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Hilbert modular varieties of low

dimension

Fabrizio Andreatta and Eyal Z. Goren

Abstract. We study in detail properties of Hilbert modular varieties of low dimension
in positive characteristic p; in particular, the local and global properties of certain strat-
ifications. To carry out this investigation we develop some new tools in the theory of
displays, intersection theory on a singular surface and Hecke correspondences at p.
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1. Introduction

This paper studies Hilbert modular varieties of low dimension. Besides the inter-
esting geometric problems it raises, we also feel that such a detailed study is bound
to play a valuable role in future applications to number theory. For example, the
Hilbert modular varieties of dimension one are the modular curves that have been
studied extensively, and their geometric properties are intimately connected with
the theory of modular forms. We consider here mainly the case of dimension 2
and 3.

To carry out this study we had to develop further existing tools and these
results are of independent interest. One is intersection theory on a surface with
isolated normal singularities, developed in § 7; the other is methods to calculate
the universal display of a PEL problem. Regarding the latter, some of the details
will appear, under a much more general setting, in a future work [AG4].

Let L be a totally real field of degree g over Q, let OL be its ring of integers,
let p be a rational prime and let M be the moduli space parameterizing abelian
varieties of dimension g, in characteristic p, endowed with an action of OL. Some
further conditions are imposed - see § 2. The properties of M that we study are
mostly defined using the Frobenius morphism on various objects that are OL⊗Fp-
modules. For example, the Hodge bundle E and the cohomology group H1(A,OA)
of an abelian variety A. Hence, the analysis is divided according to the prime
decomposition of p in OL. In § 3 we recall the stratifications defined in [AG1, GO]
and their main properties.

In § 4 we discuss the singularities of Hilbert modular varieties. We recall the
theory of local models, introduced by Deligne-Pappas [DP], de Jong [deJ] and
Rapoport-Zink [RZ], and illustrate the results for the Hilbert and Siegel moduli
varieties. The singularities in the Hilbert case are local complete intersections.
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Given a closed point x ∈ Msing we determine when is ÔM,x parafactorial. A
question of interest here is when the pair (M,Msing) is parafactorial. This is
motivated by the question of whether certain automorphic line bundles, giving rise
to Hilbert modular forms, initially defined on the non-singular locus in M, actually
extend to M. We show that (M, Msing) is not parafactorial in the presence of
ramification. See Theorem 4.4.3, and its corollaries, for applications as indicated.

Section 5 discusses the display of an abelian variety with real multiplication.
After some preparatory work, we provide two main theorems. The first, The-
orem 5.6.1, gives the universal display with real multiplication. It uses Theo-
rem 5.6.2 that provides a criterion for a display to be universal. Both theorems
can be generalized considerably, i.e., to the setting of PEL problems, (hopefully)
even with level involving p. Details will appear in [AG4]. The results are applied
in the sequel to study the local properties of the strata. See, for instance, § 8.3.1
and § 9.

In § 6 we provide some general results concerning our stratification in the
maximally ramified case. This continues our investigation in [AG1]. Some of
our results are the following. In § 6.1 we show that each stratum W(j,n) of M
is quasi–affine and we describe the foliation structure, as defined by Oort [Oo4],
on the Newton polygon stratification of M. In § 6.2 we show that certain of the
strata Ta, i.e., where the a-number is greater or equal to a, are connected. In § 6.3
we show (a striking result) that the non-ordinary locus is irreducible for g ≥ 3.

Section 7 develops intersection theory on a complete surface with isolated nor-
mal singularities, building on [RT1, RT2]. Our approach is very concrete and
suitable for the calculations we need to perform. This approach can be developed
further [Arc]. One of the applications we give is determining in Theorem 8.1.1,
for p inert, which automorphic line bundles (yielding Hilbert modular forms of,
usually, non-parallel weight) are ample.

Finally, in § 9 we study in some detail Hilbert modular threefolds in the max-
imally ramified case.

2. Definitions and notations

Let L be a totally real field of degree g over Q with ring of integers OL. Let DL be
its different ideal and dL its discriminant. Let p be a rational prime and p a prime
of OL dividing p. We let Fp denote the residue field OL/p. Let a1, . . . , ah+ be
ideals of L forming a complete set of representatives for the strict class group cl+(L)
of L. By an abelian variety with RM we shall mean a triple (A → S, ι, λ) consisting
of an abelian scheme A of relative dimension g over a scheme S; an embedding
of rings ι : OL ↪→ EndS(A); an isomorphism of OL-modules with a notion of
positivity λ : ai → MA := HomOL

(A,At)symm, where At is the dual abelian variety
(for some, necessarily unique, i). One imposes the condition A⊗OL ai

∼= At. By a
µN -level structure we mean an embedding of OL-S-group schemes µN⊗ZOL → A.
Let F be the composite of the fields Fp for every p dividing p. The moduli problem
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of abelian varieties with RM over F–schemes and µN -level structure is a rigid
moduli problem for N ≥ 4. We let M be the moduli space of abelian varieties
with RM defined over schemes and level N ≥ 4 (N prime to p); we let N be
the moduli space obtained by taking an additional level structure consisting of a
connected OL-group scheme of order p. We refer to [AG1, AG2, DP] for details.
Note that our N is slightly different from the one appearing in these references (in
that we assume the subgroup to be connected). See § 5.1.1 for the definition of a
p-divisible group with RM.

The following notation is used: Fq denotes a field with q elements; Z,Q,Zp,Qp

denote the integers, rationals, p-adic integers and p-adic numbers; W(k) denotes
the ring of infinite Witt vectors, with respect to a prime p, over a ring k, andWt(k)
the truncated Witt vectors (a0, . . . , at−1). If C ⊂ k is any subset, we let W(C)
(resp. Wt(C)) denote the vectors in W(k) (resp. Wt(k)) all whose coordinates
belong to C. We denote by F w, V w the Frobenius and Verschiebung maps onW(k),
cf. [Zin, pp. 127-8]. For a Dedekind ring R and a prime ideal p, we let fp =
dimFp

(R/p). In the case of OL, we also let ep be the absolute ramification index
of p and we define gp = epfp.

For a prime p|p ofOL, we letOL,p be the localization ofOL at the multiplicative
set OL \ p, we let ÔL,p be the completion, Lp its field of fractions, and Ôur

L,p be
the ring of integers of the maximal unramified sub-extension of Lp over Qp.

Let k be a perfect field of characteristic p. A p-divisible group over k is called
ordinary if all its slopes are zero and one. An abelian variety over k is called
ordinary if its p-divisible group A(p) is; it is called supersingular if the slopes of
its Newton polygon are all equal 1/2, equivalently, if it is isogenous to a product
of supersingular elliptic curves [Oo1, Thm. 4.2]; it is called superspecial if it is
isomorphic over k̄ to a product of supersingular elliptic curves, equivalently, if F :
H1(A,OA) → H1(A,OA) is zero [Oo2, Thm. 2]. We denote by Ck the category
of local artinian k-algebras (R, m) equipped with an identification R/m = k. We
denote the closure of a set Z in a topological space by Zc.

Let Ag be the Siegel moduli space of principally polarized abelian varieties
of dimension g in characteristic p, § 4.2.1 - often with a rigid prime-to-p level n
structure that is not explicitly specified; Xuni → Ag (or Xuni → M) will denote the
universal object with section e and E = e∗Ω1

Xuni/Ag
(or E = e∗Ω1

Xuni/M) denotes
the Hodge bundle. It is a locally free sheaf of rank g. We let ω = detE.

3. Stratification of Hilbert modular varieties

We shall be concerned primarily with the geometry of the moduli space M. The
moduli space N will provide us with a ‘Hecke correspondence’ at p that we shall
utilize to study certain strata in M. Two particular cases will be considered in
detail: when p is unramified and when p is maximally ramified, i.e., decomposes
as (p) = pg in OL.
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3.1. p unramified.

In this case OL ⊗ Fp
∼= ⊕p|pFp is a sum of fields. Let A/k be a RM abelian va-

riety over a perfect field k ⊇ Fp. It is known that H1(A,OA) is a free OL ⊗Z k
module of rank 1. The kernel of Frobenius F : H1(A,OA) → H1(A,OA) is a
k-subspace of dimension a = a(A). Let us assume that for every p|p an embed-
ding Fp ↪→ k is given, thus a decomposition Fp ⊗ k = ⊕p|pk. The action of Fp

on every OL-eigenspace of H1(A,OA) is either trivial or is given by x acting as
multiplication by xpi

for some 1 ≤ i ≤ fp. The structure of the OL ⊗ k-module
Ker(F : H1(A,OA) → H1(A,OA)) is therefore uniquely determined by a vector
(τp)p|p = (τp)p|p(A) of sets, with τp ⊂ {1, . . . , fp}. There is a natural partial order,
induced from inclusion of sets in each component, on the set of possible vectors
(τp)p|p.

Given any vector (τp)p|p, where each τp ⊂ {1, . . . , fp}, we can define a closed
subset D(τp)p|p of M by the property that for each geometric point x ∈ D(τp)p|p we
have (τp)p|p(Ax) ≥ (τp)p|p. This is a regular subvariety of codimension

∑
p|p |τp|.

For further properties see [Go1, GO].
Consider sets S of the form (τp)p|p with all τp = ∅, except for a single p for

which τp is a singleton. For each such set S one can define a Hilbert modular
form hS whose divisor is DS . Each stratum D(τp)p|p is the transversal intersection
of the divisors DS for S as above satisfying S ≤ (τp)p|p. Furthermore, with
respect to a suitable cusp, the kernel of the q-expansion map is given by the ideal
(hS − 1 :S a set as above). See [Go2, Thm. 2].

Example 3.1.1. For g = 1 (so L = Q) the vector (τp)p|p(A) has a single com-
ponent and there are only two possibilities. Either (τp)p|p(A) = (∅), which cor-
responds to A being an ordinary elliptic curve, or (τp)p|p(A) = ({1}), which cor-
responds to A being supersingular. The locus D(∅) is the whole moduli space (of
codimension 0), and the locus D({1}) is the supersingular locus (of codimension 1).

Example 3.1.2. For g = 2 (L is a real quadratic field) we have two cases:

• p is inert in L. In this case the possibilities for (τp)p|p(A) are the vectors of
sets (∅), ({1}), ({2}), ({1, 2}). The case (∅) corresponds to ordinary abelian
surfaces, the cases ({1}), ({2}) to supersingular, but not superspecial abelian
surfaces, and the case ({1, 2}) to superspecial abelian surfaces. The vari-
ety D(∅) is the whole moduli space, the varieties D1 = D({1}), D2 = D({2})
are (usually reducible) divisors, and D({1,2}) = D1 ¦ D2 is the finite set of
superspecial points. We also know that each Di is a disjoint union of non-
singular rational curves and that D1 and D2 intersect transversely. See
Figure 3.1. See [BG] for details.

• p is split in L. In this case the possibilities for (τp)p|p(A) are (∅, ∅), (∅, {1}),
({1}, ∅), and ({1}, {1}). The case (∅, ∅) corresponds to ordinary abelian
surfaces, the cases (∅, {1}) and ({1}, ∅) to non-ordinary (but not supersin-
gular) abelian surfaces (they are in fact simple abelian surfaces), and the
case ({1}, {1}) to superspecial abelian surfaces.
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superspecial

supersingular

P1

P1

D2D1

Figure 3.1: Hilbert modular surface - inert case.

In this case, the divisors D1 = D(∅,{1}), D2 = D({1},∅) are also each a
disjoint union of non-singular curves but, in contrast with the situation of
inert prime, we have no real information on these curves: they are not the
reduction of Shimura curves, we do not know their genera. We do know,
however, that D1 and D2 intersect transversely and that D1 ¦D2 = D({1},{1})
is precisely the set of superspecial points, and in § 8.2 we provide an argument
that suggests that the components of the Di have usually genus 2.

3.2. p maximally ramified.

Let k ⊇ Fp be a field. In this case OL ⊗ k ∼= k[T ]/(T g), where T may be chosen
to be an Eisenstein element of the discrete valuation ring OL ⊗ Zp. It is known
that H1

dR(A/k) is a free k[T ]/(T g)-module of rank 2 [Rap, Lem. 1.3]. We have a
sequence of k[T ]/(T g) modules

0 −→ H0(A,Ω1
A/k) −→ H1

dR(A/k) −→ H1(A,OA) −→ 0.

We let i = i(A), j = j(A) be the elementary divisors of H0(A,Ω1
A/k), normalized so

that j ≤ i. Note that j = g− i. Thus, there is a k[T ]/(T g)-basis α, β to H1
dR(A/k)

such that

H0(A, Ω1
A/k) ∼= (T i)α⊕ (T j)β.

An easy calculation shows that a(A) ≥ 2j and we let n := n(A) = a(A) − j(A).
Then j ≤ n ≤ g − j.
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We let J = {(j, n) ∈ Z2 : 0 ≤ j ≤ n ≤ g − j}. For every (j, n) ∈ J one proves
[AG1, §5] that there is a locally closed subvariety W(j,n) of M, whose geometric
points parameterize the abelian varieties A with RM such that (j(A), n(A)) =
(j, n). We know [AG1, Thm. 10.1] that W(j,n) is pure dimensional, non-singular
of dimension g−(j+n), that the Newton polygon is constant on W(j,n), consisting
of two slopes (n/g, (g − n)/g) with equal multiplicities (unless n ≥ g/2 and then
the Newton polygon has one slope equal to 1/2), and that the collection {W(j,n) :
(j, n) ∈ J} is a stratification of M. The description of the order defined by “being
in the closure” is complicated to write, but is easy to describe pictorially. We
provide the graphs for g = 1, 2, 3, 4 and 8 in Diagram A. The convention is that
if a point a is above a point b in the graph, and a is connected to b by a strictly
decreasing path, then the strata corresponding to a is in the closure of the strata
corresponding to b.

Diagram A:

g=1

(0, 1)

(0, 0)

g=2

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

g=3

(1, 2)

MMM
(0, 3)

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

g=4

(2, 2)

KKK UUUUUUUU (1, 3) (0, 4)

(1, 2)

MMM
(0, 3)

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

g=8

(4, 4)

KKK UUUUUUUU (3, 5)

UUUUUUUU (2, 6)

UUUUUUUU (1, 7) (0, 8)

(3, 4)

KKK UUUUUUUU (2, 5)

UUUUUUUU (1, 6) (0, 7)

(3, 3)

KKK
(2, 4)

KKK UUUUUUUU (1, 5) (0, 6)

(2, 3)

KKK
(1, 4)

MMM
(0, 5)

(2, 2)

KKK
(1, 3)

MMM
(0, 4)

(1, 2)

MMM
(0, 3)

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

We know that W c
(1,1) = ∪(j,n),j≥1W(j,n) is the singular locus of M, and, in a

sense, j is a measure for severity of the singularities. More precisely, put Sj :=
W c

(j,j) = ∪(s,t),s≥jW(s,t), then, by [DP, §4]

Sj+1 = Ssing
j . (3.1)
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We provide a diagram for the case g = 2; See Figure 3.2. The lower part of the

(0,1) (0,2)
(1,1)

*

N

M

P1

Figure 3.2: Hilbert modular surface - ramified case.

diagram depicts the modular surface M with a description of the local structure
around a point of type (1, 1). The completion of the local ring is a cone, and the
supersingular locus, equal to W c

(0,1), has p + 1 branches at such a point.
One of the main tools used in [AG1] is the correspondence defined by the

moduli space N and its two projections π1, π2 to M. In fact, over W c
(1,1) the

morphisms πi are P1-bundles. In 3.2 we provide a picture for g = 2; in this case
π1, π2 : N → M are blow–ups at the points of type (1, 1) and the p+1–branches of
the locus W c

(0,1) get separated; cf. Proposition 8.3.1. We can trace the invariants of
the image π2π

−1
1 (x) of a point x of type (j, n) under this correspondence. Again,

the formal description is cumbersome and we content ourselves with providing
Diagram B, referring the reader to [AG1] for more details. The convention is that
the invariants along π2π

−1
1 (x) of a point x of type (j, n) are the pairs (j′, n′),

connected to, and in distance one from the pair (j, n) (whether above or below; a
loop is considered distance 1).
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Diagram B:

g=1

(0, 1)

(0, 0)

g=2

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

g=3

(1, 2)

MMM
(0, 3)

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

g=4

(2, 2)

KKK
(1, 3)

MMM
(0, 4)

(1, 2)

MMM
(0, 3)

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

g=8

(4, 4)

KKK
(3, 5)

KKK
(2, 6)

KKK
(1, 7)

MMM
(0, 8)

(3, 4)

KKK
(2, 5)

KKK
(1, 6)

MMM
(0, 7)

(3, 3)

KKK
(2, 4)

KKK
(1, 5)

MMM
(0, 6)

(2, 3)

KKK
(1, 4)

MMM
(0, 5)

(2, 2)

KKK
(1, 3)

MMM
(0, 4)

(1, 2)

MMM
(0, 3)

(1, 1)

MMM
(0, 2)

(0, 1)

(0, 0)

4. Background on the singularities of Hilbert
modular varieties

4.1. Cusps.

Let Xuni → M be the universal abelian scheme with RM and let e : M → Xuni be
the identity section. The Hodge bundle E is a locally free sheaf of rank g over M
defined by e∗Ω1

Xuni/M. Let ω = detE; it is an ample invertible sheaf on M. This
follows from the ampleness of ω on Ag, cf. [FC, V.2 Thm. 2.3] and from the
finiteness of the morphism M → Ag. The Satake compactification MS of M is
defined as Proj(⊕∞n=0Γ(M, ωn)); it is a projective normal variety and MS \M is a
finite set of points, called cusps. Though ω extends to the Satake compactification,
we do not know if the Hodge bundle itself extends.

The set MR = M\Msing is the largest open set S over which the Hodge bundle
is a locally free OL⊗OS-module. One has MR = M if and only if p is unramified
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[DP, Thm. 2.2]. Let k be a big enough finite field so that OL ⊗ k is a direct sum
of local artinian rings with residue field k. Let ICOL ⊗ k be an ideal and let IE
be the sub-sheaf of E corresponding to I, defined over MR⊗k. In general IE does
not extend as a locally free sheaf to the cusps. We illustrate the obstruction below
for g = 2 and p split.

Example 4.1.1. 1. If p = p1 · · · pg is a product of split primes, then the Hodge
bundle is a direct sum E = Ep1 ⊕ · · · ⊕ Epg of line bundles over M. Since
we shall refer to that case later, we introduce the simpler notation E =
L1 ⊕ · · · ⊕ Lg.

Assume, to fix ideas, that g = 2. If L1, say, extended to the cusp as an
invertible sheaf, then so would Lp−1

1 ⊗ ω(p−1)n for every n. Recall that we
have two Hilbert modular form h1, h2 in this situation (the divisor of h1

being D({1},∅), of h2 being D(∅,{1})). The Hilbert modular form h1(h1h2)n is
a section of Lp−1

1 ⊗ω(p−1)n and is not a cusp form. Since the compactification
of M is normal and the cusps are of codimension 2, h1(h1h2)n will extend to
a section of the extension of Lp−1

1 ⊗ ω(p−1)n to the compactification. Usual
base-change arguments, using the vanishing of H1(MS ,Lp−1

1 ⊗ ω(p−1)n) for
large enough n, show that the mod p Hilbert modular form h1(h1h2)n will lift
to a Hilbert modular form in characteristic 0, which is not a cusp form and
has non-parallel weight ((p − 1)(n + 1), (p − 1)n). This is a contradiction,
see [Fre, I, Rmk. 4.8].

2. If p is an inert prime in OL then OL⊗Fpg = ⊕g
i=1Fpg , and the Hodge bundle

is again a direct sum of line bundles E = L1 ⊕ · · · ⊕ Lg over M.

3. If p = pg is maximally ramified, we get a quotient line bundle L of E defined
over MR. We remark that in this case the complement of MR is of codi-
mension 2 in M [DP] and it is not a priori clear whether or not L can be
extended to a line bundle on M. We shall discuss this problem in § 4.4.

4.2. Local models.

Many of the results we stated above require a detailed understanding of the local
(infinitesimal) structure of the moduli space M. Such information may be obtained
by the technique of local models. The theory of local models constructs for a
moduli space B of abelian varieties another scheme Bloc, typically a flag variety,
such that for every geometric point x ∈ B, there exists a geometric point y ∈ Bloc

and an isomorphism of completed local rings

ÔB,x
∼= ÔBloc,y.

Below, we shall use the following notation for Grassmann varieties. Let k be
an algebraically closed field, B be a k-algebra, and let a < b be positive inte-
gers. Assume that a ring homomorphism B → Mb(k) is given. Assume also
that a bilinear alternating pairing 〈 , 〉 on kb is given. We shall use Grass(a, b)
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(resp. Grass(〈 , 〉, a, b); resp. Grass(B, 〈 , 〉, a, b)) to denote the Grassmannian
of a-dimensional subspaces of kb (resp. isotropic; resp. isotropic and B-invariant).
Often implicit in the notation Grass(B, 〈 , 〉, a, b) is a connection between the
pairing and the action of B, e.g., the elements of B are self-adjoint with respect
to the pairing.

4.2.1. The idea of local models. Let Ag be the moduli space of principally
polarized abelian varieties of dimension g in characteristic p. We shall assume
that on Ag, or M, there is a given rigid prime to p level structure, which we
omit from the notation. Given a point x ∈ M, or x ∈ Ag, one can trivialize the
locally free sheaf H1

dR in a Zariski open neighborhood U of x. Then, the locally
free, locally direct summand of rank g given by the Hodge bundle E, provides
a morphism U → Grass(〈 , 〉, g, 2g) (resp. Grass(OL, 〈 , 〉, g, 2g)), where the
Grassmannian is of isotropic g-dimensional (and OL-invariant) subspaces of a 2g-
dimensional space with a perfect alternating pairing. The idea of local models is to
show that this is an isomorphism on the level of completed local rings. There is a
shortcoming to this result in that the morphism is not canonical and therefore it is
not a priori clear how to define the strata coming from the moduli space on the local
model (even in an infinitesimal neighborhood of a point). The crystalline theory
makes this morphism somewhat more canonical. But, in fact, the proof that this
is an isomorphism on the completed local rings often requires an auxiliary scheme
and a dimension count.

Let f : A → S be an abelian scheme and let D∗(A) be the associated Grothendieck-
Messing crystal, defined on the nilpotent crystalline site of S [Gro, §V.4]. This
crystal is defined by

D∗(A) = R1fcrys,∗(OAcrys).

The value of this crystal on S is the de Rham sheaf D∗(A)S = R1f∗(Ω•A/S), hence
it provides us with a locally free direct summand of rank g, EA ⊂ D∗(A)S , which
is f∗ΩA/S . The crucial theorem here is due to Grothendieck [Gro, p. 116].

Theorem 4.2.1. Let S ↪→ S′ be a nilpotent thickening with a divided powers struc-
ture. The filtered Dieudonné functor gives an equivalence of categories between

1. the category of abelian schemes over S′, and

2. the category of pairs (A,E), where A is an abelian scheme over S and E ⊂
D∗(A)S′ is a locally free direct summand which lifts EA ⊂ D∗(A)S. Mor-
phisms are homomorphisms f : A1 → A2 such that the induced morphism
f∗ : D∗(A2)S′ → D∗(A1)S′ satisfies f∗(E2) ⊂ E1.

Let S be the spectrum of an algebraically closed field k. Let S ⊂ S′ be a PD
thickening such that S′ is a local artinian k–algebra. Let A′ → S′ be the trivial
deformation of A over S′ for which D∗(A)S′ = H1

dR(A/S) ⊗k OS′ . Then, given
any other deformation A′′ of A to S′, the canonical isomorphism H1

dR(A′′/S′) ∼=
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H1
dR(A/k) ⊗k OS′ provides us with a submodule EA′′ ⊂ H1

dR(A) ⊗k OS′ lifting
EA ⊂ H1

dR(A). Thus we get a morphism from the functor of deformations over
the nilpotent crystalline site of S to the functor Grass(g, H1

dR(A/k)).
Let T to be the spectrum of ÔM,x and let f : Xuni → T be the universal

object. Trivialize R1f∗(Ω•Xuni/T ) ∼= Ô2g
M,x with respect to a basis horizontal for the

Gauss–Manin connection. Considering the submodule EXuni/T ⊂ R1f∗(Ω•Xuni/T ),
we obtain a morphism T → Grass(OL ⊗ k, 〈 , 〉, g, 2g). Similar constructions can
be made with endomorphism and polarization structures. Using this map and the
crystalline theory, one obtains [DP, Thm. 3.3], [deJ] the following theorem (recall
the tacit assumption of rigid level structure):

Theorem 4.2.2. 1. In the Siegel case, there is an isomorphism

ÔAg,x
∼= ÔG,y,

where G is the Grassmannian variety Grass(〈 , 〉, g, 2g) that parameterizes g-
dimensional isotropic subspaces of H1

dR(A/k) and y is the point correspond-
ing to the Hodge filtration H0(A, Ω1

A/k) ⊂ H1
dR(A/k).

2. In the Hilbert case, there is an isomorphism

ÔM,x
∼= ÔG,y,

where G is the Grassmannian variety Grass(OL⊗k, 〈, , 〉, g, 2g) that param-
eterizes g-dimensional isotropic OL-invariant subspaces of H1

dR(A/k) and y
is the point corresponding to the Hodge filtration H0(A, ΩA/k) ⊂ H1

dR(A/k).

Remark 4.2.3. The theorem holds, for a suitably formulated Grassmannian prob-
lem, without the restriction to characteristic p. See [DP, deJ]

4.3. Examples.

We only consider deformations in characteristic p.

4.3.1. The Siegel case. Let V be a 2g-dimensional vector space, let Γ ⊂ V be
a g-dimensional subspace of V and choose a complementary subspace W ⊂ V
such that V = Γ ⊕ W . Then an affine chart of Grass(g, V ) about Γ is given by
Hom(Γ,W ). Given t ∈ Hom(Γ,W ) we associate to it its graph.

Suppose that V has a symplectic pairing and Γ is isotropic. Choose a ba-
sis a1, . . . , ag to Γ and complete it to a standard symplectic basis by b1, . . . , bg.
Take W to be the span of b1, . . . , bg. We may identify t with a g × g matrix (ti,j)
such that aj 7→ aj +

∑
i ti,jbi.

The graph of t is isotropic if and only if for each j, k we have

(aj +
∑

i

ti,jbi) ∧ (ak +
∑

i

ti,kbi) = 0. (4.1)
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Since (aj +
∑

i ti,jbi) ∧ (ak +
∑

i ti,kbi) = tj,k − tk,j , Equation (4.1) is equivalent
to (ti,j) being a symmetric matrix. This is of course in accord with Ag (with a rigid
level structure prime to p) being a non-singular variety of dimension g(g + 1)/2.

4.3.2. The Hilbert case. We again consider two cases.

• The inert case. In this case we have a decomposition OL⊗k = ⊕g
i=1k. We

denote the projection of OL on the i-th component by σi. One may assume
that Frob ◦ σi = σi+1. We then have

H1
dR(A/k) = ⊕g

i=1D(i),

where each D(i) is a two dimensional k-vector space with a perfect alternat-
ing pairing, on which OL acts via σi. There is a compatible decomposition

H0(A, ΩA/k) = ⊕g
i=1H(i),

where each H(i) is a one dimensional k-vector space on which OL acts via σi.
The Grassmannian is therefore isomorphic to

Grass(1, 2)g ∼= (P1
k)g.

Note that the completed local ring of every point x on M is isomorphic to
the completed power series ring k[[t1, . . . , tg]], where ti is canonical up to an
element of k[[ti]]×.

• The maximally ramified case. In this case

H1
dR(A/k) ∼= k[T ]/(T g)⊕ k[T ]/(T g).

The Grassmannian Grass(OL ⊗ k, 〈 , 〉, g, 2g) is that of parameterizing
isotropic g-dimensional subspaces that are OL-invariant. One can show [DP]
that one can replace the k-valued pairing, for which the action of OL is self-
adjoint, by a k[T ]/(T g)-valued pairing, which is k[T ]/(T g)-linear.

Given A/k we can find a basis α, β of H1
dR(A/k) such that

H0(A, ΩA/k) = (T i)α⊕ (T j)β, α ∧ β = 1,

where j = j(A), i = g − j, i ≥ j. This determines i, j uniquely. We choose
the complementary subspace to be

i−1⊕
s=0

T skα⊕
j−1⊕
s=0

T skβ.

The deformations f of H0(A, ΩA/k) in H1
dR(A/k) that are OL-linear are

determined as follows. Under f ,

T iα 7→ T iα+
i−1∑
s=0

asT
sα+

j−1∑
s=0

bsT
sβ, T jβ 7→ T jβ +

i−1∑
s=0

csT
sα+

j−1∑
s=0

dsT
sβ.
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We write that in shorthand notation as

T iα 7→ T iα + aα + bβ, T jβ 7→ T jβ + cα + dβ,

with

a =
∑i−1

s=0 asT
s, b =

∑j−1
s=0 bsT

s,

c =
∑i−1

s=0 csT
s, d =

∑j−1
s=0 dsT

s.

To have an isotropic subspace we must require

(T iα + aα + bβ) ∧ (T jβ + cα + dβ) = 0.

This is equivalent to

ad− bc + aT j + dT i = 0.

It then follows that the OL ⊗ k-span of T iα + aα + bβ, T jβ + cα + dβ is a
g-dimensional isotropic OL-invariant subspace.

Example 4.3.1. j = 0 (non-singular points). In this case i = g. We get
immediately b = d = 0 and hence also a = 0. It follows that c =

∑g−1
s=0 csT

s

is unobstructed and we conclude that the completed local ring is isomorphic
to

k[[c0, . . . , cg−1]].

Example 4.3.2. g = 2, i = j = 1. In this case we find the equation

a0d0 − b0c0 + a0T + d0T = 0.

We get the relations a0 = −d0 and a0d0 − b0c0 = 0. This gives that the
completed local ring is isomorphic to

k[[a0, b0, c0]]/(a2
0 + b0c0).

Example 4.3.3. g = 3, j = 1, i = 2. We have

a = a0 + a1T, b = b0

c = c0 + c1T, d = d0.

with the equation

(a0d0 − b0c0) + (a0 + a1d0 − b0c1)T + (a1 + d0)T 2 = 0.

This yields d0 = −a1, a0 = a2
1 + b0c1 and that the completed local ring R is

isomorphic to

k[[a1, b0, c0, c1]]/(a3
1 + a1b0c1 + b0c0),
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which is 3-dimensional with a tangent cone at the origin defined by b0c0 = 0.
The singular locus of Spec(R) is given by b0 = c0 = 0 (which implies a1 = 0)
and is hence one dimensional, isomorphic to Spec(k[[c0]]).

4.4. Singular points.

Using the local models one can show [DP, Thm. 2.2] that M is singular if and only
if p is ramified in OL and that the singular locus is of codimension 2. However,
the singularities are local complete intersections, hence Cohen-Macaulay and so
normal, by Serre’s criterion. We remark that, in particular, the completed local
rings are domains, i.e., the moduli space is locally (formally) irreducible.

In local commutative algebra a property which is subtle and of interest is
the property of parafactoriality. The definition is motivated by its relation to
factoriality and representability of the local Picard functor of invertible sheaves.
For this we refer the interested reader to the references below and to [Lip1]. A
noetherian local ring (R, m) is called parafactorial if it is of depth at least 2 and
if Pic(R− {m}) = 0. A global definition follows:

Definition 4.4.1. Let (X, Z) be a pair consisting of a ringed space X and a closed
subset Z. Let U = X \Z. One says that (X,Z) is parafactorial if, for every open
set V of X, the restriction functor M 7→ M|U∩V , from the category of invert-
ible OV -modules to the category of invertible OU∩V -modules, is an equivalence of
categories.

We refer the reader to [EGA IV, §21.13], [SGA 2, Exp. XI] for details. In partic-
ular, [EGA IV, §21.13.8] gives the equivalence of the definitions for local rings.

Lemma 4.4.2. Let k be a field. Let R be the ring

k[[a0, . . . , ag−2, b0, c0, . . . , cg−2, d0, x1, . . . , xN ]]/
(a0d0 − b0c0, ag−2 + d0, {aid0 + ai−1 − b0ci : 1 ≤ i ≤ g − 2}). (4.2)

The closed set Spec(R)sing is defined by the ideal (a0, b0, c0, d0) of R. The pair
(Spec(R),Spec(R)sing) is not parafactorial.

Proof. First, one proves that R is isomorphic to the ring

k[[b0, c0, . . . , cg−2, d0, x1, . . . , xN ]]/
(
b0c0 − d0b0c1 + d2

0b0c2 − d3
0b0c3 + . . . + (−1)g−2dg−2

0 b0cg−2 + (−1)g−2dg
0

)
,

(4.3)

cf. proof of Lemma 6.3.4. Then, a direct application of the Jacobi criterion gives
that Spec(R)sing is defined by the ideal (a0, b0, c0, d0).

Let Uab (resp. Ucd) denote the open set where either a0 or b0 (resp. c0 or d0)
are not zero. Note that U := Uab ∪ Ucd = Spec(R) − Spec(R)sing. We consider
the closed subscheme given on Uab ∪Ucd by (b0, d0). Note that by Equation (4.2),
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this closed subscheme is an irreducible reduced Weil divisor D0 on Uab ∪ Ucd,
automatically locally principal. Now, consider the closed subscheme D of Spec(R)
defined by the same ideal (b0, d0). There is unique extension of D0 as a Weil divisor
to Spec(R) which is just D (because Spec(R)sing has codimension 2). If the pair
(Spec(R),Spec(R)sing) is parafactorial then the invertible sheaf OU (D0) extends
to an invertible sheaf F over Spec(R). By [Har, Prop. II.6.15] F ∼= O(D′),
where D′ is locally principal and, without loss of generality, D′|U = D0 and
so D′ = D. Thus, it remains to prove that D is not locally principal. We follow
the argument of [Har, II 6.5.2].

Assume that D is locally principal. Let mR be the maximal ideal of R. Then D
is given by a unique equation in mR/m2

R. But mR/m2
R is just the k-vector space

with basis b0, c0, . . . , cg−2, d0, x1, . . . , xN . On the other hand, clearly D is given in
mR/m2

R by b0, d0. Contradiction. ut

Theorem 4.4.3. Assume that p ramifies in OL. Then the pair (M, Msing) is not
parafactorial. In fact, there is an invertible subsheaf L of the Hodge bundle that
does not extend to any open set strictly containing MR = M−Msing.

If p is maximally ramified, then L = pg−1E, and L extends to an invertible
sheaf over N.

Proof. Assume that (p) = pe1
1 · · · per

r in OL and that e1 > 1. Let k be an alge-
braically closed field of characteristic p. Write OL⊗k = ⊕r

`=1⊕f(p`/p)
m=1 km[T ]/(T e`),

with km = k for all m.
Consider a k-rational point x on M with the property that H0(Ax,ΩAx/k) =

⊕r
`=1⊕f(p`/p)

m=1 U`,m with U`,m = km[T ]/(T e`), except for U1,1, which is taken to be
the km[T ]/(T e1) module given by (T ) ⊕ (T e1−1). The closure of the collection of
such points is a closed subscheme Z of M. Cf. 3.2, 4.3.2.

The completed local ring S of x is by the theory of local models isomorphic to
⊗̂r

`=1⊗̂
f(p`/p)

m=1 R`,m, with R`,m a power series ring over k, except for R1,1, which is
isomorphic to the ring R in Equation (4.2) with g = e1 and N = 0. That is, the
ring S is itself of the form given in Equation (4.2) with Z = Spec(S)sing.

Suppose that (M, Msing) is parafactorial. Recall that over MR = M −Msing

the relative cotangent space of the universal abelian scheme is a locally free[
⊕r

`=1 ⊕f(p`/p)
m=1 km[T ]/(T e`)

]
⊗k OMR module. Consider the invertible sheaf L

defined on MR by the ideal ⊕r
`=1⊕f(p`/p)

m=1 I`,m with I`,m equal to 0, except for I1,1,
which is equal to T e1−1k1[T ]/(T e1).

Since the pair (M, Msing) is parafactorial, it follows that the invertible sheaf L
can be extended from U := Spec(S)− Z to Spec(S).

The de Rham sheaf corresponds under the theory of local models to a freeOL⊗k

S module with generators α, β, and L is then the submodule generated over U
by T e1−1a0α + T e1−1b0β and T e1−1c0α + T e1−1d0β.

Let Uab (resp. Ucd) denote the open set where either a0 or b0 (resp. c0 or d0)
are not zero. We have a trivialization of L over Uab (T e1−1a0α + T e1−1b0β is
a basis) and over Ucd (T e1−1c0α + T e1−1d0β is a basis). Note that on S we
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have the relation a0d0 = b0c0. The transition function between the trivializations
is d0/b0 = c0/a0.

Let D be the divisor on Spec(S) defined by the ideal (b0, d0). The divisor D
is defined on Uab by b0 and on Ucd by d0 and so has the same transition function
as L. Parafactoriality implies that D must be locally principal, cf. the proof of
Lemma 4.4.2. But we have shown in that proof that this is not the case.

To show that L cannot be extended outside MR we argue as follows: Let K
be a closed set that contains every point x as constructed above (where we allow
a different choice of `, m as long as e` > 1). Such points are dense in Msing as
follows from [DP, §4]. Therefore, K ⊃ Msing. Hence, if U is an open set strictly
containing MR then U contains such a point x. But we have shown that L cannot
be extended as an invertible sheaf over the completed local ring of x.

Assume now that p is maximally ramified. The first claim was already proven.
To prove the second claim, consider the Lie algebra of the subgroup defining the
moduli problem N. It provides us with a locally free quotient sheaf H of the
Hodge bundle E over N. We claim that when we restrict H to NR = MR then H
is isomorphic to L. This follows from the fact that over MR the Hodge bundle E
has a canonical filtration E ⊃ pE ⊃ · · · ⊃ pg−1E ⊃ 0, with successive graded pieces
being isomorphic under multiplication by T . ut

Corollary 4.4.4. Assume that p is maximally ramified in OL. The section of the
morphism N → M, A 7→ (A, T g−1Ker(FA)), defined on MR, does not extend to
any open set strictly containing MR.

Proposition 4.4.5. Let x be a (scheme theoretic) point of M of codimension at
least 4. Then the local ring of x is parafactorial. If p is unramified in OL, the
local ring of x is parafactorial for any x.

Proof. Let x be a (scheme theoretic) point of M. By [SGA 2, Exp. XI, Cor. 3.7],
to show that the local ring OM,x is parafactorial it is enough to show that ÔM,x is
parafactorial. If x is of codimension at least 4, the ring ÔM,x is of dimension ≥ 4
and is a complete intersection by the theory of local models (see [DP, Prop. 4.4]).
It follows from [SGA 2, Exp. XI, Thm. 3.13] that it is parafactorial.

It is known that a regular noetherian local ring of dimension at least 2 is
parafactorial - a result due to Auslander-Buchsbaum - cf. [SGA 2, Thm. 3.13],
[EGA IV, §21.13.9 (ii)]. ut

The parafactoriality of the completed local rings of closed points on M is com-
pletely covered by the results above except for the situation g = 3 and (p) =
p2q. In this case, the completed local ring of any non-singular point is of the
form k[[x, y, z]]/(z2 + xy)⊗̂k[[t]]. Such a ring is parafactorial [Bou, III, Prop. 1.2].
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5. The display of an abelian variety with RM

We wish to study the local deformation theory of abelian varieties with RM in
characteristic p > 0. In this paper we only study equi-characteristic deformations.
Our main tools are the theory of local models and the theory displays, both avail-
able in the arithmetic setting as well. One thus hopes that the methods below will
extend to the arithmetic setting.

Let x ∈ M be a k-valued point, where k is an algebraically closed field of
characteristic p. The theory of local models allows us to determine the ring ÔM,x,
and even the behavior of the strata Sj , but falls short of describing the behavior
of the strata W(j,n).

As we shall explain, the local deformation theory factors according to the prime
ideals dividing p in OL and that allows us, essentially, to assume that the p-
divisible group Ax(p) is either ordinary, or local-local. The first case is studied
very effectively using Serre-Tate coordinates but is of no interest to us in this
paper. In order to study the second case, we make use of the theory of displays as
reformulated and developed by Zink [Zin].

Our main idea, which is similar to [Zin, §2.2], is the following. Suppose, for
simplicity, that the abelian variety Ax has a local-local p-divisible group. Then,
the display associated to the abelian scheme A → Spec(ÔM,x), whose fiber over
the closed point is Ax, is universal with respect to the problem of deformations
over local artinian k-algebras (R, m) with R/m = k of the polarized OL-display
associated to Ax. Indeed, the universality is one of Zink’s main results.

On the other hand, the theory of local models provides us with a concrete
model R for ÔM,x, which is the completion of the local ring of a point on a
suitable Grassmann variety. We view the universal display Puni as lying over R.
We explicitly construct a display P over R that we want to show is universal.
By the universal property, P is obtained from Puni by base change coming from
a unique map ϕ : R → R. At least over R/m2

R, the Hodge filtrations defined
by Puni and P produce two maps (that are unique) ψ1, ψ2 : R → R, coming from
the interpretation of R as a completed local ring of a point on a Grassmannian, and
the crystalline nature of displays. One gets a commutative diagram ϕ ◦ ψ1 = ψ2.
We then argue that, in fact, ψ1 and ψ2 are isomorphisms, hence so is ϕ. The
universality of P ensues.

We next discuss the connection to a well known result that gives the universal
display for the Siegel case [Oo3, pp. 412-414],[Zin, Eqn. (86)]. Let (X, λ)/k be a
principally polarized abelian variety over an algebraically closed field k of charac-
teristic p > 0 and choose a symplectic basis for the display of X to yield a matrix
( A B

C D ), as explained in [Zin, pp. 128-9]. Let R := k[[tij : i, j = 1, · · · , g]]/(tij − tji)
be the completed local ring provided by the theory of local models (cf. § 4.3.1). It
is identified, non-canonically, with the completed local ring of the k-rational point
of Ag corresponding to (X, λ) (the usual choice of auxiliary rigid level structure
prime to p is required for that). Let Tij be the Teichmüller lift of tij and let T be
the square g× g matrix (Tij). The universal display for the universal infinitesimal
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equi-characteristic deformation of (X, λ) is then given by

(
A + TC B + TD

C D

)
. (5.1)

Note, for example, that A + TC is the “universal Hasse-Witt matrix” and thus
the non-ordinary locus is infinitesimally defined by the equation det(A + TC) = 0
(mod p). This determinant can be interpreted as the Hasse invariant - a Siegel
modular form of weight p− 1 that vanishes exactly along the non-ordinary locus.

Equation (5.1) is a red herring of a sort. In that expression the Hodge filtration
“seems constant”; namely, in the specified basis e1, . . . , e2g, with respect to which
the display is given, the kernel of Frobenius modulo p is the span of eg+1, . . . , e2g.
As such, its behavior is exactly the opposite of the behavior expected from the
crystalline theory and the theory of local models.

However, consider the automorphism of the underlying module of the display
provided by ( I T

0 I ) and write
(

A+TC pB+TpD
C pD

)
= ( I T

0 I )
(

A pB
C pD

)
. One checks that

with respect to a suitable basis (see below) the Frobenius operator is given by

(
A pB
C pD

)(
I T σ

0 I

)
=

(
A ATσ + pB
C CT σ + pD

)
. (5.2)

The kernel of the Frobenius operator modulo p is now spanned by the columns
of the matrix

(−T
I

)
, which indeed has the “desired maximal variation” dictated

by the local model. The point is, the basis in which Equation (5.1) is given is
not horizontal with respect to the Gauss-Manin connection, whereas the basis in
which Equation (5.2) is written is, at least over R/m2

R. As will become apparent
from the discussion below (§ 5.6), this is enough to conclude that this display is a
universal display.

We make all this more precise. Consider the composition φ◦τ of two operators,
φ being a σ-linear map and τ being a linear automorphism. Here the operators are
operating on the underlying module of the display of the special fibre, extended
trivially to a display over R. We take φ to be the Frobenius operator and τ the
automorphism expressed in a basis B by ( I T

0 I ). Let [φ ◦ τ ]B be the expression of

φ◦ τ as a matrix with respect to the basis B. Then [φ◦ τ ]B =
(

A AT σ+pB
C CT σ+pD

)
. Let C

be the basis τ−1(B). Then [φ ◦ τ ]C = [τ ]B[φ]B =
(

A+TC pB+TpD
C pD

)
.

Furthermore, let IR be the augmentation ideal of W(R), IR =V W(R). Let K
be the kernel of φ (mod IR) so τ−1(K) is the kernel of φ ◦ τ (mod IR). Let [K]B
be the set of coordinate vectors expressing K in the basis B (mod IR). Then we
have [τ−1(K)]C = [K]B, but of course [τ−1K]B =

(
I −T
0 I

)
[K]B.

According to Zink’s theory (see [Zin, Thm. 44] and §5.1.3 below) the display P0

over k determined by ( A B
C D ) gives a crystal DP0 over the nilpotent crystalline site

of Spec(k). To conclude our discussion, it remains to show that there is a display
P over R, whose Frobenius operator is given by (5.2), such that the isomorphism
from P̂ (mod m2

R) to P̂0⊗W(R/m2
R), dictated by the crystalline theory, is simply
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the identity. In essence, that follows from the fact that the operator
(

I T σ

0 I

)
is the

identity when reduced modulo IR and then modulo m2
R.

5.1. Recall.

In this section we review the theory of displays, developed in [Zin], discussing a
variant where a real multiplication is considered. Having in mind applications to
local models, we recall the connection between displays and crystals as developed
in [Zin].

5.1.1. The deformation theory of abelian varieties is equivalent, by Serre-Tate,
to the deformation theory of their p-divisible groups. One wishes to isolate the
type of p-divisible groups on which OL acts as endomorphisms that arise in this
fashion from RM abelian varieties. To illustrate the problem, note that if p splits
in OL then OL acts as endomorphisms of any one dimensional p-divisible group,
but does not act on any elliptic curve. To rule out such possibilities we make the
following definition:

Definition 5.1.1. Let B be a finitely generated Zp-algebra. Let k be a field of
characteristic p. Let G be a p-divisible over k on which B acts as endomorphisms.
We say that G has RM by B if the Dieudonné module of G ⊗k kalg is a free
B ⊗Zp W(kalg)-module of rank 2. We say that G has RM by OL if it has RM by
OL ⊗Z Zp in the sense just defined.

Let R be a local Noetherian ring with residue field k as above. A p-divisible
group G over R is said to have RM by B if B acts as endomorphisms of G and
G⊗ k has RM by B in the sense defined above. Ibid. for RM by OL.

A polarized p-divisible group with RM over a ring R as above, is a pair (G,λ)
where G is a p-divisible group over R with RM by B and λ : G → Gt is a B-linear
symmetric isomorphism.

5.1.2. Let R be an Fp–algebra. Let W(R) be the Witt vectors over R and let IR

be the kernel of the ring homomorphism W(R) → R given by projection on the
first coordinate.

A polarized display P over R with real multiplication by OL, a RM display
for short, is a quintuple

(
P,Q, F, V −1, 〈 , 〉) consisting of:

1. a projective OL ⊗ZW(R)-module P of rank 2;

2. a finitely generated OL⊗ZW(R)-submodule Q of P such that IRP ⊂ Q ⊂ P
and P/Q is a direct summand of the R-module P/IRP ;

3. additive maps F : P → P and V −1 : Q → P , which are linear with respect
to OL and σ-linear with respect to W(R), and satisfy V −1

(
V wy

)
= wF (y)

for any w ∈W(R) and any y ∈ P . One imposes a further nilpotence condi-
tion [Zin, Def. 2];



Hilbert modular varieties of low dimension 21

4. an OL ⊗W(R)-bilinear map 〈 , 〉 : P × P → D−1
L ⊗W(R) satisfying the

identity V 〈V −1(x), V −1(y)〉 = 〈x, y〉 for every x and y in Q.

Define

DP := P/IRP, HP := Q/IRP.

The filtration HP ⊂ DP is called the Hodge filtration of P.
Replacing OL with its completion OLp and DL with its completion at p, one

gets the notion of a polarized display with OLp–action.

The main example of a display is the Dieudonné module. Let k be a perfect
field of characteristic p and let G be a connected polarized p-divisible group with
RM by OL over k. Then the Dieudonné module of G, say P , equipped with its
Frobenius and Verschiebung morphisms and OL-bilinear pairing, gives the RM
display (P, V P, F, V −1, 〈 , 〉).

A variant of [Zin, Thm. 9] is the following:

Theorem 5.1.2. Let R be an excellent local ring or a ring such that R/pR is
an algebra of finite type over a field k. Assume that p = 0 in R. Then there
is a natural equivalence of categories between the category of polarized connected
p-divisible groups over R with RM by OL (resp. OLp) and the category of displays
over R with RM by OL (resp. OLp).

5.1.3. The following is a consequence of [Zin, Thm. 44]. Let S → R be a
surjective homomorphism of rings such that p is nilpotent in S and its kernel a
is equipped with divided powers. Let P :=

(
P, Q, F, V −1, 〈 , 〉) be an RM display

(or a polarized display withOLp–action) over R. Let Pi =
(
Pi, Qi, Fi, V

−1
i , 〈 , 〉1

)
,

i = 1, 2, be RM displays (or polarized displays with OLp–action) over S reducing
to P. Let Q̂i be the inverse image of Q via Pi → P . Then, V −1

i extends uniquely
to Q̂i. The theorem states that there is a unique isomorphism,

α : P̂1 :=
(
P1, Q̂1, F1, V

−1
1

) −→ P̂2 :=
(
P2, Q̂2, F2, V

−1
2

)
,

reducing to the identity on P and commuting with the OL-action (or OLp–action).
Hence, the sheaf P

(
Spec(R) ⊂ Spec(S)

)
:= P1 on the crystalline site (of pd-

thickenings with kernel a nilpotent ideal) of Spec(R) defines a crystal. Analo-
gously, DP1 and DP2 are canonically isomorphic. Hence, the sheaf D

(
Spec(R) ⊂

Spec(S)
)

:= DP1 on the crystalline site of Spec(R) defines a crystal called the
covariant Dieudonné crystal.

Let A be an abelian variety over R with RM, let G be its p-divisible group and
let P be the associated display. The crystal DP is canonically isomorphic to the
crystal D∗(At). See [Zin, Thm. 6] and [MM, II (1.5)].

5.2. Factorizing according to primes.

5.2.1. The local deformation theory and displays.



22 Fabrizio Andreatta and Eyal Z. Goren

Lemma 5.2.1. Let k be an algebraically closed field of positive characteristic p.
Let x ∈ M be a k-valued point. Then,

1. the RM p-divisible group Ax(p) factors canonically as the product of the OLp-
polarized p-divisible groups, denoted Ax(p);

2. for each p, the OLp-polarized p-divisible group Ax(p) is either ordinary or
local-local. Its Dieudonné module is a free OLp ⊗ZW(k)-module of rank 2;

3. the functor of deformations of Ax(p) on Ck as an OL-polarized p-divisible
group is naturally equivalent to the direct product, over p dividing p, of the
functors of deformations of Ax(p) on Ck as an OLp-polarized p-divisible
group.

One considers RM displays as in §5.1 and polarized displays with OLp action.
It is easy to see that the first category is naturally isomorphic to the direct product
of the categories of polarized displays with OLp action, where p runs over primes
factor of pOL.

Under the equivalence of categories stated in Theorem 5.1.2 between deforma-
tions of connected p-divisible groups and displays, the decomposition according to
primes is respected.

5.2.2. The associated local model. Let D0 be the OL-module OL⊗k⊕OL⊗k,
let 〈 , 〉 : D0 ×D0 → ∧2

OL
D0 = OL ⊗ k be the wedge product, and let H0 ⊂ D0

be an isotropic OL⊗ k-submodule of D0 having dimension g over k. Let R be the
complete local ring pro-representing the moduli problem of associating to a local
artinian k-algebra (S,mS) an OL⊗S-submodule H of D := D0⊗k S, such that H
is free as a S-module, is a direct summand of D, is totally isotropic with respect
to the pairing 〈 , 〉, and reduces to H0 modulo mS . The ring R is isomorphic
to the completion of the local ring of the point corresponding to (H0, D0) in the
appropriate Grassmann variety Grass(OL ⊗ k, 〈 , 〉, g, 2g).

The Grassmann variety Grass(OL ⊗ k, 〈 , 〉, g, 2g) is canonically isomorphic to
the product, over p|p, of the Grassmann varieties Grass(OL,p ⊗ k, 〈 , 〉p, gp, 2gp).
In particular, writing D0 = ⊕pD0(p), H0 = ⊕pH0(p), using the decomposi-
tion OL ⊗ k = ⊕p|pOLp ⊗ k, and noting that the pairing decomposes accord-
ingly, we find that R = ⊗̂p|pR(p), where R(p) is the completed local ring of the
point (H0(p), D0(p)) on the Grassmann variety Grass(OL,p⊗k, 〈 , 〉p, gp, 2gp) and
the completed tensor product is taken over k.

5.3. The setting in which the theorems are proved.

Using the decomposition above, one sees that the construction of the universal
RM display (for deformations of a given RM display over k) may be considered
“one prime at a time”, and therefore, for notational convenience, one may as-
sume that pOL = pe. The results in this section will be formulated under this
assumption, from which the more general assertions follow immediately.



Hilbert modular varieties of low dimension 23

We set the following notation: pOL = pe, f = [OL/p : Fp]. Let σ1, . . . , σf

denote the embeddings of Ôur
L,p → W(k), ordered such that F (·) ◦ σi = σi+1.

Note that OL ⊗W(k) = ⊕f
i=1B(i), where the decomposition is induced by the

isomorphism W(Fpf ) ⊗Zp
W(k) ∼= ⊕f

i=1W(k), a ⊗ λ 7→ (. . . , σi(a)λ, . . .). We also
have OL ⊗ k = ⊕f

i=1B(i) with the obvious notation. Note that B(i) ∼= k[T ]/(T e),
where T is the reduction of an Eisenstein element for the extension ÔL,p/Ôur

L,p.
For any k-algebra S denote by F · and V · the maps on OL ⊗W(S) given by

F (`⊗ w) 7→ `⊗ F w and V (`⊗ w) 7→ `⊗ V w for all ` ∈ OL and w ∈W(S).

5.4. Further decomposition of the local model.

For r = 1, . . . , f let

D0(r) := B(r)⊕B(r)

and denote by 〈 , 〉 : D0(r)×D0(r) → B(r) the wedge product. Let H0(r) ⊂ D0(r)
be an isotropic B(r)-submodule of D0(r) having dimension e over k. There exist
a basis {α(r), β(r)} of D0(r), as a B(r)-module, such that 〈α(r), β(r)〉 = 1 and

H0(r) = (T i(r))α(r)⊕ (T j(r))β(r)

for uniquely determined integers e ≥ i(r) ≥ j(r) ≥ 0 satisfying i(r) + j(r) =
e. Let R(r) be the complete local ring pro-representing the moduli problem of
associating to an object (S, mS) of Ck a B(r) ⊗ S-submodule H(r) of D(r) :=
D0(r)⊗k S such that H(r) is free as a S-module, is a direct summand of D(r), is
totally isotropic with respect to the pairing 〈 , 〉, and reduces to H0(r) modulo mS .
Then,

R(r) ∼= k[[a(r)0, . . . , a(r)i(r)−1, b(r)0, . . . , b(r)j(r)−1,

c(r)0, . . . , c(r)i(r)−1, d(r)0, . . . , d(r)j(r)−1]]/(
a(r)d(r)− b(r)c(r) + a(r)T j(r) + d(r)T i(r)

)
,

where a(r) := a(r)0+. . .+a(r)i(r)−1T
i(r)−1, b(r) := b(r)0+. . .+b(r)j(r)−1T

j(r)−1,
c(r) := c(r)0 + . . . + c(r)i(r)−1T

i(r)−1 and d(r) := d(r)0 + . . . + d(r)j(r)−1T
j(r)−1.

The universal flag H(r) ⊂ D(r) over R(r) is defined by the B(r)-span of T i(r)α(r)+
a(r)α(r)+b(r)β(r) and T j(r)β(r)+c(r)α(r)+d(r)β(r). Note that the Grassmann
variety Grass(OL ⊗ k, 〈 , 〉, g, 2g) decomposes as the product of the Grassmann
varieties Grass(B(r), 〈 , 〉r, e, 2e). Hence,

R ∼= ⊗̂f
r=1R(r).
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5.5. The display over the special fiber and its trivial
extension.

Let P0 :=
(
P0, Q0, F0, V

−1
0 , 〈 , 〉0

)
be a RM display over k with an OL ⊗ k-linear

isomorphism of the Hodge filtration HP0 ⊂ DP0 with H0 ⊂ D0, compatible with
the pairings on P0 and D0. Choose a decomposition P0 = ⊕r

(
B(r)α(r)⊕B(r)β(r)

)
as OL ⊗W(k)-module so that P0/pP0 = D0, Q0/pP0 = H0 and 〈α(r), β(r)〉0 = 1.
Note that F0 = ⊕F0(r), a direct sum of F -linear maps, and

F0(r) [B(r)α(r)⊕B(r)β(r)] ⊂ [B(r + 1)α(r + 1)⊕B(r + 1)β(r + 1)] .

The matrix of F0(r) with respect to the bases {α(r), β(r)} and {α(r+1), β(r+1)}
is of the form

F0(r) :=
(

T j(r)g1,1(r) T i(r)g1,2(r)
T j(r)g2,1(r) T i(r)g2,2(r)

)
. (5.3)

To state the main theorem of this section we need some more notation. Let â(r)s,
b̂(r)t, ĉ(r)s and d̂(r)t be the Teichmüller lifts in W

(
R(r)

)
of a(r)s, b(r)t, c(r)s

and d(r)t for 1 ≤ r ≤ f , 0 ≤ s ≤ i(r) − 1 and 0 ≤ t ≤ j(r) − 1. Define â(r) :=∑i(r)−1
s=0 â(r)sT

s, b̂(r) :=
∑j(r)−1

s=0 b̂(r)sT
s, ĉ(r) :=

∑i(r)−1
s=0 ĉ(r)sT

s and d̂(r) :=∑j(r)−1
s=0 d̂(r)sT

s; these are elements of B(r)⊗W(k) W
(
R(r)

)
. Let

n(r) := â(r)d̂(r)− b̂(r)ĉ(r) + â(r)T j(r) + d̂(r)T i(r).

Lemma 5.5.1. Let M(r) be the maximal ideal of R(r). Then, the element F n(r)
lies in T eB(r)⊗W(k) W

(
M(r)

)
. Let

ur := 1 + T−e F n(r).

Then ur is a unit in B(r)⊗W(k) W
(
R(r)

)
.

Proof. Note that T eB(r)⊗W(k)W
(
M(r)

)
is equal to pB(r)⊗W(k)W

(
M(r)

)
. Since

multiplication by p coincides with the composition of Verschiebung and Frobenius,
we conclude that pW

(
M(r)

)
consists of the Witt vectors (a0, a1, . . .) with a0 = 0

and ai ∈ F M(r). The assertion concerning F n(r) follows. Note that u(r) lies
in 1 + B(r)⊗W(k) W

(
M(r)

)
. It is a unit by Lemma 5.5.2. ut

Lemma 5.5.2. Let S be a k–algebra. Let v ∈ B(r)⊗W(k)W(S). Assume that the
image v of v via the composition B(r)⊗W(k)W(S) → B(r)⊗W(k) S → S is a unit.
Then, v is a unit.

Proof. Let Norm on B(r)⊗W(k)W(S) (resp. B(r)⊗W(k)S) be the norm as aW(S)-
module (resp. a S-module). Then, v (resp. v) is is a unit if and only if Norm(v)
(resp. Norm(v)) is a unit. Hence, we may assume OL = Z. Let u be an element
of W

(
S

)
such that uv = 1 − i with i ≡ 0 in W1(S) = S. Note that in ≡ 0

in Wn(S). Since W(S) = lim
←−

Wn(S), we get that the element z =
∑

n in exists

in W(S). Hence, v(uz) = 1. ut
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Let

F (r) : B(r)⊗W(k) W
(
R

)⊕B(r)⊗W(k) W(R(r))
−→ B(r + 1)⊗W(k) W(R)⊕B(r + 1)⊗W(k) W(R)

be the F -linear operator whose matrix with respect to the bases {α(r), β(r)}
and {α(r + 1), β(r + 1)} is:

F (r) := u(r)−1×(
T j(r)g1,1(r) + F (d̂(r))g1,1 − F (b̂(r))g1,2 T i(r)g1,2(r)− F (ĉ(r))g1,1 + F (â(r))g1,2

T j(r)g2,1(r) + F (d̂(r))g2,1 − F (b̂(r))g2,2 T i(r)g2,2(r)− F (ĉ(r))g2,1 + F (â(r))g2,2

)
.

(5.4)

5.6. The main results on displays.

Theorem 5.6.1. Let P := P0⊗W(k)W(R) and let 〈 , 〉 be the base change of 〈 , 〉0
via W(k) → W(R). Let Q be the inverse image of H via the projection P →
D. Let F : P → P be the F -linear map whose matrix form with respect to the
decomposition P = ⊕rB(r)⊗W(k) W(R)α(r)⊕B(r)⊗W(k) W(R)β(r) is




0 0 . . . 0 F (g)
F (1) 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . F (g − 1) 0


 ,

with F (r) given in Equation ( 5.4). Then, there exists a unique F -linear homo-
morphism V −1 : Q → P so that P :=

(
P, Q, F, V −1, 〈 , 〉) is a RM display.

Moreover,

1. its base change via R/m = k coincides with P0 as RM display;

2. (R, P) is the universal pro-representing object and the universal RM display
for the moduli problem of deforming P0 to objects of Ck as a RM display;

3. the projection P → D identifies HP ⊂ DP with H ⊂ D compatibly with the
pairings on P and D.

Proof. Let ψ be the map P⊗ZQ→ P⊗ZQ defined as diag
[
ψ(1), . . . , ψ(f)

]
, where

the map ψ(r) is defined with respect to the basis {α(r), β(r)} by the matrix
(

1 + â(r)T−i(r) ĉ(r)T−j(r)

b̂(r)T−i(r) 1 + d̂(r)T−j(r)

)
.

Note that F is the composition F0 ◦ψ−1 of the F -linear base change of F0 to P =
P0 ⊗W(k) W(R) with the inverse of ψ.

One proves that, indeed, F is well defined. One defines V −1 := F
p on P ⊗ Q

and one proves that V −1 restricted to Q is well defined, it is compatible with 〈 , 〉
and V −1(Q) spans P . By definition V −1 is compatible with F . See [AG4] for
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details. Claims (1) and (3) follow immediately from the construction. Claim (2)
follows from the following theorem. ut

Theorem 5.6.2. Let P :=
(
P, Q, F, V −1, 〈 , 〉) be a RM display over R and

let τ : DP → D be an isomorphism as OL ⊗R-modules, compatible with pairings,
such that τ

(
HP

)
= H and τ is a horizontal map mod m2. Here, we consider

the connection on DP ⊗R R/m2 induced by the fact that DP is a crystal and
we consider on D⊗R R/m2 the connection having D0 ⊂ D as horizontal sections.
Then, (R, P) is the universal pro-representing object and the universal RM display
for the moduli problem of deforming the special fiber P0 of P to local artinian k-
algebras as RM display.

Proof. Let Puni :=
(
P uni, Quni, F uni, (V uni)−1, 〈 , 〉uni

)
be the universal RM dis-

play deforming the special fiber P0. By the theory of local models [DP, Thm.
3.3] and the equivalence of categories between deformations of displays and of
formal p-divisible groups [Zin, Thm. 9] it exists over R.

Let φ : Spec(R) → Spec(R) be the unique homomorphism such that P =
φ∗

(
Puni

)
. Since R pro-represents a Grassmannian moduli problem, we get unique

maps ψi : Spec
(
R/m2

) → Spec
(
R/m2

)
, such that ψ∗1 (H ⊂ D) ∼= (HPuni ⊂ DPuni)

and ψ∗1(D) ∼= DPuni is horizontal, and ψ2 such that ψ∗2
(
H ⊂ D) =

(
HP ⊂ DP

)
and ψ∗2(D) ∼= DP is horizontal. Moreover, ψ1 ◦ φ = ψ2 - all the maps appearing
being canonical. By [DP, Lem. 3.5] the map ψ1 is an isomorphism. Hence, φ is
an isomorphism on tangent spaces.

Let Gr(R) be the graded ring ⊕nmn/mn+1 associated to R. The induced
map Gr(φ]) : Gr(R) → Gr(R) is then surjective on each graded piece and, hence,
by dimension considerations it is injective. Since Gr(φ]) is an isomorphism, we
conclude that φ] is an isomorphism as well [AtM, Lem. 10.23]. Hence, φ is an
isomorphism as claimed. ut

Corollary 5.6.3. Let p be maximally ramified. Let x ∈ M be a geometric point
of type (j, n).

1. The deformations to Sj′ , where j′ ≤ j, are parameterized by the closed sub-
scheme defined by the ideal 〈ai, bi, ci, di : 0 ≤ i ≤ j′ − 1〉.

2. The deformations to W(j′,n′), where j′ ≤ j, are parameterized by the closed
subscheme of deformations to Sj′ intersected with the closed subscheme (with
the reduced structure) given by the relations T j′+n′ |F 2.
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6. Some general results concerning strata in the
maximally ramified case

6.1. Foliations of Newton polygon strata.

In this section we complete the analysis, started in [AG1], of the strata {W(j,n)}.
For their definition see §3.2. We prove that each stratum W(j,n) is quasi-affine.
We proceed as follows. First, by an explicit normalization of the display over the
completed local ring of a point of type (j, j), we prove that for every m the pm-
torsion of the universal RM abelian scheme over W(j,j) can be trivialized over a
finite cover of W(j,j) (depending on m). Using the “Raynaud trick”, we conclude
that W(j,j) is quasi-affine. We deduce the quasi-affineness of W(j,n) by showing
that it is the image of W(n,n) if n > g

2 (resp. W(g−n,n) if n ≤ g
2 ) via iterated Hecke

correspondences at p. We also describe the analogue of the foliations of the Newton
polygon strata introduced by [Oo4] in the Siegel case. Recall that the stratifica-
tion {W(j,n)} refines the Newton polygon stratification; [AG1, Thm. 10.1]. Since
the universal RM p-divisible group over W(j,j) is geometrically constant, W(j,j) is
the central leaf at any of its points; cf. Definition 6.1.1. The foliation on the loci
W(j,n) is then described using the Hecke correspondence linking W(j,n) and W(n,n)

if n > g
2 (resp. W(g−n,n) if n ≤ g

2 ).

Definition 6.1.1. ([Oo4, §2]) Let P be a RM display over a perfect field k of
positive characteristic p. Let T be a noetherian scheme over k. Let A → T be a
RM abelian scheme. Define

CP

(
A → T

)

as the subset of T consisting of the geometric points t ∈ T for which there exists an
isomorphism of RM displays between P ⊗W (k) W (k(t)) and the display associated
to At.

If P is the RM display associated to a geometric point x ∈ T , we write CAx

instead of CP and we call it the central leaf at x.

Note that the Newton polygon and the type, in the sense of [Oo3], of the
geometric points of CP are those of P and hence constant. By [Oo4, Thm. 2.2]
the set CP is a closed subset of the locally closed subscheme of T consisting of the
points having the same Newton polygon as P.

Definition 6.1.2. Let k be a perfect field of characteristic p and let S be a k-
algebra. Let s = t(s)g + r(s) with t(s) ∈ N and 0 ≤ r(s) ≤ g − 1. Consider the
exact sequence of W(S)-modules

0 −→ S
ϕ−→Wt(s)+1(S) −→Wt(s)(S) −→ 0.

The map ϕ is the t(s)-th power of Verschiebung r
ϕ7→ (0, . . . , 0, r). It identifies S

with the W(S)-module whose additive structure is that of S and multiplication
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of r ∈ S by a = (a0, a1 . . .) ∈W(S) is given by a · r := apt

0 r. The sequence

0 −→ OL ⊗Z S
1⊗ϕ−→ OL ⊗ZWt(s)+1(S) −→ OL ⊗ZWt(s)(S) −→ 0

is an exact sequence of OL ⊗W(S)-modules. Since S is of characteristic p, we
have that OL ⊗Z S ∼= Fp[T ]/(T g)⊗Fp

S.
Consider the OL⊗ZW(S)-submodule of OL⊗Z S defined by In := TnS⊕· · ·⊕

T g−1S. Let

Zs(S) :=
(OL ⊗ZWt(s)+1(S)

)
/
(
1⊗ ϕ(Ir(s))

)
.

By construction we have an exact sequence of OL ⊗ZW(S)-modules

0 −→ S −→ Zs+1(S) −→ Zs(S) −→ 0,

where S is a W(S)-module as above and OL acts on S via the quotient OL/(T ).
We note that

OL ⊗W(S) = lim
←−

s

Zs(S).

Note that T g is equal to p up to a unit in OL ⊗Z Zp. Thus, multiplication by T g

on OL⊗ZW(S) is, up to a unit, multiplication by p. The latter coincides with the
composite of Verschiebung and Frobenius on W(S). In particular, if S is reduced
for every positive integer i the kernel of multiplication by T i on Zs+i(S) coincides
with the kernel of Zs+i(S) → Zs(S).

Remark 6.1.3. Let A be an abelian variety with RM by OL over a perfect field of
characteristic p, p totally ramified in L. It is proven in [AG1, Prop. 4.10] that one
can choose an OL ⊗W(k) basis α, β for the Dieudonné module (or “display the
display”) of A such that, if A is not superspecial, Frobenius is given with respect
to this basis by a matrix

(
Tn c3T

i

T j 0

)
, (6.1)

with c3 ∈ (OL⊗W(k))×. Furthermore, it follows from [AG1, Prop. 7.2] that W(j,j)

is regular of dimension g − 2j and that for any geometric point x of W(j,j), the
completed local ring ÔW(j,j),x is isomorphic to k[[fj , . . . , fi−1]]. Moreover, the iso-
morphism can be chosen so that Frobenius on the universal display over this ring
is of the form

(
(1 + w(fj) + w(fj+1)T + · · ·+ w(fi−1)T i−j−1)T j c3T

i

T j 0

)
, (6.2)

where w(fh) denotes the Teichmüller lift of fh.

Remark 6.1.4. Let j ≥ g/2 be an integer. If A is superspecial then, in fact, one
can choose the basis for the Dieudonné module of A so that the matrix of Frobenius
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is (
0 T i

T j 0

)
. (6.3)

The locus W(j,g−j) is zero dimensional. Since Frobenius of the Dieudonné mod-
ule of each of its points has the canonical form described by the matrix in Equa-
tion ( 6.3), it follows that for every m ∈ N the OL-group scheme A[pm]×MW(j,g−j)

is constant.

Proposition 6.1.5. Let R be an Fp-algebra. Let
(
P,Q, F, V −1

)
be an OL-display

over R such that

F (α) = d T jα + T jβ, F (β) = c3T
iα, (6.4)

where d and c3 are invertible elements of OL ⊗W(R) and we require i > j > 0.
Then, there exist ring extensions R = R0 ⊂ · · · ⊂ Rs ⊂ Rs+1 ⊂ · · · , and elements
As and Bs in Zs(Rs), such that defining the elements of P ⊗OL⊗W(R) Zs(Rs)

αs := Asα + Bsβ, βs :=
(
dAσ

s −As + Bσ
s c3T

i−j
)
α +

(
Aσ

s −Bs

)
β, (6.5)

the following properties hold:

1. We have

F (αs) = T jαs + T jβs, F (βs) = T iαs; (6.6)

2. the elements αs and βs generate P ⊗OL⊗W(R) Zs(Rs) as a Zs(Rs)–module;

3. As+1 and Bs+1 map to As and Bs respectively, viewing As and Bs as lying
in Zs(Rs+1) via the inclusion Zs(Rs) ⊂ Zs(Rs+1);

4. Rs+1 is a finite free Rs–module;

5. for every s ∈ N the extension R ⊂ Rs satisfies the following universal prop-
erty. Let S be a reduced R-algebra. Let α̃s+i and β̃s+i be OL ⊗ W(S)–
generators of P ⊗OL⊗W(R) Zs+i(S) satisfying ( 6.6). Then, there exists
a unique R–algebra homomorphism fs : Rs → S such that fs(αs) = α̃s+i

and fs(βs) = β̃s+i in P ⊗OL⊗W(R) Zs(S).

Proof. First of all, we reformulate property (5) in a way which is more convenient
for the proof. As remarked above, since S is reduced, the kernel of multiplication
by T i in Zs+i(S) coincides with the kernel of the reduction map Zs+i(S) → Zs(S).
In particular, it factors via Zs(S) and Zs(S) embeds in Zs+i(S) via multiplication
by T i. Thus, property (5) is equivalent to the existence of a unique R–algebra
homomorphism fs : Rs → S such that T ifs(αs) = T iα̃s+i and T ifs(βs) = T iβ̃s+i

in P ⊗OL⊗W(R) Zs+i(S). This is the actual identity we verify below.

Put formally

αs := Asα + Bsβ, βs := Gsα + Hsβ. (6.7)
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Then F (αs) = Aσ
s F (α) + Bσ

s F (β) = dAσ
s T jα + Aσ

s T jβ + Bσ
s c3T

iα. Since T jαs +
T jβs = AsT

jα + BsT
jβ + T jβs, the first equality of (6.6) gives that AsT

jα +
BsT

jβ +T jβs = dAσ
s T jα+Aσ

s T jβ +Bσ
s c3T

iα. Hence, T jβs = GsT
jα+HsT

jβ =(
dAσ

s −As + Bσ
s c3T

i−j
)
T jα +

(
Aσ

s −Bs

)
T jβ, and therefore,

T jGs = T j
(
dAσ

s −As + Bσ
s c3T

i−j
)
, T jHs = T j

(
Aσ

s −Bs

)
. (6.8)

The second equality of (6.6) now gives

AsT
iα+BsT

iβ = T iαs (by (6.7))

= F (βs) (by (6.6))

= Gσ
s F (α) + Hσ

s F (β) (by (6.7))

=
(
dGσ

s + c3H
σ
s T i−j

)
T jα + Gσ

s T jβ (by (6.4))

= (d
[
dσ Aσ2

s −Aσ
s + Bσ2

s cσ
3T i−j

]

+
[
Aσ2

s c3T
i−j −Bσ

s c3T
i−j

]
)T jα

+
(
dσAσ2

s −Aσ
s + Bσ2

s cσ
3T i−j

)
T jβ (by (6.8))

This is equivalent to the following two equations:

T j ·
(
dσ Aσ2

s −Aσ
s + Bσ2

s cσ
3T i−j −BsT

i−j
)

= 0, (6.9)

T i ·
(
Aσ2

s c3 −Bσ
s c3 −As + dBs

)
= 0. (6.10)

For As, Bs, Gs and Hs, Equation (6.6) holds if and only if Equations (6.8), (6.9)
and (6.10) hold. Put also

dσ Aσ2

s −Aσ
s + Bσ2

s cσ
3T i−j −BsT

i−j = 0, (6.11)

Aσ2

s c3 −Bσ
s c3 −As + dBs = 0. (6.12)

We construct rings Rs and elements As and Bs of Zs(Rs), such that if we choose

Gs = dAσ
s −As + Bσ

s c3T
i−j , Hs = Aσ

s −Bs,

then properties (1)−(5) of the proposition hold and, moreover, also Equations (6.11)
and (6.12) hold.

We proceed by induction on s. Start with s = 1. Let c3, d, be the reduction
of c3 and d in R = Z1(R). Let

R1 := R
[
A1, u

]
/
(
(dAp−1

1 − 1)p, up−1 − dc−1
3

)
.

Putting α1 and β1 as in the proposition, with A1 the given element of R1 and B1 :=
d−1A1 + u, one checks that Equations (6.11) and (6.12) hold in Z1(R1) = R1.
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Furthermore, property (2) is equivalent to requiring that the element

det
(

A1 dAp
1 −A1

B1 Ap
1 −B1

)
= A1

(
Ap

1 −B1

)−B1

(
dAp

1 −A1

)
= Ap

1(A1 − dB1)

is invertible. This holds since A1 and dB1 −A1 = u are invertible.
Let S be an R–algebra as in property (5) with s = 1. In particular, Equa-

tions (6.9) and (6.10) have solutions Ã1+i and B̃1+i in Z1+i(S) = OL/(T i+1) ⊗Z
S. Note that, using Equation (6.9), Equation (6.10) becomes T i

(−c3(B̃1+i −
d−1Ã1+i)p + d(B̃1+i − d−1Ã1+i)

)
= 0. Since α̃1+i and β̃1+i generate P ⊗OL⊗W(R)

Z1+i(S), a similar argument using Equation (6.8) gives that T i·Ãp
1+i(Ã1+i−dB̃1+i)

is T i times a unit. Thus, we can define f1 : R1 → S as the R–algebra homomor-
phism satisfying T iÃ1+i = T if1(A1) and T iB̃1+i = T id−1Ã1+i + T if1(u). This
concludes the base step of the induction.

Assume that the induction hypothesis holds for a given s ∈ N. Let A′s and B′
s

be elements in Zs+1(Rs) reducing to As and Bs respectively in Zs(Rs). Let R′s
be the polynomial ring Rs

[
λ, µ

]
. Let λs := (0, . . . , 0, λ) and µs := (0, . . . , 0, µ)

in Ker
(Zs+1(R′s) → Zs(R′s)

)
. Let As+1 := A′s + λs and Bs+1 := B′

s + µs. Then,
Equation (6.11) becomes

dσλp2 − λp + Ps = 0, (6.13)

where Ps is the element of R′s defined by Ps = dσA′σ
2

s −A′σs +
(
B′σ2

s cσ
3 −B′

s

)
T i−j +(

µσ2

s cσ
3 − µs

)
T i−j . Since T i−j kills Ker

(Zs+1(R′s) → Zs(R′s)
)
, we have Ps =

dσA′σ
2

s −A′σs +
(
B′σ2

s cσ
3 −B′

s

)
T i−j . For the same reason Ps is independent of the

choice of B′
s. Finally, Equation (6.12) becomes

µpc3 − dµ + Qs = 0, (6.14)

where Qs is the element of R′s defined by Qs = (B′
s)pc3 − dB′

s − Aσ2

s+1c3 + As+1.
Equations (6.13), (6.14) define an ideal Js in R′s. Let

Rs+1 := R′s/Js.

The ring Rs+1 is an extension of Rs, finite and free as Rs-module. Define αs+1

and βs+1 as in the statement of the proposition. By construction Equation (6.6)
holds and As+1 and Bs+1 reduce to As and Bs in Zs(Rs+1). Property (2) is
equivalent to the invertibility of

det
(

As+1 dAσ
s+1 −As+1 + Bσ

s+1c3T
i−j

Bs+1 Aσ
s+1 −Bs+1

)
.

Since such element is invertible in Z1(Rs+1), we deduce from 5.5.2 that it is indeed
invertible.

Let S be an R–algebra as in property (5) with s+1. Using the induction hypoth-
esis on Rs, we know that there exist a unique map of R–algebras fs : Rs → S such
that fs(αs) = α̃s+1+i and fs(βs) = β̃s+1+i in P ⊗OL⊗W(R) Zs(S). Let α̃s+1+i =
Ãs+1+iα+B̃s+1+iβ. Equations (6.9) and (6.10) hold for Ãs+1+i and B̃s+1+i. Thus,
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there exists a unique map of R–algebras fs+1 : Rs+1 → S whose restriction to Rs

is fs and such that T i
(
fs+1(As+1)

)
= T iÃs+1+i and T i

(
fs+1(Bs+1)

)
= T iB̃s+1+i.

By the reformulation of property (5) given at the beginning of the proof one con-
cludes that Rs+1, αs+1 and βs+1 satisfy property (5). ut

Until the end of this subsection we assume that the base field k over which the
moduli space M lives is algebraically closed.

Corollary 6.1.6. Let A → W(j,j) be the universal RM abelian scheme. Let y ∈
W(j,j) be k–valued point. For every m ∈ N there exists a scheme W

[m]
(j,j) finite and

dominant over W(j,j) such that A[pm]×W(j,j) W
[m]
(j,j)

∼= Ay[pm]×k W
[m]
(j,j).

Proof. The case j = 0, corresponding to the ordinary case, is easy and is left
for the reader. The case i = j = g/2, occurring only for g even, is covered by
Remark 6.1.4, where we define W

[m]
(j,j) := W(j,j). We now assume i > j > 0.

For every n ∈ N, the functor, associating to a scheme T over W(j,j) the group
of isomorphisms Isom

(
A[pn]×W(j,j) T, Ay[pn]×k T

)
as group schemes over T en-

dowed with an OL-action, is represented by a scheme Isom(pn), affine and of finite
type over W(j,j) (see [Oo4, Lem. 2.4]). Let W

[m]
(j,j) be the scheme theoretic image

of Isom(pm+2) → Isom(pm). It follows from Proposition 6.1.5 that for every ge-
ometric point x of W(j,j) one can trivialize Frobenius on the Dieudonné module
of Ax[pm+2]. Hence, one can trivialize the Dieudonné module of Ax[pm]. We con-
clude that the reduced fiber of W

[m]
(j,j) over x is non-empty. Using Dieudonné theory

and properties (4) and (5) of Proposition 6.1.5 for R = S = k and s = g(m+2), we
deduce that the reduced fibers of W

[m]
(j,j) → W(j,j) are of finite cardinality. Thus,

W
[m]
(j,j) is quasi-finite over W(j,j).
We now apply the valuative criterion of properness to prove that the morphism

W
[m]
(j,j) → W(j,j) is proper. Let Py be the RM display associated to Ay. Let R be a

complete dvr which is also a k-algebra. Let K be its fraction field. Suppose we are
given a map φ : Spec(R) → W(j,j) and a K–valued point of W

[m]
(j,j) over it. It follows

from Remark 6.1.3 that the Frobenius of the RM display P associated to the
formal p–divisible group G over Spec(R) defined by φ, admits a OL⊗W(R)-basis α
and β such that Frobenius is of the form given in Equation (6.4). Using Dieudonné
theory and our assumption, the base change of P to an algebraic closure Kalg

of K admits a OL ⊗W(Kalg)–basis α̃ and β̃ such that Frobenius satisfies F (α̃) ≡
T jα̃+T j β̃ and F (β̃) ≡ T iα̃ modulo pm+1. We deduce from properties (4) and (5)
of Proposition 6.1.5, applied to Kalg and s = g(m + 2), that the change of basis
from {α, β} to {α̃, β̃} can be realized, at least over Zg(m+1)(R′), for some integral
extension R′ ⊂ Kalg of R. Thus, we conclude that P ⊗OL⊗W (R) Zgm(R′) is
equal to Py ⊗OL⊗W (k) Zgm(R′) and so G [pm] ⊗R R′ ∼= Ay[pm] ⊗k R′. Note that
this R′ point of W

[m]
(j,j) factors through K, hence through R. Thus, the morphism

W
[m]
(j,j) → W(j,j) is proper and quasi-finite, hence finite [EGA IV, Thm. 8.2.1]. ut
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Corollary 6.1.7. The RM p-divisible group associated to the universal abelian
scheme over W(j,j) is geometrically constant. In particular, the central leaf CAx

at any point x of W(j,j) coincides with W(j,j).

Proof. Let x be a geometric point of W(j,j). Let Gx be the p-divisible group
defined by x. The case i = j = g/2, occurring only for g even, is covered by
Remark 6.1.4. The case j = 0 is the case of ordinary abelian varieties, where
the result is well known. Assume now i > j > 0. Apply Proposition 6.1.5 to
the OL-display over R = k(x) associated to Gx. The k(x)–algebras Rs are finite
as k(x)–modules. Therefore, since k(x) is an algebraically closed field, there exist
compatible sections Rs → k(x). Note that OL ⊗Z W

(
k(x)

)
= lim

←−
Zs

(
k(x)

)
.

Hence, α := lim
←−

αs and β := lim
←−

βs are well defined and form an OL⊗ZW
(
k(x)

)
-

basis of the Dieudonné module of Gx such that F (α) = T jα+T jβ and F (β) = T iα.
Since F ◦ V = p, we deduce that also Verschiebung V has a canonical form with
respect to the basis {α, β} independent of x. Since the category of connected p-
divisible groups and the category of displays are equivalent over perfect fields, we
conclude. ut

Corollary 6.1.8. Let 0 ≤ j ≤ g/2. The scheme W(j,j) is quasi-affine.

Proof. If j = g/2, then dim(W(j,j)) = 0 and W(j,j) consists of superspecial points.
The corollary is trivial in this case. Suppose j < g/2. By Corollary 6.1.6 there
exists a finite covering W

[1]
(j,j) of W(j,j) over which the p-torsion of the universal

RM abelian scheme can be trivialized. It follows from Raynaud’s trick that the
pull-back of the Hodge bundle to W

[1]
(j,j) is torsion [Oo3, §4]. Since the Hodge

bundle is ample on M, it follows that W
[1]
(j,j) is quasi-affine, hence so is W(j,j). ut

Let αp be the group scheme over k defined as the kernel of Frobenius on the
additive group Ga,k. We make OL act on it via its quotient OL/T = Fp.

Proposition 6.1.9. Let 0 ≤ m ≤ j ≤ g/2. Let j′ be either j or g − j. There
exists a smooth connected affine scheme Um over k, of dimension m, and a finite
surjective map

ψm : W
[m]
(j,j′) ×k Um → W(j−m,j′),

such that:

• for every u ∈ Um(k) the image of W
[m]
(j,j′) × {u} is contained in the central

leaf through any point of ψm

(
W

[m]
(j,j′) × {u}

)
;

• for every s ∈ W
[m]
(j,j′)(k) the image of {s}×Um is the image of As via iterated

αp-Hecke correspondences.

Proof. Let s ∈ W(j,j′). Define the schemes Un for 0 ≤ n ≤ j by induction on n
as follows. Let U0 := Spec(k). Suppose that Un has been defined and it is



34 Fabrizio Andreatta and Eyal Z. Goren

a smooth, connected affine scheme of dimension n and that every u ∈ Un de-
fines an iterated αp-quotient As → Au of invariants (j − n, j′). Let Un+1 be the
scheme over Un whose fiber over any geometric point u ∈ Un is the subscheme
of HomOL (αp, Au[p]) of those maps for which the quotient Au/αp has invari-
ants (j − (n + 1), j′). By [AG1, Prop. 6.6, Prop. 8.7] the morphism Un+1 → Un

is an affine bundle and the fiber over u is a non–empty open subscheme of P1
k(u).

It follows that Un+1 is a smooth, connected affine scheme of dimension n + 1.
Fix m. Define the map

ψm : W
[m]
(j,j′) ×k Um −→ M

as follows. By Corollary 6.1.6 or Remark 6.1.4 we have a canonical isomor-
phism τm : A[pm] ×M W

[m]
(j,j′)

∼= As[pm] × W
[m]
(j,j′). View Um as classifying suit-

able subgroup schemes of As[pm]. Then, ψm is the unique map such that the
pull–back of the universal RM abelian scheme via ψm coincides with the quotient
of A×M (W [m]

(j,j′) ×k Um) by the inverse image via τm of the tautological subgroup
scheme of As[pm]×k Um defined by Um. Note that such a quotient is a RM abelian
scheme by [AG1, Cor. 3.2]; in particular, the definition of ψm makes sense. By
construction, the image of ψm lies in W(j−m,j′).

To conclude it suffices to prove that ψm is finite and surjective. We proceed
by induction on m. By Corollary 6.1.7, since ψ0 is the identity, the proposition is
true for m = 0. Suppose that ψm−1 is finite and surjective. Consider the diagram

W
[m]
(j,j′) ×k Um

γ

²²

δ // π−1
2

(
W(j−m,j′)

) ∩ π−1
1

(
W(j−m+1,j′)

)

π1

²²

π2 // W(j−m,j′)

W
[m−1]
(j,j′) ×k Um−1

ψm−1 // W(j−m+1,j′),

where γ is the product of the natural maps γ1 : W
[m]
(j,j′) → W

[m−1]
(j,j′) , γ2 : Um → Um−1

and δ is the unique morphism making the diagram commute and satisfying π2◦δ =
ψm. By construction of Um, for every point s = (s1, s2) ∈ W

[m−1]
(j,j′) ×k Um−1 and

any point t in the finite scheme γ−1
1 (s1) the map {t} ×k γ−1

2 (s2) → π−1
1 (ψm(s)) is

an isomorphism. Hence, δ is quasi–finite, proper (by the valuative criterion) and
surjective.

By [AG1, Lem. 8.6], π1

(
π−1

2

(
W(j−m,j′)

))
has invariants (j − m + 1, j′) and,

if j −m > 0, also (j −m− 1, j′). Since the maps π1 and π2 are proper by [AG1,
Lem. 8.4] and the intersection with π−1

1

(
W(j−m+1,j′)

)
of the fiber of π2 over a

point of W(j−m,j′) is non–empty and finite by [AG1, Prop. 6.6], we conclude that
the composite ψm = π2 ◦ δ is quasi–finite, proper and surjective as claimed. ut

Corollary 6.1.10. For every (j, n) the scheme W(j,n) is quasi-affine.

Proof. By Corollary 6.1.8 the claim holds holds for the loci W(n,n). The lo-
cus W(j,g−j) is zero dimensional and, hence, quasi affine. By Proposition 6.1.9
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the locus W(j,n) is the image via a finite map of a quasi-affine scheme. Hence, the
conclusion. ut

6.2. Connectedness of T0, T1 and T2.

Definition 6.2.1. Let 0 ≤ a ≤ g be an integer. Let Ta be the closed subscheme
of M defined by

Ta := {[A] ∈ M(k)|a(A) ≥ a} .

Remark 6.2.2. By [AG1, Lem. 4.12] we have Ta = q(j,n)W(j,n) where the union
is taken over all pairs of integers (j, n) such that 0 ≤ j ≤ g

2 and j ≤ n ≤ g − j
and a ≤ j + n. It also follows from op. cit. that Ta has dimension g − a.

Theorem 6.2.3. Assume that g > 1. The intersection of T1 with any irreducible
component of M is connected. The same holds for T2 if g > 2.

Proof. Suppose g > 1. Then, T1 is the complement of the ordinary locus in M.
Hence, it is the zero locus of the Hasse invariant h. Since h is a section of the
determinant of the Hodge bundle over M, and the Hodge bundle is ample, it
follows that T1 is connected (cf. [Har, Cor. III.7.9]).

Assume now that g > 2. Let C be the set of connected components of the
intersection of T2 with an irreducible component of M. Let π1, π2 : N → M
be as in § 2.2. The Hecke correspondence π2 ◦ π−1

1 preserves properties such
as being closed, or being irreducible, or being connected, for closed subschemes
not intersecting the non-singular (j = 0) locus of M, see [AG1, Prop. 8.7]. For
every (j, n), it sends an irreducible component of W(j,n) surjectively to the union of
irreducible components of loci W(j′,n′) with (j′, n′) in a given set Λ(j, n) depending
only on (j, n) [AG1, Prop. 8.10]. Moreover, for every (j′, n′) ∈ Λ(j, n) we have j′+
n′ ≥ j + n− 1. The Hecke correspondence has the additional property of sending
each component of M into a single component of M.

Fix a component C ∈ C . By Remark 6.2.2, the irreducible components of C
consist of irreducible components of strata W c

(j,n) with j + n ≥ 2. We conclude
that locus π2

(
π−1

1 (C)
)

is closed and connected, it lies in T1 and its irreducible
components consist of union of irreducible components of loci W c

(j,n) for suitable
pairs (j, n) with j + n ≥ 1.

Suppose that |C | > 1. Since π2

(
π−1

1 (T2)
)

= T1, the irreducibility of T1 in
each component of M implies that there exist distinct connected components C1

and C2 such E := π2

(
π−1

1 (C1)
) ∩ π2

(
π−1

1 (C2)
)

is non-empty. If two irreducible
components of the loci W(j,n) and W(j′,n′) intersect, then (j, n) = (j′, n′) and
they must coincide, because W(j,n) is smooth [AG1, Cor. 7.4]. Hence, E is closed
and consists of irreducible components of loci of type W(j,n) for suitable (j, n)
with j + n ≥ 1. By Corollary 6.1.10 the loci W(j,n) do not contain any complete
curve. We conclude that E contains a point [A] of type (j, n) with j + n ≥ 3
and j ≥ 1. Note that [A∨] is of type (j, n) by [AG1, Lem. 8.5] and π2

(
π−1

1 (A∨)
)
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lies in T2. Hence, its image π2

(
π−1

1 (A∨)
)∨ via the map [A] 7→ [A∨] lies in T2.

Since j 6= 0 the image I consists of a Moret-Bailly family. In particular, it is
connected. We show that I connects C1 to C2 in T2.

For i = 1, 2 let [Ai] be a point of Ci and let Hi ⊂ Ai be an OL-invariant
subgroup scheme of rank p such that A ∼= Ai/Hi. Then, the moduli point cor-
responding to A∨/H∨

i
∼= A∨i lie in π2

(
π−1

1 (A∨)
)
. Hence, [A1] and [A2] lie in

the connected subscheme π2

(
π−1

1 (A∨)
)∨ of T2. This contradicts the assumption

that C1 and C2 were distinct. ut

Remark 6.2.4. The argument in the proof of Theorem 6.2.3 shows that if a is
odd and Ta is connected, then Ta+1 is connected. This is used in the proof in the
claim that π2(π−1

1 (Ta+1)) = Ta; a claim which is false for a even, cf. Diagram B
in § 3.2. It is an interesting question to know whether the loci Ta are connected
for all a ≤ g − 1 or not. An affirmative answer would have strong consequences
(perhaps too strong).

6.3. Irreducibility results.

The singularity strata Sj were defined in § 3.2.

Lemma 6.3.1. Let g/2 ≥ s ≥ j ≥ 0 be integers. Let x ∈ Ss. The completed
local ring ÔSj ,x of Sj at x is a complete intersection, regular in codimension 2.
In particular, ÔSj ,x is a normal domain.

Proof. One deduces as in [DP, §4.3], cf. § 4.3.2, that the completed local ring
of W c

(j,j) at x has the presentation k[[a, b, c, d]]/(ad− bc + aT s + dT g−s) with a :=
ajT

j + . . . + ag−s−1T
g−s−1, b := bjT

j + . . . + bs−1T
s−1, c := cjT

j + . . . +
cg−s−1T

g−s−1 and d := djT
j + . . . + ds−1T

s−1. Hence, ÔSj ,x is defined by g − 2j

equations in 2g − 4j variables. By [DP, §4.2] the dimension of ÔSj ,x is g − 2j.
Hence, ÔSj ,x is a complete intersection and, in particular, Cohen-Macaulay. By
loc. cit. ÔSj ,x is smooth in codimension 2. Using Serre’s criterion for normality
we deduce that ÔSj ,x is a normal domain. ut

Corollary 6.3.2. For every j, the irreducible components of W c
(j,j) are disjoint.

Proof. Recall that Sj = W c
(j,j). The Lemma implies that for every x ∈ W c

(j,j) the

ring ÔSj ,x is a domain. In particular, OSj ,x is a domain. Hence, there exists only
one irreducible component of W c

(j,j) containing x. ut

Proposition 6.3.3. Let g > 2. Every irreducible component of M contains ex-
actly one irreducible component of the non-ordinary locus T1 = W c

(0,1). The same
holds for the locus W c

(1,1).
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Proof. By Theorem 6.2.3, every irreducible component of M contains exactly one
connected component of W c

(0,1). Let x ∈ W c
(0,1). The completed local ring of M

at x is Cohen-Macaulay of dim g. Hence, the completed local ring of W c
(0,1) at x

is Cohen-Macaulay of dim g − 1 by [Eis, Prop. 18.13].
Let C be a connected component of W c

(0,1). Let {Ti} be the set of irreducible
components of C. Assume its cardinality is > 1. Let Z be the union of all the
intersections Ti∩Tj for i 6= j. Then, C\Z is disconnected. Hence, by Hartshorne’s
connectedness theorem, see [Eis, Thm. 18.12], there must exist indices i and j
and an irreducible component T of Ti ∩ Tj of codimension 1 in C and, hence, of
dimension g − 2. Since the locus ∪nW(0,n) is smooth, T consists of points with
singularity index > 0. Since the types (j, n) define a stratification and W(j,n) is
pure dimensional of dimension < g − 2 for j > 0 and n > 1, T consists of a full
irreducible component of the locus W c

(1,1). Hence, it contains a full component
of the locus W c

(1,2). By Lemma 6.3.4 below, the nilradical of the completed local

ring ÔW c
(0,1),x

at a closed point x of type (1, 2) is a prime ideal. This implies that
the prime ideals defined by Ti and Tj in the local ring of the locus W c

(0,1) at a
closed point of W(1,2) ∩ Ti ∩ Tj are equal. Hence, Ti = Tj . Contradiction. This
proves the first part of the proposition.

Since π2

(
π−1

1 (W c
(0,1))

)
= W c

(1,1), the second claim follows. ut

Lemma 6.3.4. Let g > 2. Let x be a closed point of W(1,2). Let D = W c
(0,1) be

the non-ordinary locus of M. Then, the nilradical of the completed local ring ÔD,x

of D at x is a prime ideal.

Proof. By § 4.3.2 the completed local ring ÔM,x of M at x is isomorphic to the
quotient of the ring k[[a0, . . . , ag−2, b0, c0, . . . , cg−2, d0]] by the relations ad− bc +
aT + dT g−1 = 0, viz.,

a0d0 − b0c0 = 0,

aid0 + ai−1 − b0ci = 0, 1 ≤ i ≤ g − 2,

ag−2 + d0 = 0.

Eliminating the variables ai, using these equations, we get

ÔM,x
∼= k[[b0, c0, . . . , cg−2, d0]]/(

b0c0 − d0b0c1 + d2
0b0c2 − d3

0b0c3 + . . . + (−1)g−2dg−2
0 b0cg−2 + (−1)g−2dg

0

)
.

The equations of the non-ordinary locus can be deduced as in § 9.1.1 and coincide
with equations (Eq1)–(Eq4) given there with a0 := b0

(
c1 − d0c2 + d2

0c3 + . . . −
(−1)g−2dg−3

0 cg−2

)−(−1)g−2dg−1
0 . If d0 = 0, then a power of b0 and c0 is zero. The

reduced ring coincides with the completion of W c
(1,1) at x. If b0 = 0 in ÔD,x[d−1

0 ],
then a0 = 0 and c0 = 0. It follows that d0 = 0 (contradiction). Let h :=
c1 − d0c2 + d2

0c3 + . . .− (−1)g−2dg−3
0 cg−2. Then, a0 = hb0 − (−1)g−2dg−1

0 . As in
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§9.1.1 the lemma is reduced to proving that there exists a unique minimal prime
ideal associated to the ideal I in k[[b0, c0, . . . , cg−2, d0]][b−1

0 , d−1
0 ] defined by

• bp+1
0 + hb0d

p
0 − (−1)g−2dp+g−1

0 = 0;

• b0c0 − hb0d0 + (−1)g−2dg
0 = 0.

Consider the ideal J in the ring k[[b0, c0, . . . , cg−2, d0]][b−1
0 , d−1

0 ] defined by

• bp
0 + c0d

p−1
0 = 0 (obtained dividing by b0 the sum of the first equation and

the second equation multiplied by dp−1
0 );

• bp
0

(
cp
0 − dp

0h
p
)

+ (−1)pgdpg
0 = 0 (obtained by raising to the p–th power the

second equation).

Then, the minimal primes associated to I and to J in k[[b0, c0, . . . , cg−2, d0]][b−1
0 , d−1

0 ]
are the same. We can write the second equation as c0(c0−d0h)p = (−1)pgdpg−p+1

0 .
Let f(X) := Xp+1 − hpX − (−1)gd

p(g−2)
0 = 0. Define the rings

R0 := k[[c1 . . . , cg−2, d0]], R1 := R0[X]/
(
f(X)

)
, R2 := R1[b0]/(bp

0 + Xdp
0).

Since R2 is (d0X, c1, . . . , cg−2, d0, b0)–adically complete and separated, the homo-
morphism of k[[c1, . . . , cg−2, d0]]–algebras from k[[b0, c0, . . . , cg−2, d0]][b−1

0 , d−1
0 ]/J to

R2[b−1
0 , d−1

0 ] given by c0 7→ d0X and b0 7→ b0 is well defined and it is an isomor-
phism. It therefore suffices to prove that the nilradical of R2 is prime.

Let P be a prime ideal of R1 containing 0. Then,

• either X is not a p–th power in Frac(R1/P ) and then, since R2 is a flat R1–
algebra, it follows that PR2 is a prime ideal of R2; In particular, if P is
minimal in R1 then PR2 is minimal in R2.

• or X is a p–th power in Frac(R1/P ) and then Xdp
0 = tp for some t ∈

Frac(R1/P ). In this case let P2 be a minimal prime ideal of R2 containing P .
By the going down theorem we must have P2 ∩R1 = P . Hence, P2 defines a
prime ideal in (R2/P )⊗R1Frac(R1/P ) ∼= Frac(R1/P )[b0]/(b0+t)p. Hence, P2

must be the kernel of R2 → R2/P → Frac(R1/P ) the latter map being b0 7→
−t. Hence, P2 is unique.

In any case the map Spec(R2) → Spec(R1) defines a one to one correspondence
between the irreducible components of Spec(R2) and those of Spec(R1). Therefore,
it suffices to prove that the nilradical of R1 is prime. We show that in fact R1 is
a domain.

Assume that the polynomial Xp+1−cp
1X−(−1)pgd

p(g−2)
0 factors as the product

of the monic polynomials f1(X) = Xn1 + . . .+α1X +α0 and f2(X) = Xn2 + . . .+
β1X + β0 over k[[c1, d0]]. Then, we have α0β0 = −(−1)pgd

p(g−2)
0 . Without loss of

generality we may assume that α0 = u0d
m
0 for some integer p(g− 2) ≥ m > 0 and

some u0 ∈ R0 not divisible by d0. Since f(X) ≡ Xp+1− cp
1X = (X − c1)pX in the

polynomial ring over R0/(d0, c2, . . . , cg−2) ∼= k[[c1]] (which is factorial), we must
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have β0 = ±cn
1 + v0d0 for some integer n > 0 and v0 ∈ R0. In particular, β0 ≡ 0

mod (d0, c1). Since α0β0 = u0d
m
0 (±cn

1 +v0d0), then ±u0c
n
1dm

0 = −(−1)pgd
p(g−2)
0 −

u0v0d
m+1
0 . Since u0 and c1 are not divisible by d0, we must have m = p(g − 2).

Hence, β0u0 = −(−1)pg i. e., β0 is a unit (contradiction). This implies that the
polynomial f(X) is irreducible over R0. Since R0 is local and regular, it is also
factorial and, in particular, normal. It follows from [Eis, Cor. 4.12] that R1 is an
integral domain. ut
The following lemma shows that the situation is different if we start with a closed
point x of W(1,1).

Lemma 6.3.5. Let x be a closed point of D = W c
(0,1) of type (1, 1). The completed

local ring ÔD,x of D at x has exactly two minimal associated prime ideals. Each
of them has height 1 in ÔM,x.

Proof. As in the proof of Lemma 6.3.4 the completed local ring ÔM,x of M at x
is isomorphic to

k[[b0, c0, . . . , cg−2, d0]]/(
b0c0 − d0b0c1 + d2

0b0c2 − d3
0b0c3 + . . . + (−1)g−2dg−2

0 b0cg−2 + (−1)g−2dg
0

)
.

The equations of the non-ordinary locus can be deduced as in § 9.2 and coincide
with equations (Eq1)–(Eq4) given there. The reduced subscheme defined by d0 = 0
coincides with the W c

(1,1) locus. Inverting d0, we get that the non-ordinary locus
in k[[b0, c0, . . . , cg−2, d0]][d−1

0 ] is defined by the ideal I:

• b0c0 − d0b0c1 + d2
0b0c2 − d3

0b0c3 + . . . + (−1)g−2dg−2
0 b0cg−2 + (−1)gdg

0 = 0;

• −bp2

0 + dp2

0 − cp
0d

p2−p
0 = 0.

Let h := c1 − d0c2 + d2
0c3 + . . . − (−1)g−2dg−3

0 cg−2. Consider the ideal J in the
ring k[[b0, c0, . . . , cg−2, d0]][d−1

0 ] defined by

• −bp
0 + dp

0 − c0d
p−1
0 = 0;

• bp
0

(
cp
0 − dp

0h
p
)

+ (−1)pgdpg
0 = 0.

Then, the minimal primes associated to I and to J in k[[b0, c0, . . . , cg−2, d0]][d−1
0 ]

are the same.
We can write the second equation as (c0 − d0)(c0 − d0h)p = (−1)pgdpg−p+1

0 .
Let f(X) := Xp+1 −Xp − hpX + hp − (−1)gd

p(g−2)
0 = 0. Define the rings

R0 := k[[c1 . . . , cg−2, d0]], R1 := R0[X]/
(
f(X)

)
, R2 := R1[b0]/(bp

0 − dp
0 + Xdp

0).

Since R2 is (d0X, c1, . . . , cg−2, d0, b0)–adically complete and separated, the map
of k[[c1, . . . , cg−2, d0]]–algebras from k[[b0, c0, . . . , cg−2, d0]][d−1

0 ]/J to R2[d−1
0 ] given

by c0 7→ d0X and b0 7→ b0 is well defined. It is easily checked that it is an isomor-
phism. As in the proof of Lemma 6.3.4 one concludes that the map Spec(R2) →
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Spec(R1) defines a one to one correspondence between the irreducible components
of Spec(R2) and those of Spec(R1). It thus suffices to prove that R1 has 2 minimal
prime ideals.

By Hensel’s lemma, f(X) admits a unique root x ∈ R0 which is congruent
to 1 modulo the maximal ideal of R0. Write f(X) = (X − x)q(X) with q(X)
prime to X − x. Let R := R0[X]/

(
q(X)

)
. We claim that R is a domain.

Since k[[c1 . . . , cg−2, d0]] is local and regular, it is also factorial and, in particular,
normal. Therefore, by [Eis, Cor. 4.12], R is a domain if and only if the polyno-
mial q(X) is irreducible. It suffices to check the irreducibility of the reduction s(X)
of q(X) modulo (c1, . . . , cg−2).

Let V be a normal, local, noetherian extension of k[[d0]] such that s(X) admits
a root z ∈ V . Let y be the image of x in V . Since (X − y)s(X) = Xp+1 −Xp −
(−1)gd

p(g−2)
0 with y a unit, the element z is not a unit and z = 1+(−1)gd

p(g−2)
0 z−p.

Hence, z = (z′)p where z′ satisfies (z′)p+1 − (z′)p − (−1)gd
(g−2)
0 = 0. Applying

inductively the same trick we find that there exists a positive integer r prime to p
and an element w in the maximal ideal of V such that wp+1 − wp − (−1)gdr

0 = 0.
Hence, pvalV (w) = valV (wp+1 − wp) = rvalV (d0). Hence, valV (d0) is a multiple
of p. Hence, the degree of k[[d0]] ⊂ V is ≥ p and it must then be equal to p, proving
that s(X) is irreducible as claimed. It follows that

R1
∼= R0 ×R

is the product of two integral domains of dimension g − 1 which are flat R0–
algebras. Since minimal associated primes behave nicely under localization [Eis,
Thm. 3.10(d)], the zero ideal in R2[d−1

0 ] ∼= k[[b0, c0, . . . , cg−2, d0]][d−1
0 ]/J is con-

tained in exactly two minimal prime ideals, each of codimension 1. ut

7. Intersection theory on a singular surface

We survey here intersection theory on complete surfaces with isolated normal
singularities. The main references for this theory are [Arc, RT1, RT2]; see also
[Mum, II (b)].

By a singular surface we mean in this section an irreducible projective normal
algebraic surface over an algebraically closed field.

In [Mum, RT1, RT2] the fundamentals of intersection theory on singular sur-
faces are presented only over the complex numbers. The reason for that is that
resolution of singularities for surfaces in characteristic p was not known at those
times. In fact, even the situation over the complex numbers was not yet a com-
mon knowledge as one gathers from the assumptions made in [RT1, §1] and the
addendum [RT2]. Since then a very strong result about resolution of singularities
in arbitrary characteristic was obtained by Lipman [Lip2], building on the works
of Zariski and Abhyankar [Lip2, Introd.]. Indeed, [Lip2, I §2] proves that resolu-
tion of singularities for surfaces can be achieved in arbitrary characteristic by a
succession of normalizations and blow-ups. In particular, the results of [Lip2] (see
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also §26 of loc. cit.) show that the set-up [RT1, §1] can be achieved in arbitrary
characteristic. The thesis of Archibald [Arc] contains a thorough discussion and
development of intersection theory on singular surfaces (of not necessarily locally
principal divisors) and comparison with other available intersection theories such
as, for example, Snapper-Kleiman’s [Kle].

7.1. Definition of the intersection number.

Given a singular surface V , one can find a resolution of singularities,

π : V ∗ −→ V,

such that V ∗ is non-singular, π is an isomorphism over the set V ◦ := V \ V sing,
π−1(V sing) := Υ (the “fundamental manifold”) is of pure dimension 1, each irre-
ducible component of it is non-singular, every two irreducible components have at
most simple intersections, no three components have a common point. In fact, V ∗

can be obtained by a succession of blow-ups and normalizations. Moreover, any
two such resolutions are dominated by a third one. Cf. [RT2, §1]

Let C ⊂ V be an irreducible curve. Define C̃, the strict transform, as the closure
in V ∗ of π−1(C ∩ V ◦). One says that C1 ≡Q C2 on V , and calls this relation
algebraic equivalence with division, if for some m > 0 and some π : V ∗ −→ V ,
m(C̃1 − C̃2) is algebraically equivalent to a divisor supported on Υ. This notion
is independent of V ∗ and defines an equivalence relation. Given a resolution of
singularities π : V ∗ −→ V as above, let

µ1, . . . , µs

be the irreducible components of Υ. Let

d = (µi ¦ µj)i,j=1,...,s,

be the intersection matrix. It is an invertible, symmetric, negative definite matrix
with no negative elements except on the diagonal. It follows that

k = −d−1

is a symmetric, positive definite matrix with no negative elements.
Let C, D be two curves on V . One can find V ∗ as above such that in addi-

tion: C̃, D̃ have no common point on Υ, neither passes through a point of µi ¦ µj

and they intersect each µi simply. The contribution to the intersection multiplicity
coming from V sing is then

∑

i,j

kij [C̃ ¦ µi][D̃ ¦ µj ] = (. . . , C̃ ¦ µi, . . . )k t(. . . , D̃ ¦ µi, . . . ).

It will be convenient to denote the vector (. . . , C̃ ¦ µi, . . . ) by CΥ. The total
intersection number is

C ¦ D = C̃ ¦ D̃ + CΥ k tDΥ (7.1)
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One can prove [RT1] that this defines a symmetric bilinear pairing on divisor
classes modulo ≡Q.

7.2. Pull-back and intersection.

Let µ1, . . . , µs be the irreducible components of Υ. We want to define for an
irreducible curve C in V a divisor C∗ in V ∗, such that

C∗ = C̃ +
s∑

i=1

γiµi, (7.2)

and such that

C∗ ¦ µj = 0, ∀j. (7.3)

Since C∗ ¦ µj = C̃ ¦ µj +
∑s

i=1 γiµiµj , we see that we need to solve the equa-
tion d t(γ1, . . . , γs) = − tCΥ. This has a unique solution given by

t(γ1, . . . , γs) = t(γ1(C), . . . , γs(C)) = k tCΥ. (7.4)

The definition of C∗ extends by linearity to any divisor.

Proposition 7.2.1. The following identities hold.

1. Let C be a divisor on V , then C∗ ¦ µj = 0 for all j = 1, . . . , s.

2. Let C,D be divisors on V, then C∗ ¦ D∗ = C ¦ D.

3. Let C be a divisor on V and D a divisor on V ∗, then C∗ ¦ D = C ¦ π∗D.

Proof. The first part follows from the definition and the calculation above. For
part (2), on the one hand, we have

C ¦ D = C̃ ¦ D̃ + CΥ k tDΥ,
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and on the other hand

C∗ ¦ D∗ =

(
C̃ +

∑

i

γi(C)µi

)
¦
(

D̃ +
∑

i

γi(D)µi

)

=

(∑

i

γi(C)µi

)
¦ D∗ + C∗ ¦

(∑

i

γi(D)µi

)
+ C̃ ¦ D̃

−
(∑

i

γi(C)µi

)
¦
(∑

i

γi(D)µi

)

= C̃ ¦ D̃ −
(∑

i

γi(C)µi

)
¦
(∑

i

γi(D)µi

)

= C̃ ¦ D̃ −
∑

i,j

γi(C)γj(D)µi ¦ µj

= C̃ ¦ D̃ − (γ1(C), · · · , γs(C)) d t(γ1(D), · · · , γs(D))

= C̃ ¦ D̃ − (CΥ k)d(k tDΥ)

= C̃ ¦ D̃ + CΥ k tDΥ.

For part (3), we calculate that

C∗ ¦ D = C∗ ¦ (π∗D)∗ − C∗ ¦ (D − (π∗D)∗)
= C∗ ¦ (π∗D)∗

= C ¦ π∗D.

¤

7.3. Adjunction.

Let K[V ∗] be the canonical divisor of V ∗ and let

K = π∗K[V ∗].

We note that K is the unique extension of the canonical divisor on V ◦ and hence
is independent of the choice of V ∗. We call it the canonical divisor of V . One
may ask if K satisfies the adjunction formula. The answer is NO as we show by a
simple example:

Suppose that Υ = µ is irreducible and µ2 = −n. This happens for example
in the case of the blow-up at the origin of the cone over the curve xn + yn = zn.
Then µ ¦ (µ + K[V ∗]) = 2g(µ)− 2 and therefore µ ¦ K[V ∗] = 2g(µ)− 2 + n. Let C

be a nonsingular curve passing simply through the point π(µ) then C∗ = C̃ + 1
nµ.
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We find that

C ¦ (C + K) = C∗ ¦ (C∗ + K[V ∗])

=
(

C̃ +
1
n

µ

)
¦
(

C̃ +
1
n

µ + K[V ∗]
)

= C̃2 +
1
n

+ C̃ ¦ K[V ∗] +
1
n

µ ¦ K[V ∗]

= C̃2 + C̃ ¦ K[V ∗] +
1
n

(
µ2 + µ ¦ K[V ∗] + n + 1

)

= 2g(C̃)− 2 +
2g(µ) + n− 1

n

= 2g(C)− 2 +
2g(µ) + n− 1

n
.

Since the term (2g(µ) + n − 1)/n is not zero in general, we see that adjunction
does not hold in the same way.

Proposition 7.3.1. Define a vector κΥ as

κΥ = −k t(2g(µ1)− 2− µ2
1, . . . , 2g(µs)− 2− µ2

s)

= −k t(µ1 ¦ K[V ∗], . . . , µs ¦ K[V ∗])

= −k tK[V ∗]Υ.

Then

K[V ∗] = K∗ +
∑

i

κiµi, (7.5)

and

C ¦ (C + K) = 2g(C)− 2 + CΥ k t(CΥ + K[V ∗]Υ). (7.6)

Proof. Write K[V ∗] = K∗ +
∑

i κiµi, where the κi need to be calculated. We
have

2g(µi)− 2− µ2
i = K[V ∗] ¦ µi

= K∗ ¦ µi +
∑

j

κjµj ¦ µi

=
∑

j

κjµj ¦ µi.

We conclude that t(2g(µ1)− 2− µ2
1, . . . , 2g(µs)− 2− µ2

s) = d t(κ1, . . . , κs).
Write C∗ = C̃ +

∑
i γi(C)µi and use

C ¦ (C + K) = C∗ ¦ (C∗ + K∗) = C̃ ¦ (C∗ + K∗).
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We get,

C ¦ (C + K) = C̃ ¦
(

C̃ +
∑

i

γi(C)µi + K[V ∗]−
∑

i

κiµi

)

= C̃2 +
∑

i

γi(C)C̃ ¦ µi + C̃ ¦ K[V ∗]−
∑

i

κiC̃ ¦ µi

= C̃2 + CΥ k tCΥ + C̃ ¦ K[V ∗]− CΥ tκΥ

= 2g(C)− 2 + CΥ k tCΥ − CΥ tκΥ

= 2g(C)− 2 + CΥ k t(CΥ + K[V ∗]Υ).

¤

Remark 7.3.2. Observe that if C passes through none of the singular points then
adjunction holds in the usual sense.

8. Hilbert modular surfaces

Let L be a real quadratic field. We let M = M(µN ) be the moduli space with µN

level structure, where N ≥ 4, (N, p) = 1.

8.1. The inert case.

8.1.1. Calculation of some intersection numbers. Assume p > 2 in this
section. To conform with the notation in § 7 we let V be the Satake compacti-
fication of M, V ∗ be a smooth toroidal compactification of V , π : V ∗ −→ V be
the projection, V ◦ be the complement in M of the singular locus of V . We also
let Di = W({i+1}). Let C(N) be the degree of M over the coarse moduli space of
abelian surfaces with RM and no level structure.

Let η = 1
2ζL(−1)C(N). We know [BG] that each Di is a disjoint union of η

non-singular rational curves, that D1 and D2 intersect transversely, the set of
intersection points is the set of superspecial points, and that

D1 ¦ D2 = η(p2 + 1). (8.1)

Let h be the total Hasse invariant [Go1, Thm. 2.1]. It is a section of Lp−1
1 ⊗Lp−1

2 .
Over V ◦ the Kodaira-Spencer isomorphism gives that detΩ1

V/k
∼= L2

1 ⊗ L2
2, thus

K ∼ 2
p− 1

(h) =
2

p− 1
(D1 + D2), (8.2)

hence this also holds over V (since V is normal and V − V ◦ is of codimension 2).
Note also that over V ◦ we have Lp

iL
−1
i+1

∼= OV ◦(Di), as follows from the prop-
erties of the partial Hasse invariants [Go1]. Since Di is closed in V ◦ we con-
clude that Lp

iL
−1
i+1 extends to V and therefore we may define unique classes `i ∈
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CH(V )⊗Q so that

c1(Lp
iL
−1
i+1) = p`i − `i+1, i = 1, 2.

Now,

D1 ¦ K =
∑

C∈D1
C ¦ K

= −2η −∑
C∈D1

C2 (adjunction, each C ∼= P1)

= −2η −D2
1 (D1 is a disjoint union of

its components).

On the other hand,

D1 ¦ K = 2
p−1D1 ¦ (D1 + D2) (Equation (8.2))

= 2
p−1D2

1 + 2
p−1η(p2 + 1) (Equation (8.1)).

This yields

D2
1 = −2pη, D2

2 = −2pη.

Solving for `1, `2, one finds

`21 = 0, `22 = 0, `1`2 = η. (8.3)

8.1.2. On ampleness. The sections of the line bundle La1
1 L

a2
2 are Hilbert mod-

ular forms of weight (a1, a2). This motivates our interest in its ampleness.

Theorem 8.1.1. The class a1`1 + a2`2 is ample if and only if pa1 > a2 > 1
pa1.

Proof. We prove the claim by using the Nakai-Moishezon criterion [Kle, III.1, Thm.
1], cf. [Har, App. A, Thm. 5.1]. Though, strictly speaking, this criterion uses
Snapper-Kleinman’s intersection theory, we can use the Reeve-Tyrrell intersection
theory, since the theories agrees when both are defined [Arc, Thm. 2.5.15]. We
first make some preliminary calculations.

Let C be a component of D1. We have C2 = −2−C ¦K by adjunction. On the
other hand, C ¦ K = 2

p−1C ¦ (D1 + D2) = 2
p−1 (C2 + p2 + 1), where we have used

that D1 is a disjoint union of its components, one of which is C, and that C ¦D2 is
the set of superspecial points on C, which has cardinality p2 + 1 [BG, Thm. 6.1].
Therefore, C2 = −2− 2

p−1 (C2 + p2 + 1), which gives

C2 = −2p. (8.4)

We conclude that C ¦ D1 = C2 = −2p and C ¦ D2 = p2 + 1. Using that D1 =
p`1 − `2, D2 = p`2 − `1, we solve for `1, `2 and get

C ¦ `1 = −1, C ¦ `2 = p. (8.5)

We conclude that if C ¦ (a1`1 + a2`2) > 0 then pa2 > a1. By symmetry, if C is a
component of D2 such that C ¦ (a1`1 + a2`2) > 0 then pa1 > a2.
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Applying the Nakai-Moishezon criterion to the class a1`1 + a2`2, we conclude
that if a1`1 + a2`2 is ample then pa1 > a2 > 1

pa1. We now claim that the converse
also holds. It is enough to prove that for every irreducible curve C we have
C ¦ (a1`1 + a2`2) > 0. If C is contained in D1 ∪ D2 then this follows from our
calculations above. Else, write a1`1 + a2`2 = b1D1 + b2D2. One checks that b1, b2

are both positive. Since C is generically ordinary, it intersect the non-ordinary
locus D1 ∪ D2 by the “Raynaud trick” [Oo3, §4], hence has positive intersection
with b1D1 + b2D2. ut

8.2. The split case.

To conform with the notation of § 7, we let V be the Satake compactification of M,
the moduli space with µN -level structure, V ∗ be a smooth toroidal compactifica-
tion of M, π : V ∗ → V be the projection and V ◦ be the complement in M of the
singular locus of V .

One knows that the non-ordinary locus consists of two divisors D1 = W({1},∅)
and D2 = W(∅,{1}) that intersect transversely; the intersection being the set of
superspecial points. We also know that each Di is a disjoint union of non-singular
curves. See [BG, Thm. 6.1]. However, we have very little information on the
components of the Di. They are not Moret-Bailly families and one can show that
they are not Shimura curves. Here by a “Shimura curve” we mean the following.
Let B/Q be a quaternion algebra split at infinity. Fix a maximal order OB of B
and a positive involution ∗ of B fixing OB . There is a moduli space for special
polarized abelian surfaces with multiplication by OB (such that ∗ is the Rosati
involution) [Dri, §4 Dfn. and Prop. 4.4]. It is easy to see that every abelian
surface A with multiplication by OB over a field k is either simple or isogenous to
E2 where E is an elliptic curve. In particular, if char(k) = p > 0 then A is either
ordinary or supersingular.

Assume now that OL ⊂ OB and that ∗ preserves OL, then we get a forgetful
morphism to the Hilbert moduli space M. We call the images of such curves, and
their images under Hecke correspondences, Shimura curves.

In the following, we obtain some information on the field of definition and genus
of the components of the divisors D1, D2.

8.2.1. Fields of definition We examine the field of definition of the superspe-
cial points and the non-ordinary locus, under some restriction on N and p. The
following lemma holds for any totally real field L of degree g > 1 and for any
prime p.

Lemma 8.2.1. Let N ≥ 3 be an integer such that N |(p− 1) or N |(p + 1). Every
superspecial point on the moduli space M of RM abelian varieties with µN -level
structure can be defined over Fp2 .



48 Fabrizio Andreatta and Eyal Z. Goren

Proof. We use Honda-Tate theory for which [Wat] is a good reference. Consider
the Weil numbers ±p over Fp2 . There exist elliptic curves E± over Fp2 with that
Weil number. The endomorphism ring of E± after tensoring with Q is “the”
quaternion algebra Bp,∞ over Q ramified at p and ∞. However, one easily sees
that if f ∈ EndFp

(E±) and mf ∈ EndFp2 (E±), for some non-zero integer m, then
f ∈ EndFp2 (E±). It follows that EndFp2 (E) is a maximal order in Bp,∞.

The Frobenius endomorphism π := Frp2 : E −→ E is equal to ±p. It follows
that E±[N ] ⊆ E±(Fp2) iff N |(π−1) in End(E±). But π = ±p as an endomorphism
and we conclude that E±[N ] ⊆ E±(Fp2) iff N |(±p− 1) as integers.

Note that End(Eg
±) = Mg(End(E±)) is defined over Fp2 . It follows that any OL

structure on Eg
± is defined over Fp2 . Note also that Eg

± has an obvious polarization
defined over Fp2 induced from the canonical identification of E with its dual, and
hence (using that polarization to identify the polarizations with the symmetric
positive elements of End(Eg

±)) every polarization of End(Eg
±) is defined over Fp2 .

To conclude the proof, we notice that by a theorem of P. Deligne [Shi, Thm.
3.5] every superspecial abelian variety of dimension g > 1 is isomorphic over Fp

to Eg and, under our assumptions, µN
∼= Z/NZ as group schemes over Fp2 . ut

Corollary 8.2.2. Every component of Di is defined over Fp2 .

Proof. It is enough to show that if C is a component of Di then σ(C) = C
if σ ∈ Gal(Fp2/Fp2).

We first note that Di is defined over Fp. Let x ∈ C be a superspecial point
(such exists, because Di \W(1,1) is quasi-affine by applying [Oo3, Thm. 6.5], but
see also below). It is a Fp2 rational point of V and hence σ(C) is also a component
of Di passing through x. However, there is a unique such component passing
through x. We conclude that σ(C) = C. ut

8.2.2. Calculation of intersection numbers We shall make the following as-
sumption regarding continuity of intersection numbers (cf. Equation (8.3), Remark
8.3.3).

Assumption: `21 = 0, `22 = 0, `1`2 = η.

It follows that

D2
1 = 0, D2

2 = 0, D1 ¦ D2 = (p− 1)2η. (8.6)
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Therefore,

0 = D2
1

=
∑

C∈D1

C2

=
∑

C∈D1

(2g(C)− 2− C ¦ K)

=
∑

C∈D1

(2g(C)− 2)−D1 ¦ K

=
∑

C∈D1

(2g(C)− 2)− (p− 1)`1 ¦ 2(`1 + `2)

=
∑

C∈D1

(2g(C)− 2)− 2(p− 1)η.

(8.7)

That is,

(p− 1)η =
∑

C∈D1

(g(C)− 1). (8.8)

This already shows that on average the genus of components of C should be greater
than 1.

We can do slightly better. Assume that N ≥ 3 and either N |(p−1) or N |(p+1).
Let {C1, . . . , C`} be the irreducible components of D1. Let ri be the number of
superspecial points on Ci. Let gi be the genus of Ci, and G =

∑`
i=1 gi. Then R :=∑`

i=1 ri = (p− 1)2η and, together with Equation (8.8), we get,

R = (p− 1)
∑̀

i=1

(gi − 1) = (p− 1)(G− `). (8.9)

We have the estimate ri > 0 (because Di \W(1,1) is quasi-affine), but since ri =

deg
(
Lp−1

2 |Ci

)
(existence of partial Hasse invariants and simplicity of their zeros

[Go1, Thm. 2.1]) we actually have ri ≥ p− 1. Summing over the components, we
get

R ≥ (p− 1)`. (8.10)

We obtain the following:

Proposition 8.2.3. Assume that N ≥ 3 and N |(p − 1) or N |(p + 1). Then the
average genus g of the non-ordinary locus satisfies the inequality g = G/` ≥ 2.

Proposition 8.2.4. The line bundle Ln1
1 L

n2
2 is ample if and only if both n1 and n2

are positive.

The proof is along the same lines as the proof of Theorem 8.1.1.
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8.3. The ramified case.

Again, to conform with the notation of § 7, we let V be the Satake compactifi-
cation of M, the moduli space with µN -level structure, V ∗ be a smooth toroidal
compactification of N (sic!), π : V ∗ → V the projection. Let V ◦ = V \ V sing. For
every S ⊂ W(1,1), let µS = π−1(S).

8.3.1. The local structure of the moduli space. First we compute the local
deformation theory at a point of M. It follows from Example 4.3.1 that the moduli
space is regular at points of type (0, n), 0 ≤ n ≤ 2. By loc. cit., at a point of
type (0, 2), the universal deformation ring is k[[c0, c1]]. Recall Remark 6.1.4. We
may take m = ∞ and c3 = 1 as in (6.3) so that the universal Frobenius is

F =
(

0 T 2

1 −cσ
0 − cσ

1T

)
.

A deformation has type (0, 1) if and only if it is not ordinary. This is equivalent
to TF 2 ≡ 0 (mod T 2). Equivalently,

(
0 0
1 −cσ

0

)(
0 0
1 −cσ2

0

)
= 0 mod T.

This gives the condition c0 = 0. We conclude that in the local deformation space
the condition for deforming into W(0,1) is given by c0 = 0 and it defines a smooth
formal curve.

By Example 4.3.2, at a point of type (1, 1) the universal deformation ring R is
defined by

k[[a0, b0, c0, d0]]/(a0 + d0, a0d0 − b0c0) ∼= k[[a0, b0, c0]]/(a2
0 + b0c0).

Hence, Spec(R) is a cone. By (6.3) we may take m = ∞ and c3 = 1 so that the
universal Frobenius is given by

F =
( −bσ

0 T + aσ
0

T − aσ
0 −cσ

0

)
.

In order to have deformation of (0, 1) we must have TF 2 = 0 (mod T 2), which is
equivalent to

F 2 =
(−bσ

0 aσ
0

−aσ
0 −cσ

0

) (
−bσ2

0 aσ2

0

−aσ2

0 −cσ2

0

)
= 0.

This gives the system of equations modulo p:

bp+1
0 − ap+1

0 = 0, a0b
p
0 + c0a

p
0 = 0, b0a

p
0 + a0c

p
0 = 0, −ap+1

0 + cp+1
0 = 0.

If b0 = 0 it follows that a0 and c0 = 0 are nilpotent. The associated reduced
scheme is the point we started with. Inverting b0, the second equation can be
eliminated using b0(a0b

p
0 + c0a

p
0) = a0b

p+1−a2
0a

p
0 = a0(b

p+1
0 −ap+1

0 ). If a0 = 0, the
associated reduced scheme is the point we started with. Inverting a0 we deduce
from a0(b0a

p
0 + a0c

p
0) = b0(a

p+1
0 − cp+1

0 ) and from the other relations that b0a
p
0 +
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a0c
p
0 = 0. Hence, on the complement of the point we are reduced to the equations

a2
0 + b0c0 = 0, bp+1

0 − ap+1
0 = 0, −ap+1

0 + cp+1
0 = 0. (8.11)

We conclude that the non-ordinary locus consists of p + 1 branches given by b0 =
ζa0 and c0 = ζ−1a0 for ζ a p + 1-st root of unity.

Finally, we compute the structure of π1 : N → M. The morphism π1 is proper
[AG1, Lem. 8.4]. Outside π−1

1

(
W(1,1)

)
it is one-to-one [AG1, Prop. 6.5] and so

is an isomorphism. Since M\W(1,1) is smooth, we conclude that π−1
1

(
M\W(1,1)

)
is smooth. Let s ∈ W(1,1). Let R := k[[a0, b0, c0]]/(a2

0 + b0c0) be the completed
local ring of M at s. Let A → Spec(R) be the universal abelian scheme over R.
Using the theory of local models §4.3.2, we can find a R ⊗k k[T ]/(T 2)-basis α, β
of H1

dR(A/R) such that the relative cotangent space H0(A, ΩA/R) in H1
dR(A/R)

is generated as R⊗Z k[T ]/(T 2)-module by (T + a0)α + b0β and c0α + (T − a0)β.
The scheme N×M Spec(R) can be interpreted as representing the Grassmannian
of R⊗kk[T ]/(T 2) rank 1 submodules of H0(A,ΩA/R), free as R-modules and killed
by T . Any such module is generated by an element TXα + TZβ which is zero
in H1

dR(A/R)/H0(A, ΩA/R). Hence,

N×M Spec(R) ∼= Proj R[X,Z]/(a0X + c0Z,−b0X + a0Z), (8.12)

Proposition 8.3.1. The following hold:

1. the singular points of M are the cusps and the points contained in W(1,1);

2. the variety N is smooth over k;

3. π : N → M is the blow-up along W(1,1);

4. for every s ∈ W(1,1), the scheme µs is a non-singular rational curve with self
intersection −2.

Proof. The first assertion is a summary of part of the discussion above. Next, it
follows from (8.12) that N is a smooth variety.

Let Ṽ o be the blow-up of M at W(1,1). Since W(1,1) is reduced, we also get that
the inverse image of W(1,1) is a disjoint union of curves and, hence, is a divisor. By
the universal property of blow-up we get a birational map ρ : N → Ṽ o compatible
with the projections onto M. It is an isomorphism over M\W(1,1). The completed
local ring of M at a point of W(1,1) is isomorphic to R = k[[a0, b0, c0]]/(a2

0 + b0c0).
Since the blow-up is defined in terms of Proj of the ideal defining W(1,1) and W(1,1)

is reduced, the fibre product Ṽ o×MSpec(R) coincides with the blow-up of Spec(R)
at its closed point. In particular, the inverse image of the closed point of R
in Ṽ o ×M Spec(R) is isomorphic to P1

k and has self intersection −2. Using (8.12)
one easily checks that the base change of ρ to the product of the completed local
rings at the points of W(1,1) is an isomorphism. Hence, ρ is an isomorphism. ut
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8.3.2. Calculation of some intersection numbers. Assume that p > 2 in
this section. Let D be the reduced divisor that is equal to the non-ordinary locus
of V . Let h be the total Hasse invariant, h ∈ Γ(V ◦,detEp−1); it admits a square
root

√
h ∈ Γ(V ◦,detE(p−1)/2) - see [AG2]. We have (

√
h) = D. It follows from

the Kodaira-Spencer isomorphism that (initially on V ◦, but then on V )

K ∼ 4
p− 1

D. (8.13)

We know [BG, Thm. 5.3] that the number of components of D is η = 1
2ζL(−1)C(N),

where C(N) is the degree of the level structure, and that the number of points
of W(1,1) is also η. We also note that Proposition 8.3.1 implies that the variety V ∗

is suitable for calculating the intersections of divisors support on D. The following
calculations are done using the results and notations of § 7. On the one hand,

D2 = (D∗)2

=

( ∑

C∈D

C̃ +
p + 1

2
µW(1,1)

)2

=

( ∑

C∈D

C̃

)2

+ (p + 1)

( ∑

C∈D

C̃

)
¦ µW(1,1) +

(p + 1)2

4
µ2

W(1,1)

=
∑

C∈D

C̃2 + (p + 1)
∑

u∈W(1,1)

∑

C∈D

C̃ ¦ µu +
(p + 1)2

4

∑

u∈W(1,1)

µ2
u

=
∑

C∈D

C̃2 + (p + 1)2η +
(p + 1)2

4
(−2)η

=
∑

C∈D

C̃2 +
(p + 1)2

2
η.

On the other hand,

∑
C∈D C̃2 =

∑
C∈D(−2− C̃ ¦ K[V ∗]) (adjunction on V ∗)

=
∑

C∈D(−2− C̃ ¦ K∗) (Prop. 7.3.1 + Prop. 8.3.1)

= −2η −∑
C∈D C∗ ¦ K∗ (Prop. 7.2.1)

= −2η −∑
C∈D C ¦ K (Prop. 7.2.1)

= −2η −∑
C∈D C ¦ 4

p−1D (Equation (8.13))

= −2η − 4
p−1D2.

We conclude that D2 = −2η − 4
p−1D2 + (p+1)2

2 η, which gives:



Hilbert modular varieties of low dimension 53

Proposition 8.3.2. The self intersection of D is given by

D2 =
(p− 1)2

2
η.

Remark 8.3.3. Note that if we could argue by ‘continuity of intersection num-
bers’, we could write D = p−1

2 (`1 + `2), whence D2 = (p−1)2

2 `1 ¦ `2 = (p−1)2

2 η.

9. Hilbert modular threefolds

Let L be a totally real cubic field. In this section we study the local structure of
the moduli variety M. Given the results for g = 2 and the unramified case, we
may restrict our attention to the case when p = p3 is maximally ramified. Assume
that henceforth.

We recall from § 3.2 the strata and their hierarchy in terms of “being in the
closure” as encoded in the following diagram

(1, 2)
HHH
(0, 3)

g=3 (1, 1)
HHH
(0, 2)

(0, 1)

(0, 0)

To begin with, it follows from Example 4.3.1 that the locus W c
(j,n) for j = 0

and n = 0, . . . , 3, or for j = 1 and n = 1, 2 (performing a similar computation), is
formally smooth at points of type (j, n′) with n′ ≥ n. Thus, we are interested in
the structure of the strata W c

(0,1) at a point of type (1, 1) and (1, 2), and W c
(0,2) at

a point of type (1, 2).

9.1. Points of type (1, 2).

In this case j = 1, i = 2, and, since the point is superspecial, we may assume m =
∞ and c3 = 1 in Equation (6.3). The universal deformation space is of the form
(cf. Example 4.3.3):

k[[a0, a1, b0, c0, c1, d0]]/(a0d0 − b0c0, a0 + a1d0 − b0c1, a1 + d0)
∼= k[[a0, b0, c0, c1, d0]]/(a0d0 − b0c0, a0 − d2

0 − b0c1).

The results of §5.6 imply that the universal “mod p” Frobenius is given over this
ring by

F =
( −bσ

0 T 2 + aσ
0 − dσ

0T
T + dσ

0 −cσ
0 − cσ

1T

)
. (9.1)
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9.1.1. The non-ordinary locus W c
(0,1). By Corollary 5.6.3, the condition that

the deformation is non-ordinary is equivalent to the condition
(−bσ

0 aσ
0

dσ
0 −cσ

0

) (
−bσ2

0 aσ2

0

dσ2

0 −cσ2

0

)
≡ 0 (mod T ).

This gives the following system of equations:

(Eq1) bp+1
0 + a0d

p
0 = 0

(Eq2) b0a
p
0 + a0c

p
0 = 0

(Eq3) d0b
p
0 + c0d

p
0 = 0

(Eq4) d0a
p
0 + cp+1

0 = 0

(Eq5) a0d0 − b0c0 = 0

(Eq6) a0 − d2
0 − b0c1 = 0.

We note that if any of the variables a0, b0, c0, or d0 is zero then so is a power of
all the others. In this case, the associated reduced subscheme defines a smooth 1-
dimensional deformation which coincides with the j = 1 locus, generically having
invariants (1, 1). Else, to find the components of the non-ordinary locus, we may
invert a0, b0, c0, and d0. Using (Eq5) one checks that

b0 · (Eq4) = d0 · (Eq2), b0 · (Eq3) = d0 · (Eq1), bp
0 · (Eq2) = ap

0 · (Eq1).

Thus, we may consider only the three equations (Eq1), (Eq5), (Eq6). Substituting
using a0 = b0c1 + d2

0 we reduce to the equations

bp+1
0 + b0c1d

p
0 + dp+2

0 = 0, b0c1d0 + d3
0 − b0c0 = 0

in the ring k[[b0, c0, c1, d0]][b−1
0 , c−1

0 , c−1
1 , d−1

0 ]. Multiply the second equation by dp−1
0

and subtract from the first equation to reduce to the equations

bp
0 + c0d

p−1
0 = 0, d3

0 − b0c0 + b0c1d0 = 0.

In order to compute the components of the non–ordinary locus through the given
point, one proceeds as in the proof of 6.3.4 and computes the minimal prime
ideals of k[[b0, c0, c1, d0]][b−1

0 , c−1
0 , c−1

1 , d−1
0 ] associated to the ideal defined by the

equations

bp
0 + c0d

p−1
0 = 0, d2p+1

0 + cp+1
0 − c0c

p
1d

p
0 = 0.

As in loc. cit., one concludes that those prime ideals are in one to one corre-
spondence with the minimal prime ideals associated to the ideal (0) in the ring
R1 := k[[c1, d0]][c0]/(cp+1

0 − c0c
p
1d

p
0 + d2p+1

0 ) not containing d0. Since the polyno-
mial cp+1

0 +d2p+1
0 in the variable c0 is irreducible over k[[d0]], one concludes that R1

is a domain.
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We conclude that the non-ordinary locus is locally irreducible at points of type (1, 2).
One can also calculate that the tangent space at a point of type (1, 2) to the
deformation space into non-ordinary abelian varieties (given by (Eq1)-(Eq6)) is
three dimensional and conclude that every point of type (1, 2) is a singular point
of W c

(0,1).

9.1.2. The locus W c
(0,2). We next consider the problem of deforming a point of

type (1, 2) into the (0, 2) locus. The condition that the a-number is at least 2 is
equivalent to the condition TF 2 ≡ 0 (mod T 3), where F is given by

F =
( −bσ

0 T 2 + aσ
0 − dσ

0T
T + dσ

0 −cσ
0 − cσ

1T

)
.

This is equivalent to the following matrix being congruent to 0 modulo T 2:

( −bσ
0 aσ

0 − dσ
0T

T + dσ
0 −cσ

0 − cσ
1T

) (
−bσ2

0 aσ2

0 − dσ2

0 T

T + dσ2

0 −cσ2

0 − cσ2

1 T

)
.

This provides the following equations:

(Eq1) a0d0 − b0c0 = 0

(Eq2) a0 − d2
0 − b0c1 = 0

(Eq3) bp+1
0 + a0d

p
0 = 0

(Eq4) a0 − dp+1
0 = 0

(Eq5) d0b
p
0 + c0d

p
0 = 0

(Eq6) bp
0 + c0 + c1d

p
0 = 0

(Eq7) b0a
p
0 + a0c

p
0 = 0

(Eq8) b0d
p
0 − a0c

p
1 + d0c

p
0 = 0

(Eq9) d0a
p
0 + cp+1

0 = 0

(Eq10) ap
0 − dp+1

0 + c1c
p
0 + c0c

p
1 = 0.

We now substitute using (Eq4) a0 = dp+1
0 and obtain the following equations in

the variables b0, c0, c1, and d0:
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(Eq1) dp+2
0 − b0c0 = 0

(Eq2) dp+1
0 − d2

0 − b0c1 = 0

(Eq3) bp+1
0 + d2p+1

0 = 0

(Eq5) d0b
p
0 + c0d

p
0 = 0

(Eq6) bp
0 + c0 + c1d

p
0 = 0

(Eq7) b0d
p2+p
0 + dp+1

0 cp
0 = 0

(Eq8) b0d
p
0 − dp+1

0 cp
1 + d0c

p
0 = 0

(Eq9) dp2+p+1
0 + cp+1

0 = 0

(Eq10) dp2+p
0 − dp+1

0 + c1c
p
0 + c0c

p
1 = 0.

We distinguish two cases:

Case 1: d0 = 0.
This implies that a power of b0 and of c0 is zero. The associated reduced subscheme
is the smooth curve given by c1, which is the (1, 1) curve already noticed above.

Case 2: we invert d0.

We now multiply each equation by a suitable power of d0 so that to substitute
expressions of the form c0d

p
0 by −bp

0d0 (using (Eq5)). We remark that the elimi-
nation of c0 was justified by (Eq6). We arrive at the following system of equations
in b0, c1, and d0:

(Eq1’) d2p+1
0 + bp+1

0 = 0

(Eq2’) dp+1
0 − d2

0 − b0c1 = 0

(Eq6’) bp
0d

p−1
0 − bp

0 + c1d
2p−1
0 = 0

(Eq7’) b0d
2p2−p−1
0 − bp2

0 = 0

(Eq8’) −b0d
p2−1
0 + dp2

0 cp
1 + bp2

0 = 0

(Eq9’) d2p2+p
0 − bp2+p

0 = 0

(Eq10’) d2p2

0 − dp2+1
0 − bp2

0 c1 − dp2−2p+1
0 bp

0c
p
1 = 0.

Note that (Eq1’) implies that b0 6= 0 and implies (Eq7’) and (Eq9’). We may
therefore consider only the system
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(Eq1’) d2p+1
0 + bp+1

0 = 0

(Eq2’) dp+1
0 − d2

0 − b0c1 = 0

(Eq6’) bp
0d

p−1
0 − bp

0 + c1d
2p−1
0 = 0

(Eq8’) −b0d
p2−1
0 + dp2

0 cp
1 + bp2

0 = 0

(Eq10’) d2p2

0 − dp2+1
0 − bp2

0 c1 − dp2−2p+1
0 bp

0c
p
1 = 0.

We now show that (Eq1’) and (Eq2’) imply (Eq6’) and (Eq8’), (Eq10’). Indeed,
multiplying (Eq6’) by b0 we get

b0(Eq6′) = d2p+1
0 + (−d2

0 + dp+1
0 )d2p−1

0 − d2p+1
0 dp−1

0 = 0.

Multiplying (Eq8’) by bp
0, we get

bp
0(Eq8′) = d2p+1

0 dp2−1
0 + (−d2

0 + dp+1
0 )pdp2

0 + (−d2p+1
0 )p = 0.

Finally,

(Eq10′) = d2p2

0 − dp2+1
0 − (−d2p+1

0 )p−1(−d2
0 + dp+1

0 )− dp2−2p+1
0 (−d2

0 + dp+1
0 )p = 0.

Hence, we are left with the system of equations

(Eq1’) d2p+1
0 + bp+1

0 = 0

(Eq2’) dp+1
0 − d2

0 − b0c1 = 0.

Recall that these equations are taken in a ring where d0 is invertible, viz. in the
ring k[[b0, c1, d0]][d−1

0 ]. If I is the ideal generated by the equations (Eq1’), (Eq2’)
then the ring k[[b0, c1, d0]][d−1

0 ]/I is equal to the ring

k[[b0, c1, d0]][b−1
0 , d−1

0 ]/(d2p+1
0 + bp+1

0 , dp+1
0 − d2

0 − b0c1).

Hence, we can eliminate c1, putting c1 = d2
0(d

p−1
0 − 1)b−1

0 (note that cp+1
1 =

−d0(d
p−1
0 − 1)p+1, justifying the substitution) and conclude that the (0, 2)-locus

is given locally at a point (1, 2) by the irreducible equation

d2p+1
0 + bp+1

0 = 0

in the ring k[[b0, d0]] and hence is irreducible there.

9.2. Points of type (1, 1).

In this case j = n = 1 and i = 1. Hence, we may assume that c3 = 1 in (6.3). The
universal deformation space of [A0] is defined by the ring

R := k[[a0, a1, b0, c0, c1, d0]]/(a0d0 − b0c0, a1d0 + a0 − b0c1, a1 + d0).

The matrix M of Frobenius F of the universal display is defined by
(

T − bσ
0 + dσ

0 T 2 + aσ − cσ

T + dσ
0 −cσ

)
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with a := a0 +a1T and c := c0 +c1T . The deformations in the non-ordinary locus,
i. e., inside W c

(0,1), are defined by the condition that T 2F 2 = 0 modulo T . This is
equivalent to require that M ·Mσ = 0 mod T , i. e., to the vanishing of

(−bp
0 + dp

0 ap
0 − cp

0

dp
0 −cp

0

) (
−bp2

0 + dp2

0 ap2

0 − cp2

0

dp2

0 −cp2

0 ,

)

which is equal to
(

bp2+p
0 −bp

0dp2
0 −bp2

0 dp
0+dp2+p

0 +ap
0dp2

0 −cp
0dp2

0 −ap2
0 bp

0+ap2
0 dp

0+bp
0cp2

0 −cp2
0 dp

0−ap
0cp2

0 +cp2+p
0

−bp2
0 dp

0+dp2+p
0 −cp

0dp2
0 ap2

0 dp
0−cp2

0 dp
0+cp2+p

0

)
.

Hence, we get the following seven equations in the variables a0, a1, b0, c0, c1

and d0:

(Eq1) bp2+p
0 − bp

0d
p2

0 − bp2

0 dp
0 + dp2+p

0 + ap
0d

p2

0 − cp
0d

p2

0 = 0

(Eq2) −bp2

0 dp
0 + dp2+p

0 − cp
0d

p2

0 = 0

(Eq3) −ap2

0 bp
0 + ap2

0 dp
0 + bp

0c
p2

0 − cp2

0 dp
0 − ap

0c
p2

0 + cp2+p
0 = 0

(Eq4) ap2

0 dp
0 − cp2

0 dp
0 + cp2+p

0 = 0

(Eq5) a0d0 − b0c0 = 0

(Eq6) a1d0 + a0 − b0c1 = 0

(Eq7) a1 + d0 = 0 .

Case 1: Assume d0 = 0. Then, a power of b0 is 0 from (Eq1), a power of c0 is 0
from (Eq4), a0 = 0 from (Eq6) and a1 = 0 from (Eq7). The only free variable
left is c1. Hence, the reduced subscheme defined by d0 = 0 is 1-dimensional
and coincides with universal deformation space inside the locus W c

(1,1), as already
known.

Case 2: Let us invert d0 = 0. Then

• dp
0(Eq1) = (−bp

0 + dp
0)(Eq2) + dp2

0 (Eq5)p;

• cp2

0 (Eq2) = −dp2

0 (Eq4) + dp
0(Eq5)p2

;

• dp2+p
0 (Eq3− Eq4) = −bp

0d
p(Eq5)p2 − dp2

0 cp2

0 (Eq5)p + bp
0c

p2

0 (Eq2).

Hence, using a1 = −d0, a0 = d2
0 + b0c1, (Eq5) and d−p

0 (Eq2), the system of
equations (Eq1)–(Eq7) becomes equivalent to the system of equations

• d3
0 + b0c1d0 − b0c0 = 0;

• −bp
0 + dp

0 − c0d
p−1
0 = 0;

in k[[b0, c0, c1, d0]][d−1
0 ].
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non-ordinary locus

(1,1) locus

(0,2) locus ‘close-up’ on a (1,2) point

Figure 9.1: Hilbert modular threefold - maximally ramified case.

It follows from 6.3.5 that the nilradical of the ideal defined by these equations
has exactly two minimal prime ideals. Hence, the locus W c

(0,1) is not analytically
irreducible at the points of W(1,1). Studying the tangent space it is easily seen
that W c

(1,1) is singular in W c
(0,1).

9.3. Summary.

We now come to some conclusions concerning the global structure of moduli
space M for L cubic totally real field and p maximally ramified in L.

Let B be any component of M. By Proposition 6.3.3 the non-ordinary locus is
irreducible. The locus W c

(1,1) = W(1,1) ∪W(1,2) is irreducible and non-singular, by
loc. cit. and (3.1). The locus W c

(0,2) = W(0,2)∪W(1,2)∪W(0,3) is a union of Moret-
Bailly families, each component is singular only at the unique point (cf. [AG1,
Prop. 6.6]) of W(1,2) lying on it. The components of the locus W c

(0,2) are disjoint,
because intersection points can only be of type (1, 2), and by § 9.1.2 the locus is
locally irreducible there. One can prove that the W c

(0,1) locus, and the W c
(1,1) locus

are irreducible in each component of the moduli space in a different way. In fact,
a similar use of the correspondences π1π

−1
2 , π2π

−1
1 , shows that one is irreducible

if an only if the other is. We know by Theorem 6.2.3 that T2 = W c
(1,1) ∪W c

(0,2) is
connected, we know that each component of W c

(0,2) meets W c
(1,1) at a unique point,

and we know that the locus S1 = W(1,1) ∪W(1,2) is non-singular. The implies that
there is a unique component of W(1,1) in every component of M.
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Éditeur, Paris, 1968.



Hilbert modular varieties of low dimension 61

[Har] Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52.
Springer-Verlag, 1977.

[deJ] de Jong, A. J.: The moduli spaces of principally polarized abelian varieties
with Γ0(p)-level structure. J. Algebraic Geom. 2 (1993), no. 4, 667–688.

[Kle] Kleiman, S. L.: Toward a numerical theory of ampleness. Ann. of Math. (2) 84
(1966), 293–344.

[Lip1] Lipman, J.: Unique factorization in complete local rings. Algebraic geometry
(Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974),
pp. 531–546. Amer. Math. Soc., Providence, R.I., 1975.

[Lip2] Lipman, J.: Rational singularities, with applications to algebraic surfaces and
unique factorization. Inst. Hautes Études Sci. Publ. Math., No. 36 (1969), 195–279.

[MM] Mazur, B.; Messing, W.: Universal extensions and one dimensional crystalline
cohomology. Lecture Notes in Mathematics, Vol. 370. Springer-Verlag, Berlin-New
York, 1974.

[Mum] Mumford, D.: The topology of normal singularities of an algebraic surface and a
criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. No. 9 (1961), 5–22.

[Oo1] Oort, F.: Subvarieties of moduli spaces. Invent. Math. 24 (1974), 95–119.

[Oo2] Oort, F.: Which abelian surfaces are products of elliptic curves? Math. Ann. 214
(1975), 35–47.

[Oo3] Oort, F.: A stratification of a moduli space of polarized abelian varieties. In
“Moduli of Abelian Varieties”, C. Faber, G. van der Geer and F. Oort, eds. Progress
in Math. 195, Birkhauser (2001), 345–416.

[Oo4] Oort, F.: Foliations in moduli spaces of abelian varieties. Preprint
math.AG/0207050.

[Rap] Rapoport, M.: Compactifications de l’espace de modules de Hilbert-Blumenthal.
Compositio Math. 36 (1978), no. 3, 255–335.

[RZ] Rapoport, M.; Zink, Th.: Period spaces for p-divisible groups. Annals of Mathe-
matics Studies, 141. Princeton University Press, Princeton, NJ, 1996.

[RT1] Reeve, J. E.; Tyrrell, J. A.: Intersection theory on a singular algebraic surface.
Proc. London Math. Soc. (3) 12 (1962), 29–54.

[RT2] Reeve, J. E.; Tyrrell, J. A.: Intersection theory on a singular algebraic surface—
Addendum. J. London Math. Soc. 41 (1966), 619–626.

[Sam] Samuel, P.: On unique factorization domains. Illinois J. Math. 5 1961 1–17.

[Shi] Shioda, T.: Supersingular K3 surfaces. Algebraic geometry (Proc. Summer Meet-
ing, Univ. Copenhagen, Copenhagen, 1978), pp. 564–591, Lecture Notes in Math.,
732, Springer, Berlin, 1979.

[Wat] Waterhouse, W. C.: Abelian varieties over finite fields. Ann. Sci. École Norm.
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