) :=Spec(4A[ M1])
=Spec(A[x™:me M]/(x° =1, x"x™ —x"*" Ym, m' e M)). (1.13)

As a functor on schemes over 4 we may identify it with the functor
N®G,,.4, where

(N®G,,4)(R):=N®; R, ReA—Alg. (1.14)

One verifies that
. . 0
L1e(G(M)/A)=N®Lle(Gm/A)=N®A-qa—, (1.15)
q
and hence,

d
tg(M)/A=M®tEm/A=M®A-;q. (1.16)



348 EYAL Z. GOREN
See [1], Exposé II. In the last isomorphism m®a~% corresponds to
ax~"dx™,

Let ¢: M — M’ be a homomorphism. It induces a homomorphism of
group schemes @: G(M') — G(M), whose effect on functions is x™ — x#™.
The induced map

Bt 0 = thnrya (1.17)

is given, innocently enough, by (dx™/x™)r> (dx?™/x%™)  Alternately,
m®a-%»—>¢(m)®a~%.

Consider now the case M =M’ =, and ¢ =[], the map of multiplica-
tion by an element ae@,. That is, we consider the group scheme
D;' ®G,, over 4, which is the torus

Spec(A[ O, ]) =Spec(A[x™:me O, ]/(x°—1, x"x™ —x"*" NYm, m' € (,)).
(1.18)

Thus, [a] acts on functions by x™+> x*”. The identification of tf);‘@@,n P
with O, ® A - % agrees with the action of @;. In particular, the differential
1® % generates {3, -15 4 as an O, ® A-module.

Let N be prime to p. Given a HBAS with uy,.-level, say (4, S X B,n),
we define

Lo (4, By X Bpn) = (4, By X (Bpno[a])). (1.19)
We let (Op/(p"))* act on functions f on .# (B, uy,n) by
(Lad S)A, By X Bpn) = f(La](4, By X Bpn))- (1.20)
2. MOD p

Let N>4 and prime to p. Recall that .#*(B, uy) denotes the base
change to B of the whole moduli space of HBAS with u -level compactified
at infinity. For B an F-algebra, we let Wy;, be the closed reduced sub-
scheme of .#*(B, u,) where the type contains i. See above and [7] for
more details.

THEOREM 2.1.  There exist HMFs hy, ..., h,, over T, of weights ;{5}(1—1,
st ){ﬁ,’_lxg_l respectively (h; being of weight y? | y7'), such that

(hi): W{i}' (2.1)
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(In particular, the divisor of h; is reduced.) The g-expansion of h; at every
standard cusp of M*(F, uy) is 1. Let h="hy ---h,. Then h is a modular form
of weight Norm?~'. It has q-expansion equal to 1 at every cusp and its
divisor is reduced, equal to the complement of the ordinary locus.

We refer the reader to [5] for complete details and discussion of the
partial Hasse invariants /;. For completeness, we sketch the proof of the
theorem. The following lemma follows immediately from the discussion in

[7].

LEMMA 2.2. Let A be a HBAS over a perfect field k containing F.
Assume that A is not ordinary. Then the p-divisible group A(p) of A4 is local
and a universal display over Spec(k[ [y, ..., t,1]) for its infinitesimal defor-
mations as a HBAS is given by

¢_<A+TC B+TD>

- b (2.2)

Here A, B,C and D are gxg matrices that are Teichmuller lifts to
W(k[ [ty ... 1,1]) of the display ®o=(EmoGs) Bimed?)) of A, and can be
chosen to be of the form

a;

A= ‘ (2.3)

g

(Similarly for B, C, D.) The matrix T is diagonal, with diagonal elements
Ty, .., Ty, where T, is the Teichmiiller lift of t,.

Let

€15 € (2.4)

g

be the idempotents of ¢, ® F. Given (X, w),, we get a basis {e,, .., e,w}
for t% . Let {7y, ... 1.} be the basis of ty dual to that basis. Let F be the
Frobenius morphism. It is induced by a choice of prime-to-p (), -polariza-
tion that identifies ty, with H'(X, Cy). Put

hi(X, w)) = Fip; 1 /1. (2.5)

One verifies that indeed Fz,_, is a multiple of #, and that %, is a modular
form of weight y? | 7 '. See [5]. Moreover, if R=k is a perfect field, by
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the theory of displays the matrix 4 + 7C modulo p gives the action of
Frobenius on the tangent space of the universal local deformation of X.
One finds that «@; (mod p) is, up to a unit of the base, 4;(X, @), and that
a;+ T;c; (mod p) is, up to a unit of the base, /; of the universal deforma-
tion with some choice of a non-vanishing differential on it. On the other
hand, one can prove that «;,=0 if and only if ie7(X). We see that
(hi) = W{i}' |

The divisor of the total Hasse invariant /4 is precisely the non-ordinary
locus. It is also well known that the line bundle whose sheaf of sections are
modular forms of parallel weight 1 is ample. It follows that .Z*(F, u an)"’d
is affine for n>0. Let Ry, denote the ring of regular functions on
MH(F, ppn). Since M *(F, pp,»)* is normal and the cusps are zero
dimensional, if g >1 the ring R, is also the ring of regular functions on
M (F, ).

THEOREM 2.3. Let N>=4 and let p be inert in L.

1. There exists a natural surjective homomorphism

r: @ M([F9 X /"N)_)RNpa (26)

xeX

whose kernel I is precisely the kernel of the g-expansion map. The ideal I is
graded by X/X(1) and

I=(h—1:i=1, .., g). (2.7)

2. Under the isomorphism @ ,.x M(F, z, uy)/I= Ry, provided above,
we have

@ M(F, x, un)/I=Ry. (2.8)
xeX(1)
Proof. Let m: (4", p*)— 4 (F, uy,) be the universal object. Let
taz"Au,ﬁu)_w,,([F,ﬂNP) (2.9)

be the relative cotangent bundle at the origin. Via f* we get an isomorphism
Qgt;g[l@#p—»slaec(r) F @M([F,pr)' (2.10)

Hence Q has a canonical generator wg,,: The image of (1® %‘1) ® 1. The

idempotents {e,, .., e,} (see (2.4)) give a decomposition
g g
Q=@ Q():), Wcan= D alyy). (2.11)

i=1 i=1
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In the case g=1 the line bundles Q(y;) and the sections a(y;) naturally
extend to .#*(F, u Np)"'d as follows from the existence of a universal gener-
alized elliptic curve over .#*(F, u Np)o”’. Given any ye X, y =y} ---xg, we
put

Q)= @ Qx) =" aly) = @ alz) =" (212)

i=1

Clearly a(y) is a canonical section of Q(y) (wg,, 18 non-vanishing!).
Let fe M(F, y, uy). We write f also for the pull-back of f to .4 (T, py,)
(AM*(F, py,) if g=1). Let

r(f) = fla(x). (2.13)

We extend the definition linearly and obtain a ring homomorphism

@ M(F, g, uy) = Ry, (2.14)

xeX

It can be interpreted as follows. Given (4, By x f8,),r, We have

r (Z fx><<4, ﬁNXﬁp))=fo<z_4, B (B! <1 ® dq")) (2.15)

From Equation (2.15) we can conclude two facts:

e The map,

@ M(F, 1, in) = Ry, (2.16)

xeX

is W(F)*-equivariant, where a.e W([F)* acts on fe M(F, y, uy) by [a] f=
x(a) f- Indeed r([o] /) (A4, By % B,)=x(a) r(f)(4, Bn % f,)=x(a) [(4.By,
(B3) 1@ %) = f(4, By, 0™ - (BF) 11 ® %) = r(f )4, By % Bpo[a]) =
Lal(r(f))A, Ba X Bp).

e Let B be a W(F)-algebra. Let Std be the standard cusp of
AM*(B, piy). It is the Tate object D;' ® G,,/g(¢ "), with its canonical
O, -action and polarization (see [12] for details), and with its visible
Unpn-level structure and non-vanishing differential. Evaluation at that
object is a g-expansion map.

Taking again B=F and n=1 and employing (2.15), we see, using the
theory of toroidal compactifications [2], that the following diagram com-
mutes:
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@ M([Fa Xa:uN) I RNp

xeX
q—expansim\ (2 1 7 )

Gt (F . st

It follows that I is the kernel of the g-expansion map.

The group X/X(1) is naturally identified with the group of F-valued
characters of (0./(p))*—the Galois group of #*(F, u Np)"’d—>
M*(F, 1) Note that since (€, /(p))* is of order prime to p, we have

Ry,= @ RY%,. (2.18)
Y e X/X(1)

where f'e R}{,p if for every a we have [a] f =y (a) f.
Given such f, choose some lift y of yy to X and define first a meromorphic
modular form g in M(F, y, un) by

g=/aly). (2.19)
In terms of points,
d
(10 %)

&d. B )= [(4 By x B,) - 2 )

for any u,-level B,. This shows that g is indeed of uy-level. Clearly,
r(g) = f and g has no poles on the ordinary locus. It follows that g’ = g - h*
is a holomorphic modular form for k>>0. Here % is the total Hasse
invariant from Theorem 2.1.

Because [ is the kernel of the g-expansion, it follows that for every i,
h;—1 belongs to I. In particular:

e r(h)=1 and hence r(g') = f and the map r is therefore surjective.
o (hy—1,.,h,—1)=L

We next show that I=(h, —1, .., h,—1). Suppose that (37, f;) =0. By
multiplying by various /;,—1 we may assume that f; is of weight y; and
for i#j we have ¥, #y;(mod X(1)). But, since the map r is W([F)*-
equivariant, it follows that each r(f;) =0, because they fall into different
summands of (2.18). However, on each M(F, y, xt,) the map r and g-expansion
map are injective. It follows that each f;=0.

To conclude the proof it only remains to prove part 2. But this follows
immediately from Equation (2.18) and the fact that I is generated by
elements with weights in X(1). |1
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Remark 24. Let R= @, . R, be a ring graded by an abelian group I
Let I'y be a subgroup of I. Let J be an ideal generated by elements in
@®,cr, R,- Then J is an ideal graded by I'/Iy: Let de [ If a finite sum

Zyel"fy €J, then Zye&+1"0 fy el.

Although the following corollary will be superseded by Corollary 3.15
below, we include it to demonstrate the principle of deriving congruences
between zeta values from modular forms, as well as to set notation.

COROLLARY 2.5. Let L be a totally real field. Let p be a rational prime
that is unramified in L. Let k = 2.

1. Ifk#0(mod p—1) then {,(1—k) is p-integral.
2 If k#0(mod p—1) and k=k' (mod p—1) then (,(1—k)=
{r(1—k") (mod p).

Proof. There exists an Eisenstein series of parallel weight & (i.e., weight
Norm¥)

Ee=1+250,(1=k) 7" Y o144 (2.21)

where o runs over a lattice depending on the cusp at which the g-expansion
is created and the ¢, _; , are sums of (k—1)-powers of certain rational
integers depending on « and the cusp but not on k. More precisely, under
appropriate choices, the g-expansion on a component of the moduli space
has coefficients
. a:{ak—l((a)a_lDL) OLE(C‘D.L_I)+ (222)
’ 0 otherwise,

where for any integral ideal b we let g, _;(b) =3¢, - oo N(¢)* 71 See [5]
and (3.51). We let

Ef=2-2(,(1—k)-E,. (2.23)

If 27¢{,(1—k) is not p-integral, then E,—1=0(mod p). If k=0
(mod p — 1) then Norm* # 1 (mod X(1)). This and the fact that I is graded
by X/X(1), imply that 1€ 7, which is a contradiction.

Assume that k#0 (mod p—1). Then a:=278 (1—-Kk")—{.(1—k))
belongs to Z,. Because the coefficients ¢, _; , (mod p) depend only on
k (mod p—1) we have

Ef—E:—a=0  (mod p). (2.24)
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But, using the grading, this implies that « (mod p) belongs to /. That is,
a=0 (mod p). Hence,

G(I=k)=((1-k)  (mod p). (225) 1

The following corollary identifies, via the map r, certain subrings of
@x M(U:a Ve ﬂN) and RNp'

COROLLARY 2.6. Let H be the kernel of the Norm map (Op/(p))* —
(Z/(p))*. Let Ryv;; be the ring of regular functions of the scheme M *(F, pu,)/H.
We have isomorphisms

@ M(F, Norm*?=, 11)/(h—1)= Ry, (2.26)
k=0
M(F, Norm*, uy)/(h—1) =R}, . (2.27)
k=0
Proof. Let X=X be the characters trivial on H. Clearly, X'=
{Norm, X(1)>. It follows immediately from the theorem that

@® M(F, . uy)/I=Ry, @ M(F, ., un)/I=Ry,. (228)

xeX(1) xeX!

Thus, the assertion is that

D M(F, uy)/l= é M(F, Norm?= 1, up)/(h—1),  (2.29)

xeX(1) k=0
and
@D M(F, 7, uy)/I= @ M(F, Norm*, uy)/(h—1). (2.30)
xeX! k=0

In both cases the inclusion > is clear. Thus, the claim amounts to that for
any element y e X! (resp. X(1)) we may find suitable non-negative r,’s such
that - (x¥ ;") (x2 x17 ')’ is a power of Norm. This is clear. ||

The notion of filtration plays an important role in theory of elliptic
modular forms, e.g., in the weight part of Serre’s conjecture. The following
corollary yields an analogous filtration on Hilbert modular forms.

COROLLARY 2.7. Given a g-expansion b(q) which is a g-expansion of
some HMF of uy-level at, say, the standard cusp, there exists a unique
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HMF f, such that the set of all modular forms with g-expansion b(q) is
the set

{foﬁ hgf;ai>o}. (231)
i=1

We call the weight of f, the filtration of the g-expansion b(q).

Proof. 1f f and g have the same g-expansion then r(f)=r(g), and vice
versa. We are given that b(q) is a g-expansion of some Hilbert modular
form of weight, say, y. Let f’ be a function on .#*(F, uy,) such that
J" € R%, and in the local ring of the appropriate cusp f* = b(q). Then all the
meromorphic modular forms having ¢ expansion b(q) are of the form
f"-a(y)-T1h$ where the a; € Z. But the divisor of /; is the reduced effective
divisor Wy, . Therefore, there is a choice af , .., a; such that fo= " -a(y) -
[T 4% is holomorphic and non-vanishing on some component of every
Wi . It follows that every other holomorphic form with the same g-expan-
sion is a multiple f, - [[f_, A% with ;> 0. |1

We remark that certain variants are possible. For example, for a
g-expansion arising from a HMF of parallel weight one can define its
“parallel filtration”.

The modular forms a(y) have other interesting applications. We now dis-
cuss how they may be used to construct a compactification with nice
properties of .#*(F, u Np)"’d—the Satake compactification of the moduli
space of HBAS over F-algebras together with u,,-level.

ord.

Lemma 2.8. We have an equality of modular forms on 4 (F, uy,)
aly)? =R RS by By (2.32)

Proof. Indeed, both sides are modular forms on . (F, u Np)o”’ of the
same weight, namely )({.’g_l , and the same g-expansion, namely, 1.

Let, therefore,
bi=aly)" ", (2.33)

be the modular form on .# (F, uy) of weight y?*~' and g-expansion 1. We
fix i and consider the scheme

M =l (F, p)[bY* =17, (2.34)

We explain our notation and terminology:
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The map of global sections
T(AM (T, p), Q1) = DM (T, py), Qx2*7 1) (2.35)
is induced from a morphism of schemes over .# (F, i)
o Q) = Qe (2.36)

given locally by taking (p®—1)-powers along the fiber. We define
M= M (F, uy)[bYP*~V] to be the fiber product with respect to the maps
o and b;:

M=) X AM(F, puy). (2.37)
Grh
Let p,: M — M (F, uy) be the projection and consider the line bundles
P¥Q(y,;) and pFQ(x?*~') on .4'. Let s* be the tautological section
s M — pFQ(x;), (2.38)
and let p$b; be the induced section
p3bi ' — pFQ(y 7t Y. (2.39)
The equation
(s)P* =1 =p3b, (2.40)

holds on .#'. In fact .#' has the following universal property: Given a scheme
£ S — M (F,uy) and se I'(S, £*Q(y,;)) such that s?*~! = f*p,, there exists
a unique morphism g: S —» .#' over ./ (F, uy) such that s = g*s*. We leave
the verification of this fact to the reader.

One also sees easily that (¢, /(p))*, identified with F*, acts faithfully on
A'. The morphism .#' — M (F, uy) is (O, /(p))*-equivariant and exhibits
A (F, i) as the quotient for this action.

We conclude from Lemma 2.8 and the universal property the existence of
an (O, /(p))*-equivariant open immersion

MF, ) — M. (2.41)
Note the identity
alyi—1)? a(y) ' =h, (2.42)

We have a(y;)=a(y;_1)?/h;. A priori this is a meromorphic modular form
on ./'. But raising both sides of the equation to the p¥—1 power, and
using Lemma 2.8, we find it must be holomorphic. It follows that .#" does
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not depend on i. Finally, we let .# be the scheme obtained from .#’ and
M*(F, py,) by glueing along 4 (F, uy,).

THEOREM 2.9. There exists a scheme M and a proper morphism f. M —
ME(F, ty), an open immersion M *(F, ,uNp)"’d — M, and a faithful (O./(p))*
action extending the one on M *(F, ,uNp)"’d such that f exhibits M *(F, uy) as
the quotient by this action. In particular, f is finite.

The scheme M is defined by the equation

sPE = P Ptk

i+1 i+2 i—

; (2.43)
and is independent of i. The map f is ramified precisely along the complement
of the ordinary locus, and is totally ramified there. The singular locus of M
is of pure codimension 2 and is the pre-image of \J;.; Wy, ;-

Proof. The theorem follows from the discussion above; One has to also
note that since the divisor of the modular form (/;) is reduced and equal
to Wy, Equation (2.43) becomes an Eisenstein polynomial in the local
ring of every component of Wy, for every i. A similar local calculation
yield the identification of the singular locus. ||

Remark 2.10. One of the reasons to introduce .# is that certain notions
regarding modular forms are better formulated on .#. For example, the
notion of filtration is translated into the notion of order of vanishing along
the divisors Wy, in .4 (Cf. [8]). The problem of existence of modular
forms of a specified weight, or filtration, can be viewed as a “Riemann—
Roch problem” on .#. The theta operators 0, defined by Katz [12] can be
viewed as the operators taking f GR%P to (df),/KS(a(y?)). Here w=

Q4 BNt (F, 1) is the relative cotangent space at the origin of the universal

object, KS: w®‘% - Q. PTG is the Kodaira—Spencer isomorphism,
® o, means the second tensor power as an O ® O 4, ,, y« line bundle,
and (df); is the x? isotypical component. These ideas will be pursued in a
future work.

3. MOD p™

3.1. Construction of modular forms. Assume that N >4 and, as before,
p is inert in L. Following Katz [9], we let

— {ﬂ*( Wm(ﬂ:)’ /uNp")ordg =1 T* = {'ﬂ*( Wm(ﬂ:)’ luNp”)ordg =1

MW B) pinpn)™ g > 1, ™" LMW (F), i)™ g > 1,
(3.1)
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where W, (F) is the ring of Witt vectors of length m over F. For every
n, the morphism 7, , — T, , is étale Galois with Galois group equal to
(O /(p™))*. For every m, n, the morphisms T, , — T, , and T  —
Ty ., , are closed immersions and 7, ,=T,,. 1, ® W,(F). The scheme
Ty , is an affine scheme because the invertible sheaf of modular forms of
parallel weight is ample and has a global section (some lift of 4*) whose
divisor is the non-ordinary locus, and T, , is smooth over W, (F), for
every m,n. We let V, , be the ring of regular functions of T, , (equiv-
alently, 7% ,). Note that V; ; =Ry, and V; o= Ry in the notation of
Section 2. The schemes T, , and the rings V,, , all fit into the following

commutative diagrams:

| ! ! T T T
T1,2Q’Tz,2Q’T3,2Q> V1,2“‘_V2,2“_V3,2“‘*
| ! ! , 1 1 1 (32)
T1,1Q’T2,1Q’T3,1Q’ "'V1,1*‘_V2,1“‘_V3,1“‘_"'
! ! ! i i i
Tl,og’Tz,oQ’TaoQ> ~--V1,0«——V2,0«——V3,0«——---.
We let
Tm,wzliﬂTm,na Too,oozm»Tm,oo (33)

(similarly for 7% ), and

Vm,oozm Vm,na Voo,oozlim Vm,oo' (34)

LemMma 3.1. 1. Fix 1 <i<g. For every m<n there exist a modular form
a(y;) =dapm (x;) on T, , of weight y,. It has q-expansion equal to 1 at the
standard cusp Std.

2. The a(y;)=a,, .(x;) are compatible in the following sense:

a. Under the map - T,, ., — T, , we have

f*am,n()(i) :am,n+n’(;{i)' (35)

b. Under the map f-T,, , = T,y n» where m+m' <n, we have

f*am+m’,n(){i):am,n(}{i)' (36)
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Proof. Let (4%, B% x Byn) = T,, , be the universal object. Note that

ti ®/4 n— W,(F) _@L®t7;n—>W([F) (37)

(See the discussion in Section 1.2.) The invariant differentials t* o W(F) AT€
contained in

Qv = Wl D) g1 /(g7 =1, p"q”" ") - dg. (3.8)

The differential w =¢?"~ ! dq is invariant and p"w=0. Thus, m<n if and
only if t3 1 ®yn s W) is a free O, @ W,(F)[¢]1/(¢*" — 1) module of rank 1.
Since we assume that m <n, it follows as in the proof of Theorem 2.3 that
the relative cotangent space of (4%, B3 xfB,n) = T, , is a free O, ® Or
module of rank 1 with a canonical generator w,— “the pull-back of
(1® 91"

Let {ey, .., .} be the idempotents as in (2.4). Let

a(%i):ei'wcan' (39)

It is a modular form of weight y,;. The compatibility assertions are easily
reduced to the following simple observations:

can

e The canonical map
Dzl ®:upn/Wm(|F) Q)DZI ®ﬂpn+n’/Wm([F) (3.10)

induces an isomorphism of the relative cotangent spaces.
e The canonical map

D' ®upw,, . DL @ty i) (3.11)

induces an isomorphism tD Oty Wiy ® @w Wi () W, (F)= t;§ © = Wy ()"

The following corollary follows immediately:

CorROLLARY 3.2. Let y=y} -y €X. Define for m<n

a(y)=a(y)"---alyg)"™. (3.12)

Then the a(y) are “independent of (m, n)” and define a modular form a(y) on
T, - This modular form is of weight y and has g-expansion 1 at the
standard cusp Std of T%

The group (¢, ® Z,)* acts as automorphisms of 77 ,. This action is
given on T, , in terms of points:

[a](d, B X Bpr) = (A, By X (B o [a]))- (3.13)
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Of course the action factors through (@, /(p™))*. We let

[«]: T%, - T (3.14)

m,n

denote the automorphism induced by «. The morphism [« ] induces an auto-
morphism of modular forms (a diamond operator). This may be seen as
follows: The modular forms of weight y are sections of Q(y) (see (2.11), (2.12)).
Let pr: T, ,— T, , be the natural projection. Then “pr*Q(y)=(y)”.
Indeed, (A% B * fi) = (A% B%) X 7 T p. But [a]*pr =(pro[a])* =
pr*. Moreover, the formuld for the action on a modular form fis

(L] )4, o X Pprs @) = f(4, B X (Bpno[2]), @). (3.15)

LemMAa 3.3. Let ae(O./(p™))*. Let a(y) be the modular form on T, ,
constructed above. Then

Lo a(y) = (@)~  aly). (3.16)
Let c(y)=c,(x) be the minimal non-negative integer such that

pP(1=x))=0  (mod p™), Vre(O/(p™)*. (3.17)

x

Then p“Ya(y) is invariant under (Op/(p™))*, and in particular, a(y) is
invariant under (O /(p™))* if and only if y is the trivial map (mod p™).

Proof. Let y =7 ---x%. In terms of points we have

a4, By X By, @) = 1§[< <1® >/ew> (3.18)

The assertion (3.16) and the rest of the Lemma follow easily. ||

Let X(m) be the characters in X that are trivial on (@, /(p™))> under the
composition

(OL/(p™) (O @ W, (F))* = T(W,(F)) == G, (W, (F) =W, (F)~.
(3.19)

We shall discuss X(m) further below. For now, note that X(m + 1) = X(m),
and if j is the maximal non-negative integer such that y € X(;) then

c(y) =max{m—j, 0}. (3.20)
We say that an element y of X(m) is p-positive if in its expression as
1= D O a2l xg e (3.21)

every r; = 0.
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COROLLARY 3.4. Fix an integer m=>=1. Let c(y)=c,(x) be defined as
above.

1. For every yeX there exists a modular form p“®@a(y) on T,, o of
weight y (a(y) is given by (3.12)). Its g-expansion at every standard cusp is
pD. In particular, for every y e X(m), the modular form a(y) is a modular
form of weight x and g-expansion 1 on T, ,.

2. Let yeX(m). The modular form a(y) extends to the non-ordinary
locus, i.e., it is a modular form over M (W, (F), uy) (and HM*(W,(F), uy) if
g=1), if and only if the character z = (2 77"V (27 25V (eb_y x5V is
p-positive. Furthermore,

a(y)=hi---hg(mod p). (3.22)

Proof. It follows from Lemma 3.3 that p®a(y) is a modular form on
T,. o, of weight y, and that its g-expansion at every standard cusp is p“*.
This is clear if one thinks of a modular form as in (1.9).

Consider a(y) (mod p). It has the same weight and g-expansion as the
r.h.s. of Equation (3.22) and that proves the equation. The divisor of a(y)
on T, , intersects the special fiber in the divisor of A}t --- Az But according
to Theorem 2.1 we have

(R Ry =r Wiy + o 1, Wiy (3.23)

Hence, this divisor is effective if and only if each r,>0. |

3.2. Digression on X(m). We consider now more closely the group X(m).
Let us change notation. Let G=<a) be a cyclic group of order g. Let Z[ G]
be the group ring of G and Z,[ G] be the group ring of G over Z,. The
group W(F)* is a module over Z[ G], where o acts as o—the Frobenius.

e Assume first that p #2.
We have

W(F)* =uxU,, (3.24)

where pu is the cyclic group of order p® — 1 consisting of the roots of unity
in W(F), and U,, are the units congruent to 1 modulo (p™). Clearly, as a
Z[ G] module,

n=2[Gl/(p*=1,p—0)=2[G]/(p—o0). (3.25)

By a theorem of Krasner [ 13, Theorem 17] U, is a free Z,[ G]-module of
rank 1. Hence,

W (F)* =uxU, /U, =ux U, JU""" (3.26)
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and it follows that as a Z[ G]-module

Wu(F)* =Z[G]/(p—o)®Z[G1/(p" )= Z[G1/(p" (p—0)).  (327)
In other words:
X(m) =" 25" 2 a0 (3.28)
Note that these are p-positive generators.
e Assume now that p =2. We have
W(E) =uxU=pux{+1}xU, (3.29)
where u are the 28 — 1 roots of unity and U is a torsion free subgroup of

Ul .
Assume that g is odd. Then by [ 13, Theorem 17] we have

U=7,[G]. (3.30)
Thus, for m=1,
W(F)* ~Z[G1/2—0), (3.31)
and for m>2
WauF)*=Z[G]/2—0)®Z[G]/(0,2) ®Z[G]/(2"~2).  (3.32)
The group X(m) is thus the intersection of ideals (2—a) A (g, 2) A (2" ~2).

We have (2—0)c(0,2), (2" 2)c(0,2) if m>2 and (2""2)>(0,2) if
m=2. Thus,

_ [(2—0) m=1
X(m)_{(zm*(z-o—)) m=2. (333)

In any case X(m) has naturally chosen p-positive generators,
X, XO, oy Xa8 71, (3.34)

where x is 2 — ¢ or 2" ~?(2 —¢), depending on the case.

If g is even, the situation is more complicated. The decomposition (3.29)
still holds, but U can not always be chosen to be a G-module. We allow
ourselves simply to remark that X(1) is the free abelian group generated by
%1 %3 " - 22 21" and the notion of positivity is the one obtained by iden-
tifying X(1) with Z# by sending y? y-!, to the i-th standard basis element.

i+1
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The group X(m) is a sub-lattice and is therefore automatically generated by
2-positive elements. Without going into the details of its structure, we let

Vi Yy (3.35)

be 2-positive generators for it. For the applications we give, the following
observation suffices:

Remark 3.5. The character Norm* belongs to X(m) if and only if
2¢™ |k, where 2°™ is the exponent of the group (Z/(2™))*. le.,
e(m)=m—1 for m=1, 2, and m —2 for m > 2.

3.3. The g-expansion map mod p™. In this section we study the kernel
of the g-expansion map on Hilbert modular forms modulo p™ and level
prime to p. Our results are not complete in the sense that we fail to
produce a complete set of generators for the kernel 7,, of the g-expansion
map. However, see Theorem 3.8 and Remark 3.13. We do obtain enough
information on 7,, to deduce, after introducing a “technical device”, the
classical congruences and estimates on values of {; at negative integers. See
Corollaries 3.11 and 3.15 below.

We remark that our techniques apply to more general L-functions. But
the true difficulty now is in the construction of Hilbert modular forms with
a g-expansion whose constant term is the desired special value and whose
higher coefficients have integrality and congruence properties. For this see
[4] and [19].

DeriNITION 3.6. Let y € X and consider it as a character y: (0. /(p™))™
- W, (F)*. Let

Vim =€V m [l f =) f, Yae (O, /(p™))*}. (3.36)

Let VX ,—the “Kummer part” of V,, ,—be given by
Ve m= 2 Vi (3.37)
x €X/X(m)
Remark 3.7. Note that if m > 1 the inclusion Vﬁ,m SV, m is always

a strict inclusion and the sum in (3.37) is never a direct sum.

THeEOREM 3.8. 1. There exists a natural surjective homomorphism of
rings

re @ MOW,(F), o tn) = Vi (3.38)

xeX

Let I, be the kernel of r. Then 1,,, is equal to the kernel of the q-expansion map.
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2. Let I,, be the ideal I, N @D ,cxm M(W,(F), x, tty). The map r
induces an isomorphism

D MW, (F). £ ) Ty = V. (3.39)
x €X(m)

3. If p#2, the ideal I,, contains the ideal <a()({’m+1)(2_pm)—l,...,
a()(é’m“)(f"m) —1), and if p=2, it contains {a(y,)—1, .., a(y,)—1)
(where for g odd we have generators as in (3.34), and for g even the gener-
ators are as in (3.35)).

Proof. The proof follows the same lines as the proof of Theorem 2.3.
We shall therefore be brief.

The map r is defined as in Theorem 2.3. Namely, if f'e M(W,(F), x, tn),
we let r(f) = fla(y). Using Corollary 3.2 we see that f and r(f) have the
same g-expansion, and since V,, ,, is irreducible, we conclude that 7,, is the
kernel of the g-expansion map. Certainly Corollary 3.4 implies that if p # 2,

L,24a" 157" = 1 a2 1P = 1), (3.40)

and if p =2,
I, =2 a(yy)—1, .., a(y,)—1). (341)

Moreover, one verifies that the map r is (¢, ® Z,)*-equivariant, where
([a] /) =x(2) f for feM(W,(F), x, uy), and ([a] /)4, By X Bpn) =
f(4, By x(Byneo[a])) for f€V,, ,. This shows that the image of r is con-
tained in VX .. On the other, a construction as in Theorem 2.3, shows that
r is surjective onto V5. .

It remains only to note that the equivariance also implies (3.39). ||

Remark 3.9. For m>1, it is not true that /), generates [I,,. This has to
do again with (3.37) not being a direct sum.

The following Criterion follows directly from the methods of the proof of
Theorem 3.38. Weak as it seems, it will suffice to derive the classical con-
gruences between values of {; (and more generally, of suitable L-functions).

CriteriON 3.10. Let 3, f, €1, Then there exist a, in some W, (F)-
algebra such that
Y ax(u)=0  (mod p™), Vue(C./(p™))*, (342)
X

and al =f1.

Proof. Consider the relation Y, r( f,) =0. Evaluate it at a point and let
the Galois group act. |
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COROLLARY 3.11. Let k>2.
1. Let p#2;if k=0(mod p—1) then
val,({ (1 —k))= —1—val,(k), (3.43)

and { (1 —k) is p-integral if k#0 (mod p—1).
2. If p=2, then

val,({,(1 —k)) =g —2—val,(k). (3.44)

Proof. 1.The case k#0(mod p—1) was treated in Corollary 2.5.
Assume k=0 (mod p —1). Let E, be the Eisenstein series as in (2.21). Let

¢ =max{ —val (275 (1 —k)), 0}. (3.45)

If £ =0 there is nothing to prove. Assume therefore that />0 and consider
the congruence

E,—1=0  (mod p?). (3.46)

Then Criterion 3.10 says that for some « in a W,(F) algebra, the polyno-
mial a- Norm(x)* —1 is identically zero on (0, /(p?))* or, equivalently, the
polynomial ax*—1 is identically zero on (Z/p’Z)*—a cyclic group of
order (p—1)p?~1 Taking x=1 we see that a=1. It follows that p/~!
divides k and, hence, val,(k) >/ —1> —val (272, (1 —k)) — L.

2. When p =2 one argues the same and obtains that ax* — 1 is identi-
cally zero on (Z/2°Z)*. Analysis of the structure of this group yields the
result. ||

3.4. Adding level p-structure. In this section we briefly discuss modular
forms of level u, (for (N, p)=1) together with an extra level structure of
either the form y,m, or the form I'y(p). The first additional level structure
already appeared above as involving the target of the g-expansion map
modulo p™. Tt will now appear in the level of the modular forms themselves.
This will clarify the nature of the ideal 7, of Theorem 3.8.

The second level structure is introduced to derive the precise congru-
ences between, say, values of the zeta function, that are needed to construct
the p-adic zeta function. The same technique would work for a wide variety
of L-functions.

Adding p,m level. Let us consider the graded ring of modular forms
@, ex M(W,(F), x, un,m) on the scheme T, .. The ring of modular forms on

Tm, 0> @XEX M( Wm(ﬂ:)a X ﬂN)a embeds in the ring @xex M( Wm(ﬂ:)a e )uNpm)
by pull-back via the canonical projection T, ,,— T, o.
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ProposITION 3.12.  Let I,,(Np™) be the kernel of the g-expansion map on
@XGX M( Wm([’:)r X5 :uNp”’) Thel’l

L, (Np™)=<al(y)—1:yeX), (3.47)
and

x€X

where I,(Np™)' stands for the elements of I,(Np™) invariant under the
Galois group (O /(p™))*™.

Proof. First, by Corollary 3.2 indeed a(y) — 1 belongs to 7,,(Np™). Sup-
pose that the g-expansion of Y, f, is zero. Then we may replace an f, by
o+ f,(a,—1). Repeating this as necessary we obtain a modular form g of
parallel positive weight whose g-expansion is zero. Hence, g is zero. That
is 3, f,€<a(y)—1: xeX). The rest is clear. ||

Remark 3.13. The proposition above clearly demonstrates the problem
of determining 7,,(N) explicitly. The elements in 7,,(Np™)" need not extend
to a holomorphic modular form on T, ,.

Adding I'y(p) level. By a I'y(p) level structure on a HBAS 4 we mean
a finite flat subgroup scheme H < A[ p], O, -invariant and of order p#. Such
a subgroup is automatically isotropic with respect to any (), -polarization.
We refer the reader to [14], [18] and [6] for details. However, it may
benefit the exposition to recall some basic facts without proofs.

Let us denote the Satake compactification of the fine moduli scheme
representing HBAS with level u, and level I'y(p), over W, (F)-algebras, by
S,. (m< o). Let us denote by S the ordinary locus. The scheme S; has
two “horizontal” components, denoted S¥ and S}, that correspond to tak-
ing as H the kernel of Frobenius or the kernel of Verschiebung, respec-
tively. The natural morphism

7Sy MHW,(F), piy) (3.49)

induces an isomorphism, S¥— .#*(W,,(F), uy), and a totally inseparable
morphism of degree p%, S| — 4*(W,,(F), uy). The scheme S, has many
other components parameterized by the type and the geometric fibers of #
are stratified by projective spaces.

Consider the restriction of the section .#*(W,,(F), uy)—> S¥ to T Yoo
where as above, TT , stands for the ordinary part of .4 *(W,,(F), uy). Let
Sk ord he the open subscheme of S, consisting of ordinary HBAS 4 with
H being the connected part A[ p]. We have the following commutative
diagram in which the vertical arrows are isomorphisms:
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F F, ord F, ord %
5 , 5
S| —— 8 S = Th

e

M W(F), un) <= T;k,o — T:kn,o

Let = (zy, ..., 7,) € H¥. Consider the modular form
Ef(r)=2"%(1—-k)+ Y <Z Norm(c)k_l> 2T (3.51)
veO;+ \c|(v)

It is a modular form of weight Norm* on SL,(¢, @ D, '), a fortiori on
M*(C, uy), if the polarization module ¢ (see Section 1.2) is chosen to be ;.
with its natural notion of positivity. The coefficient of > can also be
written as g, _((v)), where for every integral ideal b we let

or_1(b)= Y Norm(c)*~ " (3.52)
0 2¢|b
The function o, _; is multiplicative:

Ok —1(be) =04 _1(b) op _4(0), (b,¢)=1 (3.53)

It follows that for every prime ideal q, an ideal b < ¢/, prime to g, and any
r=0, we have

or_1(a"'D) —¢/% Vo, _1(q"D) =0y (D), (3.54)

where ¢ is the rational prime below q and f = f(q/q).
Retaining our assumption that p is inert in L, let us put

Or—1,p(P"D) =0, _4(b),  (p,b)=1 (3.55)

We then obtain the expansion

def

El(ty, 0 Ty) = EF(Ty, o Tg) — pf*~VEF (pTy, oy pT,) (3.56)
— (1 pg(k 1)) 2- gCL 1_ Z Or—1. p )e27ziTr(v‘r)‘
veOp+
(3.57)

The point important to us is that all the coefficients (except the constant
one) are (k— 1) powers of natural numbers that are prime to p. Hence, the
following facts hold:
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Let kK, k'>2 and k=k" (mod(p—1) p™). Let
¢ =max{ —val (278, (1 —k)), —val (275 ,(1 —k")), 0}, (3.58)
and put
r=max{val,(k), val (k')}, r'=min{val (k), val (k")}. (3.59)

Note the following points: (i) If p#2 then 0</ <1+7r; (ii) If p=2 then
0</<r+2; (iii)If Kk #0(mod p—1) then /=0. They all follow from
Corollary 3.11.

We may further assume, w.l.o.g., that if p =2 then val,(k) < val,(k’) and
that k and k' are even. Let

! p#2
i= {2 b2, (3.60)

Let
a=p/((1—ps*=) 278 (1 —k)— (1 — p** =) 278, (1 —K)). (3.61)
Then a € Z, and

P'EL—p’El,—a=0  (mod p"*i*), (3.62)

(The congruence means congruence of g-expansions.)

Now, the point is that p’E}, p’E}, and « are modular forms over C
of level I'y(p) having integral g-expansion, hence are modular forms on
Sp+i+es, hence on SEo . Therefore, p’E}, p’E}, and a are meromor-
phic modular forms on 7% ;. , , with poles supported on the complement
of the ordinary locus (the poles coming from the singularities of S,,).
Criterion 3.10 holds also for meromorphic modular forms and we obtain

that there exist a, b such that

ap’x* —bp’x* —a=0,  Vxe(Z/pmtitH))*. (3.63)
Since for every xe(Z/(p™*%)* we have x*=x*¥ (mod p™*7), we deduce
that there exists a ¢ in a W,,, ;-algebra such that ¢x* —a =0 (mod p™*7)

for every x in (Z/(p™*7"))*. Taking x =1 we see that the following holds
a(x¥—1)=0 (mod p™*9), Vxe(Z/(p™thH)*. (3.64)

Remark 3.14. The reader notices that we “lose” information by going
from (3.63) to (3.64). We remark that the congruences obtained are “good
enough” for the purposes of p-adic interpolation.
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We separate cases:

(i) k#0(mod p—1). Then /=0, and one gets that x =0 (mod p™*+1).
(i1) k=0 (mod p—1) but p#2. We observe that

val,(k)+ 1 =min{val,(x*—1):x€eZ, p}x}. (3.65)

We therefore obtain that val,(«) =m+1—("+1)=m—7'.

(i) k=0(mod p—1) and p=2. (We still assume that k is even,
since k odd implies that k" is odd and we get {;(1—k)={,(1—k")=0).
Observe:

valy(k) +2=min{val,(x*—1):xeZ, 2} x}. (3.66)
Therefore, valy(a)=m+2—(r' +2)=m—r'.

We observe that m —r' —/>m —i— (r +r'). We may therefore sum up
the discussion above in

COROLLARY 3.15. Let k, k' =22 and k=k' (mod(p—1) p™).
1. If k#0(mod p—1) then

(1=p*=D) (1 —k)=(1—pf* D) (1 -K)  (mod p™*!).  (3.67)
2. If k=0 (mod p—1) but p+#2, then

(1= p* D) (1 k)= (1= p*¥ ~D) (1 =K)  (mod p !~k )
(3.68)

3. If p=2 then

(1—28K=D) ¢, (1—k)=(1—-25" D) ¢, (1—K') (mod 2m+&=2-valik-k))
(3.69)

4. LIFTING OF ¢-EXPANSIONS

ProrosiTiON 4.1.  Any modular form fe M(W,(F), x, ty) can be lifted
10Ty o-

Proof. Clearly the regular function fja(x)eV,, .., =V, .- can be lifted
to Vg . Indeed, V, =V o @ W,(F). On the other hand, by
Corollary 3.2, a(y) itself lifts to T, . |
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A much more subtle question is that of lifting a modular form
feM(W,(F), y, uy) to a modular form in M(W(F), x, uy). For example,
take m =1. The modular forms /; do not lift, because any non-cusp form
of finite level must have parallel weight. Or, any modular form of finite
level must have non-negative weights. This does not contradict Proposi-
tion 4.1. The level there is infinite. The following theorem says, heuristi-
cally, that the /,’s are the prototype of modular forms that can not be
lifted. The geometric explanation for this phenomenon is that the line
bundle Q(y), for y not a multiple of Norm, does not extend to a line bundle
over the minimal compactification, though it does extend to a line bundle
over any smooth toroidal compactification.

THEOREM 4.2. Let B be any W(F)-algebra and let B,,= B& W,,(F). Let
1, be the kernel of the q-expansion map as in Theorem 3.8. The map

@ M(B’XHUN)_) C—B M(Bh){’:uN)/Il (41)

xeX xeX

is surjective. The map

@© M(B, 1, un)** = @ M(B,,, 1, un)**/1,, (42)

xeX x€eX
is surjective.

Proof. The proof uses the following lemma:

Lemma 4.3 ([15], Proposition 6.11). If feM(By, g, i) has some
g-expansion in which the constant term is non-zero then y € X(1).

Thus, if f'is not a cusp form then for a suitable ge I; we have that f + g
is of weight Norm” for some k> 0, which we may take as large as needed.

Let us put 75 = .#*(W(F), un)—the moduli space of HBAS over W([F)-
algebras with u,-level with its Satake compactification. Recall the notation
(2.12). It is well know that 2(Norm) extends to 75 and that 2(Norm) is
an ample line bundle (our level is rigid). It follows that for k large enough
every section of Q(Norm*) can be lifted. We may therefore restrict our
attention to cusp forms.

Let D <> TS be the cusps and T°=T°—D. Let T* be a smooth
toroidal compactification. We have a commutative diagram

TO - Ttor

\ lb (43)

TS,
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The map b is proper and the other two maps are open immersions. Let D*"
be the pre-image of D.

LeEMMA 4.4. There exists a quasi-coherent sheaf &(x) on TS whose
global sections are cusp forms of weight y.

Theorem 4.2 follows immediately from Lemma 4.4. For k large enough
all the higher cohomology of %(y) ® 2(Norm*) vanishes and there are
thus no obstructions to lifting. It remains to prove the lemma:

There exists a semi-abelian variety with real multiplication

(A, fy) — T (4.4)

Let Q=t{, By) — T and define Q(y) as usual (on T° this agrees with our
previous definition). Let .# be the ideal sheaf defining D*". Let

) =120 ® F). (4.5)

The sheaf #(y) is quasi-coherent sheaf on 7°. We need only show that
its global sections are cusp forms. The map from I'(T5, S(y))=
I(T™, Q(y)®F) to I'(T° Q(y)) =« M(W(F), %, 1), given by restriction, is
clearly injective. It has image contained in the cusp forms. Indeed, if
feI(T5, S(y)) and f its image, then the g-expansion of f is none-other then
f viewed as an element of the structure sheaf of the completion of 7"
along .#. For this one needs to choose a particular trivialization of Q(y) in
a neighborhood of the component of D*" under consideration. See [3],
Main Theorem.

Conversely, a cusp form f, viewed as a section of I'(T° Q(y)), or
I'(T° S(x)) extends to an a priori meromorphic section f of I'(TS, S(x)),
whose expression as an element of the structure sheaf of the completion of
T*" along .# has zero constant coefficient. That just means that locally
around D™ it belongs to .#. See loc. cit. (x). |

Remark 4.5. The point of Theorem 4.1 is that it says that every HMF
modulo p, say f, can lifted to characteristic zero, in the sense that its
g-expansion can be lifted. Le., though often one can not lift the modular
form f itself, there does exist a modular form g of characteristic zero and
weight equal to the weight of f modulo X(1), whose g-expansion is equal
to the g-expansion of f modulo p.

Practically the same proof gives the following:

Let f be a modular form over W, (F) whose constant coefficient in one
g-expansion is a unit. Then f has weight in X(m) and its g-expansion lifts
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to a g-expansion of a HMF over W(F) of the same level and weight in
X(m). A similar statement holds for cusp forms.

In fact the method of the proof allows one to control the difference
between the weights of f and the “lift” if one has an effective bound on &
such that HY(TS, & () ® 2(Norm*)) = 0.

5. TABULATION OF SOME ZETA VALUES

Remark 5.1. The computations were done using PARI and are subject
to the following reservations: (i) My lack of expertise in such calculations.
(i1) The validity of a factor being a prime. In particular, almost surely,
those huge numerators which are not decomposed at all are composite. (iii)
However, the factorization of the denominator is always into primes.

We explain how the data was obtained by giving an example. To obtain
{ac/m(—31) first raise the real precision of PARI by writing “\p 150.”
Execute the command “f=zetakinit(x2 —7);” (that creates the data that
PARI needs in order to calculate values of the zeta function of @(\ﬁ ).
Writing “x = zetak(f, -31)” gives the real number

x=285915187317986217088414870447749176723
5740853295481011573359732.500490196078
43137254901960784313725490196078431372

5490196078431372549019607843137254999.

Note that Corollary 3.43 gives a bound on the denominator of the
rational number approximated by x. Thus, one knows that y = x x 32! must
be an integer. Writing “y = x*32!” we get

¥ =122606935144296765680860441138044034718
24035695198359578560196240784639781684
83155015635042304000000.00000000000000

0000000000000000000000000000000000025.

The command, “factor(round(y)/32!)” yields the value given in the table
below.
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k| Go(l—k)

283-617
20 23.3.52.11

22 —131.593

2
24 103:2294797
24325713

26 | =55793t
9349-362903
28 | 55550

23.3.5:29
30 —1721-1001259881
22.32.7.11.31
32 37.683-305065927
223 2
3617 —151628697551
16 253517 34 22.3
18 —43867 36 26315271553053477373
2233.7.19 23.33.5.7.13.19.37

Field: L = Q(V2).
Ideals: Ramified: 2; Split: 7,17,23,31; Inert: 3,5,11,13,19,29.

k | ¢L(1—k) k | G(1-k)
2 1 () | 283:617:211202599 51060226589
223 23.3.52.11
4 11 99 | 131.503-169471.1358111.31902217001
2535 22.3.
6 192 2 -977.3343.2294797.678737272814753
22.377 2 7
g | 24611 96 | 657931:39944352181-146669017694031181
2735 .
10 | 2873041 98 | 9349:362003-474581.14048840748204034731603631
11 23.3.5.20
12 | 136913031619 30 | 72:1721:11903111001259881 3010773946258042028744719
~ 33757 25 | R
11-151.78007661 37.80.683.39217.111392753-305065927-34033706948594999426699
14 22.3 32 26.3.517
16 | 72:3617.558366571709 34 | 1137:59.151628697551.043340112506873639105567440995835717
25.35.17 2.
18 | 43867:19450718635716001 36 | 22:14437-16631 3657637.2631527 1553053477373 64876981486621133416770347
22.33.7.1 23.35.5.7.19.37

Field: L = Q(/5).
Ideals: Ramified: 5; Split: 11,19,29,31; Inert: 2,3,5,7,13,17,23.

k |¢(1—k)
20 283.617-564172514549641
22 211

oy

99 | 107:131149.593-47058898208437
-3-5:23

2 103-1093-1214221-2294797-36228867817
23.3257.13
96 | 19:5830-657931 823345533768358047

235
28 2969-9349-362903-2735340507483319678769
= o¥3s20

691-1150921 17-1721-13815257-33847091-1001259881-13133142812173
12 30 | e e T
223 13 2-32.52.7-11-31
17-33446579 37-131-683-305065927-3389247557-5539193421920211463
14 235 32 2°-3-5-17
16 | 457:3617:33002833 34 | 347:661:3359-271805003-151628697551:39267702302044517
24.35.17 235

18 | 4143867:317680421579 36 | 257:1601:531342581699-2615600385513088367.26315271553053477373
23%.5.7-19 22.33.5.7.13.19-37

Field: L = Q(v/7).
Ideals: Ramified: 2,7; Split: 3,19,29,31; Inert: 5,11,13,17,23.

k |¢(1—k)

= [t
o

|||
‘f{'

e

37040933
235

10 | 2134073517757

311
12 691-1355989-85309877
32.5.7.13

14 2:23-31126933-500577719
3

16 3617-1494552660374041255373
2 17

18 | 2:2921529-23801 43867-543274577837461
357,

20 283.617-12391-4424992276888190779824023
.52 —

2.132.131.503.773.820.6449-654804001271409612853
22 55

24 73-103-2294797-62951846444926898226001136261791181
232.5.7.13

26 2:2857-657931-1468739855213-13049197046499760097510021
3

98 | 439:9349.65993-362003-26349352999952723053544872812364085479

3529

30 2:1721-1001259881-11476721593-1072572990203117012275682682777367140637
32.7.11.31

32 37-683-92413-305065927-1566074201-543869790242280163-2888308889549447149987
3.3.5. —

34 2-13-151628697551-205042093447897-1788619008252178278652191975327334133823661
3
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Field: L = Q(¢r)* = Qla]/(2® + 2% — 22 — 1)
Ideals: Ramified: 7; Split: 13,29; Inert: 2,3,5,11,17,19,23,31.
k 1¢(1—k)
—1
2 |57
79
4 | 5357
REES
32.7
g | 142490119
22357
— 1141452324871
10 3711
12 | 69110903.278995143079
23757
14 —1033-5410539334962035689
=1032:5410530334962025680
16 | 2617-19387:6007171.399890401961287
18 | —97-43867.9105835027474306843301627809
33719
0 | 283:617.21766351.51183510123014870006951001289
2352711
99 | =131:503:751.1657.95131 2557424168676190300514101539043
3723
94 | 1082294707 .400002417145059-4831 713236649233 88247307 11920451
2732.5.7.13
06 | —29527-657031 33065067261 7047452768080 67834018071009401 11277317
08 | 9349-82471.562003-743035325831503- 0755204 750340520007 5887531 320453854 79373
3() | —LI2L3373.1001250881.11802503528800600-181878041504305140264558 75465707 5835080477429
32.7.11.31
30 | B7.683.24847 38575843 125089171 .305065027-1270758367-140387691 71773564015 3181305764066444526019
2935717
34 | —103367-151628607551-3002457626517101008363620826323055571 8860153969201 31170624520020285 766191
3.7

Field: L =Q(¢u)* = Qlz]/(z® + 2' — 42® — 322 + 3z + 1)
Ideals: Ramified: 11; Split: 23; Inert: 2,3,5,7,13,17,19,29, 31.

k
2
4 1
6 —22.5.521.4888380551
32711
8 13721-2520121-102462575851
10 —22.5.98178488021-1560850707193521481
31
12 2:691-1607981-6134561-29139491-379133507794919521741
32571113
14 —22.5.31.71.109841-4712650115236500312066042412229825266552711
16 31-3617-18131-42641-2466915721-16536905787398887294720186948011155968235231
-3 17
18 —22.5.43867-113011-835818164077607527662719035981440776856878764991606492392023228841381
33.7.11.19
20 2-131-283-617-821-481951783190606372931457121941057256238988336323490351990340248253504373198746671
3.52.11
22 —22.5.31.131-593-2111-9811-4754681-150743667211-7485309344691968588719378106517487509425242700571390702015324593161626701
311223
24 2140902620412862787531604307645176100404841968426079695283278792036337157813694947611346966909345714822325560273519654201
32.5.7.11.13
26 —272623514370642870558372772196000774324744469363909470795760720136333301617973028388628650301184844782829144056234056572114064826020
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