HILBERT MODULAR FORMS MODULO p^m:
THE UNRAMIFIED CASE

EYAL Z. GOREN

Abstract. This paper is about Hilbert modular forms on certain Hilbert modular varieties associated with a totally real field L. Let p be unramified in L. We reduce to the inert case and consider modular forms modulo p^m. We study the ideal of modular forms with q-expansion equal to zero modulo p^m, find canonical elements in it, and obtain as a corollary the congruences for the values of the zeta function of L at negative integers. Our methods are geometric and also have applications to lifting of Hilbert modular forms and compactification of certain modular varieties.

1. Introduction

1.1. The contents of this paper. The subject of this paper is the study of Hilbert modular forms on Hilbert modular varieties and some applications. The modular varieties are those parameterizing abelian varieties of dimension g with a given action of the ring of integers of a totally real field L of degree g over \mathbb{Q} and certain level structures, some indigenous to characteristic p. We shall be particularly interested in the case where the domain of the modular form is the modular variety modulo p^m. This allows us to study q-expansions modulo p^m.

The Hilbert modular forms we consider are modular forms in the sense of Katz [12]. Their weights are given by characters of a certain algebraic group over \mathcal{O}_L, which is a torus over $\mathcal{O}_L[\text{disc}^{-1}]$. Over the complex numbers this just boils down to discussing Hilbert modular forms of possibly non-parallel weight.

We assume a priori that the prime p we are dealing with is non-ramified in L. However, one immediately reduces to the case where the prime is inert. This is a well known principle and we refer the reader to [5] to see how this works. Assume, henceforth, that p is inert.

Denote the graded ring of Hilbert modular forms of μ_N-level ($(N,p) = 1$), defined over $W_m(\mathbb{F})$, by $\bigoplus_\chi \mathbf{M}(W_m(\mathbb{F}),\chi,\mu_N)$. We refer the reader to Section 1.2 for precise definitions. In brief: $W_m(\mathbb{F})$ is isomorphic to $\mathcal{O}_L/(p^m)$; a μ_N-level means an \mathcal{O}_L-equivariant embedding of $D_L^{\mu^{-1}} \otimes \mu_N$ into the abelian variety.

The main question we treat is:

"what can one say on the kernel of the q-expansion map on $\bigoplus_\chi \mathbf{M}(W_m(\mathbb{F}),\chi,\mu_N)$?"

While in characteristic 0 the kernel is trivial, the situation is different in characteristic p. A well-known theorem of P. Swinnerton-Dyer asserts that for $g = 1$ and $m = 1$, the kernel is generated by $E_{p-1} - 1$, where E_{p-1} is an Eisenstein series of weight $p - 1$ (see (2.21) for the definition of E_k for any L), and a well-known theorem of P. Deligne asserts that E_{p-1} modulo p is the Hasse invariant.

Our results are a generalization of these theorems for general totally real fields and any m. One of the psychological shifts one has to make is to completely abandon the method of obtaining relations by reducing from characteristic zero and to work solely modulo p^m. Indeed, the question of whether or not $E_{(p-1)p^r - 1}$ belongs to this kernel depends, for a given r on the field (and need not hold), and for all $r \gg 0$ is equivalent to Leopoldt’s conjecture.

1991 Mathematics Subject Classification. Primary 11F33, 11F41; Secondary 14G35.
For $m = 1$, that is, modulo p, our results are a direct and precise analog of the above theorems. The complement of the ordinary locus was studied by F.Oort and the author in [7]. It turns out that it canonically decomposes as a union $\cup_{i=1}^{g} W_{(i)}$ (see Section 1.2).

Theorem 1. (Theorem 2.1) Let p be inert in L. There exist Hilbert modular forms h_1, \ldots, h_g, over \mathbb{F}, of weights $\chi_0 p \lambda_1^{-1}, \chi_1 p \lambda_2^{-1}, \ldots, \chi_{g-1} p \lambda_g^{-1}$ respectively (h_i being of weight χ_i^{-1}), such that

$$h_i = W_{(i)}.$$

(In particular, the divisor of h_i is reduced.) The q-expansion of h_i at every cusp of $M^*(\mathbb{F}, \mu_N)$ is 1. Let $h = h_1 \cdots h_g$. Then h is a modular form of weight $\text{Norm}^{p^{-1}}$. It has q-expansion equal to 1 at every cusp and its divisor is reduced, equal to the complement of the ordinary locus.

We remark that h is non-other then the Hasse invariant, i.e., the determinant of the Hasse-Witt matrix, and that if $g > 1$ the h_i’s never lift to characteristic zero!

We then prove (compare Theorem 2.3)

Theorem 2. Let p be inert in L. The kernel of the q-expansion map modulo p is the ideal generated by $\{ h_1 - 1, \ldots, h_g - 1 \}$.

Regarding the situation modulo p^m, our results are less complete. Let I_m be the kernel of the q-expansion map modulo p^m. We are able to identify the quotient $\oplus_{\chi} \chi M(W_m(\mathbb{F}), \chi, \mu_N)/I_m$ and find some canonical elements in I_m that are a generalization of the h_i’s. See Theorem 3.8. After adding level structure one can determine the kernel of the q-expansion map modulo p^m completely. See Proposition 3.12.

We provide several applications. One is to construct an explicit compactification of Hilbert modular varieties with μ_p-level, which is non-singular in codimension one. See Theorem 2.9. A second application is to show that there exists a notion of filtration for non-parallel modular forms.

Another application is classical. Let ζ_L be the Dedekind zeta function of L. Recall that by a theorem of C. L. Siegel the values of $\zeta_L(1 - k)$, for $k \geq 2$ an integer, are rational numbers and are equal to zero if k is odd. From a modern perspective this is quite immediate. There exists an Eisenstein series E_k with rational Fourier coefficients and constant coefficient $2^{-g} \zeta_L(1 - k)$. One considers the modular form of weight k given by $E_k - E_k^\sigma$ for an automorphism σ. It turns out that this “rational influence” of the higher coefficients on the constant coefficient can be refined to an “integral influence”. This was proved and developed in the case $g = 1$ by J.-P. Serre [17], and in general by P. Deligne and K. Ribet in [4], [16]. In truth, our methods are not that far from Deligne-Ribet’s methods [4], [16] (who, in turn, follow ideas of N. Katz [9], [10], [11], [12] and J.-P. Serre [17]), but our approach is more geometric and is based on [7], [5]. The conclusion of the congruences is clearly in “Serre’s style”.

Corollary 1. (Corollary 3.11) Let p be inert in L. Let $k \geq 2$.

1. Let $p \neq 2$; if $k \equiv 0 \pmod{p - 1}$ then

$$\text{val}_p(\zeta_L(1 - k)) \geq -1 - \text{val}_p(k),$$

and $\zeta_L(1 - k)$ is p-integral if $k \not\equiv 0 \pmod{p - 1}$.

2. If $p = 2$, then

$$\text{val}_2(\zeta_L(1 - k)) \geq g - 2 - \text{val}_2(k).$$

Corollary 2. (Corollary 3.15) Let p be inert in L. Let $k, k' \geq 2$ and $k \equiv k' \pmod{(p - 1)p^m}$.

1. If $k \not\equiv 0 \pmod{p - 1}$ then

$$(1 - p^{\varphi(k - 1)})\zeta_L(1 - k) \equiv (1 - p^{\varphi(k' - 1)})\zeta_L(1 - k') \pmod{p^{m+1}}.$$
2. If \(k \equiv 0 \pmod{p-1} \) but \(p \neq 2 \), then
\[
(1 - p^{g(k-1)}) \zeta_L(1-k) \equiv (1 - p^{g(k'-1)}) \zeta_L(1-k') \pmod{p^{m-1-\val_p(k-k')}}.
\]
3. If \(p = 2 \) then
\[
(1 - 2^{g(k-1)}) \zeta_L(1-k) \equiv (1 - 2^{g(k'-1)}) \zeta_L(1-k') \pmod{2^{m+g-2-\val_2(k-k')}}.
\]

The derivation of the congruences rests on the following Criterion 3.10:

"Let \(\sum \chi \in I_n \). Then there exist \(\alpha \chi \) in some \(W_m(\mathbb{F}) \)-algebra such that \(\sum \chi \alpha \chi(u) \equiv 0 \pmod{p^m} \) for all \(u \in (\mathcal{O}_L/(p^m))^\times \) and \(a_1 = f_1 \)."

It is interesting to note that this criterion allows an inverse in some sense. Given such polynomial relations one obtains relations between values of zeta functions, provided certain restrictions are satisfied.

Acknowledgements. We wish to make clear our intellectual debt to the works of Nicholas Katz. Thanks are due to H. Darmon, K. Khuri-Makdisi and H. Kisilevsky for the interest they took in this work.

1.2. Definitions and Notation. Let \(L \) be a totally real field of degree \(g \) over \(\mathbb{Q} \). Let \(\mathcal{O}_L \) be its ring of integers, \(D_L \) the different ideal and \(d_L \) the discriminant. Let \(\tau \) be a fractional ideal of \(L \). Let \(p \) a rational prime that is inert in \(L \). Let \(\mathbb{F} \) be a fixed field of \(p^g \) elements. Let \(W(\mathbb{F}) \) be the ring of infinite Witt vectors over \(\mathbb{F} \) and \(\sigma \) its Frobenius automorphism.

All schemes in this paper are over \(\mathbb{Z} [d_L^{-1}] \).

- A HBAS (Hilbert-Blumenthal abelian scheme) over \(S \) is a triple

\[
(A, \iota, \lambda)
\]

consisting of an abelian scheme \(\pi : A \to S \), an embedding of rings \(\iota : \mathcal{O}_L \hookrightarrow \End_S(A) \), a polarization \(\lambda : (M_A, M_A^+) \to (\iota, \iota^+) \) identifying the \(\mathcal{O}_L \)-module \(M_A \) of symmetric homomorphisms from \(A \) to its dual with \(\iota \) such that the cone of polarizations \(M_A^+ \) is mapped to \(\iota^+ \). Furthermore, we require that \(t_{A/S} \) be a locally free \(\mathcal{O}_L \otimes \mathcal{O}_S \)-module of rank 1. In particular, the relative dimension of \(A \) is \(g \). Here \(t_{A/S} \) stands for the locally free sheaf of \(\mathcal{O}_S \)-modules of rank \(g \) given by \(\Lie(A/S) \), and \(t_{A/S}^* = s^* \Omega^1_{A/S} \), where \(s : S \to A \) is the identity section, is the dual of \(t_{A/S} \). We shall employ this notation for a general group scheme \(\pi : G \to S \). If \(\pi \) is proper then also \(t_{\pi/G/S} = \pi_* \Omega^1_G \).

By a non-vanishing differential on a HBAS \(A \), we mean an \(\mathcal{O}_L \otimes \mathcal{O}_S \) basis to \(t_{A/S}^* \). Every HBAS possesses a non-vanishing differential Zariski locally on the base.

- A \(\mu_N \)-level structure on a HBAS is a closed immersion of \(S \)-group schemes,

\[
D_L^{-1} \otimes_\mathbb{Z} \mu_N \hookrightarrow A,
\]
equivariant for the \(\mathcal{O}_L \)-action. Here \(\mathcal{O}_L \) acts canonically on \(D_L^{-1} \otimes_\mathbb{Z} \mu_N \) from the left. If \(p \mid N \) this implies that \(A \) is ordinary at every fiber of characteristic \(p \).

- Let \(\mathbb{T} \) be the split torus over \(W(\mathbb{F}) \) associating to a \(W(\mathbb{F}) \)-algebra \(R \) the group

\[
\mathbb{T}(R) = (\mathcal{O}_L \otimes \mathbb{Z} R)^\times.
\]

Let \(\{\sigma_1, \ldots, \sigma_g\} \) be the embeddings of \(L \) into \(W(\mathbb{F}) \), ordered cyclically with respect to the Frobenius automorphism \(\sigma \) of \(W(\mathbb{F}) \): \(\sigma \circ \sigma_i = \sigma_{i+1} \) (the subscripts read mod. \(g \)). Once we fix a choice of \(\sigma_1 \), we have a canonical isomorphism

\[
\mathcal{O}_L \otimes_\mathbb{Z} W(\mathbb{F}) = \bigoplus_{i=1}^g W(\mathbb{F}).
\]
That gives a canonical isomorphism $T = \mathbb{G}_m^g$ and, in particular, a canonical isomorphism
\[(1.5) \quad T(R) = \bigoplus_{i=1}^g R^\times, \quad R \in W(F) - \text{Alg.} \]
We let χ_1, \ldots, χ_g denote the projections of T on its g components.

- Let X be the group of characters of T. It is the free abelian group on χ_1, \ldots, χ_g. We write X multiplicatively:
\[(1.6) \quad X = \{\chi_1^{r_1} \cdots \chi_g^{r_g} : r_i \in \mathbb{Z}\}. \]
It is a principal homogeneous space for the group \mathbb{Z} by “Norm” the product $\chi_1^{r_1} \cdots \chi_g^{r_g} \cdot \chi_1^{s_1} \cdots \chi_g^{s_g} = \chi_1^{r_1+s_1} \cdots \chi_g^{r_g+s_g}$.

Let $X(1)$ be the subgroup of X generated by the elements $\chi_1^p, \chi_2^p, \ldots, \chi_g^p$:
\[(1.7) \quad X(1) = \langle \chi_1^p, \chi_2^p, \ldots, \chi_g^p \rangle. \]
It is the subgroup of X consisting of all characters trivial on $(\mathcal{O}_L/(p))$ via
\[(1.8) \quad (\mathcal{O}_L/(p))^\times \hookrightarrow T(\mathbb{F}) = \bigoplus_{i=1}^g \mathbb{F}^\times. \]
Similarly, we let $X(m)$ be the subgroup of X consisting of all characters trivial on $(\mathcal{O}_L/(p^m))^\times$. See Section 3.2.

- Let B be a $W(F)$-algebra. Let $\chi \in X$. A HMF (Hilbert modular form) over B, of weight χ, and μ_N-level is a rule,
\[(1.9) \quad (A, \beta, \omega)/R \mapsto f((A, \beta, \omega)/R) \in R, \]
associating to a HBAS A over a B-algebra R, endowed with a μ_N-level β and a non-vanishing differential ω, an element $f((A, \beta, \omega)/R)$ of R. One requires that $f((A, \beta, \omega)/R)$ depends only on the R-isomorphism class of (A, β, ω), commutes with base-change, and satisfies
\[(1.10) \quad f((A, \beta, \omega^{-1}/R) = \chi(\alpha) f((A, \beta, \omega)/R), \quad \forall \alpha \in (\mathcal{O}_L \otimes R)^\times. \]
See [12, §1.2]. We let $M(B, \chi, \mu_N)$ denote the B-module of HMFs over B, of weight χ and μ_N-level.

- In [7], a stratification of Hilbert modular varieties in characteristic p was obtained by means of a type, assuming p is inert and principal polarization. (In [5], the reader can find how to define this stratification under less restrictions.) We recall that for every HBAS A over a perfect field k containing F there is associated a type $\tau(A)$, which is a subset of $\{1, \ldots, g\}$. It simply encodes the structure of the Dieudonné module of the α-group of A, $\alpha(A)$, as an $\mathcal{O}_L \otimes k$-module. For k a perfect field this α-group is $\text{Ker}(F) \cap \text{Ker}(\text{Ver})$. In this case, the Dieudonné module $\mathbb{D}(\alpha(A))$ of $\alpha(A)$ is a k-vector space, of dimension between 0 and g, on which $\mathcal{O}_L \otimes k$ acts. As $\mathbb{D}(\alpha(A))$ is contained in the Dieudonné module of the kernel of Frobenius, i.e., in the relative cotangent space, it follows that $\mathbb{D}(\alpha(A))$ is a sub-sum of $\bigoplus_{i=1}^g k = \mathcal{O}_L \otimes k$. The type $\tau(A)$ is defined by the identity
\[(1.11) \quad \mathbb{D}(\alpha(A)) = \bigoplus_{i \in \tau(A)} k. \]
For every subset τ of $\{1, \ldots, g\}$, one lets W_τ be the closed reduced subscheme of the moduli space, universal for the property “the type contains τ”. It has codimension $|\tau|$. We have $W_\tau \cap W_\sigma = W_{\tau \cup \sigma}$. For a rigid level structure, W_τ is regular.

Lemma 1.1. Let $N \geq 4$. The moduli problem of HBAS with μ_N-level over $\mathbb{Z}[d_L^{-1}]$-schemes is rigid.

Proof. Let A be a HBAS. Let D be the centralizer of L in $\text{End}(A) \otimes \mathbb{Q}$. It is known that D is either L, a CM field such that $D^+ = L$, or a quaternion algebra over L that is ramified everywhere at ∞. See [2], Lemma 6.
Let $\mathcal{O}_D = D \cap \text{End}(A)$. If $\xi \in \mathcal{O}_D$ is an automorphism of A preserving the polarization, then $\xi^*=1$, where $*$ is the unique positive involution of D. Hence, ξ is of finite order. It follows that the field $L(\xi)$ is either L, or a CM field whose totally real subfield is L, and that ξ is a root of unity of order n. The case of $L(\xi) = L$ is just the case of $\xi = \pm 1$ and is easily dispensed with. We assume that $L(\xi) \neq L$. Hence, $[L(\xi): \mathbb{Q}] = 2g$. Equivalently, $1 < \phi(n), \phi(n)|2g$ and $L \cap \mathbb{Q}(\xi) = \mathbb{Q}(\xi)^{+}$.

If ξ preserves a μ_N-level structure, it follows that $N^g|\text{deg}(1 - \xi)$. Hence, n is a prime power. Say $n = \ell^r$, ℓ a prime. Then $\text{deg}(1 - \xi) = \ell^{2g}/\phi(n)$. Since $\phi(n) > 1$, this is divisible by a g-th power if and only if $\phi(n) = 2$. On the other hand, $\phi(n) = \ell^{r-1}(\ell - 1)$. This implies $r = 1$ and $\ell = 3$, or $r = 2$ and $\ell = 2$. Both imply $N < 4$.

- Let B be a $W(\mathbb{F})$-algebra. We let $\mathcal{M}(B,\mu_N)$ be the moduli space over $\text{Spec}(B)$ of HBAS with μ_N-level. It is the base change to $\text{Spec}(B)$ of $\mathcal{M}(W(\mathbb{F}),\mu_N)$. We let $\mathcal{M}^*(B,\mu_N)$ denote its minimal Satake compactification. We let $\mathcal{M}(B,\mu_N)_{\text{ord}}$ be the ordinary locus of $\mathcal{M}(B,\mu_N)$ – the base change of $\mathcal{M}(W(\mathbb{F}),\mu_N)$ from which the non-ordinary locus of $\mathcal{M}(W(\mathbb{F}),\mu_N)$ was deleted. We let $\mathcal{M}^*(B,\mu_N)_{\text{ord}}$ be the ordinary locus of $\mathcal{M}^*(B,\mu_N)$. Note that if $p|N$ we have $\mathcal{M}(B,\mu_N) = \mathcal{M}(B,\mu_N)_{\text{ord}}$ and $\mathcal{M}^*(B,\mu_N) = \mathcal{M}^*(B,\mu_N)_{\text{ord}}$. The morphism $\mathcal{M}(B,\mu_N)_{\text{ord}} \to \mathcal{M}^*(B,\mu_N)_{\text{ord}}$ is an open immersion whose complement consists of finitely many sections over $\text{Spec}(B)$ – the cusps.

For every $(N_1, N_2) = 1$, with $N_1 \geq 4$, the map

\begin{equation}
\mathcal{M}(B,\mu_{N_1},N_2)_{\text{ord}} \to \mathcal{M}(B,\mu_{N_1})_{\text{ord}}
\end{equation}

is an étale Galois covering with Galois group canonically isomorphic to $(\mathcal{O}_L/(N_2))^\times$ and $\mathcal{M}^*(B,\mu_{N_1})_{\text{ord}}$ is the quotient of $\mathcal{M}^*(B,\mu_{N_1})_{\text{ord}}$ by the action of $(\mathcal{O}_L/(N_2))^\times$.

- Let A be a commutative ring with 1. Let M, M' be finitely generated free abelian groups, $N = \text{Hom}(M, \mathbb{Z})$ and $N' = \text{Hom}(M', \mathbb{Z})$. Let $G_m = \text{Spec}(A[q, q^{-1}])$. We consider the torus

\begin{equation}
G(M) := \text{Spec}(A[M])
\end{equation}

\begin{equation}
= \text{Spec}(A[x^m : m \in M]/(x^0 - 1, x^mx^{m'} - x^{m+m'} \forall m, m' \in M)).
\end{equation}

As a functor on schemes over A we may identify it with the functor $N \otimes G_m/A$, where

\begin{equation}
(N \otimes G_m/A)(R) := N \otimes \mathbb{Z} R^\times, \quad R \in A - \text{Alg}.
\end{equation}

One verifies that

\begin{equation}
\text{Lie}(G(M)/A) = N \otimes \text{Lie}(G_m/A) = N \otimes A \cdot \frac{\partial}{\partial q},
\end{equation}

and hence,

\begin{equation}
\mathfrak{t}_{G(M)/A} = M \otimes \mathfrak{t}_{G_m/A} = M \otimes A \cdot \frac{dq}{q}.
\end{equation}

See [1], Exposé II. In the last isomorphism $m \otimes a \cdot \frac{dq}{q}$ corresponds to $ax^{-m}dx^m$.

Let $\phi : M \to M'$ be a homomorphism. It induces a homomorphism of group schemes $\Phi : G(M') \to G(M)$, whose effect on functions is $x^m \mapsto x^{\phi(m)}$. The induced map

\begin{equation}
\Phi^* : \mathfrak{t}_{G(M)/A} \to \mathfrak{t}_{G(M')/A}
\end{equation}

is given, innocently enough, by $\frac{dq}{dx^m} \mapsto \frac{dq}{x^{\phi(m)}}$. Alternately, $m \otimes a \cdot \frac{dq}{q} \mapsto (m) \otimes a \cdot \frac{dq}{q}$.

Consider now the case $M = M' = \mathcal{O}_L$ and $\phi = [\alpha]$, the map of multiplication by an element $\alpha \in \mathcal{O}_L$. That is, we consider the group scheme $D_L^{-1} \otimes G_m$ over A, which is the torus

\begin{equation}
\text{Spec}(A[\mathcal{O}_L]) = \text{Spec}(A[x^m : m \in \mathcal{O}_L]/(x^0 - 1, x^mx^{m'} - x^{m+m'} \forall m, m' \in \mathcal{O}_L)).
\end{equation}
Thus, \([\alpha]\) acts on functions by \(x^{m} \mapsto x^{\alpha m}\). The identification of \(t^{*}_{D_{L}^{-1}@G/\mathcal{A}} \mathcal{O}_{L} \otimes \mathcal{A} \cdot \frac{dq}{q}\) agrees with the action of \(\mathcal{O}_{L}\). In particular, \(t^{*}_{D_{L}^{-1}@G/\mathcal{A}} \mathcal{O}_{L} \otimes \mathcal{A} \cdot \frac{dq}{q}\) generates \(t^{*}_{D_{L}^{-1}@G/\mathcal{A}} \mathcal{O}_{L} \otimes \mathcal{A}\)-module.

Let \(N\) be prime to \(p\). Given a HBAS with \(\mu_{N^p}\)-level, say \((A, \beta_{N} \times \beta_{p^p})\), we define
\[
(\mathcal{O}_{L}/(p^{n}))^{\times} \text{ act on functions } f \text{ on } \mathcal{M}(B, \mu_{N^p}) \text{ by }
(\alpha f)(A, \beta_{N} \times \beta_{p^p}) = f(\alpha(A, \beta_{N} \times \beta_{p^p})).
\]

2. Mod \(p\)

Let \(N \geq 4\) and prime to \(p\). Recall that \(\mathcal{M}^{*}(B, \mu_{N})\) denotes the base change to \(B\) of the \(\text{whole}\) moduli space of HBAS with \(\mu_{N}\)-level compactified at infinity. For \(B\) an \(F\)-algebra, we let \(W_{(i)}\) be the closed reduced subscheme of \(\mathcal{M}^{*}(B, \mu_{N})\) where the type contains \(i\). See above and [7] for more details.

Theorem 2.1. There exist HMFs \(h_{1}, \ldots, h_{g}\), over \(F\), of weights \(\chi_{\ell}^{p}, \chi_{\ell-1}^{p}, \chi_{\ell-2}^{p}, \ldots, \chi_{g-1}^{p}\) respectively, \((h_{i}\) being of weight \(\chi_{\ell-1}^{p}\)), such that
\[
(h_{i}) = W_{(i)}.
\]
(In particular, the divisor of \(h_{i}\) is reduced.) The \(q\)-expansion of \(h_{i}\) at every cusp of \(\mathcal{M}^{*}(F, \mu_{N})\) is \(1\).

Let \(h = h_{1} \cdots h_{g}\). Then \(h\) is a modular form of weight \(p\)-1. It has \(q\)-expansion equal to \(1\) at every cusp and its divisor is reduced, equal to the complement of the ordinary locus.

We refer the reader to [5] for complete details and discussion of the partial Hasse invariants \(h_{i}\). For completeness, we sketch the proof of the theorem. The following lemma follows immediately from the discussion in [7].

Lemma 2.2. Let \(A\) be a HBAS over a perfect field \(k\) containing \(\mathbb{F}\). Assume that \(A\) is not ordinary. Then the \(p\)-divisible group \(\mathcal{A}(p)\) of \(A\) is local and a universal display over \(\text{Spec}(k[[t_{1}, \ldots, t_{g}]]\)) for its infinitesimal deformations as a HBAS is given by
\[
\Phi = \left(\begin{array}{cc} A + TC & B + TD \\ C & D \end{array} \right).
\]

Here \(A, B, C\) and \(D\) are \(g \times g\) matrices that are Teichmüller lifts to \(W(k[[t_{1}, \ldots, t_{g}]]\)) of the display \(\Phi_{0} = \left(\begin{array}{cc} A_{(\text{mod } p)} & (B_{(\text{mod } p)}^{(\text{mod } p)}) \\ C_{(\text{mod } p)} & D_{(\text{mod } p)} \end{array} \right)\) of \(A\), and can be chosen to be of the form
\[
A = \left(\begin{array}{cccc} a_{1} & & & \\ & a_{2} & & \\ & & \ddots & \\ & & & a_{g} \end{array} \right).
\]

(Similarly for \(B, C, D\).) The matrix \(T\) is diagonal, with diagonal elements \(T_{1}, \ldots, T_{g}\), where \(T_{i}\) is the Teichmüller lift of \(t_{i}\).

Let
\[
e_{1}, \ldots, e_{g}\]
be the idempotents of \(\mathcal{O}_{L} \otimes \mathbb{F}\). Given \((\mathcal{X}, \omega)_{/R}\) we get a basis \(\{e_{1}\omega, \ldots, e_{g}\omega\}\) for \(t_{X/R}^{*}\). Let \(\{\eta_{1}, \ldots, \eta_{g}\}\) be the basis of \(t_{X/R}^{*}\) dual to that basis. Let \(F\) be the Frobenius morphism. It is induced by a choice of prime-to-\(p\) \(\mathcal{O}_{L}\)-polarization that identifies \(t_{X/R}^{*}\) with \(H^{1}(X, \mathcal{O}_{X})\). Put
\[
h_{i}((\mathcal{X}, \omega)) = F^{\eta_{i-1}}/\eta_{i}.
\]
One verifies that indeed \(F^{\eta_{i-1}}\) is a multiple of \(\eta_{i}\) and that \(h_{i}\) is a modular form of weight \(\chi_{\ell-1}^{p}\). See [5]. Moreover, if \(R = k\) is a perfect field, by the theory of displays the matrix \(A + TC\) modulo \(p\)
gives the action of Frobenius on the tangent space of the universal local deformation of X. One finds that $a_i \pmod{p}$ is, up to a unit of the base, $h_i(X, \omega)$, and that $a_i + T_i c_i \pmod{p}$ is, up to a unit of the base, h_i of the universal deformation with some choice of a non-vanishing differential on it. On the other hand, one can prove that $a_i = 0$ if and only if $i \in \tau(X)$. We see that $(h_i) = W_{(i)}$. □

The divisor of the total Hasse invariant h is precisely the non-ordinary locus. It is also well known that the line bundle whose sheaf of sections are modular forms of parallel weight 1 is ample. It follows that $M^*(\mathbb{F}, \mu_{Np^\infty})^{\text{ord}}$ is affine for $n \geq 0$. Let R_{NP^n} denote the ring of functions on $M^*(\mathbb{F}, \mu_{Np^n})^{\text{ord}}$. Since $M^*(\mathbb{F}, \mu_{Np^n})^{\text{ord}}$ is normal and the cusps are zero dimensional, if $g > 1$ the ring R_{NP^n} is also the ring of functions on $M(\mathbb{F}, \mu_{NP^n})^{\text{ord}}$.

Theorem 2.3. Let $N \geq 4$ and let p be inert in L.

1. There exists a natural surjective homomorphism
 \[r : \bigoplus_{\chi \in X} M(\mathbb{F}, \chi, \mu_N) \longrightarrow R_{NP}, \]
 whose kernel I is precisely the kernel of the q-expansion map. The ideal I is graded by $X/X(1)$ and
 \[I = (h_i - 1 : i = 1, \ldots, g). \]

2. Under the isomorphism $\bigoplus_{\chi \in X} M(\mathbb{F}, \chi, \mu_N)/I \cong R_{NP}$ provided above, we have
 \[\bigoplus_{\chi \in X^{(1)}} M(\mathbb{F}, \chi, \mu_N)/I \cong R_N. \]

Proof. Let $\pi : (A^u, \beta^u) \longrightarrow M(\mathbb{F}, \mu_N)$ be the universal object. Let
 \[\Omega = t_0^{(A^u, \beta^u) \to M(\mathbb{F}, \mu_N)} \]
be the relative cotangent bundle at the origin. Via β^u we get an isomorphism
 \[\Omega \cong t_{D^{-1} \otimes R_p \to \text{Spec}(\mathbb{F}) \otimes \mathbb{F}} \mathcal{O}(M(\mathbb{F}, \mu_N)). \]
Hence Ω has a canonical generator ω_{can}: The image of $(1 \otimes dq \otimes 1$. The idempotents $\{e_1, \ldots, e_g\}$ (see (2.4)) give a decomposition
 \[\Omega = \bigoplus_{i=1}^g \Omega(\chi_i), \quad \omega_{\text{can}} = \bigoplus_{i=1}^g a(\chi_i). \]
In the case $g = 1$ the line bundles $\Omega(\chi_i)$ and the sections $a(\chi_i)$ naturally extend to $M^*(\mathbb{F}, \mu_{NP})^{\text{ord}}$ as follows from the existence of a universal generalized elliptic curve over $M^*(\mathbb{F}, \mu_{NP})^{\text{ord}}$. Given any $\chi \in X$, $\chi = \chi_1^{r_1} \cdots \chi_g^{r_g}$, we put
 \[\Omega(\chi) = \bigoplus_{i=1}^g \Omega(\chi_i)^{\otimes r_i}, \quad a(\chi) = \bigoplus_{i=1}^g a(\chi_i)^{\otimes r_i}. \]
Clearly $a(\chi)$ is a canonical section of $\Omega(\chi)$ (ω_{can} is non-vanishing!).

Let $f \in M(\mathbb{F}, \chi, \mu_N)$. We write f also for the pull-back of f to $M(\mathbb{F}, \mu_{NP})$ ($M^*(\mathbb{F}, \mu_{NP})$ if $g = 1$). Let
 \[r(f) = f/a(\chi). \]
We extend the definition linearly and obtain a ring homomorphism
 \[\bigoplus_{\chi \in X} M(\mathbb{F}, \chi, \mu_N) \longrightarrow R_{NP}. \]
It can be interpreted as follows. Given $(A, \beta_N \times \beta_p)/R$, we have
 \[r(\sum f_\chi((A, \beta_N \times \beta_p)) = \sum f_\chi(A, \beta_N, (\beta_p^*)^{-1}(1 \otimes dq \otimes 1)). \]
From Equation (2.15) we can conclude two facts:

- The map,

\[
\bigoplus_{\chi \in X} M(\mathbb{F}, \chi, \mu_{N}) \longrightarrow R_{Np},
\]

is \(W(\mathbb{F})^x\)-equivariant, where \(\alpha \in W(\mathbb{F})^x\) acts on \(f \in M(\mathbb{F}, \chi, \mu_{N})\) by \([\alpha]f = \chi(\alpha)f\). Indeed \(r([\alpha]f)(\underline{A}, \beta_N \times \beta_p) = \chi(\alpha)r(f)(\underline{A}, \beta_N \times \beta_p) = \chi(\alpha)f(\underline{A}, \beta_N, (\beta_p^*)^{-1}1 \otimes \frac{dq}{q}) = f(\underline{A}, \beta_N, \alpha^{-1}.(\beta_p^*)^{-1}1 \otimes \frac{dq}{q})\).

- Let \(B\) be a \(W(\mathbb{F})\)-algebra. Let \(\text{Std}\) be the standard cusp of \(M^*(B, \mu_{Np^n})\). It is the Tate object \(\mathbb{D}^+ \otimes \mathbb{Z}/q(q^{-1})\), with its canonical \(\mathcal{O}_L\)-action and polarization (see [12] for details), and with its visible \(\mu_{Np^n}\)-level structure and non-vanishing differential. Evaluation at that object is a \(q\)-expansion map.

Taking again \(B = \mathbb{F}\) and \(n = 1\) and employing (2.15), we see, using the theory of toroidal compactifications [2], that the following diagram commutes:

\[
\bigoplus_{\chi \in X} M(\mathbb{F}, \chi, \mu_{N}) \xrightarrow{r} R_{Np} \\
\text{\(q\)-expansion} \downarrow \quad \downarrow \\
\hat{\mathcal{O}}_{M^*(\mathbb{F}, \mu_{Np})}^{\text{Std}}
\]

It follows that \(I\) is the kernel of the \(q\)-expansion map.

The group \(X/X(1)\) is naturally identified with the group of \(\mathbb{F}\)-valued characters of \((\mathcal{O}_L/(p))^{x}\) – the Galois group of \(M^*(\mathbb{F}, \mu_{Np})^{\text{ord}} \rightarrow M^*(\mathbb{F}, \mu_{N})^{\text{ord}}\). Note that since \((\mathcal{O}_L/(p))^{x}\) is of order prime to \(p\), we have

\[
R_{Np} = \bigoplus_{\psi \in X/X(1)} R_{Np}^\psi,
\]

where \(f \in R_{Np}^\psi\) if for every \(\alpha\) we have \([\alpha]f = \psi(\alpha)f\).

Given such \(f\), choose some lift \(\chi\) of \(\psi\) to \(X\) and define first a meromorphic modular form \(g\) in \(M(\mathbb{F}, \chi, \mu_{N})\) by

\[
g = f \cdot a(\chi).
\]

In terms of points,

\[
g(\underline{A}, \beta_N, \omega) = f(\underline{A}, \beta_N \times \beta_p) \cdot \chi \left(\frac{(\beta_p^*)^{-1}1 \otimes \frac{dq}{q}}{\omega} \right),
\]

for any \(\mu_{p}^{\gamma}\)-level \(\beta_p\). This shows that \(g\) is indeed of \(\mu_{N}^{\gamma}\)-level. Clearly, \(r(g) = f\) and \(g\) has no poles on the ordinary locus. It follows that \(g' = g \cdot h^k\) is a holomorphic modular form for \(k \gg 0\). Here \(h\) is the total Hasse invariant from Theorem 2.1.

Because \(I\) is the kernel of the \(q\)-expansion, it follows that for every \(i\), \(h_i - 1\) belongs to \(I\). In particular:

- \(r(h) = 1\) and hence \(r(g') = f\) and the map \(r\) is therefore surjective.
- \((h_1 - 1, \ldots, h_g - 1) \subseteq I\).

We next show that \(I = (h_1 - 1, \ldots, h_g - 1)\). Suppose that \(r(\sum_{i=1}^{m} f_i) = 0\). By multiplying by various \(h_j - 1\) we may assume that \(f_i\) is of weight \(\psi_i\) and for \(i \neq j\) we have \(\psi_i \neq \psi_j\) (mod \(X(1)\)). But, since the map \(r\) is \(W(\mathbb{F})^x\)-equivariant, it follows that each \(r(f_i) = 0\), because they fall into different summands of (2.18). However, on each \(M(\mathbb{F}, \chi, \mu_{N})\) the map \(r\) and \(q\)-expansion map are injective. It follows that each \(f_i = 0\).

To conclude the proof it only remains to prove part 2. But this follows immediately from Equation (2.18) and the fact that \(I\) is generated by elements with weights in \(X(1)\). \(\square\)
Remark 2.4. Let $R = \oplus_{\gamma \in \Gamma} R_{\gamma}$ be a ring graded by an abelian group Γ. Let Γ_0 be a subgroup of Γ. Let J be an ideal generated by elements in $\oplus_{\gamma \in \Gamma_0} R_{\gamma}$. Then J is an ideal graded by Γ/Γ_0: Let $\delta \in \Gamma$. If a finite sum $\sum_{\gamma \in \Gamma} f_{\gamma} \in J$, then $\sum_{\gamma \in \delta + \Gamma_0} f_{\gamma} \in J$.

Although the following corollary will be superseded by Corollary 3.15 below, we include it to demonstrate the principle of deriving congruences between zeta values from modular forms, as well as to set notation.

Corollary 2.5. Let L be a totally real field. Let p be a rational prime that is unramified in L. Let $k \geq 2$.

1. If $k \not\equiv 0 \pmod{p-1}$ then $\zeta_L(1-k)$ is p-integral.
2. If $k \not\equiv 0 \pmod{p-1}$ and $k \equiv k' \pmod{p-1}$ then $\zeta_L(1-k) \equiv \zeta_L(1-k') \pmod{p}$.

Proof. There exists an Eisenstein series of parallel weight k (i.e., weight Norm^k)

$$E_k = 1 + 2^g\zeta_L(1-k)^{-1}\sum c_{k-1,\alpha} q^\alpha,$$

where α runs over a lattice depending on the cusp at which the q-expansion is created and the $c_{k-1,\alpha}$ are sums of $(k-1)$-powers of certain rational integers depending on α and the cusp but not on k. More precisely, under appropriate choices, the q-expansion on a component of the moduli space has coefficients

$$c_{k-1,\alpha} = \begin{cases} \frac{\sigma_{k-1}(\alpha)}{a^{1-D_L}} \alpha \in (\mathbb{Z}^+) \quad \text{and the cusp but not on } k, \\
0 \quad \text{otherwise} \end{cases},$$

where for any integral ideal b we let $\sigma_{k-1}(b) = \sum_{\mathfrak{O}_L \supseteq \mathfrak{a} \supseteq \mathfrak{b}} \mathbb{N}(\mathfrak{a})^k$. See [5] and (3.51). We let

$$E_k^* = 2^{-g}\zeta_L(1-k) \cdot E_k.$$

If $2^{-g}\zeta_L(1-k)$ is not p-integral, then $E_k^* - 1 \equiv 0 \pmod{p}$. If $k \not\equiv 0 \pmod{p-1}$ then $\text{Norm}^k \not\equiv 1 \pmod{X(1)}$. This and the fact that I is graded by $X/X(1)$, imply that $1 \in I$, which is a contradiction.

Assume that $k \not\equiv 0 \pmod{p-1}$. Then $\alpha := 2^{-g}(\zeta_L(1-k') - \zeta_L(1-k))$ belongs to \mathbb{Z}_p. Because the coefficients $c_{k-1,\alpha} \pmod{p}$ depend only on $k \pmod{p-1}$ we have

$$E_k^* - E_k^* - \alpha \equiv 0 \pmod{p}.$$

But, using the grading, this implies that $\alpha \pmod{p}$ belongs to I. That is, $\alpha \equiv 0 \pmod{p}$. Hence,

$$\zeta_L(1-k) \equiv \zeta_L(1-k') \pmod{p}.$$

The following corollary identifies, via the map r, certain subrings of $M^*(\mathbb{F}, \chi, \mu_N)$ and $R\mathbb{N}_{\mathbb{P}}$.

Corollary 2.6. Let H be the kernel of the Norm map $(\mathcal{O}_L/(p))^\times \to (\mathbb{Z}/(p))^\times$. Let $R_{\mathbb{N}_{\mathbb{P}}}$ be the ring of regular functions of the scheme $M^*(\mathbb{F}, \mu_N)/H$. We have isomorphisms

$$\bigoplus_{k=0}^{\infty} M(\mathbb{F}, \text{Norm}^k(p-1), \mu_N)/(h-1) \cong R_N,$$

$$\bigoplus_{k=0}^{\infty} M(\mathbb{F}, \text{Norm}^k, \mu_N)/(h-1) \cong R_{\mathbb{N}_{\mathbb{P}}}.$$

Proof. Let $X \subset X$ be the characters trivial on H. Clearly, $X = (\text{Norm}, X(1))$. It follows immediately from the theorem that

$$\bigoplus_{\chi \in X(1)} M(\mathbb{F}, \chi, \mu_N)/I \cong R_N, \quad \bigoplus_{\chi \in X} M(\mathbb{F}, \chi, \mu_N)/I \cong R_{\mathbb{N}_{\mathbb{P}}}.$$
Thus, the assertion is that

\[(2.29) \quad \bigoplus_{\chi \in \mathbf{X}(1)} \mathbb{M}(\mathbb{F}, \chi, \mu_N) / I \cong \bigoplus_{k=0}^{\infty} \mathbb{M}(\mathbb{F}, \text{Norm}_k^{\mu_N}) / (h-1),\]

and

\[(2.30) \quad \bigoplus_{\chi \in \mathbf{X}(1)} \mathbb{M}(\mathbb{F}, \chi, \mu_N) / I \cong \bigoplus_{k=0}^{\infty} \mathbb{M}(\mathbb{F}, \text{Norm}_k^{\mu_N}) / (h-1).\]

In both cases the inclusion \(\supset\) is clear. Thus, the claim amounts to that for any element \(\chi \in \mathbf{X}(1)\) we may find suitable non-negative \(r_i\)'s such that \(\chi \cdot \left(\chi_1^{i_1} \chi_2^{i_2} \cdots \chi_p^{i_p}\right)^{r_i}\) is a power of \(\text{Norm}\). This is clear.

The notion of filtration plays an important role in theory of elliptic modular forms, e.g., in the weight part of Serre's conjecture. The following corollary yields an analogous filtration on Hilbert modular forms.

Corollary 2.7. Given a \(q\)-expansion \(b(q)\) which is a \(q\)-expansion of some HMF of \(\mu_N\)-level at, say, the standard cusp, there exists a unique HMF \(f_0\) such that the set of all modular forms with \(q\)-expansion \(b(q)\) is the set

\[(2.31) \quad \{f_0 \cdot \prod_{i=1}^{q} h_i^{a_i} : a_i \geq 0\}.\]

We call the weight of \(f_0\) the filtration of the \(q\)-expansion \(b(q)\).

Proof. If \(f\) and \(g\) have the same \(q\)-expansion then \(r(f) = r(g)\), and vice versa. We are given that \(b(q)\) is a \(q\)-expansion of some Hilbert modular form of weight, say, \(\chi\). Let \(f'\) be a function on \(\mathcal{M}^*(\mathbb{F}, \mu_{Np})\) such that \(f' \in \mathcal{H}_{\chi}^{\mu_N}\) and in the local ring of the appropriate cusp \(f' = b(q)\). Then all the meromorphic modular forms having \(q\) expansion \(b(q)\) are of the form \(f' \cdot a(\chi) \cdot \prod_i h_i^{a_i}\) where the \(a_i \in \mathbb{Z}\). But the divisor of \(h_i\) is the reduced effective divisor \(W_{(i)}\). Therefore, there is a choice \(a_1^*, \ldots, a_r^*\) such that \(f_0 = f' \cdot a(\chi) \cdot \prod_i h_i^{a_i}\) is holomorphic and non-vanishing on some component of every \(W_{(i)}\). It follows that every other holomorphic form with the same \(q\)-expansion is a multiple \(f_0 \cdot \prod_{i=1}^{q} h_i^{a_i}\) with \(a_i \geq 0\).

We remark that certain variants are possible. For example, for a \(q\)-expansion arising from a HMF of parallel weight one can define its “parallel filtration”.

The modular forms \(a(\chi)\) have other interesting applications. We now discuss how they may be used to construct a compactification with nice properties of \(\mathcal{M}^*(\mathbb{F}, \mu_{Np})^{\text{ord}}\) – the Satake compactification of the moduli space of HBAS over \(\mathbb{F}\)-algebras together with \(\mu_{Np}\)-level.

Lemma 2.8. We have an equality of modular forms on \(\mathcal{M}(\mathbb{F}, \mu_{Np})^{\text{ord}}:\)

\[(2.32) \quad a(\chi_i)^{p^{\text{ord}-1}} = h_i^{p^{\text{ord}-1}} h_{i+1}^{p^{\text{ord}-2}} \cdots h_1^{p^{\text{ord}-1}} .\]

Proof. Indeed, both sides are modular forms on \(\mathcal{M}(\mathbb{F}, \mu_{Np})^{\text{ord}}\) of the same weight, namely \(\chi_i^{p^{\text{ord}-1}}\), and the same \(q\)-expansion, namely, 1.

Let, therefore,

\[(2.33) \quad b_i = a(\chi_i)^{p^{\text{ord}-1}},\]

be the modular form on \(\mathcal{M}(\mathbb{F}, \mu_N)\) of weight \(\chi_i^{p^{\text{ord}-1}}\) and \(q\)-expansion 1. We fix \(i\) and consider the scheme

\[(2.34) \quad \mathcal{M}' = \mathcal{M}(\mathbb{F}, \mu_N) [b_i^{1/(p^{\text{ord}-1})}].\]

We explain our notation and terminology:
The map of global sections

\[(2.35) \quad \Gamma(\mathcal{M}(\mathbb{F}, \mu_N), \Omega(\chi_i)) \to \Gamma(\mathcal{M}(\mathbb{F}, \mu_N), \Omega(\chi_i^{p^s-1}))\]

is induced from a morphism of schemes over \(\mathcal{M}(\mathbb{F}, \mu_N)\)

\[(2.36) \quad \alpha : \Omega(\chi_i) \to \Omega(\chi_i^{p^s-1}),\]

given locally by taking \((p^g - 1)\)\(^s\) along the fiber. We define \(\mathcal{M}' = \mathcal{M}(\mathbb{F}, \mu_N)[b_i^{1/(p^g-1)}]\) to be the fiber product with respect to the maps \(\alpha\) and \(b_i\):

\[(2.37) \quad \mathcal{M}' = \Omega(\chi_i) \times_{\Omega(\chi_i^{p^s-1})} \mathcal{M}(\mathbb{F}, \mu_N).\]

Let \(p_2 : \mathcal{M}' \to \mathcal{M}(\mathbb{F}, \mu_N)\) be the projection and consider the line bundles \(p_2^*\Omega(\chi_i)\) and \(p_2^*\Omega(\chi_i^{p^s-1})\) on \(\mathcal{M}'\). Let \(s^u\) be the tautological section

\[(2.38) \quad s^u : \mathcal{M}' \to p_2^*\Omega(\chi_i),\]

and let \(p_2^*b_i\) be the induced section

\[(2.39) \quad p_2^*b_i : \mathcal{M}' \to p_2^*\Omega(\chi_i^{p^s-1}).\]

The equation

\[(2.40) \quad (s^u)^{p^s-1} = p_2^*b_i\]

holds on \(\mathcal{M}'\). In fact \(\mathcal{M}'\) has the following universal property: Given a scheme \(f : S \to \mathcal{M}(\mathbb{F}, \mu_N)\) and \(s \in \Gamma(S, f^*\Omega(\chi_i))\) such that \(s^{p^s-1} = f^*b_i\), there exists a unique morphism \(g : S \to \mathcal{M}'\) over \(\mathcal{M}(\mathbb{F}, \mu_N)\) such that \(s = g^*s^u\). We leave the verification of this fact to the reader.

One also sees easily that \((\mathcal{O}_L/(p))^s\), identified with \(\mathbb{F}^s\), acts faithfully on \(\mathcal{M}'\). The morphism \(\mathcal{M}' \to \mathcal{M}(\mathbb{F}, \mu_N)\) is \((\mathcal{O}_L/(p))^s\)-equivariant and exhibits \(\mathcal{M}(\mathbb{F}, \mu_N)\) as the quotient for this action.

We conclude from Lemma 2.8 and the universal property the existence of an \((\mathcal{O}_L/(p))^s\)-equivariant open immersion

\[(2.41) \quad \mathcal{M}(\mathbb{F}, \mu_{Np}) \to \mathcal{M}'.\]

Note the identity

\[(2.42) \quad a(\chi_{i-1})^p a(\chi_i)^{-1} = h_i.\]

We have \(a(\chi_i) = a(\chi_{i-1})^p h_i\). A priori this is a meromorphic modular form on \(\mathcal{M}'\). But raising both sides of the equation to the \(p^g - 1\) power, and using Lemma 2.8, we find it must be holomorphic. It follows that \(\mathcal{M}'\) does not depend on \(i\). Finally, we let \(\mathcal{M}\) be the scheme obtained from \(\mathcal{M}'\) and \(\mathcal{M}^\times(\mathbb{F}, \mu_{Np})\) by glueing along \(\mathcal{M}(\mathbb{F}, \mu_{Np})\).

Theorem 2.9. There exists a scheme \(\mathcal{M}\) and a proper morphism \(f : \mathcal{M} \to \mathcal{M}^\times(\mathbb{F}, \mu_N)\), an open immersion \(\mathcal{M}^\times(\mathbb{F}, \mu_{Np})^{\text{ord}} \to \mathcal{M}\), and a faithful \((\mathcal{O}_L/(p))^s\) action extending the one on \(\mathcal{M}^\times(\mathbb{F}, \mu_{Np})^{\text{ord}}\) such that \(f\) exhibits \(\mathcal{M}^\times(\mathbb{F}, \mu_N)\) as the quotient by this action. In particular, \(f\) is finite.

The scheme \(\mathcal{M}\) is defined by the equation

\[(2.43) \quad s^{p^s-1} = h_{i+1}^{p^s} h_{i+2}^{p^s-2} \cdots h_i^p,\]

and is independent of \(i\). The map \(f\) is ramified precisely along the complement of the ordinary locus, and is totally ramified there. The singular locus of \(\mathcal{M}\) is of pure codimension 2 and is the pre-image of \(\bigcup_{i \neq j} W_{(i,j)}\).

Proof. The theorem follows from the discussion above; One has to also note that since the divisor of the modular form \((h_i)\) is reduced and equal to \(W_{(i)}\), Equation (2.43) becomes an Eisenstein polynomial in the local ring of every component of \(W_{(i)}\), for every \(i\). A similar local calculation yield the identification of the singular locus. \(\square\)
Remark 2.10. One of the reasons to introduce \mathcal{M} is that certain notions regarding modular forms are better formulated on \mathcal{M}. For example, the notion of filtration is translated into the notion of order of vanishing along the divisors $W_{\langle i \rangle}$ in \mathcal{M} (Cf. [8]). The problem of existence of modular forms of a specified weight, or filtration, can be viewed as a “Riemann-Roch problem” on \mathcal{M}. The theta operators θ_i defined by Katz [12] can be viewed as the operators taking $f \in R_{\chi_2}$ to $(df)/KS(a(\chi_2^2))$.

Here $\omega = \pi_1\Omega^1(A^{\beta_\gamma}/\beta_\gamma)/\mathcal{M}(\mathbb{F},\mu_{Np})$ is the relative cotangent space at the origin of the universal object, $KS: \omega \otimes \mathcal{O}_L \to \Omega^1_{\mathcal{M}(\mathbb{F},\mu_{Np})}$ is the Kodaira-Spencer isomorphism, $\otimes \mathcal{O}_L$ means the second tensor power as an $\mathcal{O}_L \otimes \mathcal{O}_{\mathcal{M}(\mathbb{F},\mu_{Np})}$ line bundle, and (df) is the χ_2^2 isotypical component. These ideas will be pursued in a future work.

3. Mod p^n

3.1. Construction of modular forms. Assume that $N \geq 4$ and, as before, p is inert in L. Following Katz [9], we let

$$T_{m,n} = \begin{cases} M^*(W_m(\mathbb{F}),\mu_{Np})^{ord} & g = 1, \\ M(W_m(\mathbb{F}),\mu_{Np})^{ord} & g > 1 \end{cases}$$

where $W_m(\mathbb{F})$ is the ring of Witt vectors of length m over \mathbb{F}. For every n, the morphism $T_{m,n} \to T_{m,0}$ is étale Galois with Galois group equal to $(\mathcal{O}_L/(p^n))^\times$. For every m, n, the morphisms $T_{m,n} \to T_{m+1,n}$ and $T_{m,n} \to T_{m+1,n}$ are closed immersions and $T_{m,n} = T_{m+1,n} \otimes W_m(\mathbb{F})$. The scheme $T_{m,n}$ is an affine scheme because the invertible of sheaf of modular forms of parallel weight is ample and has a global section (some lift of λ^n) whose divisor is the non-ordinary locus, and $T_{m,n}$ is smooth over $W_m(\mathbb{F})$, for every m, n. We let $V_{m,n}$ be the ring of regular functions of $T_{m,n}$ (equivalently, $T_{m,n}^\circ$). Note that $V_{1,1} = R_{Np}$ and $V_{1,0} = R_N$ in the notation of Section 2. The schemes $T_{m,n}$ and the rings $V_{m,n}$ all fit into the following commutative diagrams:

$$\begin{array}{ccccccc}
... & ... & ... & ... & ... & ... & \\
\downarrow & \downarrow & \downarrow & \downarrow & \uparrow & \uparrow & \\
T_{2,2} & T_{3,2} & ... & V_{1,2} & V_{2,2} & V_{3,2} & \\
\downarrow & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \\
T_{1,1} & T_{2,1} & T_{3,1} & ... & V_{1,1} & V_{2,1} & V_{3,1} & \\
\downarrow & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \uparrow & \\
T_{1,0} & T_{2,0} & T_{3,0} & ... & V_{1,0} & V_{2,0} & V_{3,0} & ...
\end{array}$$

We let

$$T_{m,\infty} = \lim_{n \to m} T_{m,n}, \quad T_{\infty,\infty} = \lim_{m \to \infty} T_{m,\infty}$$

(similarly for $T_{m,n}$), and

$$V_{m,\infty} = \lim_{n \to m} V_{m,n}, \quad V_{\infty,\infty} = \lim_{m \to \infty} V_{m,\infty}.$$
Proof. Let \((A^u, \beta^m_N \times \beta_p^n) \rightarrow T_{m,n}\) be the universal object. Note that
\[
(3.7) \quad \Omega^1_{\mu_p \rightarrow W_{m}(\mathbb{F})} \cong \mathcal{O}_L \otimes t^*_\mu_p \rightarrow W_m(\mathbb{F}).
\]
(See the discussion in Section 1.2.) The invariant differentials \(t^*_\mu_p \rightarrow W_m(\mathbb{F})\) are contained in
\[
(3.8) \quad \Omega^1_{\mu_p \rightarrow W_{m}(\mathbb{F})} = W_m(\mathbb{F})[q]/(q^p - 1, p^n q^{n-1}) \cdot dq.
\]
The differential \(\omega = q^{n-1} dq\) is invariant and \(p^n \omega = 0\). Thus, \(m \leq n\) if and only if \(t^*_D \otimes \mu_p \rightarrow W_m(\mathbb{F})\) is a free \(\mathcal{O}_L \otimes W_{m}(\mathbb{F})[q]/(q^p - 1)\) module of rank 1. Since we assume that \(m \leq n\), it follows as in the proof of Theorem 2.3 that the relative cotangent space of \((A^u, \beta^m_N \times \beta_p^n) \rightarrow T_{m,n}\) is a free \(\mathcal{O}_L \otimes \mathcal{O}_{T_{m,n}}\) module of rank 1 with a canonical generator \(\omega_{\text{can}}\) = \("\text{the pull-back of } (1 \otimes \frac{d}{dq}) \otimes 1\"\).

Let \(\{e_1, \ldots, e_q\}\) be the idempotents as in (2.4). Let
\[
(3.9) \quad a(\chi_i) = e_i \cdot \omega_{\text{can}}.
\]
It is a modular form of weight \(\chi_i\). The compatibility assertions are easily reduced to the following simple observations:

- The canonical map
\[
(3.10) \quad D_L^{-1} \otimes \mu_p^n / W_m(\mathbb{F}) \hookrightarrow D_L^{-1} \otimes \mu_p^{n+n'} / W_m(\mathbb{F})
\]
induces an isomorphism of the relative cotangent spaces.

- The canonical map
\[
(3.11) \quad D_L^{-1} \otimes \mu_p^n / W_{m+n}(\mathbb{F}) \hookrightarrow D_L^{-1} \otimes \mu_p^n / W_m(\mathbb{F})
\]
induces an isomorphism \(t^*_D \otimes \mu_p \rightarrow W_{m+n}(\mathbb{F}) \otimes W_{m+n'}(\mathbb{F}) W_m(\mathbb{F}) \cong t^*_D \otimes \mu_p \rightarrow W_m(\mathbb{F})\).

The following corollary follows immediately:

Corollary 3.2. Let \(\chi = \chi_1^{r_1} \cdots \chi_q^{r_q} \in X\). Define for \(m \leq n\)
\[
(3.12) \quad a(\chi) = a(\chi_1)^{r_1} \cdots a(\chi_q)^{r_q}.
\]
Then the \(a(\chi)\) are \("\text{independent of } (m,n)\"\) and define a modular form \(a(\chi)\) on \(T_{\infty, \infty}\). This modular form is of weight \(\chi\) and has \(q\)-expansion \(1\) at the standard cusp \(\text{Std}\) of \(T_{\infty, \infty}\).

The group \((\mathcal{O}_L \otimes \mathbb{Z})^\times\) acts as automorphisms of \(T_{m,n}^*\). This action is given on \(T_{m,n}\) in terms of points:
\[
(3.13) \quad [\alpha](A^u, \beta_N \times \beta_p^n) \mapsto (A^u, \beta_N \times (\beta_p^n \circ [\alpha])).
\]
Of course the action factors through \((\mathcal{O}_L / (p^n))^\times\). We let
\[
(3.14) \quad [\alpha] : T_{m,n} \rightarrow T_{m,n}^*
\]
denote the automorphism induced by \(\alpha\). The morphism \([\alpha]\) induces an automorphism of modular forms (a diamond operator). This may be seen as follows: The modular forms of weight \(\chi\) are sections of \(\Omega(\chi)\) (see (2.11), (2.12)). Let \(pr : T_{m,n} \mapsto T_{m,0}\) be the natural projection. Then \("\text{pr}^* \Omega(\chi) = \Omega(\chi)\"\).

\(\text{Indeed, } (A^u, \beta_N \times \beta_p^n) \cong (A^u, \beta_N) \times T_{m,n} T_{m,0}\). But \([\alpha]^*pr^* = (pr \circ [\alpha])^* = pr^*\). Moreover, the formula for the action on a modular form \(f\) is
\[
(3.15) \quad ([\alpha]f)(A^u, \beta_n \times \beta_p^n, \omega) = f(A^u, \beta_N \times (\beta_p^n \circ [\alpha]), \omega).
\]

Lemma 3.3. Let \(\alpha \in (\mathcal{O}_L / (p^n))^\times\). Let \(a(\chi)\) be the modular form on \(T_{m,n}\) constructed above. Then
\[
(3.16) \quad [\alpha]a(\chi) = \chi(\alpha)^{-1} a(\chi).
\]
Let \(c(\chi) = c_m(\chi)\) be the minimal non-negative integer such that
\[
(3.17) \quad p^c(\chi)(1 - \chi)(t) \equiv 0 \pmod{p^m}, \forall t \in (\mathcal{O}_L / (p^n))^\times.
\]
Then \(p^{\sigma(x)}a(\chi) \) is invariant under \((\mathcal{O}_L/(p^m))^\times \), and in particular, \(a(\chi) \) is invariant under \((\mathcal{O}_L/(p^m))^\times \) if and only if \(\chi \) is the trivial map \((\text{mod } p^m)\).

Proof. Let \(\chi = \chi_1^{r_1} \cdots \chi_5^{r_5} \). In terms of points we have

\[
(3.18) \quad a(\chi)(\Delta,\beta_n \times \beta_{p^m},\omega) = \prod_{i=1}^g (e_i \cdot (\beta_{p^m})^{-1}(1 \otimes \frac{dq}{q})/e_i \cdot \omega)^{r_i}.
\]

The assertion (3.16) and the rest of the Lemma follow easily.

Let \(X(m) \) be the characters in \(X \) that are trivial on \((\mathcal{O}_L/(p^m))^\times \) under the composition

\[
(3.19) \quad (\mathcal{O}_L/(p^m))^\times \hookrightarrow (\mathcal{O}_L \otimes W_m(\mathbb{F}))^\times = \mathbb{T}(W_m(\mathbb{F})) \xrightarrow{\chi} G_m(W_m(\mathbb{F})) = W_m(\mathbb{F})^\times.
\]

We shall discuss \(X(m) \) further below. For now, note that \(X(m+1) \subset X(m) \), and if \(j \) is the maximal non-negative integer such that \(\chi \in X(j) \) then

\[
(3.20) \quad c(\chi) = \max\{m - j, 0\}.
\]

We say that an element \(\chi \) of \(X(m) \) is \(p \)-positive if in its expression as

\[
(3.21) \quad \chi = (\chi_9^{p-1})^{r_1} (\chi_1^{p-1})^{r_2} \cdots (\chi_9^{p-1})^{r_5},
\]

every \(r_i \geq 0 \).

Corollary 3.4. Fix an integer \(m \geq 1 \). Let \(c(\chi) = c_m(\chi) \) be defined as above.

1. For every \(\chi \in X \) there exists a modular form \(p^{\sigma(x)}a(\chi) \) on \(T_{m,0} \) of weight \(\chi \) \((a(\chi) \) is given by (3.12)\). Its \(q \)-expansion at every cusp is \(p^{\sigma(x)} \). In particular, for every \(\chi \in X(m) \), the modular form \(a(\chi) \) is a modular form of weight \(\chi \) and \(q \)-expansion 1 on \(T_{m,0} \).

2. Let \(\chi \in X(m) \). The modular form \(a(\chi) \) extends to the non-ordinary locus, i.e., it is a modular form over \(
M(W_m(\mathbb{F}),\mu_N) \) (and \(M^*(W_m(\mathbb{F}),\mu_N) \) if \(g = 1 \)), if and only if the character \(\chi = (\chi_9^{p-1})^{r_1} (\chi_1^{p-1})^{r_2} \cdots (\chi_9^{p-1})^{r_5} \) is \(p \)-positive. Furthermore,

\[
(3.22) \quad a(\chi) = h_1^{r_1} \cdots h_5^{r_5} \pmod{p}.
\]

Proof. It follows from Lemma 3.3 that \(p^{\sigma(x)}a(\chi) \) is a modular form on \(T_{m,0} \), of weight \(\chi \), and that its \(q \)-expansion at every cusp is \(p^{\sigma(x)} \). This is clear if one thinks of a modular form as in (1.9).

Consider \(a(\chi) \pmod{p} \). It has the same weight and \(q \)-expansion as the r.h.s. of Equation (3.22) and that proves the equation. The divisor of \(a(\chi) \) on \(T_{m,n} \) intersects the special fiber in the divisor of \(h_1^{r_1} \cdots h_5^{r_5} \). But according to Theorem 2.1 we have

\[
(3.23) \quad (h_1^{r_1} \cdots h_5^{r_5}) = r_1 W_{(1)} + \cdots + r_5 W_{(g)}.
\]

Hence, this divisor is effective if and only if each \(r_i \geq 0 \).

3.2. Digression on \(X(m) \). We consider now more closely the group \(X(m) \). Let us change notation. Let \(G = (\sigma) \) be a cyclic group of order \(q \). Let \(\mathbb{Z}[G] \) be the group ring of \(G \) and \(\mathbb{Z}_p[G] \) be the group ring of \(G \) over \(\mathbb{Z}_p \). The group \(W(\mathbb{F})^\times \) is a module over \(\mathbb{Z}[G] \), where \(\sigma \) acts as \(\sigma \) - the Frobenius.

* Assume first that \(p \neq 2 \).

We have

\[
(3.24) \quad W(\mathbb{F})^\times = \mu \times U_1,
\]

where \(\mu \) is the cyclic group of order \(p^2 - 1 \) consisting of the roots of unity in \(W(\mathbb{F}) \), and \(U_m \) are the units congruent to 1 modulo \((p^m) \). Clearly, as a \(\mathbb{Z}[G] \) module,

\[
(3.25) \quad \mu \cong \mathbb{Z}[G]/(p^2 - 1,p - \sigma) = \mathbb{Z}[G]/(p - \sigma).
\]

By a theorem of Krasner [13, Theorem 17] \(U_1 \) is a free \(\mathbb{Z}_p[G] \)-module of rank 1. Hence,

\[
(3.26) \quad W_m(\mathbb{F})^\times = \mu \times U_1/U_m \cong \mu \times U_1/U_1^{p^{m-1}}
\]
and it follows that as a $\mathbb{Z}[G]$-module
\[(3.27) \quad W_m(F)^\times \cong \mathbb{Z}[G]/(p - \sigma) \oplus \mathbb{Z}[G]/(p^{m-1}) \cong \mathbb{Z}[G]/(p^{m-1}(p - \sigma)).\]
In other words:
\[(3.28) \quad X(m) \cong \langle \chi_1^{p^m-1}, \ldots, \chi_g^{p^m-1} \rangle.
\]
Note that these are p-positive generators.

• Assume now that $p = 2$. We have
\[(3.29) \quad W(F)^\times = \mu \times U_1 = \mu \times \{\pm 1\} \times U,
\]
where μ are the 2^{g-1} roots of unity and U is a torsion free subgroup of U_1.

Assume that g is odd. Then by [13, Theorem 17] we have
\[(3.30) \quad U \cong \mathbb{Z}_p[G].
\]
Thus, for $m = 1$,
\[(3.31) \quad W_1(F)^\times \cong \mathbb{Z}[G]/(2 - \sigma),
\]
and for $m \geq 2$
\[(3.32) \quad W_m(F)^\times \cong \mathbb{Z}[G]/(2 - \sigma) \oplus \mathbb{Z}[G]/(\sigma, 2) \oplus \mathbb{Z}[G]/(2^{m-2}).
\]
The group $X(m)$ is thus the intersection of ideals $(2 - \sigma) \cap (\sigma, 2) \cap (2^{m-2})$. We have $(2 - \sigma) \subset (\sigma, 2)$, $(2^{m-2}) \subset (\sigma, 2)$ if $m > 2$ and $(2^{m-2}) \supset (\sigma, 2)$ if $m = 2$. Thus,
\[(3.33) \quad X(m) = \begin{cases} (2 - \sigma) & m = 1 \\ (2^{m-2}(2 - \sigma)) & m \geq 2 \end{cases}.
\]
In any case $X(m)$ has naturally chosen p-positive generators,
\[(3.34) \quad x, x\sigma, \ldots, x^{\sigma g - 1},
\]
where x is $2 - \sigma$ or $2^{m-2}(2 - \sigma)$, depending on the case.

If g is even, the situation is more complicated. The decomposition (3.29) still holds, but U can not always be chosen to be a G-module. We allow ourselves simply to remark that $X(1)$ is the free abelian group generated by $\chi_1^2 \chi_2^{-1}, \ldots, \chi_g^2 \chi_1^{-1}$ and the notion of positivity is the one obtained by identifying $X(1)$ with \mathbb{Z}^g by sending $\chi_i^2 \chi_1^{-1}$ to the i-th standard basis element. The group $X(m)$ is a sub-lattice and is therefore automatically generated by 2-positive elements. Without going into the details of its structure, we let
\[(3.35) \quad \psi_1, \ldots, \psi_g
\]
be 2-positive generators for it. For the applications we give, the following observation suffices:

Remark 3.5. The character Norm^k belongs to $X(m)$ if and only if $2^{e(m)}|k$, where $2^{e(m)}$ is the exponent of the group $(\mathbb{Z}/(2^n))^\times$. I.e., $e(m) = m - 1$ for $m = 1, 2$, and $m - 2$ for $m > 2$.

3.3. The q-expansion map mod p^m. In this section we study the kernel of the q-expansion map on Hilbert modular forms modulo p^m and level prime to p. Our results are not complete in the sense that we fail to produce a complete set of generators for the kernel I_m of the q-expansion map. However, see Theorem 3.8 and Remark 3.13. We do obtain enough information on I_m to deduce, after introducing a “technical device”, the classical congruences and estimates on values of ζ_L at negative integers. See Corollaries 3.11 and 3.15 below.

We remark that our techniques apply to more general L-functions. But the true difficulty now is in the construction of Hilbert modular forms with a q-expansion whose constant term is the desired special value and whose higher coefficients have integrality and congruence properties. For this see [4] and [19].

Definition 3.6. Let $\chi \in X$ and consider it as a character $\chi : (\mathcal{O}_L/(p^m))^\times \longrightarrow W_m(\mathbb{F})^\times$. Let

$$V_{m,m}^\chi = \{ f \in V_{m,m} : [\alpha]f = \chi(\alpha)f, \forall \alpha \in (\mathcal{O}_L/(p^m))^\times \}. $$

Let $V_{m,m}^K$ the “Kummer part” of $V_{m,m}$ – be given by

$$V_{m,m}^K = \sum_{\chi \in X/M(m)} V_{m,m}^\chi. $$

Remark 3.7. Note that if $m > 1$ the inclusion $V_{m,m}^K \hookrightarrow V_{m,m}$ is always a strict inclusion and the sum in (3.37) is never a direct sum.

Theorem 3.8.

1. There exists a natural surjective homomorphism of rings

$$r : \bigoplus_{\chi \in X} M(W_m(\mathbb{F}), \chi, \mu_N) \longrightarrow V_{m,m}^K. $$

Let I_m be the kernel of r. Then I_m is equal to the kernel of the q-expansion map.

2. Let I'_m be the ideal $I_m \cap \bigoplus_{\chi \in X/M(m)} M(W_m(\mathbb{F}), \chi, \mu_N)$. The map r induces an isomorphism

$$\bigoplus_{\chi \in X/M(m)} M(W_m(\mathbb{F}), \chi, \mu_N)/I'_m \cong V_{m,0}. $$

3. If $p \neq 2$, the ideal I_m contains the ideal $\langle a(\chi_1^{p^{m+1}}\chi_2^{-p^m}) - 1, \ldots, a(\chi_g^{p^{m+1}}\chi_1^{-p^m}) - 1 \rangle$, and if $p = 2$, it contains $\langle a(\psi_1) - 1, \ldots, a(\psi_g) - 1 \rangle$ (where for g odd we have generators as in (3.34), and for g even the generators are as in (3.35)).

Proof. The proof follows the same lines as the proof of Theorem 2.3. We shall therefore be brief.

The map r is defined as in Theorem 2.3. Namely, if $f \in M(W_m(\mathbb{F}), \chi, \mu_N)$, we let $r(f) = f/a(\chi)$. Using Corollary 3.2 we see that f and $r(f)$ have the same q-expansion, and since $V_{m,m}$ is irreducible, we conclude that I_m is the kernel of the q-expansion map. Certainly Corollary 3.4 implies that if $p \neq 2$,

$$I_m \supseteq \langle a(\chi_1^{p^{m+1}}\chi_2^{-p^m}) - 1, \ldots, a(\chi_g^{p^{m+1}}\chi_1^{-p^m}) - 1 \rangle,$n

and if $p = 2$,

$$I_m \supseteq \langle a(\psi_1) - 1, \ldots, a(\psi_g) - 1 \rangle.$$n

Moreover, one verifies that the map r is $(\mathcal{O}_L \otimes \mathbb{Z}_p)^\times$-equivariant, where $([\alpha]f) = \chi(\alpha)f$ for $f \in M(W_m(\mathbb{F}), \chi, \mu_N)$, and $([\alpha]f)(A_\ast, X \times \beta_p) = f(A_\ast, X \times (\beta_p \circ [\alpha]))$ for $f \in V_{m,m}$. This shows that the image of r is contained in $V_{m,m}^K$. On the other, a construction as in Theorem 2.3, shows that r is surjective onto $V_{m,m}^K$.

It remains only to note that the equivariance also implies (3.39).

Remark 3.9. For $m > 1$, it is not true that I'_m generates I_m. This has to do again with (3.37) not being a direct sum.
The following Criterion follows directly from the methods of the proof of Theorem 3.8. Weak as it seems, it will suffice to derive the classical congruences between values of \(\zeta_L \) (and more generally, of suitable L-functions).

Criterion 3.10. Let \(\sum_\chi f_\chi \in I_m \). Then there exist \(a_\chi \) in some \(W_m(\mathbb{F}) \)-algebra such that

\[
\sum_\chi a_\chi \chi(u) \equiv 0 \pmod{p^m}, \quad \forall u \in (\mathcal{O}_L/(p^m))^\times,
\]

and \(a_1 = f_1 \).

Proof. Consider the relation \(\sum_\chi r(f_\chi) = 0 \). Evaluate it at a point and let the Galois group act. \(\square \)

Corollary 3.11. Let \(k \geq 2 \).

1. Let \(p \neq 2 \); if \(k \equiv 0 \pmod{p-1} \) then

\[
\text{val}_p(\zeta_L(1-k)) \geq -1 - \text{val}_p(k),
\]

and \(\zeta_L(1-k) \) is \(p \)-integral if \(k \not\equiv 0 \pmod{p-1} \).

2. If \(p = 2 \), then

\[
\text{val}_2(\zeta_L(1-k)) \geq g - 2 - \text{val}_2(k).
\]

Proof. 1. The case \(k \not\equiv 0 \pmod{p-1} \) was treated in Corollary 2.5. Assume \(k \equiv 0 \pmod{p-1} \). Let \(E_k \) be the Eisenstein series as in (2.21). Let

\[
\ell = \max\{-\text{val}_p(2^{-g}\zeta_L(1-k)), 0\}.
\]

If \(\ell = 0 \) there is nothing to prove. Assume therefore that \(\ell > 0 \) and consider the congruence

\[
E_k - 1 \equiv 0 \pmod{p^\ell}.
\]

Then Criterion 3.10 says that for some \(a \) in a \(W_\ell(\mathbb{F}) \) algebra, the polynomial \(a \cdot \text{Norm}(x)^k - 1 \) is identically zero on \((\mathcal{O}_L/(p^\ell))^\times\) or, equivalently, the polynomial \(ax^k - 1 \) is identically zero on \((\mathbb{Z}/p^\ell\mathbb{Z})^\times - \text{a cyclic group of order } (p-1)p^{\ell-1} \). Taking \(x = 1 \) we see that \(a = 1 \). It follows that \(p^{\ell-1} \) divides \(k \) and, hence, \(\text{val}_p(k) \geq \ell - 1 \geq -\text{val}_p(2^{-g}\zeta_L(1-k)) - 1 \).

2. When \(p = 2 \) one argues the same and obtains that \(ax^k - 1 \) is identically zero on \((\mathbb{Z}/2^\ell\mathbb{Z})^\times\).

Analysis of the structure of this group yields the result. \(\square \)

3.4. **Adding level \(p \)-structure.** In this section we briefly discuss modular forms of level \(\mu_N \) (for \((N, p) = 1 \)) together with an extra level structure of either the form \(\mu_{Np^m} \), or the form \(\Gamma_0(p) \). The first additional level structure already appeared above as involving the target of the \(q \)-expansion map modulo \(p^m \). It will now appear in the level of the modular forms themselves. This will clarify the nature of the ideal \(I_m \) of Theorem 3.8.

The second level structure is introduced to derive the precise congruences between, say, values of the zeta function, that are needed to construct the \(p \)-adic zeta function. The same technique would work for a wide variety of \(L \)-functions.

Adding \(\mu_{p^m} \) level. Let us consider the graded ring of modular forms \(\oplus_\chi \in \mathbb{X} \mathcal{M}(W_m(\mathbb{F}), \chi, \mu_{Np^m}) \) on the scheme \(T_{m,m} \). The ring of modular forms on \(T_{m,0} \) \(\oplus_\chi \in \mathbb{X} \mathcal{M}(W_m(\mathbb{F}), \chi, \mu_N) \), embeds in the ring \(\oplus_\chi \in \mathbb{X} \mathcal{M}(W_m(\mathbb{F}), \chi, \mu_{Np^m}) \) by pull-back via the canonical projection \(T_{m,m} \rightarrow T_{m,0} \).

Proposition 3.12. Let \(I_m(Np^m) \) be the kernel of the \(q \)-expansion map on \(\oplus_\chi \in \mathbb{X} \mathcal{M}(W_m(\mathbb{F}), \chi, \mu_{Np^m}) \). Then

\[
I_m(Np^m) = \langle a(\chi) - 1 : \chi \in \mathbb{X} \rangle,
\]
and
\[
I_m(N) = I_m(Np^m) \cap \oplus_{\chi \in \chi(X)} M(W_m(\mathbb{F}), \chi, \mu_N) \subset I_m(Np^m)^1,
\]
where \(I_m(Np^m)^1\) stands for the elements of \(I_m(Np^m)\) invariant under the Galois group \((\mathcal{O}_L/(p^m))^\times\).

Proof. First, by Corollary 3.2 indeed the \(\sum \chi f_\chi\) is zero. Then we may replace an \(f_\chi\) by \(f_\chi + f_\chi(a_\chi - 1)\). Repeating this as necessary we obtain a modular form \(g\) of parallel positive weight whose \(q\)-expansion is zero. Hence, \(g\) is zero. That is \(\sum \chi f_\chi \in (a(\chi) - 1 : \chi \in \mathcal{X}). The rest is clear. \)

Remark 3.13. The proposition above clearly demonstrates the problem of determining \(I_m(N)\) explicitly. The elements in \(I_m(Np^m)^1\) need not extend to a holomorphic modular form on \(T_{m,0}\).

Adding \(\Gamma_0(p)\) level. By a \(\Gamma_0(p)\) level structure on a HBAS \(\mathcal{A}\) we mean a finite flat subgroup scheme \(H \subset A[p]_p\), \(\mathcal{O}_L\)-invariant and of order \(p^n\). Such a subgroup is automatically isotropic with respect to any \(\mathcal{O}_L\)-polarization. We refer the reader to \([14], [18]\) and \([6]\) for details. However, it may benefit the exposition to recall some basic facts without proofs.

Let us denote the Satake compactification of the fine moduli scheme representing HBAS \(\mathcal{A}\) with level \(\mu_N\) and level \(\Gamma_0(p)\), over \(W_m(\mathbb{F})\)-algebras, by \(S_m(m \leq \infty)\). Let us denote by \(S_m^{ord}\) the ordinary locus. The scheme \(S_1\) has two “horizontal” components, denoted \(S_1^F\) and \(S_1^Y\), that correspond to taking as \(H\) the kernel of Frobenius or the kernel of Verschiebung, respectively. The natural morphism
\[
\pi : S_1 \longrightarrow \mathcal{M}^*(W_m(\mathbb{F}), \mu_N),
\]
induces an isomorphism, \(S_1^F \longrightarrow \mathcal{M}^*(W_m(\mathbb{F}), \mu_N)\), and a totally inseparable morphism of degree \(p^3\), \(S_1^Y \longrightarrow \mathcal{M}^*(W_m(\mathbb{F}), \mu_N)\). The scheme \(S_1\) has many other components parameterized by the type and the geometric fibers of \(\pi\) are stratified by projective spaces.

Consider the restriction of the section \(\mathcal{M}^*(W_m(\mathbb{F}), \mu_N) \longrightarrow S_1^F\) to \(T_{1,0}^*\), where as above, \(T_{1,0}^*\) stands for the ordinary part of \(\mathcal{M}^*(W_m(\mathbb{F}), \mu_N)\). Let \(S_m^{F,ord}\) be the open subscheme of \(S_m\) consisting of ordinary HBAS \(\mathcal{A}\) with \(H\) being the connected part \(A[p]\). We have the following commutative diagram in which the vertical arrows are isomorphisms:
\[
\begin{array}{ccc}
S_1^F & \xleftarrow{\sim} & S_1^{F,ord} & \xleftarrow{\sim} & S_m^{F,ord} & \xleftarrow{\sim} & T_{m,1}^* \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{M}^*(W_m(\mathbb{F}), \mu_N) & \xleftarrow{\sim} & T_{1,0}^* & \xleftarrow{\sim} & T_{m,0}^*.
\end{array}
\]

Let \(\tau = (\tau_1, \ldots, \tau_g) \in \mathcal{Y}^g\). Consider the modular form
\[
E_k^0(\tau) = 2^{-g}\zeta_L(1 - k) + \sum_{\nu \in \mathcal{O}_L^+} \left(\sum_{i \mid \nu} \text{Norm}(c)^{k-1} \right) e^{2\pi i \text{Tr}(i \tau)}.
\]

It is a modular form of weight \(\text{Norm}^k\) on \(\text{SL}_2(\mathcal{O}_L \oplus D_L^{-1})\), a fortiori on \(\mathcal{M}^*(\mathcal{C}, \mu_N)\), if the polarization module \(c\) (see Section 1.2) is chosen to be \(\mathcal{O}_L\) with its natural notion of positivity. The coefficient of \(e^{2\pi i \text{Tr}(i \tau)}\) can also be written as \(\sigma_{k-1}(\nu)\), where for every integral ideal \(b\) we let
\[
\sigma_{k-1}(b) = \sum_{\mathcal{O}_L \supset c \supset b} \text{Norm}(c)^{k-1}.
\]

The function \(\sigma_{k-1}\) is multiplicative:
\[
\sigma_{k-1}(bc) = \sigma_{k-1}(b)\sigma_{k-1}(c), \quad (b, c) = 1.
\]
It follows that for every prime ideal \(q \), an ideal \(b \subset \mathcal{O}_L \) prime to \(q \), and any \(r \geq 0 \), we have

\[
\sigma_{k-1}(q^{r+1}b) - q^f(k-1)\sigma_{k-1}(q^r b) = \sigma_{k-1}(b),
\]

where \(q \) is the rational prime below \(q \) and \(f = f(q/q) \).

Retaining our assumption that \(p \) is inert in \(L \), let us put

\[
(3.64) \quad \sigma_{k-1,p}(p^r b) = \sigma_{k-1}(b), \quad (p, b) = 1.
\]

We then obtain the expansion

\[
(3.65) \quad E^+_k(\tau_1, \ldots, \tau_g) \overset{\text{def}}{=} E^+_k(\tau_1, \ldots, \tau_g) - p^{\rho(k-1)}E^+_k(p\tau_1, \ldots, p\tau_g)
\]

\[
= (1 - p^{\rho(k-1)})2^{-g}\zeta_L(1 - k) + \sum_{\nu \in \mathcal{O}_L^+} \sigma_{k-1,p}((\nu))e^{2\pi i \text{Tr}(\nu \tau)}.
\]

The point important to us is that all the coefficients (except the constant one) are \((k-1)\) powers of natural numbers that are prime to \(p \). Hence, the following facts hold:

Let \(k, k' \geq 2 \) and \(k \equiv k' \pmod{(p-1)p^m} \). Let

\[
\ell = \max\{-\text{val}_p(2^{-g}\zeta_L(1 - k)), -\text{val}_p(2^{-g}\zeta_L(1 - k')), 0\},
\]

and put

\[
(3.66) \quad r = \max\{\text{val}_p(k), \text{val}_p(k')\}, \quad r' = \min\{\text{val}_p(k), \text{val}_p(k')\}.
\]

Note the following points: (i) If \(p \neq 2 \) then \(0 \leq \ell \leq 1 + r \); (ii) If \(p = 2 \) then \(0 \leq \ell \leq r + 2 \); (iii) If \(k \neq 0 \pmod{(p-1)} \) then \(\ell = 0 \). They all follow from Corollary 3.11.

We may further assume, w.l.o.g., that if \(p = 2 \) then \(\text{val}_2(k) \leq \text{val}_2(k') \) and that \(k \) and \(k' \) are even. Let

\[
i = \begin{cases} 1 & p \neq 2 \\ 2 & p = 2 \end{cases}.
\]

Let

\[
(3.67) \quad \alpha = p^i \left((1 - p^{\rho(k-1)})2^{-g}\zeta_L(1 - k) - (1 - p^{\rho(k'-1)})2^{-g}\zeta_L(1 - k') \right).
\]

Then \(\alpha \in \mathbb{Z}_p \) and

\[
(3.68) \quad p^f E^+_k - p^f E^+_k - \alpha \equiv 0 \pmod{p^{m+i+f}}
\]

(The congruence means congruence of \(q \)-expansions.)

Now, the point is that \(p^f E^+_k, p^f E^+_k \), and \(\alpha \) are modular forms over \(\mathbb{C} \) of level \(\Gamma_0(p) \) having integral \(q \)-expansion, hence are modular forms on \(S_{m+i+f} \), hence on \(S_{m+i+f}^{E,\text{ord}} \). Therefore, \(p^f E^+_k, p^f E^+_k \), and \(\alpha \) are meromorphic modular forms on \(T_{m+i+f,0}^+ \) with poles supported on the complement of the ordinary locus (the poles coming from the singularities of \(S_m \)). Criterion 3.10 holds also for meromorphic modular forms and we obtain that there exist \(a, b \) such that

\[
(3.69) \quad ap^i x^k - bp^i x^{k'} - \alpha \equiv 0, \quad \forall x \in (\mathbb{Z}/(p^{m+i+f}))^\times.
\]

Since for every \(x \in (\mathbb{Z}/(p^{m+i+f}))^\times \) we have \(x^k = x^{k'} \pmod{p^{m+i}} \), we deduce that there exists \(a \in \mathbb{W}_{m+i} \) such that \(cx^k - \alpha \equiv 0 \pmod{p^{m+i}} \) for every \(x \in (\mathbb{Z}/(p^{m+i+f}))^\times \). Taking \(x = 1 \) we see that the following holds

\[
(3.70) \quad \alpha(x^k - 1) \equiv 0 \pmod{p^{m+i}}, \quad \forall x \in (\mathbb{Z}/(p^{m+i}))^\times.
\]

Remark 3.14. The reader notices that we “lose” information by going from (3.63) to (3.64). We remark that the congruences obtained are “good enough” for the purposes of \(p \)-adic interpolation.
We separate cases:

(i) \(k \not\equiv 0 \pmod{p-1} \). Then \(\ell = 0 \), and one gets that \(\alpha \equiv 0 \pmod{p^{m+1}} \).

(ii) \(k \equiv 0 \pmod{p-1} \) but \(p \neq 2 \). We observe that

\[
\text{val}_p(k) + 1 = \min\{\text{val}_p(x^k - 1) : x \in \mathbb{Z}, p \not| x\}.
\]

We therefore obtain that \(\text{val}_p(\alpha) \geq m + 1 - (r' + 1) = m - r' \).

(iii) \(k \equiv 0 \pmod{p-1} \) and \(p = 2 \). (We still assume that \(k \) is even, since \(k \) odd implies that \(k' \) is odd and we get \(\zeta_L(1-k) = \zeta_L(1-k') = 0 \).) Observe:

\[
\text{val}_2(k) + 2 = \min\{\text{val}_2(x^k - 1) : x \in \mathbb{Z}, 2 \not| x\}.
\]

Therefore, \(\text{val}_2(\alpha) \geq m + 2 - (r' + 2) = m - r' \).

We observe that \(m - r' - \ell \geq m - i - (r + r') \). We may therefore sum up the discussion above in

\textbf{Corollary 3.15.} Let \(k, k' \geq 2 \) and \(k \equiv k' \pmod{(p-1)p^m} \).

1. If \(k \not\equiv 0 \pmod{p-1} \) then

\[
\begin{aligned}
&1 - p^{\vartheta(k-1)}\zeta_L(1-k) \equiv (1 - p^{\vartheta(k'-1)})\zeta_L(1-k') \pmod{p^m+1}.
\end{aligned}
\]

2. If \(k \equiv 0 \pmod{p-1} \) but \(p \neq 2 \), then

\[
\begin{aligned}
&1 - p^{\vartheta(k-1)}\zeta_L(1-k) \equiv (1 - p^{\vartheta(k'-1)})\zeta_L(1-k') \pmod{p^{m-1} - \text{val}_p(k,k')}.
\end{aligned}
\]

3. If \(p = 2 \) then

\[
\begin{aligned}
&1 - 2^{\vartheta(k-1)}\zeta_L(1-k) \equiv (1 - 2^{\vartheta(k'-1)})\zeta_L(1-k') \pmod{2^{m+g-2} - \text{val}_2(k,k')}.
\end{aligned}
\]

\section{Lifting of \(q \)-Expansions}

\textbf{Proposition 4.1.} Any modular form \(f \in \mathsf{M}(\mathbb{W}_m(\mathbb{F}), \chi, \mu_N) \) can be lifted to \(\mathbb{T}_{\infty,\infty} \).

\textit{Proof.} Clearly the regular function \(f/a(\chi) \in V_{m,m} \subset V_{m,\infty} \) can be lifted to \(V_{\infty,\infty} \). Indeed, \(V_{m,\infty} = V_{\infty,\infty} \otimes \mathbb{W}_m(\mathbb{F}) \). On the other hand, by Corollary 3.2, \(a(\chi) \) itself lifts to \(\mathbb{T}_{\infty,\infty} \). \hfill \Box

A much more subtle question is that of lifting a modular form \(f \in \mathsf{M}(\mathbb{W}_m(\mathbb{F}), \chi, \mu_N) \) to a modular form in \(\mathsf{M}(\mathbb{W}(\mathbb{F}), \chi, \mu_N) \). For example, take \(m = 1 \). The modular forms \(h_i \) do not lift, because any non-cusp form of finite level must have parallel weight. Or, any modular form of finite level must have non-negative weights. This does not contradict Proposition 4.1. The level there is \emph{infinite}. The following theorem says, heuristically, that the \(h_i \)'s are the archetype of modular forms that cannot be lifted. The geometric explanation for this phenomenon is that the line bundle \(\Omega(\chi) \), for \(\chi \) not a multiple of Norm, does not extend to a line bundle over the minimal compactification, though it does extend to a line bundle over any smooth toroidal compactification.

\textbf{Theorem 4.2.} Let \(B \) be any \(\mathbb{W}(\mathbb{F}) \)-algebra and let \(B_m = B \otimes \mathbb{W}_m(\mathbb{F}) \). Let \(I_m \) be the kernel of the \(q \)-expansion map as in Theorem 3.8. The map

\[
\bigoplus_{\chi \in \mathsf{X}} \mathsf{M}(B, \chi, \mu_N) \longrightarrow \bigoplus_{\chi \in \mathsf{X}} \mathsf{M}(B_1, \chi, \mu_N)/I_1,
\]

is surjective. The map

\[
\bigoplus_{\chi \in \mathsf{X}} \mathsf{M}(B, \chi, \mu_N)^{\text{cusp}} \longrightarrow \bigoplus_{\chi \in \mathsf{X}} \mathsf{M}(B_m, \chi, \mu_N)^{\text{cusp}}/I_m,
\]

is surjective.

\textit{Proof.} The proof uses the following lemma:

\textbf{Lemma 4.3.} (\cite{15}, Proposition 6.11.) If \(f \in \mathsf{M}(B_1, \chi, \mu_N) \) has some \(q \)-expansion in which the constant term is non-zero then \(\chi \in \mathsf{X}(1) \).
Thus, if f is not a cusp form then for a suitable $g \in I_1$ we have that $f + g$ is of weight Norm^k for some $k > 0$, which we may take as large as needed.

Let us put $T^S = \mathcal{M}^*(W(F), \mu_N)$ – the moduli space of HBAS over $W(F)$-algebras with μ_N-level with its Satake compactification. Recall the notation (2.12). It is well know that $\Omega(\text{Norm})$ extends to T^S and that $\Omega(\text{Norm})$ is an ample line bundle (our level is rigid). It follows that for k large enough every section of $\Omega(\text{Norm}^k)$ can be lifted. We may therefore restrict our attention to cusp forms.

Let $D \hookrightarrow T^S$ be the cusps and $T^0 = T^S - D$. Let T^{tor} be a smooth toroidal compactification. We have a commutative diagram

$$
\begin{array}{ccc}
T^0 & \longrightarrow & T^{\text{tor}} \\
\downarrow b & & \downarrow \\
T^S & \longrightarrow & D.
\end{array}
$$

The map b is proper and the other two maps are open immersions. Let D^{tor} be the pre-image of D.

Lemma 4.4. There exists a quasi-coherent sheaf $\mathcal{S}(\chi)$ on T^S whose global sections are cusp forms of weight χ.

Theorem 4.2 follows immediately from Lemma 4.4. For k large enough all the higher cohomology of $\mathcal{S}(\chi) \otimes \Omega(\text{Norm}^k)$ vanishes and there are thus no obstructions to lifting. It remains to prove the lemma:

There exists a semi-abelian variety with real multiplication

$$
(\mathcal{A}, \beta_N) \xrightarrow{\pi} T^{\text{tor}}.
$$

Let $\Omega = t^*_{(\mathcal{A}, \beta_N)} - T^{\text{tor}}$ and define $\Omega(\chi)$ as usual (on T^0 this agrees with our previous definition). Let \mathcal{I} be the ideal sheaf defining D^{tor}. Let

$$
\mathcal{S}(\chi) = \pi_* (\Omega(\chi) \otimes \mathcal{I}).
$$

The sheaf $\mathcal{S}(\chi)$ is quasi-coherent sheaf on T^S. We need only show that its global sections are cusp forms. The map from $\Gamma(T^S, \mathcal{S}(\chi)) = \Gamma(T^{\text{tor}}, \Omega(\chi) \otimes \mathcal{I})$ to $\Gamma(T^0, \Omega(\chi)) \subset \mathcal{M}(W(F), \chi, \mu_N)$, given by restriction, is clearly injective. It has image contained in the cusps forms. Indeed, if $f \in \Gamma(T^S, \mathcal{S}(\chi))$ and \bar{f} its image, then the q-expansion of \bar{f} is non-other then f viewed as an element of the structure sheaf of the completion of T^{tor} along \mathcal{I}. For this one needs to choose a particular trivialization of $\Omega(\chi)$ in a neighborhood of the component of D^{tor} under consideration. See [5], Main Theorem.

Conversely, a cusp form f, viewed as a section of $\Gamma(T^0, \Omega(\chi))$, or $\Gamma(T^0, \mathcal{S}(\chi))$ extends to an a priori meromorphic section \bar{f} of $\Gamma(T^S, \mathcal{S}(\chi))$, whose expression as an element of the structure sheaf of the completion of T^{tor} along \mathcal{I} has zero constant coefficient. That just means that locally around D^{tor} it belongs to \mathcal{I}. See loc. cit. (x).

Remark 4.5. The point of Theorem 4.2 is that it says that every HMF modulo p, say f, can lifted to characteristic zero, in the sense that its q-expansion can be lifted. I.e., though often one can not lift the modular form f itself, there does exist a modular form g of characteristic zero and weight equal to the weight of f modulo $X(1)$, whose q-expansion is equal to the q-expansion of f modulo p.

Practically the same proof gives the following:

Let f be a modular form over $W_m(F)$ whose constant coefficient in one q-expansion is a unit. Then f has weight in $X(m)$ and its q-expansion lifts to a q-expansion of a HMF over $W(F)$ of the same level and weight in $X(m)$. A similar statement holds for cusp forms.

In fact the method of the proof allows one to control the difference between the weights of f and the “lift” if one has an effective bound on k such that $H^1(T^S, \mathcal{S}(\chi) \otimes \Omega(\text{Norm}^k)) = 0$.

\[\square \]
5. Tabulation of some zeta values

Remark 5.1. The computations were done using PARI and are subject to the following reservations: (i) My lack of expertise in such calculations. (ii) The validity of a factor being a prime. In particular, almost surely, those huge numerators which are not decomposed at all are composite. (iii) However, the factorization of the denominator is always into primes.

We explain how the data was obtained by giving an example. To obtain \(\zeta_{\mathbb{Q}(\sqrt{7})}(-31) \) first raise the real precision of PARI by writing “\(\text{\textbackslash p 150} \)”. Execute the command “I = zetakinit(x^2 - 7);” (that creates the data that PARI needs in order to calculate values of the zeta function of \(\mathbb{Q}(\sqrt{7}) \)). Writing “x = zetak(f, -31)” gives the real number

\[
x = 850151873179862170884148704477491767235740853295481011573359732 \cdot 50049019607843137254901960784313725490196078431372549019607843137254999.
\]

Note that Corollary 3.11 gives a bound on the denominator of the rational number approximated by \(x \). Thus, one knows that \(y = x \cdot 32! \) must be an integer. Writing “\(y = x^*32! \)” we get

\[
y = 22606935144296756808604113804034718240356951983595785601962407846397816848315501565354230400000.000.
\]

The command “factor(round(y)/32!)” yields the value given in the table below.

Field: \(L = \mathbb{Q} \)

<table>
<thead>
<tr>
<th>(\mathfrak{f}(1 - k))</th>
<th>(k)</th>
<th>(\zeta_L(1 - k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>20</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(4)</td>
<td>22</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(6)</td>
<td>24</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(8)</td>
<td>26</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(10)</td>
<td>28</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>
| \(12 \) | \(2^9 \cdot 3
| 14 | \(2^{13}
| 16 | \(2^{17}
| 18 | \(2^{21}

Field: \(L = \mathbb{Q}(\sqrt{7}) \)

<table>
<thead>
<tr>
<th>(\mathfrak{f}(1 - k))</th>
<th>(k)</th>
<th>(\zeta_L(1 - k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>(2^*3 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
</tbody>
</table>

Field: \(L = \mathbb{Q}(\sqrt{5}) \)

<table>
<thead>
<tr>
<th>(\mathfrak{f}(1 - k))</th>
<th>(k)</th>
<th>(\zeta_L(1 - k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>(2^*5 \cdot 7 \cdot 19)</td>
<td></td>
</tr>
</tbody>
</table>

Field: $L = \mathbb{Q}(\zeta^2)$.
Ideal: Ramified: 2, 7; Split: 3, 19, 29, 31; Inert: 5, 11, 13, 17, 23.

$\chi(1-k)$

2
3
4
6
8
10
12
14
16
18
20
22
26
28
30
32
34

Field: $L = \mathbb{Q}(\zeta^3) = \mathbb{Q}[x]/(x^3 + x^2 - 2x - 1)$

$\chi(1-k)$

2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

Field: $L = \mathbb{Q}(\zeta_11^3) = \mathbb{Q}[x]/(x^6 + x^4 - 4x^3 - 3x^2 + 3x + 1)$

$\chi(1-k)$

2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

References

24 EYAL Z. GOREN

DEPARTMENT OF MATHEMATICS AND STATISTICS, Mcgill University, 805 Sherbrooke St. W., Montreal H3A 2K6, QC, CANADA

E-mail address: goren@math.mcgill.ca