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1. Introduction

Let L = Q(v/D) (D a square free integer) be a totally real quadratic field,
and letMg, ,, be the moduli space, in characterigiic 3, parameterizing
principally polarized abelian surfacés, \), in characteristigp, together
with a symplectic leveln > 3 structure and an embedding of rings
Or, — End(A)* (hereEnd(A)* are the endomorphisms fixed by the Rosati
involution associated ta). We refer the reader to [DP], [Ra] and [vG] for
further details.

LetV = V,, » be the complement of the ordinary locusAn and let
S = 84, » be the supersingular locus. This paper is alauthe analysis
and the results are divided according to the decompositigniofL. We
establish the following results:

1. If p is inert or ramified inL then) = S. Every component of is a
smooth rational curve and the number of components is

CP[MdL,n : MdL,l]gL(_l)ﬂ

whereC, = 1if pisinertand’), = 1/2if pis ramified. For generalizations
to the case of moduli spaces obtained by considering the action of an order
of Oy, see the appendix.

2. If p is inert or split in L then the singularities oY are ordinary
with two branches and correspond to intersection points of the irreducible
components; the singular points being exactly the superspecial points (if pis
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splitevery supersingular pointis superspecial). Furthermore, the intersection
graph ofV is bipartite.

3. If p is ramified inL then on each rational component therejare 1
singular points (counted with multiplicity) which are all superspecial. The
singularity being ordinary witlp + 1 branches. These points are exactly the
points where the cotangent space of the corresponding abelian variety is not
free overQy, /p and they are exactly the singular points/ef (the tangent
cone being? = xy).

4. Whenp is splitin L, we prove that the orbit of any € V' \ S under a
certain Hecke algebra is denselin

Whenp is inert the equality) = S and the structure of as appears in
2. above were first determined by H.Stamm ([St]) . We present a different
proof of his results in Sect. 6.1. Wheris ramified, 3. complements a result
of Deligne-Pappas ([DP]) in the case of surfaces.

Our approach to counting the number of componentS & based on
the work of T. Katsura and F. Oort ([KO1]).
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university . The second author was partially supported by a Rothschild fellowship and by
Harvard university. Special thanks are due to B.Gross.

2. Background
2.1.

We fix the following notationp > 3 is a rational prime and is an alge-
braically closed field of characteristic Let F1, E5 denote supersingular
elliptic curves (abbreviatedssg overk and X = FE; x FEy. We letY, Z
denote general abelian varieties owesind A will usually denote a super-
singular abelian surface ovér

The a-number andf-number ofY/F (F a characteristip field) are
defined as follows:

a(Y) = dim Hom(ap,Y); p/™) =|Y[p](F)|.

We denote byFr : Y — Y the Frobenius morphism and By :
Y(® — Y the Verschiebung morphism. Fgr : Z — Y we let f* :
Yt — Z* denote the dual morphism arfd : End’(Y) — End’(Z) the
induced homomaorphism, where as usial’(Y') = End(Y) ® Q. Similar
conventions hold for groups.

Given suchG, we denote its contravariant Dieud@module over
W (k)[F,V] by D(G) (see [Dm]). For example, it is known th&(E;[p])
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(respectivelyH . (E;)) has a basis ovér(resp.W (k)) of the form(e;, Fe;)
whereF2e; = —pe;, Ve; = —Fe; and such a basis is unique up to substitu-
tionse; — ae; + BFe; Wherea € F;Q,ﬁ € Fp2 (respac W(F,.)*, 3 €

W (IF,2)) . Such a basis will be calleddistinguished basis

2.2.

LetG = X|[p] and let(ey, Fle1, e2, Fes) be a distinguished basis foX(G).
Let u = p(E7, E2) be the product polarization oX. Theny induces a
perfect alternating pairin@,, : D(G) x D(G) — k, which is determined
by 0; = Bu(ei, Fez)

Let H C Ker(pu) = X|[p] be a subgroup of order, and letry : X —
X/ H be the natural projection. Such &his automatically isotropic w.r.t the
Mumford pairing induced byu on X [p]. Thus, there exists a polarization
Ag on X/H such thattj; Ay = pp. We would like to determine when is
Ker(Amg) = ap @ ayp.

Such anH is determined by a surjective homomorphism of Dieudonn
modulesiIy : D(X|[p]) — k = D(cy,). The following lemma is straight-
forward (see also [KOZ2], [MB]).

Lemma 2.1. In the notation above:

1. For every choice of distinguished bages: F),.

2. Ker(A\g) = oy @ « iff Ker(IIy) = Spany, {Fe1, Fea,ea —teq},
wheret?t! = —0, /6, . In particular ¢ € F:.

One calls such very good directions

2.3.

In [KO1] one finds a description of the supersingular locuslia= A; ; —
the moduli space of principally polarized abelian surfaces in characteristic
p. We briefly recall the main idea.

Choose a principal polariztionon X and letH C X [p] be a subgroup of
orderp such thaKer(Ay) = o, @ . Then, everyd; C X/H oforderpis
a maximal isotropic subgroup &fer(\z) and thu§ X/ H)/H; is naturally
principally polarized. Fixing an embedding®«,, — X/H, the subgroups
H, are parameterized IB/. This gives a finite map' — A. Furthermore,
it follows from [KO1] that every component of the supersingular locus in
A can be obtained in this way when one may just taleof the form

w(Er, Ez).

2.4. Translation to submodules

To give a subgroup?; of Ker(A) is equivalent to giving a sub-Dieudoan
moduleU of D(X[p]) such thatker(IIy)= S U S Ker(IIy). Equiva-
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lently, using the canonical isomorphisAy.,.(X)/pHL, (X) = D(X[p)),
this amounts to giving a sub-DieuddnmodulelV of H/, (X) such that
W D pH},.(X)andW/pHL, (X) is a modulel of this type. Note that

(1) W = Spanw(k){pHér(X), v, w},

v=Fey—T°Fey, w= —Tase1 +a1Fe; + ases,

whereT =t (mod p) and(a; : az) (mod p) € PX(k). Note also thatV’
depends only ofi’ (mod p), (a1 : az) (mod p). We will use the notation
Xw (resp.(X, u)w) to denote the abelian varietye6p. with the princi-
pal polarization) associated i#&. We will use the notatiorz to denotez
(mod p).

Lemma 2.2. Xy = X if and only if(ay : az) € P*(F2).

Proof.Note thatl/er is the zero map on the finite group scheme of ogder
G = Ker(Fr : Xy — XP)), if and only if G 2 o, & ay. This holds if
and only if Xy = X. SinceD(G) = W/FW, we are reduced to checking
the inclusionVW C FW.

SinceVpe; = pVe; = —pFe; = F(—pe;), andVpFe; = FpVe;, we
have

VpHE,(X) € FpHe, (X) € FW.
Also,
Vv =pey —Tpey = F(—Fea + T"_lFel).
Hence, using Lemma 2.1, we get
Vo4 Fo=F(T°  —T°)Fe) € FpHL, (X) C FW.

Therefore VW C FW, ifand only if Vw € FW. Now,

Vw = —T071a§71V61 + af71p61 + agilVeg

= F(T"iQag%el - af72F61 - agizeg).

Thus,Vw € FW <= T "a3 "e1—af Fej—a3 ey e W.lfag =0
we can assume; = 1 and hencé/w € F'W. Else, we may take, = 1
and since D pH(, (X) andT € F, we find thatVw € FW, if and
only if
T"_Qag_Qel — a‘f_QFel — ag_262 +w
2
= (a1 — ai/p )JFe; € W (mod p).

The claim now follows easily from (1).g.e.d.
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3. Existence of embeddings

3.1.

Let u = pu(Eq, E2) be the product polarization o = E; x Es, and let
A_{\/ﬁ D=2,3 (mod4) {o D=2,3 (mod 4)

)

=YD D=1 (mod 4) ")t D=1 (mod4)

D D =2,3 (mod4)
A=<, .
£= D=1 (mod4)

An embeddingl — End®(X)* is determined by the image df, which is

a matrix of the form
a B
B —(e+a))’

wherea € Q, 8 € Hom(Es, E1) ® Q, a® + ae + 83 = A.

Proposition 3.1. Let (A, \) be a ssg principally polarized abelian surface.

Let £, F» be appropriate ssg elliptic curves affl a suitable submodule

of H}, (X) such that(4,\) & (X, u)w and letmy : X — A be the
corresponding homomorphism (see Sect. 2.4). Then, for a given embedding
L — End’(A),

A € End(A)* <= 7}y, (A) € End®(X)* and 73 (A)(W) C W.

In this case,

o resnel(5 )
wherea € Z, 3 € Hom(F», E7) and

3) a® + ape + B = Ap?.
Conversely, given an endomorphigmas above, we have
(4) h € iy (End(A)*) <= h(W) C W,

and in this casé: = 7}, (A) for a suitable embedding@;, — End(A)*.

Proof. This follows from general facts on abelian varieties. The main point
is to note first thatV = =i}, (H},.(Xw)), and for abelian variety” and

f € End’(Y) such thap”f € End(Y), one hasf € End(Y) if and only

if f*(HL.(Y)) C HL.(Y). g.ed.
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3.2. Embeddings

We will determine wherEnd(A)* contains an element of the forrh By
Subsection 2.3 and Proposition 3.1, such elements correspond in a non
unique way to the following data:

A) X = E; x Ey with the standard polarizatign = p(F1, E2).

B) An elementh of End’(X)* as in Proposition 3.1. Note thatpreserves

W = Spanyy (1) (pHL,(X), v, w)
wherev andw are as in Subsection 2.4 . Namely:
v=Fey—T%Fey, ,w=—Tasey + a1Fe; + ases

C) A very good directiont (see Subsection 2.2)
D) A pointr = as/a; € P,

The following theorem establishes which sets of dafay, h, ¢, r) corre-
spond to points on the Hilbert-Blumenthal surface. We keep the notation
above and put = 34 in the notation of equation (2).

Theorem 3.2. The following sets of dat@X, 4, h, t, ) correspond to points
on the Hilbert-Blumenthal surfacét,, ;:

Case 1p|b.

(1.1) All sets withp*|b, arbitrary t andr = 0.

(1.2.1) All sets withp3||b, —2a/p = € (mod p), t and r arbitrary. The
conditions imply thap| D.

(1.2.2) All sets withp3||b, t arbitrary and r=0.

(1.3.1) All sets withp?||b, t = —c — ¢/2 andr arbitrary. The conditions
imply thatp|D.

(1.3.2) All sets withp?||b, t & F,, —(t? +t + €)/2 = c and r arbitrary.
The conditions define two t's given the rest of the data and imply that p is
inertin L.

(1.3.3) All sets withp?||b , ¢ arbitrary and r=0. The conditions imply
thatp is either inert or ramified inL.

Case 2:
All sets with(p,b) =1 ,¢t = —a andr = oc.

Definition 1. In any of the above cases, giveh, E,, a matrix h €
End’(E; x E,) and a very good direction, if ~ can be taken to be ar-
bitrary then we say thatis adjustedo A.

Proof.We shall present a case by case analysis of Buahich will prove the
theorem. The case indexing in the proof corresponds to that in the statement
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of the theorem. Subcases are given by additional indices. The computation
being lenghty we leave Case 2 and some other details to the reader.

Using the structure of thg’ torsion of a supersingular elliptic curve and
equation (3), one verifies that eithgls or (p,b) = 1 (and similarly in
subcases below).

Case 1p|5.
By equation (3)p|a, SO we may write

h_<§—&id>’

with ¢ = a/p and = pd. We also have

(5) Etec+d= A,
whered = 5.
Case (1.1p|é.

Sinceh is integral it preservepH/,,.(E1 x E») and hence preservég if
and only if it preserve/ = W (mod p) (This applies to Cases 1.2, 1.3 as
well). In this casé: (mod p) becomes

hz(é—@i@)?

anditsaction o}, (E1 x E») is given with respect to a pair of distinguished
bases:, Fleq, eq, Fes by

c 0 0 0
0 ¢ 0 0
0 0O—(e+¢) O
0 0 0 —(e+c)

The corresponding equations are
(0, —ct?, 0, —(e + ¢))' = 21(0, —t?,0,1)" + y1(—tas, a1, az,0)’,
and
(—ctag, car, —(e + c)az,0)" = 22(0, —t?,0,1)" + yo(—tas, a1, as,0)".

Assumeuas # 0 then the first equation implieg = 0 andx; = —(e + ¢).
These in turn give the conditionct? = (e + ¢)tP. Sincet? # 0 we obtain
2¢c + € = 0 (mod p). If ¢ = 0, then we obtain from equation (5) that
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p?|D, which is a contradiction sincB is square free. It = 1, we obtain
4c¢®* +4c+1 = (2¢+ 1) = D (mod p?), which again give?|D and
hence a contradiction.

Assuming therefore that, = 0 and fixinga; = 1, we may verify that

r1=—(e+c), y1 =(—2c—e)tP, za =0, y2 =c,
provides a solution for any good direction

Case (1.2)l = pm and(m, p) = 1.
We claim that we can find a basis &}, (E1 x E») in whichh (mod p)
is written as

c 0 0 0

0 ¢ -m 0
(6) h=10 0 —(e+¢) 0

10 0 —(e+¢)

To do this, first choose a distinguished bagis, Fe,) for H}, (E;). We
claim that there exists an € H},.(E») such thatFe; = §*(eq). Indeed:
We first note that we can factéras

Es[p] - ap = Eipl,
and hence factaf* as
D(Ex[p]) <= D(ayp) « D(E1[p]),

and sincd”' kills D(cy,) we conclude thak' kills 5*(D(E, [p])). In particular
F(6*(e1)) € pHL, (E2). Next we choose a distinguished basis, Fe;)
for H,.(E). We have

pHér(Eg) = p Span(e}, F'ej)
= Span(FVey, Fpe,) = FQSpan(—e’Q, Vey).

Therefore, by the injectivity of’, there exists an, such that
5*(€1> = Feg.

We shall choosées, Feo) as our basis fof, (Es).

Next one checks thde,, Feq) is distinguished and that has the form
above with respect t¢e;, Fe1, e2, Fea). Sinceh is integral, the inclusion
h(W) C W can be verified again mad
We obtain the following equations

(07 _Ctpv 07 _(6 + C))t = .’171(07 _tp7 O? 1)t + yl(—t027 ar, az, O)t7
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and

(—ctaz, cay — mag, —(€ + c)az, —tas)’
= $2(0a _tpv 07 1)t + y2(_ta2a ai, az, O)t

Case (1.2.1Assumingas # 0, the first equation gives; = —(e + ¢) and
y1 = 0 and the condition

—ct? = (e + o)t?,
which implies
@) 2c+e=0 (mod p).

Using equation (5) and separating cases (0, 1) this implies thap| D. The
second equation yields, = —tas andy, = —(e + ¢) and the conditions

(8) —ct = (e+ o)t cay —may = P lay — (e + ¢)ay.

The condition (7) implies the first condition of (8) and transforms the second
into

—m = P,

We shall now show that this condition holds precisely for thdsevhich
are very good directions. Indeegy = B(pea, Fea) = B(V Feg, Feg) =
B(Fey, F2e)Y? = B(8*e1,0*Fe))V? = B((66)*e1, Fey)Y? =
(pmb1)Y/? = pmby, by Lemma 2.1 . Hencen = Z—j = —tPtl py the
same lemma.

Case (1.2.2)f as = 0, takinga; = 1, one easily verifies that the equations
are solved for any by

v =—(e+0), y=—(e+2)t" 22=0, p=c

Note that this also complements Case 1.2.1 .

Case (1.3)p,d) = 1. Let(e1, Fey) be a distinguished basis féf’,.(E1) .
Letey = 0*(e1), then(eq, Fe) is a distinguished basis fdi},.(E-). With
respecttde;, Fey, ez, Fea) h is given by

0 d 0
& 0 d
0 —(e+¢) 0
1 0 —(e+c¢)

(9)

O = OO0
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Again by the integrality of. , we get that,(WW) C W, if and only if the
following equations can be solved mpd

(0, —ct? 4+ d, 0, —tP — (e + ¢))*
= :L‘l(o, —tp, 0, 1)t + yl(—tag, ay,as, O)t,

and

(—ctay + das, cay, —tas — (¢ + c)az, ar)’
- '1;2(0’ _tpa 07 ]-)t + y2(_ta2a ai, az, O)t

Assumingay # 0 the first equation yields; = —(t? + €+ ¢) andy; =0
and the condition

(10) t 4 (e +2e)tP —d = 0.

The second equationyields = a; andy, = —(t+¢+c) and the conditions
(11) t2 + (e +2c)t —d =0,

and

(12) ai(—2c—e€) = ay(t? +1).

By our choice of bases we have

b2 = B(ea, Fes) = B(6(e1), 6" (Fex)) = B((66)"(e1), Fey) = db.
Hence the criterion for very good direction becomes:
(13) Pt = —q.

Equation (11) obviously implies equation (10). We also note that equation
(11) and equation (13) imply equation (12) . Indeed equation (13) implies that
—d which is the product of the roots of equation (11) — sandt’ — is also
equal toit?. Hencet’ = t? and therefore-(e+2¢) = t+t' = t+t*. Hence
the above conditions on the very good directiofwhich automatically
satisfies?*! = —d) amount to equation (11).

Substituting equation (12) and equation (13) into equation (5) we obtain

(P +t+€)? —2(tP +t + €)e — 4Pt = 4A,
which implies
(tP —t)? — € = 4A,
which finally gives

(14) (t? —1)> = (2 — ¢)’D.
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This shows that eithes| D (if and only if t € F,,) or p is inert in L (Since
t ¢ F, impliest? —t ¢ IF,)). Conversely we have the following two cases:

Case (1.3.1Assumep|D . Then choosing = —c— § one may easily verify

by working backwards through the above argument that all the equations
are satisfied and thatis a very good direction. Moreover this is the only
solution.

Case (1.3.2Assumep is inert in D. Let s € F2 satisfys? = (2 — €)?D .
Since solutions to the Artin-Schreier equation

tP—t—s5=0

lie in F,» and form a coset+IF,, we may find oné, which further satisfies
Tr(tg) = —(2¢ + €) . Again one may easily verify thap satisfies all the
conditions. There are two choices flgrcorresponding to the two choices
for s.

Case (1.3.332 = 0. Leta; = 1. we then have the solution
1= —(tP +cte),y =t —tP2c+e)+d, xo=1,y0=c+t"

complementing our discussion of Cases 1.3.1 and 1.3.2..

If b = pm and(m, p) = 1 then equation (3) yields|a which in turn implies
p|m. A contradiction. Therefore we are left with the case:

Case 2 (p,b) = 1. This case, proved similarly, is left to the readge.d.

4. On theV locus

Definition 2. Assume thap is split in L thenOp/p = F, & F,. We let

e1, eo be the corresponding orthogonal idempotents. We abuse notation
and writeej, e5 also for the idempotents coming from the decomposition
Or® W(Fp) = W(Fp) ® W(Fp)-

Proposition 4.1. The complement of the ordinary locusg, is an effective
divisor whose support is a complete curve. Moreover:

1. If pisinertin L, thenV is equal to the supersingular locus

2. If p splits in L thensS is zero dimensional and consists of superspecial
points only.

3. If p is ramified inL, theny = S.

Proof. It is easy to see that we always have supersingular points therefore
V is not empty. Since it is given locally by the vanishing of the determinant
of the Hasse-Witt matrix it is an effective divisor.
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One can define th¢ number also as
f(A) = dim(Hom(u,, A)).

Since the cusps stand for totally degenerating abelian surfaces (i.e., tori) the
fact that) is complete follows.

We remark that giver{A, A\, ) we can viewA|p|g as a module over
Or,/p- Therefore the case gfinert follows immediately.

Assume thap splits in L and f(A) = 0. Then A[p] is a local-local
group scheme and furthermargyp| is a direct suntG; @ G, induced from
the idempotents,, e5. Hencex(A) = 2 andA is superspecial. Finally, since
the natural mapUt — A (see 2.3) is quasi-finite and the superspecial locus
in A is zero dimensional the supersingular locu®’iis zero-dimensional.

Consider now the case whepes ramified inL. Again Oy, /p acts on
Alpler. Sincev/D generates the maximal ideal 6%, /p (p > 2) the kernel
of v/D in its action onA[p], sayK, is of orderp?. It is thus enough to show
that A[p]/K = K and indeed/D gives the isomorphism.e.d.

The study of the structure of the supersingular locus wheninert or
ramified in L will be carried out in Sect. 6 below. We now treat the case
whenp splits in L.

Definition 3. Letp be split in L. We denote by the following algebra of
Hecke correspondences ar. By definition it is generated by the following
correspondences: Létbe a prime. DefineM,, (¢) to be the moduli space
of quadruplesg A, A, ¢, H) where(A, A, ) is a principally polarized abelian
scheme with real multiplication b9, and H C A[/¢] is a maximal isotropic
and Oy -invariant subgroup. We have two projections

pi: Ma, (€) — May,
given by
pL((A, A0, H)) = (A, A1),
and
p2((A, N 0, H)) = (A/H, m )\, i),

wherer : A — A/H is the projection. Thé-th Hecke correspondence is
by definitionpa. o pj.

We define the Galois-Hecke algeb@d{, to be the algebra of correspon-
dences generated By and the involution

(A, N 0) = (A A\ Loo),

whereo : L — L is the non-trivial involution.
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Remark. Note that also fof = p the maps
pi: Mg, (£) — Mg,

are quasi-finite. In particular the action of the Hecke correspondences is well
defined on points. This fails whenis not split inL (see [St]).

Theorem 4.2. Assume thap splits in L. Every singular point ol is an
ordinary singularity with two branches. The singular points are exactly the
superspecial points.

The components of can be divided into two sets such that the intersec-
tion graph ofV is bipartite. In particular, every component is smooth and
V is reducible.

Proof. Letx/k € V be a geometric point such thatA,) = 1. Consider
the action of the Hecke operators of ordér (¢, p) = 1, onz. The orbit is
infinite (see [Ch]). Moreover, it is a singular point so is every point in the
orbit. This is impossible. Henceis a smooth point.

Now letz be a point withf (A, ) = 0 hencer is superspecial. The ring

OL ® W(k) = Rl 7] R27

where R; = W (k), acts on thep-divisible group of A,, say G, which
decomposes accordingly as

G =G @ Ge.

Itis crucial to note that this decomposition®s -invariant and the principal
guasi-polarization decomposes as well. By Serre-Tate, the local deforma-
tions of A, as a principally polarized abelian variety with real multiplication
are the same as those{with the induced principal quasi-polarization and
the O ® W (k) structure). The deformations ¢ftogether with the extra
structure are just the products of the deformation§.,0and G- — the en-
domorphisms and poalrizations now being automatic. The deformations of
the G, are just the deformations of a supersingular elliptic curve.

We see then that the local structureldfat a superspecial geometric
point is an ordinary singularity with two branches given by taking the con-
stant deformation of/; and the universal deformation 6§ and the othe r
component is obtained by exchanging the role§candgs.

We assign an invariant to the component¥afs follows: Thep-torsion
of the generic point of a component has &ale quotient isomorphic to
7./ pZ (after base change). Therefore, eitheor e2 acts as zero on it. We
say that the component is of typé e; acts as zero on thetale quotient of
thep-torsion of the generic (hence any) point. Note that the argument above
shows that at a superspecial point one of the branches is ofitapd the
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other is of type2. Therefore, components of the same type do not intersect,
every component is smooth and the intersection graph is bipagt él.

The techniques of the proof of the next theorem can be applied to similar
situation in higher dimensional Hilbert modular varieties. It is of interest
also because of the methods of [Ch].

Theorem 4.3. Assume thap is splitin L.

1. The action ofjH is transitive on the superspecial points and on the
components of.

2. TheGH orbit of every non-superspecial point Bfis dense in.

Proof. We first prove that the action df on the superpsecial points is
transitive (this holds in much more general situations):

Let (A, \,4), (B, u, ) be two superspecial points. It is known thae=
B. Thus by the Skolem-Noether theorem, after conjugation we may assume
A = B,i = j and we are reduced to proving that for every principal
polarization\ a nd L-linear polarization\’, (A, \,i) and (A, X, ) are in
the same orbit.

Let W, : NSY(A) — End’(A), @\(y) = A~ 1y. Itis known thatw,
identifiesNS(A) with the symmetric totally positive elementsiofid’ (A)
w.r.t. the Rosati involution given by (denotedz — Z). An element of
NS%(A)is L-linear precisely when its image lands/= Centppqo4y(L).

Itis known thatB is a quaternion algebra ovérwhich is everywhere ram-
ified at infinity (see [Ch]). In particular, the Rosati involution induced by
A is the unique positive involution o and is equal to the standard in-
volution. Hence the symmetric elements Bfare justL. It follows that

the L-linear rational polarizations are identified with the totally positive
elements ofl.. It is easy to check that the pull-back action of an endomor-
phismb € B on anL-linear polarization is given vi&, as multiplica-
tion by bb. Strong approximation tells us that we can find stislatisfying
bb&, (\) = ¥, (\). Multiplying b by a suitable natural numberwe may
assume thatt*\' = mA,m € N, b € End(A).

We next show that the action &f preserves the types:

This is clear for operators of degree primeptdt is easy to check that
if f(A) = 1 then geometricallyA[p] = E[p|] & pp & Z/pZ, whereE is
a supersingular elliptic curve, andoy, ® 1, o, ® Z/pZ, are the only
maximal isotropia0 . -invariant subgroups. Note that Kills 1, iff it kills
Z/pZ. Since division by such a maximal isotropic subgroup induces an
O¢-linear isomorphism either on thetale-local or locaktale part of the
p-torsion we are done.
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Now takez with f(A,) = 1. From [Ch] we know that th&H orbit
of x is infinite and hence its closurg, contains a componeidt; of type
1 andC,, of type 2 (Galois involution exchanges the types). éte any
component ol’, thenC' contains a superspecial point (“ Raynaud’s trick”).
Similarly C; contains a superspecial point Assume w.l.0.g. that’ is of
type 1. Using the previous observations we may find an operater H
such that € T'(¢;). It follows that the typd component through, i.e.,C,
isinT(Cy). SinceZ is closed undet we haveC' € Z. Note also that we
have shown thaf?# acts transitively on the componentslfqg.e.d.

5. Components of the supersingular locus

Following the method of [KO1] and their notation (as much as possible), we
construct and count the components of the supersingular®eus,, , in

the Hilbert modular surfacét = Mg, ,, for L = @(\/T)), D > 0 square
free,p > 2, andp inert or ramified inL. The reader should consult [KO1]
for more details.

For an abelian variety” we let Aut,(Y') denote the automorphisms bf

as a variety (i.e. not necessarily preserving the zero point). We denote by

v Auty (V) — Aut(Y),

the canonical projection. We denote/bthe number of isomorphism classes
of supersingular elliptic curves ovet,.

5.1. Construction of families

Let Ey,- - - , B be representatives for the isomorphism classes of supersin-
gular elliptic curves ovek — an algebraically closed field of characteristic
p. Letn > 3 be aninteger. Letl = A, ,, be the moduli space of principally
polarized abelian surfaces in characterigtic

Lett be adjusted td be as in Theorem 3.2 in any of the cases whése
arbitrary. LetA = E,, x E,,/H; whereH, is the subgroup corresponding
tot. Let

T B, X E, — A,

be the canonical projection, theénE,, + E,) = N is a reducible divisor

of degreep with ker(¢n) = o, @ o, and7*(¢on) = pu(En, Ey) (see
Subsection 2.2). Then, as in Subsection 2.3, we get frdmiV) a family

q : X — P! of principally polarized supersingular abelian surfaces and a
natural mapr : A x P! — X. Since for every: € P! the modulelV, =
7*rn*HL, (X.) is stable undek, we see thak descends to an endomorphism
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hx of the abelian schen@. Moreover, following [KO1] p.114 one endows

X with a leveln structure. The familyX is obviously non-isotrivial and

therefore we get a componeatof the supersingular locus in M.
Conversely, leE be a component &. Let{ be a generic point o and

let (Y, A\, ¢ : O — End(Y), «) be a quadruple parameterized fiyThe

image of= under? : M — A is a component of the supersingular locus.

Therefore, there exists ([KO1], Theorem 2.1) a faniily— P! giving rise

to ¥ (=) andm, n, t such that as before we have

E,, x B, x P' >4 4« pl T, %,

Let z € X such thatx projects to¥(§). Then(Y,\,c : Op —
End(Y), a) gives us a moduléV, = #*m*H}, (Xy(e) and an endomor-
phismh preservingV, and at adjusted ta. By the generality of, we can
get in this way infinitely many such distinét; with the sameh andt (the
number ofh’s andt’s is finite) and hence, using Theorem 3.2, we deduce
thatp is not split inL. Obviously the componerii’ of M constructed from
E.,, E,, h andt adjusted tah intersects=' at the point. This implies that
=’ is equal ta=. We proved the following

Theorem 5.1. If p is inert or ramified inL then every component 6§, ,,
is a rational curve and can be parameterized as in Theorem 3R2e.d.

One says that two families;; : X; — P! | m : ¥ — P!, as con-
structed above, are isomorphic, if there exists an isomorphfisni! —

P!, such that the two abelian schemes d¥grx; andXs, xp: P!, are iso-
morphic with the polarization, endomorphism structure and level structure.
Following [KO1] we get

Theorem 1.([KO1], Theorem 2.7) Assume thais inert or ramified inL.
The number?, of irreducible components &, ,, is equal to the number
of isomorphism classes of familié&s — P! with relative polarization,
endomorphism and level structure as constructed above.

5.2. Standard data

Let F be a fixed supersingular elliptic curve oveand putX = F x E.
For everym, n we choose and fix an isomorphism

Ko B X By — X.

Fix, once and for all, a very good directienof X. Then for every very
good directiorb of (E,, x Ep, Er, + E;,) we fix an automorphism®,. )
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such that@mm,n(b)(nmvn(b)) = a. PutO,np = Oy, ) © kmpn — an
isomorphismFE,,, x E,, — X taking the very good directiohto a. Let

Mim,n) = {h - <§ —(ei c)) :

h € End(E,, xEn),ceZ,02+ec+65:A}.

For everyh € M (m,n) and every a very good direction adjusted o we
consider quadruples(E,, x E,,E, + E,,h,t). We say that
(Em X En, Ey + Ep, hyt) is isomorphic to(E,, x Ey,, E,, + Ep, B t)

if there exists &@ € Aut(FE,, x E,) such that),h 4f 9ho-1 = i’ and

0.t = t' whered,t is the direction corresponding to the compositiont.
One easily checks that

(Ep X Ep, Epy + Ep, ht) & (B X Epy Eny + Ep, B ),
if and only if there exists € Aut(X), such that under
(X7 8’r71,’r1,1,‘(E1771 + En)y Qm,n,t*(h)y CL)
= (X7 Qm,n,t/ (Em + En)a @m,n,t’*(h/)7 CL).

We consider now the resulting equivalence class€®%f ,, «(E,, + Ey,),
Om.ntx(h)). Two such couples are equivalent if and only if there exists a
7 € Aut(X) such that-(a) = a taking one into the other.

Definition 4. For every such equivalence class choosef@esentativd_et
7: X — A= X/H, be the canonical map. Then

(ﬁ(am,n,t(Em + En))y Tx (@m,n,t* (h)))
will be called astandard datd_etD(m, n) be the set of all representatives
obtained from the possible € M (m,n) andt’s adjusted toh. Let
D(m, TL) = {(ﬁ'em,n,t (Em + En), W*Qm,n,t*(h» :
(@m,n,t (Em + En)a @m,n,t*(h)) S ﬁ(m, n)},

D= D(m,n), D= U D(m,n).

1<m<n<h 1<m<n<h

Lemma 5.2. 1. The map® — D is a bijection.

2. Letr € Aut,(4) andC,C" € D.If 7(C) = C" thenC = C’ (by
definition the action of on an endomorphism is given by the action Of)
on that endomorphism).
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Proof. We first note that the map: X — A has the following properties:

a Itinduces an injective mapiv(X) — Div(A).

b. Itinduces on any,,, ,, ,(E;), ¢ = m, n the Frobenius morphism.
Property aand the injectivity of the map., : End(X) — End(A) give
part 1 of the lemma.

LetC = fr@m,n,b(Em + E,, h), C' = ﬁ@m’,n’,b’(Em’ + E,, h/) and
let 7 € Aut,(A). Assume that-(C') = C’. Then property bmplies that
m = m’ andn = n/. Now sincer (70, np(Em) N 7O np(En)) =
TOmnb(Em) N 7Om pnp(En) = T(Ker(Fr : X — X)) we get that
T = w7 for somer’ € Aut,(X) and by property a’(O, np(Em +
En)) = Oy (Em+E,). Sincer’ (0) = 7/ (O (Em)Omns(En)) =
Omnp (Em) N Oppy(En) = 0, we must haver’ € Aut(X). It then
follows thatC = C’ by the definition of standard datge.d.

Following [KO1] one establishes the following

Lemma 2. ([KO1] Lemma 3.7) LeC’ = (E' + E”,g) whereE',E" €
Div(A) are two elliptic curves whose subf + E” is a symmetric divisor
such thater (¢ gy pr) = o, ® o, and whergy € End®(A) descends to an
endomorphism of every quotieAt «,. Assume further thaj satisfies the
equationz? +ex — A = 0 (and hence defines an embeddings End’(A))
and that the polarization defined by’ + E” is L — linear. Then there
exists a unique standard daté € D and an elemem € Aut,(A) such
thatd(C) = C".

Using the abelian surfacd and a standard dat@d € D, we obtain, as
above, a family; : X — P! of principally polarized supersingular abelian
surfaces with leveh structure and an embeddiddy, < End(X/P!) with

a relative principal effective divisoH C X. We use the same notation for
the "defining map’r : A x P! — X.

By [MB] the relative divisorr—! (H ) has exactlyp—5 degenerate fibers,
each consists of two supersingular elliptic curves whose scheme-theoretic
intersection is isomorphic t@, and all are linearly equivalent to each other.
Lets fix the following notation:

B(X,H) = {n""(H), : 7 '(H), is reducible,z € P'}
D(B(X,H))={C eD:3C" € B(X,H),0 € Aut,(A) s.t. (C) = C'}
(i.e.,if C = (E' + E", g) whereg € End’(A) then

C' = (0(E") + 6(E"),7(0)gv(6) 1)),

I'(B(X%,H)) = {0 € Aut,(A) :  permutes the elements of B(X, H)} .
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To everyC' € D(B(X, H)) we can associate an orbit 61{3(X, H)) in its
action onB(X, H). Namely, all thos&”’ € B(X, H) for which there exists
af € Aut,(A) such that(C) = C'. The fact that these form a single orbit
underI'(B(%, H)) follows from Lemma 2 and the following theorem (the
proof follows [KO1]):

Theorem 3.([KO1], Theorem 4.1) The group of automorphisms of the family
q : X — P! which preserves the relative polarization on it, is isomorphic
to the groupl"(B(X, H)).

Convention We will encounter many automorphism grou@scontaining
+1. We will use the notatiolRG to denote the quotiert¥/ + 1.
Let C € D(B(%X, H)) then we putRI’(B(X, H))c to be the stabilizer in
RI'(B(X, H)) of any element in the orbit associated @ This is well
defined only up to conjugacy butl = (O, » +(Em + En), Omnt«(h))
then (using the same arguments as in Lemma 5.2) one verifies that this
subgroup is isomorphic tR A(m, n, h,t) (defined below).

We have the following mass formula

o |IRC(B(X, H))|
(19) e cw%x,m) [RE(B(X, H))c|

5.3. The number of components

Let Xy, ..., X, be the isomorphism classes of families a@égiving rise to
the component&, ..., =, of the supersingular locus i, ;. We have
amap

A:D— {1, ceny Ql}

Let G(n) be the galois group of the coveringty, , — Mgy, 1. We
denote its order by,,. Leto; (x) be the sum of divisors af for x positive,
and zero otherwise. Let, ; () be the sum of divisors which are primezio
for z positive, and zero otherwise.

Let A(m,n, h,t) (resp.A(m,n), resp.A(m)) be the group of automor-
phisms of £, x E, (resp.E,, x E,, resp. E,,) preserving the natural
product polarizatiok andt (resp.the natural product polarizatioresp.no
condition).

Theorem 5.3. LetC), equal 1 forp inert and1/2 for p ramified. Letr > 3.
Let (2, be the number of components®yf .. Then

Q0 = Cydy CL(—1).
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Proof. As in [KO1], Theorem 4.2, one can prove, using Theorem 3, that

RI'(B(X;)) = G(n)sz,.

7

For convenience we writ@ = Q(n,p) = ng5.
We have

(o2
Qn = Z Jn/|RT(B(%))]

1
- Z JRIGE))

=1 zeD(B
1
= Q2RI B )

=@ 2. 2 TRI(B xA SN

1<m<n<hA zeD(m,n)

=« Z Z |RAmnhx,tm)\’

1<m<n<h zeD(m,n)

wherex is constructed from the datd’,,, x E,, E,, + En, hy, ty).

We first consider the case pfinertin D.

DefineM (m,n)* = {(h,t)|h € M(m,n) ,t adjusted to h} (see Sub-
section 5.2 for the definition of/(m,n)). Using the transpose we have
IM(n,m)| = |[M(m,n)| and|M (n,m)|"™ = |M(m,n)|T. Furthermore,
by Theorem 3.2, Case 1.3.2, the mefgm,n)t — M(m,n)is 2:1.

Let

Let B(k)m» denote thenn entry of thek’th Brandt matrix. For basic prop-
erties of the Brandt matrices we refer the reader to [Gr].

The groupRA(m,n) acts onM (m,n)* and the class equation for that
action reads

|[RA(m,n)|

M = '
| (’I’L,m) | Z |RA(m,n,hmvtIB)‘

z€D(m,n)
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Hence, we obtain

2|M (m,n)| | M (m,n)|w(m,n)
=0 Z |RA(m Z |[RA(m,n)| '
1<m<n<h

m,n=1

Let A(c, €) = Max(A — % — ec, 0). We calculate the last expression in the
following manner

| M (n, m)|w(m,n)

|[RA(m,n)|
B t {0 € Hom(E,,, E,) : deg(d) = A(c,€)}
=22 [A(m)]| TA(m)
B C By [H = Alc,0), En/H=E,)
2% A(m))
_ 22 m,n

cEL

(the last equality by properties of the Brandt matrices). We now have

2 =205 A

cEZ m n

In 1
“25E S enide)
In
= 50 2_0v1(Ale€)

cEZ

I
= @Zal(A c, €

CcEZL

The second equality follows again from properties of the Brandt matrices
and the third equality from Eichler’'s mass formula. The last equality follows
from our assumption thatis inert in L. Indeed ifp| A(c, €) then a case by
case study shows thal is a squarenod p.

Now use the Siegel-Zagier formula ([Za] p. 69) for(—1) and the
observation that writingl;, = n? + 4ac is the same as writindﬂl—‘1 =
m?+m+acif D=1 (mod 4),n = 2m + 1 and as‘% = m? + ac if
D =2,3 (mod 4),n = 2m . We get

O = Jn CL(—1).
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We now consider the cagéD.
Define

M(m,n)q = {h € M(m,n) | deg(68) = d} :

andM (m,n);; as the inverse image 6 (m, n)q in M(n,m)". By Theo-
rem 3.2, Cases 1.2.1 and 1.3.1, we have

ey [ D Gl
M (m,n) | {|M(m,n)d| (p,d) =1

From the definition we have
’M(m7 TL)| = Z ‘M(m7 n)A(c,e) |
cEZ
We also define

D(m,n)y = {x € D(m,n) | deg(8,0,) = d} :

wherez is constructed frongm, n, h;, t,) andh, = b 0z .One
(5 —(6 + Cz)

easily verifies thak A(m, n) acts onM (m, n) " and the corresponding class
equation is
RA(m,n)|
M o= | ’ :
| (m, n)d | Z |RA(m, n, hz, ta:)’

z€D(m,n)q

Using this equation we obtain as before

e 3 M

_ |M (n, m)*w(m,n)
=Q ) 2|RA(m,n)|

Vi ey [0, )

_QZZ 2]RA m,n)|

m,n ceZ

B B(A(e, €))mn
‘szm< 2 Taim)

{c:ptA(c,e)}

0+ 1)B(A®C, €))mn
’ {c:p;c,e)} [A(m)] )




On the non ordinary locus in Hilbert-Blumenthal surfaces 497

_ op1(A(c, )
‘@—5%( > i

{c:ptA(ce)}
(p+ D)oy (Ale, €))
oy A(m)]
{c:p|A(c,e)}

I
= 120( Z O'p,]_(A(C, 6))
{eptAlce)}

+ ) (p+1)ap,1(A(c,e)>>.
{ep|A(cye)}

We note that sinc® is square free it is easy to verify from equation (5)
that if p| A(c, €) thenp||A(c, €). Therefore , for suck\(c, €)

a1(A(e,€)) = a1(p)ar(A(e, €)/p) = (p+ Dor(A(e, €)/p),

and
0p71(A(C, 6)) = Ul(A(Cv 6)/]))'
Hence , for such(c; ¢)
(p+1)op1(A(c, €)) = a1(A(c; €)).

The result now follows from the Siegel-Zagier formula as beforg.e.d.

6. Local structure of the supersingular locus

In this section we study the supersingular locusgfamert or ramified. We
begin by giving a short proof of the structure theorem of Stamm (see [St])
for the inert case.

6.1. The inert case

Assumep is inertin L.

Theorem 6.1. The set of singular points &f is exactly the set of superspe-
cial points. Every singularity is ordinary with two branches and corresponds
to the intersection of different components.

To every component one can assign an invariantlir2} — called the
type — such that the intersection graph®fs bipartite. Each component
has exactlyp? + 1 intersection points with other components.
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Proof. Write Emb(Op,, W(F,)) = {o1,02}. We say that a supersingular
point z with a(A,) = 1is of typei if O acts onD(a(A,)) via o;. The

type is locally constant on the set of such points, hence we may speak of the
type of a component.

Now let X/k be a supersingular geometric point ahdhe covariant
Dieudonre module of thep-divisible group ofA,. We use the theory of
displays as in [N],[NO](see also [GO]) to study equi-characteristic defor-
mations.

We have the decomposition

O @W(k)=W(k)d W(k),
which induces a decompaosition
D =D; & Ds.

Note thatD; is a free module of degree 2 ov#f (k). The following prop-
erties hOldF(Dl) C Djtq, dlmk(DZ+1/F(Dz)) =1, V(Dz—i-l) C D,
dimg(D; /V (Dj41)) = 1. Furthermore, the pairin® x D — W (k) de-
fined by the given principal polarization oh, induces a perfect symplectic
pairing on eacti;.

Choose a symplectid/ (k) basisz;, y; for D; such thaty; € V(D;11).
Note that the Dieudor@émodule is then displayed by

0 fiz 0 fia
(A B)_ for 0 fa3 0
C D) |0 fa 0 fu
far 0 fa3 O

Using the deformation theory in loc.cit., one checks that the universal equi
characteristic local deformation ring 0#,, \;, t)/k is Spec(k[[t1, t2]])

and the Dieudonmmodule of thep-divisible group of the universal defor-
mation is displayed by

A+TC B+TD
C D ’

whereT = diag(Ty,T»), T; the Teichmuller lift of¢;. In particular the
determinant of the Hasse-Witt matri®,+ 7'C, is

—(fi2 + t1f32)(for +tafu) (mod p).

Assume that(A,) = 1 and w.l.o.g that: is of type 1, hence|fi2,p [fo1.
Note thatp /|f41 becuase the rank of Frobenius mpds 2. Thus, the
determinant of the Hasse-Witt matrix is

—t1f32(fo1 +t2fa1) (mod p).
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Since(fo1 + taf41) is invertible ink[[t1, t2]], the closed subscheme where
the determinant vanishes is given By) and in particular is smooth. If
a(A;) = 2, then the determinant is

—titafaafar  (mod p),

and the supersingular locus is given locally(byts). It is thus an ordinary
singularity with two branches of different type, hence the graph is bipartite
and everything follows. g.e.d.

6.2. The ramified case

Assume thap is ramified inL. We study the local deformation theory using
[GK] and [Ko].

Theorem 6.2. For a geometric point: of M the following are equivalent:

() Itis a singular point of the surface;

(ii) The action ofO, /p on H%(£2}; ) is not free;

(iii) It is a singular point of the supersingular locus.

When this holds is in fact superspecial, the tangent cone of the surface
at = is isomorphic toz2 = xy and the singularity ofS at = is ordinary
with p + 1 branches. On each component there are- 1 values of its
parameterization such that the corresponding point satisfies the above.

Proof. Let x be an ordinary point. We first show thatis smooth and
HO(Q}LD) is free overOr/p hence we may assumeis supersingular.
Indeed, by the density of the Hecke orbit .of x must be smooth (see
proof of Theorem 4.2). IH?(2} ) is not free then it is killed by/D. But

HO(£2} ) = D(A.[plie) thereforey/D kills A, [pler as well. Hencey|v/D.
A contradiction.

Assumez € S. We assume that = 0, the casee = 1 is similar.
As in Subsection 2.4, Il = Spany, () {pH,.(X),v,w} be the first
crystalline cohomology of an abelian variety which is obtained from the
data(X = Ey x Ea, u(E1, Es2), h,t,r), embedded i}, (X).

We first treat components arising from Case (1.3.1) of Theorem 3.2.
We assume that we have chosen a basisFer, ez, Fey) for HY, (X)
which is distinguished and with respect to whicts given as in Case (1.3.1)

of Theorem 3.2, Formula 9.

We also haveBg, (e;, Fe;) = 6; . One may further assume thiat = 1
and hencés = d (mod p).
Assumer # 0 (equivalentlyay = 1).

In this case one may verify that the vectors

{pe1,pFe1,—T°Fej + Fey,—Te; + a1 Fe; + ey}
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form a basis fol¥/pIV. Let us denote these vectors by, ..., 4 respec-
tively.

Reducing modpTV, one finds the following matrix for the action of
Frobenius oV /pW with respect to the;

00 0 —af
1 0 a 0
(16) Flhi=10 o 01 1
00 0 0

We note thater F'|yy/,1r = Spang (51, 52), wherepy = y2 , B2 =

a‘fl’yl — ~3. We want to completg;, 32 to a symplectic basis fdi//pIV.
First we compute the matrix of the alternating form with respect tojthe
be

0 0 =T° a1
0 0 0 T

(17) To 0 0 _(TO'+1 4 d)/p
—a; —T (T°T'4d)/p 0

We note that in our case settifig= —c — which lifts equation (12) of Case
(1.3) of Theorem 3.2 — we obta{i®*! + d)/p = D/p and we let

s=D/p, Ez—(arl/p—i—s), k=ay/t.

We then compute that

—/ 1 -1 al

prangtl! + e Ba = 7N + prsgE

B3 =

completes,, #» to a symplectic basis .
The matrix ofh with respect to they; is given by

0 ¢ 0 &k
poo_ |00 —k 0
Br=1o0 o o ol
0 0 ¢ O
and Frobenius is given by
0 0 l/d -1/t
ool 0 BY |00 -1/t 0
wr—\o H) |0 O 0 0
00 a—a” 0

We now look at deformations. Sind& = H},.(A), we haveW/pW =
Hj,(A).Byourchoice of basil (2} ) = KerF |y /,w = Spany, (81, 82).
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A deformationA(U) of the abelian varietyl over the ring[6]/(62) is given
by a sub +[6]/(5%)- module of H},(A) ® k[8]/(6?) extendingH(£2},),
viz., by a basis of the form

1 0

0 1
upp |7 {u2 |’
Uzl U2

which will be denoteds; (U), 52(U). Herew;; € (§) and we putu;; =
0b;j,bi; € k. By [DP], the deformations as a principally polarized abelian
varieties are given by the conditian, = us; and among them, the deforma-
tions lying on our Hilbert-Blumenthal surface, are given by the submodules
invariant under: (or h ® 1 to be exact).

Writing the equations

hBi(U) = zif1(U) + yi52(U),
we obtain
(18) r1 = kug, y1 = —kuiy , x2 =L+ kugg, y2 = —kua,
and the condition
ku%Q — kuiiuag — fugp = 0.
Hence, the points which satisfy
(=0,
or, equivalently,
att = —s,

are precisely the supersingular points at which the surface is singular. Note
that sinces € F), all the solutions:; to the equation lie irf,2, hence the
points are superspecial. At nonsingular points we obtain

(19) ujl = 0.
Consider the matrix” such that
oY =UB.

Using the computation of Frobenius and equation (19) we obtain

v — —b1o/t 0
- fblg/d—bgg/t —blg/t



502 E. Bachmat, E.Z. Goren

(here the;; are not the entries db but, defined by.;; = db;;). By a simple
calculation,

YY(p):0<:>b12:0.

Hence, at these nonsingular points (of the surface), the supersingular locus
is nonsingular as well.

Returning to the case of the singular points, by [DP], Theorem 3.3, the
deformations (of all orders) of the Hilbert-Blumenthal surfacé ate given

by the isotropich invariant deformations of7°(£2}). Computing to the
second order, using the; andy; computed in equation (18) above, we
obtain

(20) ’LL%Q = U11U22.

Note that by the symmetry of the matrix, equation (20) is equivalent to
the statement thdf has rank at most 1. Since the matfxis nonsingular
(we are at a superspecial point) all solution§t6(”) = 0 must come from
matriceslV which have rank at most 1. Hence we obtai# 1 branches as
in [Ko] Pg. 193.

Note that in the ramified ca®;, ® F,, is isomorphic tdF,,[6]/(6%) , and
under the isomorphis = /D is sent taj (note that we are assuming that
e = 0). Therefore, the action aP; on the cotangent space is free if the
action ofh is nonzero. The action df is given by

(b0),

and hence the action is not free precisely when
¢ =0.

That is, precisely at the singular points of the surface (as expected from the
discussion in [DP]).

The case, = 0istreated similarily and the computations (which are easier)
show that both the surface and the supersingular locus are smooth.

We now consider Case (1.2.1) of Theorem 3.2.
Assume first thatiz # 0.

We assume that the distinguished bases where chosen dohhatthe
same form as in Case (1.2.1) of Theorem 3.2, Formula 6, and that

91:1 N 92:m, TUJrl:—d/p.
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We choose the samg as before and hence the computation of Frobenius,
the alternating form and the symplectic basis remain intact if we replace
by d/p.

We then computé to be

Otp(al—i—a}/p—i—Qc/p) 0 -1
0 0 1 0
0 0 0 0
0 0 (a1 + a\’” + 2¢/p) 0

Settingl = t?(a;+a'/P+2¢/p) andk = 1 we notice that we obtain precisely

the situation of Case (1.3.1), which we have analyzed above. Hence, the
surface is singular at the points whére- 0. Note that all the solutions,; to

the equation are i,,- and hence the points are superspecial. The singularity
is of the form

b2y = b11bos,

as before. Following the argument presented in Case (1.3.1) we pbtdin
branches of the supersingular locus at these points.

Finally letas = 0. We choose our basis as follows:

1
per, pe2, Fela gF627

where{e;, Fey,es, Fes} is a distinguished basis. One may calculate that
is given by

0 0 0 1
0 0 -1 0
00 0 O
00 0 O

Hence, the surface and locus singularities are as before. We also note that
the point corresponding @, = 0 under the parameterization arising from

(X, u, h,t) is independent of (it is the image under Frobenius X, ) ).

One may then easily verify by calculating the branches directly in terms of

t that differentt’s give rise to different brancheg.e.d.

G. Pappas has informed us that the structure of the tangent cone was sketched
in a letter of his to Deligne.

Using Theorems 5.3, 6.1 and 6.2, we get
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Corollary 6.3. Letn > 3 andp be inert or ramified inL. The number of
singular points ofS;, ,, is

Dy[May pn s May 11CL(=1),
whereD, = (p> + 1)/2if pisinertandD, = 1/2 if p is ramified.

7. Appendix

Consider a slightly different moduli problem:

Let R,,, be the order of conducter in O, and consider triple§A, A, ¢)
and aleveh structure, whereA, \) is a principally polarized abelian surface
and. : R,, — End(A)*. Such an embedding is determined by the image
of mA, which after pullback toX, as in Sect. 3.2, has the form

1<‘} p )
p\B —(mpe+ta))’

wherea € Z, (3 € Hom(Es, E1), a® + mpe +b = m?p?A and
deg(8) = b.

The resulting moduli space is an algebraic stack (non-redugeehif;
which we denote byM,,,4, ,,. We leave details about the construction and
structure of these stacks for a future paper.

The following theorem is proved using the methods of Theorem 3.2.

Theorem 7.1. The following sets of dat@gX, x, i, t, r) correspond to points
on the Hilbert-Blumenthal surface of conductor m:
1) If (m,p) = 1, then we obtain the same results as in Theorem 3.2, where
we replace: by me.
2) If (m,p) = p, then:
2.A) If (p,b) = 1, we get the same sets as in Case 2 of Theorem 3.2. In
particular, we obtain no new components.
2.B) If ord,(b) = 2, we get a single very good direction, which leads to a
component. Itis given by= —c — me/2.
2.C) Iford,(b) > 4, all sets of data lead to components.

Using this theorem and the methods of Sect. 5.3, one can count the num-
ber of components of the supersingular locus (with reduced structure) of

Mina, »- We now state the results fprinertin L.
Following [CO0], let

er1(n) = 3 o (”‘4’“2)

0<n—k?=0 (mod 4)

Leta, = %cl (n) and(r, ,, be the zeta function of the ord&,, (see [Co],
Sect. 3). Then, fofm, p) = 1, we have:
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Theorem 7.2. The number of components of the supersingular locus in
MmdL,n is

[MmdL,n : MmdL,l]a(deL)v

and the number of components for whigl, is optimally embedded in the
endomorphism ring of the generic point is

[MmdL,n : MmdL,l]mSCL,m(_l)'

We also remark that for, = p we obtain that the number of components

is

1/2[MmdL,n : MmdL,l} (a(deL) _pQG(dL))

(a(dp) = (r(—1)). Finally, we note that the, (n)’s form the Fourier coef-
ficients of a weight 5/2 modular form af(4) (see [Co], Sect. 4).
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