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1. Introduction

Let L = Q(
√

D) (D a square free integer) be a totally real quadratic field,
and letMdL,n be the moduli space, in characteristicp ≥ 3, parameterizing
principally polarized abelian surfaces(A, λ), in characteristicp, together
with a symplectic leveln ≥ 3 structure and an embedding of ringsι :
OL → End(A)λ (hereEnd(A)λ are the endomorphisms fixed by the Rosati
involution associated toλ). We refer the reader to [DP], [Ra] and [vG] for
further details.

Let V = VdL,n be the complement of the ordinary locus inM and let
S = SdL,n be the supersingular locus. This paper is aboutV. The analysis
and the results are divided according to the decomposition ofp in L. We
establish the following results:

1. If p is inert or ramified inL thenV = S. Every component ofS is a
smooth rational curve and the number of components is

Cp[MdL,n :MdL,1]ζL(−1),

whereCp = 1 if p is inert andCp = 1/2 if p is ramified. For generalizations
to the case of moduli spaces obtained by considering the action of an order
of OL, see the appendix.

2. If p is inert or split inL then the singularities ofV are ordinary
with two branches and correspond to intersection points of the irreducible
components; the singular points being exactly the superspecial points (if p is
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split every supersingular point is superspecial). Furthermore, the intersection
graph ofV is bipartite.

3. If p is ramified inL then on each rational component there arep + 1
singular points (counted with multiplicity) which are all superspecial. The
singularity being ordinary withp+1 branches. These points are exactly the
points where the cotangent space of the corresponding abelian variety is not
free overOL/p and they are exactly the singular points ofM (the tangent
cone beingz2 = xy).

4. Whenp is split inL, we prove that the orbit of anyx ∈ V \ S under a
certain Hecke algebra is dense inV.

Whenp is inert the equalityV = S and the structure ofS as appears in
2. above were first determined by H.Stamm ([St]) . We present a different
proof of his results in Sect. 6.1. Whenp is ramified, 3. complements a result
of Deligne-Pappas ([DP]) in the case of surfaces.

Our approach to counting the number of components ofS is based on
the work of T. Katsura and F. Oort ([KO1]).

Acknowledgements.Both authors would like to thank G. van der Geer and F. Oort for
stimulating conversations. This work was prepared while the first author was at Brown
university . The second author was partially supported by a Rothschild fellowship and by
Harvard university. Special thanks are due to B.Gross.

2. Background

2.1.

We fix the following notation:p ≥ 3 is a rational prime andk is an alge-
braically closed field of characteristicp. Let E1, E2 denote supersingular
elliptic curves (abbreviated:ssg) over k andX = E1 × E2. We letY, Z
denote general abelian varieties overk andA will usually denote a super-
singular abelian surface overk.

The a-number andf -number ofY/F (F a characteristicp field) are
defined as follows:

a(Y ) = dim Hom(αp, Y ) ; pf(Y ) = |Y [p](F)|.
We denote byFr : Y → Y (p) the Frobenius morphism and byV :

Y (p) → Y the Verschiebung morphism. Forf : Z → Y we let f t :
Y t → Zt denote the dual morphism andf∗ : End0(Y ) → End0(Z) the
induced homomorphism, where as usualEnd0(Y ) = End(Y )⊗Q. Similar
conventions hold for groupsG.

Given suchG, we denote its contravariant Dieudonné module over
W (k)[F, V ] byD(G) (see [Dm]). For example, it is known thatD(Ei[p])
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(respectivelyH1
Cr(Ei)) has a basis overk (resp.W (k)) of the form(ei, F ei)

whereF 2ei = −pei, V ei = −Fei and such a basis is unique up to substitu-
tionsei 7→ αei + βFei whereα ∈ F×

p2 , β ∈ Fp2 (resp.α ∈W (Fp2)×, β ∈
W (Fp2)) . Such a basis will be called adistinguished basis.

2.2.
Let G = X[p] and let(e1, F e1, e2, F e2) be a distinguished basis forD(G).
Let µ = µ(E1, E2) be the product polarization onX. Thenµ induces a
perfect alternating pairingBµ : D(G) × D(G) → k, which is determined
by θi = Bµ(ei, F ei).

Let H ⊂ Ker(pµ) = X[p] be a subgroup of orderp, and letπH : X →
X/H be the natural projection. Such anH is automatically isotropic w.r.t the
Mumford pairing induced bypµ on X[p]. Thus, there exists a polarization
λH on X/H such thatπ∗

HλH = pµ. We would like to determine when is
Ker(λH) ∼= αp ⊕ αp.

Such anH is determined by a surjective homomorphism of Dieudonné
modulesΠH : D(X[p]) → k = D(αp). The following lemma is straight-
forward (see also [KO2], [MB]).

Lemma 2.1. In the notation above:
1. For every choice of distinguished basesθi ∈ Fp.
2. Ker(λH) ∼= αp ⊕ αp iff Ker(ΠH) = Spank {Fe1, F e2, e2 − te1},

wheretp+1 = −θ2/θ1. In particular t ∈ Fp2 .

One calls sucht very good directions.

2.3.
In [KO1] one finds a description of the supersingular locus inA = A2,1 –
the moduli space of principally polarized abelian surfaces in characteristic
p. We briefly recall the main idea.

Choose a principal polariztionν onX and letH ⊂ X[p] be a subgroup of
orderp such thatKer(λH) ∼= αp⊕αp. Then, everyH1 ⊂ X/H of orderp is
a maximal isotropic subgroup ofKer(λH) and thus(X/H)/H1 is naturally
principally polarized. Fixing an embeddingαp⊕αp → X/H, the subgroups
H1 are parameterized byP1. This gives a finite mapP1 → A. Furthermore,
it follows from [KO1] that every component of the supersingular locus in
A can be obtained in this way when one may just takeν’s of the form
µ(E1, E2).

2.4. Translation to submodules

To give a subgroupH1 of Ker(λH) is equivalent to giving a sub-Dieudonné
moduleU of D(X[p]) such thatKer(ΠH)⊥ $ U $ Ker(ΠH). Equiva-
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lently, using the canonical isomorphismH1
Cr(X)/pH1

Cr(X) ∼= D(X[p]),
this amounts to giving a sub-Dieudonné moduleW of H1

Cr(X) such that
W ⊃ pH1

Cr(X) andW/pH1
Cr(X) is a moduleU of this type. Note that

W = SpanW (k){pH1
Cr(X), v, w},(1)

v = Fe2 − T σFe1, w = −Ta2e1 + a1Fe1 + a2e2,

whereT ≡ t (mod p) and(a1 : a2) (mod p) ∈ P1(k). Note also thatW
depends only onT (mod p), (a1 : a2) (mod p). We will use the notation
XW (resp.(X, µ)W ) to denote the abelian variety (resp.with the princi-
pal polarization) associated toW . We will use the notationz to denotez
(mod p).

Lemma 2.2. XW
∼= X if and only if(a1 : a2) ∈ P1(Fp2).

Proof.Note thatV er is the zero map on the finite group scheme of orderp2

G = Ker(Fr : XW −→ X
(p)
W ), if and only if G ∼= αp ⊕ αp. This holds if

and only ifXW
∼= X. SinceD(G) ∼= W/FW , we are reduced to checking

the inclusionV W ⊆ FW .
SinceV pei = pV ei = −pFei = F (−pei), andV pFei = FpV ei, we

have

V pH1
Cr(X) ⊆ FpH1

Cr(X) ⊆ FW.

Also,

V v = pe2 − Tpe1 = F (−Fe2 + T σ−1
Fe1).

Hence, using Lemma 2.1, we get

V v + Fv = F ((T σ−1 − T σ)Fe1) ∈ FpH1
Cr(X) ⊆ FW.

Therefore,V W ⊆ FW , if and only if V w ∈ FW . Now,

V w = −T σ−1
aσ−1

2 V e1 + aσ−1

1 pe1 + aσ−1

2 V e2

= F (T σ−2
aσ−2

2 e1 − aσ−2

1 Fe1 − aσ−2

2 e2).

Thus,V w ∈ FW ⇐⇒ T σ−2
aσ−2

2 e1 − aσ−2

1 Fe1 − aσ−2

2 e2 ∈W . If a2 = 0
we can assumea1 = 1 and henceV w ∈ FW . Else, we may takea2 = 1
and sinceW ⊃ pH1

Cr(X) andT ∈ Fp2 , we find thatV w ∈ FW , if and
only if

T σ−2
aσ−2

2 e1 − aσ−2

1 Fe1 − aσ−2

2 e2 + w

= (a1 − a
1/p2

1 )Fe1 ∈W (mod p).

The claim now follows easily from (1).q.e.d.
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3. Existence of embeddings

3.1.

Let µ = µ(E1, E2) be the product polarization onX = E1 × E2, and let

Λ =

{√
D D ≡ 2, 3 (mod 4)

−1+
√

D
2 D ≡ 1 (mod 4)

, ε =

{
0 D ≡ 2, 3 (mod 4)
1 D ≡ 1 (mod 4)

,

∆ =

{
D D ≡ 2, 3 (mod 4)
D−1

4 D ≡ 1 (mod 4)
.

An embeddingL ↪→ End0(X)µ is determined by the image ofΛ, which is
a matrix of the form (

a β

β̂ −(ε + a)

)
,

wherea ∈ Q, β ∈ Hom(E2, E1)⊗Q, a2 + aε + ββ̂ = ∆.

Proposition 3.1. Let(A, λ) be a ssg principally polarized abelian surface.
Let E1, E2 be appropriate ssg elliptic curves andW a suitable submodule
of H1

Cr(X) such that(A, λ) ∼= (X, µ)W and letπW : X −→ A be the
corresponding homomorphism (see Sect. 2.4). Then, for a given embedding
L ↪→ End0(A),

Λ ∈ End(A)λ ⇐⇒ π∗
W (Λ) ∈ End0(X)µ and π∗

W (Λ)(W ) ⊆W.

In this case,

h = π∗
W (Λ) =

1
p

(
a β

β̂ −(pε + a)

)
,(2)

wherea ∈ Z, β ∈ Hom(E2, E1) and

a2 + apε + ββ̂ = ∆p2.(3)

Conversely, given an endomorphismh as above, we have

h ∈ π∗
W (End(A)λ)⇐⇒ h(W ) ⊂W,(4)

and in this caseh = π∗
W (Λ) for a suitable embeddingOL ↪→ End(A)λ.

Proof. This follows from general facts on abelian varieties. The main point
is to note first thatW = π∗

W (H1
Cr(XW )), and for abelian varietyY and

f ∈ End0(Y ) such thatpnf ∈ End(Y ), one hasf ∈ End(Y ) if and only
if f∗(H1

Cr(Y )) ⊆ H1
Cr(Y ). q.e.d.
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3.2. Embeddings

We will determine whenEnd(A)λ contains an element of the formΛ. By
Subsection 2.3 and Proposition 3.1, such elements correspond in a non
unique way to the following data:
A) X = E1 × E2 with the standard polarizationµ = µ(E1, E2).
B) An elementh of End0(X)µ as in Proposition 3.1. Note thath preserves

W = SpanW (k)(pH1
Cr(X), v, w)

wherev andw are as in Subsection 2.4 . Namely:

v = Fe2 − T σFe1, , w = −Ta2e1 + a1Fe1 + a2e2

C) A very good directiont (see Subsection 2.2)
D) A point r = a2/a1 ∈ P1.

The following theorem establishes which sets of data(X, µ, h, t, r) corre-
spond to points on the Hilbert-Blumenthal surface. We keep the notation
above and putb = ββ̂ in the notation of equation (2).

Theorem 3.2. The following sets of data(X, µ, h, t, r) correspond to points
on the Hilbert-Blumenthal surfaceMdL,1:

Case 1:p|b.
(1.1) All sets withp4|b, arbitrary t andr = 0.
(1.2.1) All sets withp3||b, −2a/p ≡ ε (mod p), t and r arbitrary. The

conditions imply thatp|D.
(1.2.2) All sets withp3||b, t arbitrary and r=0.
(1.3.1) All sets withp2||b, t = −c− ε/2 andr arbitrary. The conditions

imply thatp|D.
(1.3.2) All sets withp2||b, t 6∈ Fp,−(tp + t + ε)/2 = c and r arbitrary.

The conditions define two t’s given the rest of the data and imply that p is
inert in L.

(1.3.3) All sets withp2||b , t arbitrary and r=0. The conditions imply
thatp is either inert or ramified inL.

Case 2:
All sets with(p, b) = 1 , t = −a andr =∞.

Definition 1. In any of the above cases, givenE1, E2, a matrix h ∈
End0(E1 × E2) and a very good directiont, if r can be taken to be ar-
bitrary then we say thatt is adjustedto h.

Proof.We shall present a case by case analysis of suchh, which will prove the
theorem. The case indexing in the proof corresponds to that in the statement
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of the theorem. Subcases are given by additional indices. The computation
being lenghty we leave Case 2 and some other details to the reader.

Using the structure of thep` torsion of a supersingular elliptic curve and
equation (3), one verifies that eitherp|β or (p, b) = 1 (and similarly in
subcases below).

Case 1: p|β.
By equation (3),p|a, so we may write

h =
(

c δ

δ̂ −(ε + c)

)
,

with c = a/p andβ = pδ. We also have

c2 + εc + d = ∆,(5)

whered = δδ̂.

Case (1.1)p|δ.
Sinceh is integral it preservespH1

Cr(E1 × E2) and hence preservesW if
and only if it preservesU = W (mod p) (This applies to Cases 1.2 , 1.3 as
well). In this caseh (mod p) becomes

h =
(

c 0
0 −(ε + c)

)
,

and its action onH1
Cr(E1×E2) is given with respect to a pair of distinguished

basese1, F e1, e2, F e2 by


c 0 0 0
0 c 0 0
0 0 −(ε + c) 0
0 0 0 −(ε + c)


 .

The corresponding equations are

(0,−ctp, 0,−(ε + c))t = x1(0,−tp, 0, 1)t + y1(−ta2, a1, a2, 0)t,

and

(−cta2, ca1,−(ε + c)a2, 0)t = x2(0,−tp, 0, 1)t + y2(−ta2, a1, a2, 0)t.

Assumea2 6= 0 then the first equation impliesy1 = 0 andx1 = −(ε + c).
These in turn give the condition−ctp = (ε + c)tp. Sincetp 6= 0 we obtain
2c + ε ≡ 0 (mod p). If ε = 0, then we obtain from equation (5) that
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p2|D, which is a contradiction sinceD is square free. Ifε = 1, we obtain
4c2 + 4c + 1 = (2c + 1)2 ≡ D (mod p2), which again givesp2|D and
hence a contradiction.

Assuming therefore thata2 = 0 and fixinga1 = 1, we may verify that

x1 = −(ε + c), y1 = (−2c− ε)tp, x2 = 0, y2 = c,

provides a solution for any good directiont.

Case (1.2)d = pm and(m, p) = 1.
We claim that we can find a basis forH1

Cr(E1 × E2) in which h (mod p)
is written as

h =




c 0 0 0
0 c −m 0
0 0 −(ε + c) 0
1 0 0 −(ε + c)


 .(6)

To do this, first choose a distinguished basis(e1, F e1) for H1
Cr(E1). We

claim that there exists ane2 ∈ H1
Cr(E2) such thatFe2 = δ∗(e1). Indeed:

We first note that we can factorδ as

E2[p] � αp ↪→ E1[p],

and hence factorδ∗ as

D(E2[p])←↩ D(αp) � D(E1[p]),

and sinceF killsD(αp) we conclude thatF kills δ∗(D(E1[p])). In particular
F (δ∗(e1)) ∈ pH1

Cr(E2). Next we choose a distinguished basis(e,
2, F e,

2)
for H1

Cr(E2). We have

pH1
Cr(E2) = p Span(e,

2, F e,
2)

= Span(FV e,
2, Fpe,

2) = F 2Span(−e,
2, V e,

2).

Therefore, by the injectivity ofF , there exists ane2 such that

δ∗(e1) = Fe2.

We shall choose(e2, F e2) as our basis forH1
Cr(E2).

Next one checks that(e2, F e2) is distinguished and thath has the form
above with respect to(e1, F e1, e2, F e2). Sinceh is integral, the inclusion
h(W ) ⊆W can be verified again modp.
We obtain the following equations

(0,−ctp, 0,−(ε + c))t = x1(0,−tp, 0, 1)t + y1(−ta2, a1, a2, 0)t,
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and

(−cta2, ca1 −ma2,−(ε + c)a2,−ta2)t

= x2(0,−tp, 0, 1)t + y2(−ta2, a1, a2, 0)t.

Case (1.2.1)Assuminga2 6= 0, the first equation givesx1 = −(ε + c) and
y1 = 0 and the condition

−ctp = (ε + c)tp,

which implies

2c + ε ≡ 0 (mod p).(7)

Using equation (5) and separating cases (ε = 0, 1) this implies thatp|D. The
second equation yieldsx2 = −ta2 andy2 = −(ε + c) and the conditions

−ct = (ε + c)t , ca1 −ma2 = tp+1a2 − (ε + c)a1.(8)

The condition (7) implies the first condition of (8) and transforms the second
into

−m = tp+1.

We shall now show that this condition holds precisely for thoset’s which
are very good directions. Indeed,pθ2 = B(pe2, F e2) = B(V Fe2, F e2) =
B(Fe2, F

2e2)1/p = B(δ∗e1, δ
∗Fe1)1/p = B((δ̂δ)∗e1, F e1)1/p =

(pmθ1)1/p = pmθ1, by Lemma 2.1 . Hencem = θ2
θ1

= −tp+1 by the
same lemma.

Case (1.2.2)If a2 = 0, takinga1 = 1, one easily verifies that the equations
are solved for anyt by

x1 = −(ε + c), y1 = −(ε + 2c)tp; x2 = 0, y2 = c.

Note that this also complements Case 1.2.1 .

Case (1.3)(p, d) = 1. Let (e1, F e1) be a distinguished basis forH1
Cr(E1) .

Let e2 = δ∗(e1), then(e2, F e2) is a distinguished basis forH1
Cr(E2). With

respect to(e1, F e1, e2, F e2) h is given by


c 0 d 0
0 c 0 d
1 0 −(ε + c) 0
0 1 0 −(ε + c)


 .(9)
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Again by the integrality ofh , we get thath(W ) ⊆ W , if and only if the
following equations can be solved modp:

(0,−ctp + d, 0,−tp − (ε + c))t

= x1(0,−tp, 0, 1)t + y1(−ta2, a1, a2, 0)t,

and

(−cta2 + da2, ca1,−ta2 − (ε + c)a2, a1)t

= x2(0,−tp, 0, 1)t + y2(−ta2, a1, a2, 0)t.

Assuminga2 6= 0 the first equation yieldsx1 = −(tp + ε + c) andy1 = 0
and the condition

t2p + (ε + 2c)tp − d = 0.(10)

The second equation yieldsx2 = a1 andy2 = −(t+ε+c) and the conditions

t2 + (ε + 2c)t− d = 0,(11)

and

a1(−2c− ε) = a1(tp + t).(12)

By our choice of bases we have

θ2 = B(e2, F e2) = B(δ∗(e1), δ∗(Fe1)) = B((δδ̂)∗(e1), F e1) = dθ1.

Hence the criterion for very good direction becomes:

tp+1 = −d.(13)

Equation (11) obviously implies equation (10). We also note that equation
(11) and equation (13) imply equation (12) . Indeed equation (13) implies that
−d which is the product of the roots of equation (11) – sayt andt′ – is also
equal tottp. Hencet′ = tp and therefore−(ε+2c) = t+ t′ = t+ tp. Hence
the above conditions on the very good directiont (which automatically
satisfiestp+1 = −d) amount to equation (11).

Substituting equation (12) and equation (13) into equation (5) we obtain

(tp + t + ε)2 − 2(tp + t + ε)ε− 4tp+1 = 4∆,

which implies

(tp − t)2 − ε2 = 4∆,

which finally gives

(tp − t)2 = (2− ε)2D.(14)
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This shows that eitherp|D (if and only if t ∈ Fp) or p is inert inL (Since
t 6∈ Fp impliestp − t 6∈ Fp). Conversely we have the following two cases:

Case (1.3.1)Assumep|D . Then choosingt = −c− ε
2 one may easily verify

by working backwards through the above argument that all the equations
are satisfied and thatt is a very good direction. Moreover this is the only
solution.

Case (1.3.2)Assumep is inert inD. Let s ∈ Fp2 satisfys2 = (2 − ε)2D .
Since solutions to the Artin-Schreier equation

tp − t− s = 0

lie in Fp2 and form a cosett+Fp we may find onet0 which further satisfies
Tr(t0) = −(2c + ε) . Again one may easily verify thatt0 satisfies all the
conditions. There are two choices fort0 corresponding to the two choices
for s.

Case (1.3.3)a2 = 0 . Let a1 = 1. we then have the solution

x1 = −(tp + c + ε), y1 = −t2p − tp(2c + ε) + d, x2 = 1, y2 = c + tp

complementing our discussion of Cases 1.3.1 and 1.3.2 .

If b = pm and(m, p) = 1 then equation (3) yieldsp|a which in turn implies
p|m. A contradiction. Therefore we are left with the case:

Case 2: (p, b) = 1. This case, proved similarly, is left to the reader.q.e.d.

4. On theV locus

Definition 2. Assume thatp is split in L thenOL/p ∼= Fp ⊕ Fp. We let
e1, e2 be the corresponding orthogonal idempotents. We abuse notation
and writee1, e2 also for the idempotents coming from the decomposition
OL ⊗W (Fp) ∼= W (Fp)⊕W (Fp).

Proposition 4.1. The complement of the ordinary locus,V, is an effective
divisor whose support is a complete curve. Moreover:

1. If p is inert inL, thenV is equal to the supersingular locusS.
2. If p splits inL thenS is zero dimensional and consists of superspecial

points only.
3. If p is ramified inL, thenV = S.

Proof. It is easy to see that we always have supersingular points therefore
V is not empty. Since it is given locally by the vanishing of the determinant
of the Hasse-Witt matrix it is an effective divisor.
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One can define thef number also as

f(A) = dim(Hom(µp, A)).

Since the cusps stand for totally degenerating abelian surfaces (i.e., tori) the
fact thatV is complete follows.

We remark that given(A, λ, ι) we can viewA[p]ét as a module over
OL/p. Therefore the case ofp inert follows immediately.

Assume thatp splits in L andf(A) = 0. ThenA[p] is a local-local
group scheme and furthermoreA[p] is a direct sumG1 ⊕G2 induced from
the idempotentse1, e2. Hencea(A) = 2 andA is superspecial. Finally, since
the natural mapM→A (see 2.3) is quasi-finite and the superspecial locus
in A is zero dimensional the supersingular locus inV is zero-dimensional.

Consider now the case wherep is ramified inL. AgainOL/p acts on
A[p]ét. Since

√
D generates the maximal ideal ofOL/p (p > 2) the kernel

of
√

D in its action onA[p], sayK, is of orderp2. It is thus enough to show
thatA[p]/K ∼= K and indeed

√
D gives the isomorphismq.e.d.

The study of the structure of the supersingular locus whenp is inert or
ramified inL will be carried out in Sect. 6 below. We now treat the case
whenp splits inL.

Definition 3. Let p be split inL. We denote byH the following algebra of
Hecke correspondences onM. By definition it is generated by the following
correspondences: Let` be a prime. DefineMdL

(`) to be the moduli space
of quadruples(A, λ, ι, H) where(A, λ, ι) is a principally polarized abelian
scheme with real multiplication byOL andH ⊆ A[`] is a maximal isotropic
andOL-invariant subgroup. We have two projections

pi :MdL
(`) −→MdL

,

given by

p1((A, λ, ι, H)) = (A, λ, ι),

and

p2((A, λ, ι, H)) = (A/H, π∗λ, π∗ι),

whereπ : A → A/H is the projection. Thè-th Hecke correspondence is
by definitionp2∗ ◦ p∗

1.
We define the Galois-Hecke algebra,GH, to be the algebra of correspon-

dences generated byH and the involution

(A, λ, ι) 7→ (A, λ, ι ◦ σ),

whereσ : L→ L is the non-trivial involution.
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Remark. Note that also for̀ = p the maps

pi :MdL
(`) −→MdL

,

are quasi-finite. In particular the action of the Hecke correspondences is well
defined on points. This fails whenp is not split inL (see [St]).

Theorem 4.2. Assume thatp splits in L. Every singular point ofV is an
ordinary singularity with two branches. The singular points are exactly the
superspecial points.

The components ofV can be divided into two sets such that the intersec-
tion graph ofV is bipartite. In particular, every component is smooth and
V is reducible.

Proof. Let x/k ∈ V be a geometric point such thatf(Ax) = 1. Consider
the action of the Hecke operators of order`n, (`, p) = 1, onx. The orbit is
infinite (see [Ch]). Moreover, ifx is a singular point so is every point in the
orbit. This is impossible. Hencex is a smooth point.

Now letx be a point withf(Ax) = 0 hencex is superspecial. The ring

OL ⊗W (k) ∼= R1 ⊕R2,

whereRi
∼= W (k), acts on thep-divisible group ofAx, sayG, which

decomposes accordingly as

G ∼= G1 ⊕ G2.

It is crucial to note that this decomposition isOL-invariant and the principal
quasi-polarization decomposes as well. By Serre-Tate, the local deforma-
tions ofAx as a principally polarized abelian variety with real multiplication
are the same as those ofG (with the induced principal quasi-polarization and
theOL ⊗W (k) structure). The deformations ofG together with the extra
structure are just the products of the deformations ofG1 andG2 – the en-
domorphisms and poalrizations now being automatic. The deformations of
theGi are just the deformations of a supersingular elliptic curve.

We see then that the local structure ofV at a superspecial geometric
point is an ordinary singularity with two branches given by taking the con-
stant deformation ofG1 and the universal deformation ofG2 and the othe r
component is obtained by exchanging the roles ofG1 andG2.

We assign an invariant to the components ofV as follows: Thep-torsion
of the generic point of a component has anétale quotient isomorphic to
Z/pZ (after base change). Therefore, eithere1 or e2 acts as zero on it. We
say that the component is of typei if ei acts as zero on théetale quotient of
thep-torsion of the generic (hence any) point. Note that the argument above
shows that at a superspecial point one of the branches is of type1 and the
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other is of type2. Therefore, components of the same type do not intersect,
every component is smooth and the intersection graph is bipart ite.q.e.d.

The techniques of the proof of the next theorem can be applied to similar
situation in higher dimensional Hilbert modular varieties. It is of interest
also because of the methods of [Ch].

Theorem 4.3. Assume thatp is split inL.
1. The action ofGH is transitive on the superspecial points and on the

components ofV.
2. TheGH orbit of every non-superspecial point ofV is dense inV.

Proof. We first prove that the action ofH on the superpsecial points is
transitive (this holds in much more general situations):

Let (A, λ, i), (B, µ, j) be two superspecial points. It is known thatA ∼=
B. Thus by the Skolem-Noether theorem, after conjugation we may assume
A = B, i = j and we are reduced to proving that for every principal
polarizationλ a ndL-linear polarizationλ′, (A, λ, i) and(A, λ′, i) are in
the sameH orbit.

Let Ψλ : NS0(A) → End0(A), Ψλ(γ) = λ−1γ. It is known thatΨλ

identifiesNS0(A) with the symmetric totally positive elements ofEnd0(A)
w.r.t. the Rosati involution given byλ (denotedx 7→ x̄). An element of
NS0(A) isL-linear precisely when its image lands inB = CentEnd0(A)(L).
It is known thatB is a quaternion algebra overL which is everywhere ram-
ified at infinity (see [Ch]). In particular, the Rosati involution induced by
λ is the unique positive involution onB and is equal to the standard in-
volution. Hence the symmetric elements ofB are justL. It follows that
the L-linear rational polarizations are identified with the totally positive
elements ofL. It is easy to check that the pull-back action of an endomor-
phism b ∈ B on anL-linear polarization is given viaΨλ as multiplica-
tion by bb̄. Strong approximation tells us that we can find suchb satisfying
bb̄Ψλ(λ′) = Ψλ(λ). Multiplying b by a suitable natural numbern we may
assume thatb∗λ′ = mλ, m ∈ N, b ∈ End(A).

We next show that the action ofH preserves the types:
This is clear for operators of degree prime top. It is easy to check that

if f(A) = 1 then geometricallyA[p] ∼= E[p] ⊕ µp ⊕ Z/pZ, whereE is
a supersingular elliptic curve, andαp ⊕ µp, αp ⊕ Z/pZ, are the only
maximal isotropicOL-invariant subgroups. Note thate1 kills µp iff it kills
Z/pZ. Since division by such a maximal isotropic subgroup induces an
OL-linear isomorphism either on théetale-local or local-́etale part of the
p-torsion we are done.
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Now takex with f(Ax) = 1. From [Ch] we know that theGH orbit
of x is infinite and hence its closure,Z, contains a componentC1 of type
1 andC2 of type2 (Galois involution exchanges the types). LetC be any
component ofV, thenC contains a superspecial point (“ Raynaud’s trick”).
Similarly Ci contains a superspecial pointci. Assume w.l.o.g. thatC is of
type 1. Using the previous observations we may find an operatorT ∈ H
such thatc ∈ T (c1). It follows that the type1 component throughc, i.e.,C,
is in T (C1). SinceZ is closed underH we haveC ∈ Z. Note also that we
have shown thatGH acts transitively on the components ofV. q.e.d.

5. Components of the supersingular locus

Following the method of [KO1] and their notation (as much as possible), we
construct and count the components of the supersingular locusS = SdL,n in
the Hilbert modular surfaceM =MdL,n for L = Q(

√
D), D > 0 square

free,p > 2, andp inert or ramified inL. The reader should consult [KO1]
for more details.
For an abelian varietyY we letAutv(Y ) denote the automorphisms ofY
as a variety (i.e. not necessarily preserving the zero point). We denote by

γ : Autv(Y ) −→ Aut(Y ),

the canonical projection. We denote by} the number of isomorphism classes
of supersingular elliptic curves overF̄p.

5.1. Construction of families

Let E1, · · · , E} be representatives for the isomorphism classes of supersin-
gular elliptic curves overk – an algebraically closed field of characteristic
p. Letn ≥ 3 be an integer. LetA = A2,n be the moduli space of principally
polarized abelian surfaces in characteristicp.

Let t be adjusted toh be as in Theorem 3.2 in any of the cases wherer is
arbitrary. LetA = Em × En/Ht whereHt is the subgroup corresponding
to t. Let

π̃ : Em × En −→ A,

be the canonical projection, theñπ(Em + En) = N is a reducible divisor
of degreep with ker(φN ) ∼= αp ⊕ αp and π̃∗(φN ) = pµ(Em, En) (see
Subsection 2.2). Then, as in Subsection 2.3, we get from(A, N) a family
q : X −→ P1 of principally polarized supersingular abelian surfaces and a
natural mapπ : A × P1 −→ X. Since for everyz ∈ P1 the moduleWz =
π̃∗π∗H1

Cr(Xz) is stable underh, we see thath descends to an endomorphism
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hX of the abelian schemeX. Moreover, following [KO1] p.114 one endows
X with a leveln structure. The familyX is obviously non-isotrivial and
therefore we get a componentΞ of the supersingular locusS inM.

Conversely, letΞ be a component ofS. Letξ be a generic point ofΞ and
let (Y, λ, ι : OL −→ End(Y ), α) be a quadruple parameterized byξ. The
image ofΞ underΨ :M→ A is a component of the supersingular locus.
Therefore, there exists ([KO1], Theorem 2.1) a familyX −→ P1 giving rise
to Ψ(Ξ) andm, n, t such that as before we have

Em × En × P1 π̃×id.−→ A× P1 π−→ X.

Let x ∈ X such thatx projects toΨ(ξ). Then (Y, λ, ι : OL −→
End(Y ), α) gives us a moduleWx = π̃∗π∗H1

Cr(XΨ(ξ)) and an endomor-
phismh preservingWx and at adjusted toh. By the generality ofξ, we can
get in this way infinitely many such distinctWξ with the sameh andt (the
number ofh’s andt’s is finite) and hence, using Theorem 3.2, we deduce
thatp is not split inL. Obviously the componentΞ ′ ofM constructed from
Em, En, h andt adjusted toh intersectsΞ at the pointξ. This implies that
Ξ ′ is equal toΞ. We proved the following

Theorem 5.1. If p is inert or ramified inL then every component ofSdL,n

is a rational curve and can be parameterized as in Theorem 3.2.q.e.d.

One says that two families,π1 : X1 −→ P1 , π2 : X2 −→ P1, as con-
structed above, are isomorphic, if there exists an isomorphism,f : P1 −→
P1, such that the two abelian schemes overP1, X1 andX2×P1,f P1, are iso-
morphic with the polarization, endomorphism structure and level structure.
Following [KO1] we get

Theorem 1.([KO1], Theorem 2.7) Assume thatp is inert or ramified inL.
The numberΩn of irreducible components ofSdL,n is equal to the number
of isomorphism classes of familiesX −→ P1 with relative polarization,
endomorphism and level structure as constructed above.

5.2. Standard data

Let E be a fixed supersingular elliptic curve overk and putX = E × E.
For everym, n we choose and fix an isomorphism

κm,n : Em × En −→ X.

Fix, once and for all, a very good directiona of X. Then for every very
good directionb of (Em×En, Em +En) we fix an automorphismΘκm,n(b)
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such thatΘκm,n(b)(κm,n(b)) = a. Put Θm,n,b = Θκm,n(b) ◦ κm,n – an
isomorphismEm × En → X taking the very good directionb to a. Let

M(m, n) =

{
h =

(
c δ

δ̂ −(ε + c)

)
:

h ∈ End(Em × En), c ∈ Z, c2 + εc + δδ̂ = ∆

}
.

For everyh ∈M(m, n) and everyt a very good direction adjusted toh, we
consider quadruples(Em × En, Em + En, h, t). We say that
(Em × En, Em + En, h, t) is isomorphic to(Em × En, Em + En, h′, t′)
if there exists aθ ∈ Aut(Em × En) such thatθ∗h

def= θhθ−1 = h′ and
θ∗t = t′ whereθ∗t is the direction corresponding to the compositionθ ◦ t.

One easily checks that

(Em × En, Em + En, h, t) ∼= (Em × En, Em + En, h′, t′),

if and only if there existsτ ∈ Aut(X), such that underτ

(X, Θm,n,t(Em + En), Θm,n,t∗(h), a)
∼= (X, Θm,n,t′(Em + En), Θm,n,t′∗(h′), a).

We consider now the resulting equivalence classes of(Θm,n,t(Em + En),
Θm,n,t∗(h)). Two such couples are equivalent if and only if there exists a
τ ∈ Aut(X) such thatτ(a) = a taking one into the other.

Definition 4. For every such equivalence class choose arepresentative. Let
π̃ : X −→ A = X/Ha be the canonical map. Then

(π̃(Θm,n,t(Em + En)), π∗(Θm,n,t∗(h)))

will be called astandard data. LetD̃(m, n) be the set of all representatives
obtained from the possibleh ∈M(m, n) andt’s adjusted toh. Let

D(m, n) =
{
(π̃Θm,n,t(Em + En), π∗Θm,n,t∗(h)) :

(Θm,n,t(Em + En), Θm,n,t∗(h)) ∈ D̃(m, n)
}
,

D̃ =
∐

1≤m≤n≤}

D̃(m, n), D =
⋃

1≤m≤n≤}

D(m, n).

Lemma 5.2. 1. The mapD̃ −→ D is a bijection.
2. Letτ ∈ Autv(A) andC, C ′′ ∈ D. If τ(C) = C ′ thenC = C ′ (by

definition the action ofτ on an endomorphism is given by the action ofγ(τ)
on that endomorphism).
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Proof.We first note that the map̃π : X −→ A has the following properties:
a. It induces an injective mapDiv(X) −→ Div(A).
b. It induces on anyΘm,n,b(Ei), i = m, n the Frobenius morphism.

Property aand the injectivity of the mapπ∗ : End(X) −→ End(A) give
part 1 of the lemma.

Let C = π̃Θm,n,b(Em + En, h), C ′ = π̃Θm′,n′,b′(Em′ + En′ , h′) and
let τ ∈ Autv(A). Assume thatτ(C) = C ′. Then property bimplies that
m = m′ and n = n′. Now sinceτ(π̃Θm,n,b(Em) ∩ π̃Θm,n,b(En)) =
π̃Θm,n,b(Em) ∩ π̃Θm,n,b(En) = π̃(Ker(Fr : X −→ X)) we get that
τ = π̃∗τ ′ for someτ ′ ∈ Autv(X) and by property aτ ′(Θm,n,b(Em +
En)) = Θm,n,b′(Em+En). Sinceτ ′(0) = τ ′(Θm,n,b(Em)∩Θm,n,b(En)) =
Θm,n,b′(Em) ∩ Θm,n,b′(En) = 0, we must haveτ ′ ∈ Aut(X). It then
follows thatC = C ′ by the definition of standard dataq.e.d.

Following [KO1] one establishes the following

Lemma 2. ([KO1] Lemma 3.7) LetC ′ = (E′ + E′′, g) whereE′, E′′ ∈
Div(A) are two elliptic curves whose sumE′ + E′′ is a symmetric divisor
such thatKer(φE′+E′′)∼= αp⊕αp and whereg ∈ End0(A) descends to an
endomorphism of every quotientA/αp. Assume further thatg satisfies the
equationx2+εx−∆ = 0 (and hence defines an embeddingL ↪→ End0(A))
and that the polarization defined byE′ + E′′ is L − linear. Then there
exists a unique standard dataC ∈ D and an elementθ ∈ Autv(A) such
thatθ(C) = C ′.

Using the abelian surfaceA and a standard dataC ∈ D, we obtain, as
above, a familyq : X −→ P1 of principally polarized supersingular abelian
surfaces with leveln structure and an embeddingOL ↪→ End(X/P1) with
a relative principal effective divisorH ⊆ X. We use the same notation for
the ”defining map”π : A× P1 −→ X.

By [MB] the relative divisorπ−1(H) has exactly5p−5 degenerate fibers,
each consists of two supersingular elliptic curves whose scheme-theoretic
intersection is isomorphic toαp and all are linearly equivalent to each other.
Lets fix the following notation:

B(X, H) =
{
π−1(H)x : π−1(H)x is reducible, x ∈ P1} ,

D(B(X, H)) =
{
C ∈ D : ∃C ′ ∈ B(X, H), θ ∈ Autv(A) s.t. θ(C) = C ′}

(i.e., if C = (E′ + E′′, g) whereg ∈ End0(A) then

C ′ = (θ(E′) + θ(E′′), γ(θ)gγ(θ)−1)) ,

Γ (B(X, H)) = {θ ∈ Autv(A) : θ permutes the elements of B(X, H)} .
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To everyC ∈ D(B(X, H)) we can associate an orbit ofΓ (B(X, H)) in its
action onB(X, H). Namely, all thoseC ′ ∈ B(X, H) for which there exists
aθ ∈ Autv(A) such thatθ(C) = C ′. The fact that these form a single orbit
underΓ (B(X, H)) follows from Lemma 2 and the following theorem (the
proof follows [KO1]):

Theorem 3.([KO1], Theorem 4.1) The group of automorphisms of the family
q : X −→ P1 which preserves the relative polarization on it, is isomorphic
to the groupΓ (B(X, H)).

Convention. We will encounter many automorphism groupsG containing
±1. We will use the notationRG to denote the quotientG/± 1.
Let C ∈ D(B(X, H)) then we putRΓ (B(X, H))C to be the stabilizer in
RΓ (B(X, H)) of any element in the orbit associated toC. This is well
defined only up to conjugacy but ifC = π̃(Θm,n,t(Em + En), Θm,n,t∗(h))
then (using the same arguments as in Lemma 5.2) one verifies that this
subgroup is isomorphic toRA(m, n, h, t) (defined below).

We have the following mass formula

5p− 5 =
∑

C∈D(B(X,H))

|RΓ (B(X, H))|
|RΓ (B(X, H))C | .(15)

5.3. The number of components

LetX1, ...,XΩ1 be the isomorphism classes of families overP1 giving rise to
the componentsΞ1, ..., ΞΩ1 of the supersingular locus inMdL,1. We have
a map

Λ : D −→ {1, ..., Ω1}

Let G(n) be the galois group of the coveringMdL,n −→ MdL,1. We
denote its order byJn. Let σ1(x) be the sum of divisors ofx for x positive,
and zero otherwise. Letσp,1(x) be the sum of divisors which are prime top
for x positive, and zero otherwise.

Let A(m, n, h, t) (resp.A(m, n), resp.A(m)) be the group of automor-
phisms ofEm × En (resp.Em × En, resp.Em) preserving the natural
product polarizationh andt (resp.the natural product polarization,resp.no
condition).

Theorem 5.3. LetCp equal 1 forp inert and1/2 for p ramified. Letn ≥ 3.
LetΩn be the number of components ofSdL,n. Then

Ωn = CpJn ζL(−1).
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Proof.As in [KO1], Theorem 4.2, one can prove, using Theorem 3, that

RΓ (B(Xi)) = G(n)Ξi .

For convenience we writeQ = Q(n, p) = Jn
5p−5 .

We have

Ωn =
Ω1∑
i=1

Jn/|RΓ (B(Xi)|

= Q

Ω1∑
i=1

∑
x∈D(B(Xi))

1
|RΓ (B(Xi))x|

= Q
∑
x∈D

1
|RΓ (B(XΛ(x)))x|

= Q
∑

1≤m≤n≤}

∑
x∈D(m,n)

1
|RΓ (B(XΛ(x)))x|

= Q
∑

1≤m≤n≤}

∑
x∈D(m,n)

1
|RA(m, n, hx, tx)| ,

wherex is constructed from the data(Em × En, Em + En, hx, tx).

We first consider the case ofp inert inD.
DefineM(m, n)+ = {(h, t)|h ∈M(m, n) , t adjusted to h} (see Sub-

section 5.2 for the definition ofM(m, n)). Using the transpose we have
|M(n, m)| = |M(m, n)| and |M(n, m)|+ = |M(m, n)|+. Furthermore,
by Theorem 3.2, Case 1.3.2, the mapM(m, n)+ −→M(m, n) is 2:1 .
Let

w(m, n) =

{
2 m = n

1 m 6= n .

Let B(k)mn denote themn entry of thek’th Brandt matrix. For basic prop-
erties of the Brandt matrices we refer the reader to [Gr].

The groupRA(m, n) acts onM(m, n)+ and the class equation for that
action reads

|M(n, m)+| =
∑

x∈D(m,n)

|RA(m, n)|
|RA(m, n, hx, tx)| .
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Hence, we obtain

Ωn = Q
∑

1≤m≤n≤}

2|M(m, n)|
|RA(m, n)| = Q

}∑
m,n=1

|M(m, n)|w(m, n)
|RA(m, n)| .

Let ∆(c, ε) = Max(∆− c2− εc, 0). We calculate the last expression in the
following manner

|M(n, m)|w(m, n)
|RA(m, n)|

= 2
∑
c∈Z

] {δ ∈ Hom(Em, En) : deg(δ) = ∆(c, ε)}
|A(m)| |A(n)|

= 2
∑
c∈Z

] {H ⊆ Em : |H| = ∆(c, ε), Em/H ∼= En}
|A(m)|

= 2
∑
c∈Z

B(∆(c, ε))m,n

|A(m)|

(the last equality by properties of the Brandt matrices). We now have

Ωn = 2Q
∑
c∈Z

∑
m

∑
n

B(∆(c, ε))
|A(m)|

= 2
Jn

5p− 5

∑
c∈Z

}∑
m=1

1
|A(m)|σp,1(∆(c, ε))

=
Jn

60

∑
c∈Z

σp,1(∆(c, ε))

=
Jn

60

∑
c∈Z

σ1(∆(c, ε)) .

The second equality follows again from properties of the Brandt matrices
and the third equality from Eichler’s mass formula. The last equality follows
from our assumption thatp is inert inL. Indeed ifp|∆(c, ε) then a case by
case study shows thatD is a squaremod p.

Now use the Siegel-Zagier formula ([Za] p. 69) forζL(−1) and the
observation that writingdL = n2 + 4ac is the same as writingdL−1

4 =
m2 + m + ac if D ≡ 1 (mod 4), n = 2m + 1 and asdL

4 = m2 + ac if
D ≡ 2, 3 (mod 4), n = 2m . We get

Ωn = Jn ζL(−1).
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We now consider the casep|D.
Define

M(m, n)d =
{

h ∈M(m, n) | deg(δ̂δ) = d
}

,

andM(m, n)+d as the inverse image ofM(m, n)d in M(n, m)+. By Theo-
rem 3.2, Cases 1.2.1 and 1.3.1, we have

|M(m, n)+d | =
{

(p + 1) |M(m, n)d| p||d
|M(m, n)d| (p, d) = 1

.

From the definition we have

|M(m, n)| =
∑
c∈Z

|M(m, n)∆(c,ε)|.

We also define

D(m, n)d =
{

x ∈ D(m, n) | deg(δxδ̂x) = d
}

,

wherex is constructed from(m, n, hx, tx) andhx =
(

cx δx

δ̂x −(ε + cx)

)
. One

easily verifies thatRA(m, n) acts onM(m, n)+d and the corresponding class
equation is

|M(m, n)+d | =
∑

x∈D(m,n)d

|RA(m, n)|
|RA(m, n, hx, tx)| .

Using this equation we obtain as before

Ωn =
∑

1≤m≤n≤}

|M(m, n)+|
|RA(m, n)|

= Q

}∑
m,n=1

|M(n, m)+|w(m, n)
2|RA(m, n)|

= Q
∑
m,n

∑
c∈Z

|M(m, n)+∆(c,ε)|w(m, n)

2|RA(m, n)|

= Q
∑
m,n

( ∑
{c:p-∆(c,ε)}

B(∆(c, ε))m,n

|A(m)|

+
∑

{c:p|∆(c,ε)}

(p + 1)B(∆(c, ε))m,n

|A(m)|

)
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=
Jn

5p− 5

∑
m

( ∑
{c:p-∆(c,ε)}

σp,1(∆(c, ε))
|A(m)|

+
∑

{c:p|∆(c,ε)}

(p + 1)σp,1(∆(c, ε))
|A(m)|

)

=
Jn

120

( ∑
{c:p-∆(c,ε)}

σp,1(∆(c, ε))

+
∑

{c:p|∆(c,ε)}
(p + 1)σp,1(∆(c, ε))

)
.

We note that sinceD is square free it is easy to verify from equation (5)
that if p|∆(c, ε) thenp||∆(c, ε). Therefore , for such∆(c, ε)

σ1(∆(c, ε)) = σ1(p)σ1(∆(c, ε)/p) = (p + 1)σ1(∆(c, ε)/p),

and

σp,1(∆(c, ε)) = σ1(∆(c, ε)/p).

Hence , for such∆(c, ε)

(p + 1)σp,1(∆(c, ε)) = σ1(∆(c, ε)).

The result now follows from the Siegel-Zagier formula as before.q.e.d.

6. Local structure of the supersingular locus

In this section we study the supersingular locus forp inert or ramified. We
begin by giving a short proof of the structure theorem of Stamm (see [St])
for the inert case.

6.1. The inert case

Assumep is inert inL.

Theorem 6.1. The set of singular points ofS is exactly the set of superspe-
cial points. Every singularity is ordinary with two branches and corresponds
to the intersection of different components.

To every component one can assign an invariant in{1, 2} – called the
type – such that the intersection graph ofS is bipartite. Each component
has exactlyp2 + 1 intersection points with other components.
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Proof. Write Emb(OL, W (Fp)) = {σ1, σ2}. We say that a supersingular
point x with a(Ax) = 1 is of typei if OL acts onD(α(Ax)) via σi. The
type is locally constant on the set of such points, hence we may speak of the
type of a component.

Now let X/k be a supersingular geometric point andD the covariant
Dieudonńe module of thep-divisible group ofAx. We use the theory of
displays as in [N],[NO](see also [GO]) to study equi-characteristic defor-
mations.

We have the decomposition

OL ⊗W (k) ∼= W (k)⊕W (k),

which induces a decomposition

D = D1 ⊕ D2.

Note thatDi is a free module of degree 2 overW (k). The following prop-
erties hold:F (Di) ⊂ Di+1, dimk(Di+1/F (Di)) = 1, V (Di+1) ⊂ Di,
dimk(Di/V (Di+1)) = 1. Furthermore, the pairingD × D → W (k) de-
fined by the given principal polarization onAx induces a perfect symplectic
pairing on eachDi.

Choose a symplecticW (k) basisxi, yi for Di such thatyi ∈ V (Di+1).
Note that the Dieudonńe module is then displayed by

(
A B
C D

)
=




0 f12 0 f14
f21 0 f23 0
0 f32 0 f34

f41 0 f43 0


 .

Using the deformation theory in loc.cit., one checks that the universal equi
characteristic local deformation ring of(Ax, λx, ιx)/k is Spec(k[[t1, t2]])
and the Dieudonńe module of thep-divisible group of the universal defor-
mation is displayed by (

A + TC B + TD
C D

)
,

whereT = diag(T1, T2), Ti the Teichmuller lift ofti. In particular the
determinant of the Hasse-Witt matrix,A + TC, is

−(f12 + t1f32)(f21 + t2f41) (mod p).

Assume thata(Ax) = 1 and w.l.o.g thatx is of type 1, hencep|f12, p 6 |f21.
Note thatp 6 |f41 becuase the rank of Frobenius modp is 2. Thus, the
determinant of the Hasse-Witt matrix is

−t1f32(f21 + t2f41) (mod p).



On the non ordinary locus in Hilbert-Blumenthal surfaces 499

Since(f21 + t2f41) is invertible ink[[t1, t2]], the closed subscheme where
the determinant vanishes is given by(t1) and in particular is smooth. If
a(Ax) = 2, then the determinant is

−t1t2f32f41 (mod p),

and the supersingular locus is given locally by(t1t2). It is thus an ordinary
singularity with two branches of different type, hence the graph is bipartite
and everything follows. q.e.d.

6.2. The ramified case

Assume thatp is ramified inL. We study the local deformation theory using
[Gk] and [Ko].

Theorem 6.2. For a geometric pointx ofM the following are equivalent:
(i) It is a singular point of the surface;
(ii) The action ofOL/p onH0(Ω1

Ax
) is not free;

(iii) It is a singular point of the supersingular locus.
When this holdsx is in fact superspecial, the tangent cone of the surface

at x is isomorphic toz2 = xy and the singularity ofS at x is ordinary
with p + 1 branches. On each component there arep + 1 values of its
parameterization such that the corresponding point satisfies the above.

Proof. Let x be an ordinary point. We first show thatx is smooth and
H0(Ω1

Ax
) is free overOL/p hence we may assumex is supersingular.

Indeed, by the density of the Hecke orbit ofx, x must be smooth (see
proof of Theorem 4.2). IfH0(Ω1

Ax
) is not free then it is killed by

√
D. But

H0(Ω1
Ax

) = D(Ax[p]lé) therefore
√

D kills Ax[p]él as well. Hencep|√D.
A contradiction.

Assumex ∈ S. We assume thatε = 0, the caseε = 1 is similar.
As in Subsection 2.4, letW = SpanW (k)

{
pH1

Cr(X), v, w
}

be the first
crystalline cohomology of an abelian varietyA, which is obtained from the
data(X = E1 × E2, µ(E1, E2), h, t, r), embedded inH1

Cr(X).

We first treat components arising from Case (1.3.1) of Theorem 3.2.
We assume that we have chosen a basis(e1, F e1, e2, F e2) for H1

Cr(X)
which is distinguished and with respect to whichh is given as in Case (1.3.1)
of Theorem 3.2, Formula 9.

We also haveBEi(ei, F ei) = θi . One may further assume thatθ1 = 1
and henceθ2 = d (mod p).
Assumer 6= 0 (equivalentlya2 = 1).

In this case one may verify that the vectors

{pe1, pFe1,−T σFe1 + Fe2,−Te1 + a1Fe1 + e2}
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form a basis forW/pW . Let us denote these vectors byγ1, ..., γ4 respec-
tively.

Reducing modpW , one finds the following matrix for the action of
Frobenius onW/pW with respect to theγi

F |γi =




0 0 0 −aσ
1

1 0 a1 0
0 0 0 1
0 0 0 0


 .(16)

We note thatKerF |W/pW = Spank(β1, β2), whereβ1 = γ2 , β2 =
aσ−1

1 γ1− γ3. We want to completeβ1, β2 to a symplectic basis forW/pW .
First we compute the matrix of the alternating form with respect to theγi to
be 


0 0 −T σ a1
0 0 0 T

T σ 0 0 −(T σ+1 + d)/p
−a1 −T (T σ+1 + d)/p 0


 .(17)

We note that in our case settingT = −c – which lifts equation (12) of Case
(1.3) of Theorem 3.2 – we obtain(T σ+1 + d)/p = D/p and we let

s = D/p, ` = −(a1+1/p
1 + s), k = a1/t.

We then compute that

β3 =
−`

tp+1 γ1 +
1
t
γ4 , β4 =

−1
tp

γ1 +
a1

tp+1 γ2,

completeβ1, β2 to a symplectic basis .
The matrix ofh with respect to theβi is given by

h{βi} =




0 ` 0 k
0 0 −k 0
0 0 0 0
0 0 ` 0


 ,

and Frobenius is given by

F{βi} =
(

0 B
0 H

)
=




0 0 `/d −1/t
0 0 −1/t 0
0 0 0 0
0 0 ap

1 − a
1/p
1 0


 .

We now look at deformations. SinceW = H1
Cr(A), we haveW/pW =

H1
dR(A). By our choice of basisH0(Ω1

A) = KerF |W/pW = Spank(β1, β2).
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A deformationA(U) of the abelian varietyA over the ringk[δ]/(δ2) is given
by a sub -k[δ]/(δ2)- module ofH1

dR(A) ⊗ k[δ]/(δ2) extendingH0(Ω1
A),

viz., by a basis of the form


1
0

u11
u21


 ,




0
1

u12
u22


 ,

which will be denotedβ1(U), β2(U). Hereuij ∈ (δ) and we putuij =
δbij , bij ∈ k. By [DP], the deformations as a principally polarized abelian
varieties are given by the conditionu12 = u21 and among them, the deforma-
tions lying on our Hilbert-Blumenthal surface, are given by the submodules
invariant underh (or h⊗ 1 to be exact).

Writing the equations

hβi(U) = xiβ1(U) + yiβ2(U),

we obtain

x1 = ku12, y1 = −ku11 , x2 = ` + ku22, y2 = −ku22,(18)

and the condition

ku2
12 − ku11u22 − `u11 = 0.

Hence, the points which satisfy

` = 0,

or, equivalently,

ap+1
1 = −s,

are precisely the supersingular points at which the surface is singular. Note
that sinces ∈ Fp, all the solutionsa1 to the equation lie inFp2 , hence the
points are superspecial. At nonsingular points we obtain

u11 = 0.(19)

Consider the matrixY such that

δY = UB.

Using the computation of Frobenius and equation (19) we obtain

Y =
( −b12/t 0

`b12/d− b22/t −b12/t

)
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(here thebij are not the entries ofB but, defined byuij = δbij). By a simple
calculation,

Y Y (p) = 0⇔ b12 = 0.

Hence, at these nonsingular points (of the surface), the supersingular locus
is nonsingular as well.

Returning to the case of the singular points, by [DP], Theorem 3.3, the
deformations (of all orders) of the Hilbert-Blumenthal surface atA are given
by the isotropich invariant deformations ofH0(Ω1

A). Computing to the
second order, using thexi and yi computed in equation (18) above, we
obtain

u2
12 = u11u22.(20)

Note that by the symmetry of the matrixU , equation (20) is equivalent to
the statement thatU has rank at most 1. Since the matrixB is nonsingular
(we are at a superspecial point) all solutions toY Y (p) = 0 must come from
matricesU which have rank at most 1. Hence we obtainp + 1 branches as
in [Ko] Pg. 193.

Note that in the ramified caseOL⊗ F̄p is isomorphic tōFp[δ]/(δ2) , and
under the isomorphismh =

√
D is sent toδ (note that we are assuming that

ε = 0). Therefore, the action ofOL on the cotangent space is free if the
action ofh is nonzero. The action ofh is given by(

0 `
0 0

)
,

and hence the action is not free precisely when

` = 0.

That is, precisely at the singular points of the surface (as expected from the
discussion in [DP]).

The casea2 = 0 is treated similarily and the computations (which are easier)
show that both the surface and the supersingular locus are smooth.

We now consider Case (1.2.1) of Theorem 3.2.
Assume first thata2 6= 0.

We assume that the distinguished bases where chosen so thath has the
same form as in Case (1.2.1) of Theorem 3.2, Formula 6, and that

θ1 = 1 , θ2 = m , T σ+1 = −d/p.
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We choose the sameγi as before and hence the computation of Frobenius,
the alternating form and the symplectic basis remain intact if we replaced
by d/p.
We then computeh to be




0 tp(a1 + a
1/p
1 + 2c/p) 0 −1

0 0 1 0
0 0 0 0
0 0 tp(a1 + a

1/p
1 + 2c/p) 0


 .

Setting̀ = tp(a1+a1/p+2c/p)andk = 1we notice that we obtain precisely
the situation of Case (1.3.1), which we have analyzed above. Hence, the
surface is singular at the points where` = 0. Note that all the solutionsa1 to
the equation are inFp2 and hence the points are superspecial. The singularity
is of the form

b2
12 = b11b22,

as before. Following the argument presented in Case (1.3.1) we obtainp+1
branches of the supersingular locus at these points.

Finally leta2 = 0. We choose our basis as follows:

pe1, pe2, F e1,
1
d
Fe2,

where{e1, F e1, e2, F e2} is a distinguished basis. One may calculate thath
is given by 


0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0


 .

Hence, the surface and locus singularities are as before. We also note that
the point corresponding toa2 = 0 under the parameterization arising from
(X, µ, h, t) is independent oft (it is the image under Frobenius of(X, µ) ).
One may then easily verify by calculating the branches directly in terms of
t that differentt’s give rise to different branches.q.e.d.
G. Pappas has informed us that the structure of the tangent cone was sketched
in a letter of his to Deligne.

Using Theorems 5.3, 6.1 and 6.2, we get
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Corollary 6.3. Let n ≥ 3 andp be inert or ramified inL. The number of
singular points ofSdL,n is

Dp[MdL,n :MdL,1]ζL(−1),

whereDp = (p2 + 1)/2 if p is inert andDp = 1/2 if p is ramified.

7. Appendix

Consider a slightly different moduli problem:
LetRm be the order of conductorm inOL, and consider triples(A, λ, ι)

and a leveln structure, where(A, λ) is a principally polarized abelian surface
andι : Rm ↪→ End(A)λ. Such an embedding is determined by the image
of mΛ, which after pullback toX, as in Sect. 3.2, has the form

1
p

(
a β

β̂ −(mpε + a)

)
,

wherea ∈ Z, β ∈ Hom(E2, E1), a2 + mpε + b = m2p2∆ and
deg(β) = b.

The resulting moduli space is an algebraic stack (non-reduced ifp|m),
which we denote byMmdL,n. We leave details about the construction and
structure of these stacks for a future paper.

The following theorem is proved using the methods of Theorem 3.2.

Theorem 7.1. The following sets of data(X, µ, h, t, r) correspond to points
on the Hilbert-Blumenthal surface of conductor m:
1) If (m, p) = 1, then we obtain the same results as in Theorem 3.2, where
we replaceε bymε.
2) If (m, p) = p, then:
2.A) If (p, b) = 1, we get the same sets as in Case 2 of Theorem 3.2. In
particular, we obtain no new components.
2.B) If ordp(b) = 2, we get a single very good direction, which leads to a
component. It is given byt = −c−mε/2.
2.C) If ordp(b) ≥ 4, all sets of data lead to components.

Using this theorem and the methods of Sect. 5.3, one can count the num-
ber of components of the supersingular locus (with reduced structure) of
MmdL,n. We now state the results forp inert inL.

Following [Co], let

c1(n) =
∑

0≤n−k2≡0 (mod 4)

σ1

(
n− k2

4

)
.

Let an = 1
60c1(n) andζL,m be the zeta function of the orderRm (see [Co],

Sect. 3). Then, for(m, p) = 1, we have:



On the non ordinary locus in Hilbert-Blumenthal surfaces 505

Theorem 7.2. The number of components of the supersingular locus in
MmdL,n is

[MmdL,n :MmdL,1]a(m2dL),

and the number of components for whichRm is optimally embedded in the
endomorphism ring of the generic point is

[MmdL,n :MmdL,1]m3ζL,m(−1).

We also remark that form = p we obtain that the number of components
is

1/2[MmdL,n :MmdL,1]
(
a(p2dL)− p2a(dL)

)
(a(dL) = ζL(−1)). Finally, we note that thec1(n)’s form the Fourier coef-
ficients of a weight 5/2 modular form onΓ0(4) (see [Co], Sect. 4).
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