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CHAPTER 1

Algebraic groups, representations and invariant
theory

Eyal Z. Goren

1. Introduction

We provide a quick introduction to the theory of linear algebraic groups and
their structure. The text follows closely the original lectures that consisted of 3
hours, justifying its brevity and omission of many important topics. The choice of
topics was influenced by the aspects of the theory of algebraic groups used in other
lectures of the summer school.

The theory of algebraic groups is a vast area of algebraic geometry. The reader
interested in expanding their knowledge is advised to consult any of the references
appearing in the bibliography; in particular, the excellent books by Borel [Bor2],
Fulton & Harris [FH], Humphries [Hum1] and Springer [Spr]. In preparing this talk
we made an extensive use of Borel’s article [Bor1].

In the interest of simplifying the exposition we assume throughout that k is a field
of characteristic 0 and k̄ is an algebraic closure of k. The conventions of algebraic
geometry that we use are as in Hartshorne [Har].

2. Algebraic groups

The most fundamental linear algebraic group is GLn(k̄). This is the algebraic
group of invertible n× n matrices (xij) with entries in k̄ such that det(xij) 6= 0. It
is an affine variety with coordinate ring k̄[y, xij : 1 ≤ i, j ≤ n]/(y · det(xij)− 1).

2.1. Definition. A linear algebraic group G is a Zariski closed subgroup of
GLn(k̄) for some n.

It follows from the definition, by Yoneda’s lemma, that the multiplication and
inverse morphisms of GLn(k̄) induce morphisms of the subgroup G. Thus, by
definition, the multiplication morphism m : G × G→ G, the inverse morphism
i : G→ G and the zero point, viewed as a morphism e : A0 → G where A0 is the
one pointed space with coordinate ring k̄, all induced from GLn, are morphisms of
varieties and respect the group structure at the same time. More precisely, they
satisfy the following commutative diagrams:

G×G×G id×m //

m×id
��

G×G

m

��
G×G m // G,

A0 ×G
m◦(e×id)//

p2

��

G

G,

id

99ttttttttttt

G
i×id //

��

G×G

m

��
A0 e // G.
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Passing to coordinate rings, one finds the following homomorphisms of k̄-algebras
(and that they are multiplicative as well is a key fact):

m∗ : k̄[G]→ k̄[G]⊗k̄ k̄[G], e∗ : k̄[G]→ k̄, i∗ : k̄[G]→ k̄[G],

with commutative diagrams induced from those above. Such a structure is called
a Hopf algebra. We will not make much use of it apart from using it to analyze the
so-called characters of algebraic groups. The book [Wat] is a good introduction to
affine group schemes.

2.2. Examples. We have, of course, the example of GLn(k̄) itself, whose co-
ordinate ring is k̄[y, {xij}1≤i,j≤n]/(y ·det(xij)−1). The co-multiplication morphism
is given by expressing the ij coordinate of the product of two matrices in terms of
the entries of the matrices. Namely, m∗ is determined by m∗(xk`) =

∑
i xki ⊗ xi`

and m∗(y) = y⊗y, which expresses the fact that the determinant is a multiplicative
function. Standard subgroups of GLn(k̄) are given by the following subgroups B,N
and T that are examples of a Borel subgroup, a unipotent subgroup and a torus,
respectively.

B = {(xij) ∈ GLn(k̄) : xij = 0 for i < j}

=

{( x11 x12 ... x1n
x22 ... x2n

. . .
xnn

)
: xij ∈ k̄, x11x22 · · ·xnn 6= 0

}
,

U = {(xij) ∈ B : xii = 1, 1 ≤ i ≤ n} =

{( 1 x12 ... x1n
1 ... x2n

. . .
1

)
: xij ∈ k̄

}
,

and

T = {(xij) ∈ GLn(k̄) : xij = 0 for i 6= j}

=

{( x11
x22

. . .
xnn

)
: xii ∈ k̄, x11x22 · · ·xnn 6= 0

}
.

In this case, all these subgroups are defined by linear conditions. Another subgroup
of GLn(k̄) is SLn(k̄), the matrices of determinant 1.

Let q be a quadratic form in n variables and let q(x, y) be the associated bilinear
form: q(x, y) : k̄n× k̄n → k̄, q(x, y) = q(x+y)− q(x)− q(y), which we identify with
an n × n matrix (qij), qij = q(ei, ej), where ei is the standard i-th basis vector of
k̄n. We then have 2q(x) = q(x, x). In terms of coordinates

q(x, y) = tx(qij)y

(we use column vectors throughout). One lets

SOq = {M ∈ SLn(k̄) : tM(qij)M = (qij)}.

It is an algebraic group defined by quadratic equations.
As a particular case, take q(x, y) =

∑n
i=1 xiyn−i+1. The matrix corresponding

to q is  1
1

. .
.

1
1

 .
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We then define two subgroups T1 and B1 of SOq, by B1 = B ∩ SOq, T1 = T ∩ SOq.
Note that T1 consists of diagonal matrices of the form diag(t1, . . . , tn) for which
titn−i+1 = 1 for all i and

∏n
i=1 ti = 1; the first condition follow from preserving q,

while the second follows from the determinant condition (and is a consequence of
the first condition when n is even).

2.3. Homomorphisms and characters. A homomorphism f : G→ H of
algebraic groups over k̄ is a morphism of varieties over k̄ that is also a homomor-
phism of groups. Since G and H are affine, giving f is equivalent to giving a
homomorphism of k̄ algebras f∗ : k̄[H]→ k̄[G] satisfying the extra condition that
the following diagram commutes:

k̄[G]

m∗

��

k̄[H]

m∗

��

f∗
oo

k̄[G]⊗k̄ k̄[G] k̄[H]⊗k̄ k̄[H].
f∗⊗f∗
oo

A case of particular interest are the homomorphisms G→ Gm, where Gm is another
notation for GL1(k̄) = k̄×, the multiplicative group of non-zero elements of k̄. Such
homomorphisms are called characters of G. As k̄[Gm] = k̄[x, x−1] with m∗(x) =
x⊗x, giving a character χ : G→ Gm is equivalent to providing an invertible element
f = χ∗(x) in k̄[G] that satisfies

m∗G(f) = f ⊗ f.

Such elements f are called group-like elements of k̄[G]. One denotes the set of
characters χ : G→ Gm of G by X∗(G). They form an abelian group under multi-
plication, where (χ1χ2)(g) := χ1(g)·χ2(g), and are functorial inG in a contravariant
manner.

For example, a character of Gm itself is just an endomorphism of Gm given by
a polynomial f(x, x−1) =

∑
−N≤n≤N anx

n ∈ k̄[x, x−1] that satisfies m∗(f) = f⊗f .

That gives the identity
∑
n anx

n ⊗ xn = (
∑
n anx

n)⊗ (
∑
n anx

n), from which one
concludes that f(x) = xn for some unique n ∈ Z. Thus, X∗(Gm) ∼= Z canonically.
It is not hard to boot-strap this argument to conclude that X∗(T ) ∼= Zn canonically,
where T is the standard torus of GLn. The idea is that given a character χ of T ,
for every fixed i, the character of Gm provided by the composition Gm → T → Gm,
t 7→ diag(1, . . . , t, . . . 1) (inclusion into the i-th coordinate), is raising to some power
ai(χ). One concludes a homomorphism X∗ → Zn, χ 7→ (a1(χ), . . . , an(χ)), which
is the desired isomorphism. Another consequence is that

Aut(T ) = Aut(Gnm) ∼= GLn(Z).

Indeed, given an automorphism f : T → T let fij be the projection on the i-th
coordinate of the restriction of f to the j-th coordinate. Then fij is a character
corresponding to an integer aij . The matrix corresponding to f is non-other than
(aij)1≤i,j≤n. In turn, such a matrix (aij) defines the automorphism taking a matrix
diag(t1, . . . , tn) to diag(s1, . . . , sn) where sj = t

aj1
1 t

aj2
2 · · · tajnn .

As another example of a homomorphism between groups, fix an element g of
G. Then,

Intg : G→ G, Intg(x) = gxg−1,

is an automorphism of G, and, in fact, g 7→ Intg is a homomorphism G→ Aut(G).
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3. Non-abelian cohomology and forms

3.1. Non-abelian cohomology. Let G be a topological group, acting contin-
uously from the left on a discrete possibly non-commutative group M . The action
of g ∈ G on m ∈M is denoted gm. We let

H0(G,M) = MG := {m ∈M : gm = m,∀g ∈ G},

be the subgroup of fixed points of G. We also define

H1(G,M) := {ζ : G→M : ζ(ab) = ζ(a) · aζ(b)}/ ∼ .

In this definition we take continuous functions ζ : G→M only; the equivalence
relation ∼ is defined as follows: ζ ∼ ξ if there exists an m ∈ M such that ζ(a) =
m−1 ·ξ(a) ·am,∀a ∈ G. Here, H0 and H1 are called the zeroth and first cohomology
of G with values in M , respectively. The functions in H1 are called cocyles. We
remark that although MG is a group, unless M is abelian H1(G,M) is typically
not a group but merely a pointed set, that is, a set equipped with a distinguish
element, which is just the class of the constant function 1G.

We remark that there are different conventions in the literature as to the rule
relating ζ(ab) to ζ(a) and ζ(b) and, accordingly, the definition of ∼. They all
produce the same cohomology pointed sets, so these differences are inessential.

If 0→ A→ B → C → 0 is an exact sequence of G-groups, there is a long exact
sequence

0→ AG → BG → CG
δ→ H1(G,A)→ H1(G,B)→ H1(G,C)(→ H2(G,A)).

Some explanations are necessary. The first arrows are group homomorphisms, but
as soon as we get to the pointed sets, the statement is that the image of the previous
map is the collection of elements going under the next map to the distinguished
element. For instance, the image ofH1(G,A) inH1(G,B) are precisely the elements
of H1(G,B) mapping to the trivial cocycle of H1(G,C). Furthermore, if A is
contained in the centre of B (and, in particular, A is commutative) one can define
an abelian group H2(G,A) and the exact sequence can be prolonged as indicated
above. To keep the exposition brief we do not define H2 here, although we shall
use some of its properties - the interested reader can consult [Ser1, Ser2] for details.
The maps in the exact sequence are all “obvious”, except for the map δ (and the
map to H2, if relevant). It is defined as follows: given c ∈ CG choose some b ∈ B
mapping to it and let ζ(g) = b−1 · gb. The equivalence relation defined on cocycles
shows that this is independent of the choice of b.

3.2. Forms of linear algebraic groups. Let G be a linear algebraic group
over k̄ and assume that G is defined as a variety over k. That is, the ideal defining G
as a sub variety of GLn(k̄) can be generated using polynomials with coefficients in k.
A k-form of G is an algebraic group H defined over k such that H is isomorphic
to G as an algebraic group over k̄. Namely, there is an isomorphism of varieties
H ∼= G, defined over k̄, that is also a group homomorphism H(k̄) ∼= G(k̄). Let
Γ = Gal(k̄/k) be the absolute Galois group of k. It is a topological group with
a topology determined by decreeing all subgroups Gal(k̄/F ), [F : k] < ∞, to be
open.

Let H be a k-form of G and f : G→ H an isomorphism over k̄. For every σ ∈ Γ
we have another group isomorphism σf : G→ H, simply obtained by applying σ to
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the polynomial formulas defining f . Clearly, f−1◦σf ∈ Autk̄(G) (automorphisms
as an algebraic group!). That way, H produces a cocycle,

ζH : Γ→ Autk̄(G), ζH(σ) = f−1◦σf ;

That is,

ζH ∈ H1(Γ,Autk̄(G)).

Theorem 1. There is a natural bijection between the k-forms of G, considered
up to k-isomorphism, and the cohomology group H1(Γ,Autk̄(G)). Under this cor-
respondence, if H corresponds to a cocyle ζ then H(k) = G(k̄)Γ, where Γ acts on
G(k̄) as τg = ζ(τ)(g).

Using this, we define the compact real form of GLn(C). We let Γ = Gal(C/R),
with cc denoting complex conjugation and define ζ : Γ→ AutC(GLn(C)) by ζ(1) =

id, ζ(cc) = {g 7→ tḡ
−1} (a so-called Cartan involution). Let Un be the group corre-

sponding to this cocyle. Then,

Un(R) = {g ∈ GLn(C) : g = tḡ
−1} = {g : gg∗ = 1},

which is indeed the unitary group over R (and so our notation is good!). Note that
Un(R) is a compact space in the complex topology, explaining the terminology.

A general theorem asserts that any real reductive group G has a unique real
compact form; see, e.g., [OV, Theorem 12, p. 247].

3.3. Examples.
3.3.1. Take the one dimensional torus T = Gm. As an automorphism of Gm

is an invertible character, we conclude that Aut(T ) = {±1}, where −1 stands for
the automorphism t 7→ t−1. Let Γ = Gal(C/R). It is not hard to check, using that
Γ acts trivially on Aut(T ), that H1(Γ, {±1}) is a group with two elements; the
non-trivial cocycle takes cc (complex conjugation) to −1. We then conclude that T
has two forms over R. One is Gm = GL1 and the other one is U1 (the compact real
form).

3.3.2. We consider the exact sequence of algebraic groups over k,

1→ Gm → GLn → PGLn → 1,

where PGLn(k̄) = GLn(k̄)/k̄× (k̄× embedded as the scalar matrices). While not
obvious, one can show that PGLn(k̄) is a linear algebraic group, defined over k.
Taking Galois cohomology we find the sequence

(1) 1→ k× → GLn(k×)→ PGLn(k̄)Γ

→ H1(Γ, k̄×)→ H1(Γ,GLn(k̄))→ H1(Γ,PGLn(k̄))

→ H2(Γ, k̄×).

A classical theorem of Hilbert (“Hilbert’s 90”) asserts that H1(Γ, k̄×) = {1}. This
already gives the conclusion that

1→ k× → GLn(k)→ PGLn(k̄)Γ → 1

is exact and consequently

PGLn(k̄)Γ = GLn(k)/k×.
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(This conclusion is in fact a subtle point. It fails for PSL2 = SL2/{±I2} for
example.) A generalization of Hilbert’s 90, gives H1(Γ,GLn(k̄)) = {1} (see [Ser1,
§X]) and thus we have an exact sequence

1→ H1(Γ,PGLn(k̄))→ H2(Γ, k̄×).

Now, as it turns out, H2(Γ, k̄×) is a famous construction; it is the Brauer group of
the field k and classify central simple algebras over k up Brauer equivalence: two
central simple algebras D1, D2, over k are equivalent if for some positive m,n we
have an isomorphism of k-algebras Mm(D1) ∼= Mn(D2). It so happens that also the
group H1(Γ,PGLn(k̄)) has a nice interpretation. The action of GLn(k̄) on Mn(k̄)
by conjugation induces an isomorphism

PGLn(k̄) ∼= Aut(Mn(k̄)),

where the automorphisms are as a k-algebras. Thus, H1(Γ,PGLn(k̄)) classifies
forms of the algebra Mn(k̄). That is, it classifies central simple algebras over k, of
rank n2.

4. Structure of algebraic groups

4.1. Jordan decomposition. This is a seemingly technical property of el-
ements of a linear algebraic group. However, it turns out to play an absolutely
crucial part in many arguments.

Any matrix g ∈ GLn(k̄) has a unique decomposition, called the Jordan decom-
position,

g = gs · gu, gsgu = gugs,

where gs is semisimple (that is, diagonalizable) and gu is unipotent (that is, (gu −
In)n = 0). To understand what this decomposition is, we may by conjugating
the matrix restrict our attention to a matrix in Jordan canonical form. An easy
argument gives that it is enough then to examine the case of a single Jordan block;
the overall decomposition is obtained by putting together the compositions of the
blocks. But for a matrix M of the form λIa + U , where Ia is the identity matrix
of size a and where U is a matrix all whose entries are zero except that Ui,i+1 =
1, i = 1, 2, . . . , n− 1, we easily check that the decomposition is λIa · (λ−1M).

The key fact about the Jordan decomposition is that it is “very persistent”.
The following holds:

Proposition 2. Let H be a subgroup of GLn(k̄). If g ∈ H so are gs and gu.
Let f : G→ H be a homomorphism of algebraic groups. Then f(g)s = f(gs) and
f(g)u = f(gu).

4.2. Tori. A torus T over k is a form of Gnm for some n. Thus, tori are
classified by

H1(Γ,GLn(Z)) = Hom(Γ,GLn(Z))/ ∼ conjugation.

However, there is a more effective mechanism to describe tori. Consider

X∗(T ⊗k k̄) := Hom(T ⊗k k̄,Gm) ∼= Hom(Gnm,Gm) ∼= Zn.

It carries a Galois action. For σ ∈ Γ, χ ∈ X∗(T ),

(σχ)(t) = σ(χ(σ
−1

t)).
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Thus T provides us with a free rank n Galois module, namely, X∗(T ). By pull-back,
a homomorphism of tori f : T1 → T2 defined over k induces a Galois equivariant
homomorphism f∗ : X∗(T2)→ X∗(T1). It turns out that this captures completely
the category of tori. More precisely,

Theorem 3. (Cf. [Bor2, §III.8.12]) There is an anti-equivalence of categories
between tori over k and free Z-modules of finite rank equipped with a continuous
Galois action.

Note that the elements of Gnm are diagonal and commuting. Thus, by properties
of the Jordan decomposition, their images under any linear representation of Gnm,
say ρ : Gnm → GL(V ) are simultaneously diagonalizable. The same holds for any
torus T , only that the decomposition is taking place over k̄. That is,

(2) V = ⊕α∈X∗(T )Vα,

where Vα := {v ∈ V : ρ(t)(v) = α(t) · v}, for all t ∈ T . The subspaces V α are only
defined over k̄ in general. If V and ρ are defined over k then we have an induced
Galois action: σ(Vα) = Vσα.

Example. Consider the Deligne torus S. This is a rank 2 torus over R, with
the property S(R) ∼= C×,S(C×) ∼= C× × C×; more precisely, S(A) = (C ⊗R A)×

for any R-algebra A. The inclusion (R ⊗R A)× ⊆ (C ⊗R A)× shows an injection
Gm → S, corresponding to a surjection X∗(T )→ X∗(Gm) = Z (where the Galois
action on Z is trivial). This shows that the action of complex conjugation on
X∗(T ) must be given by a matrix whose characteristic polynomial is x2− 1. Up to
conjugation by GL2(Z) such a matrix is either

(
1
−1

)
or ( 1

1 ). The first leads to

a split torus Gm ×U1 (see §3.3.1) and so T must correspond to the lattice Z2 with
cc acting by ( 1

1 ). Given now a representation ρ : T → GLn(R), we can decompose

V =
∑

(p,q)∈Z2 V (p,q), where we think about (p, q) as a character of T . The Galois

action induces an isomorphism V (p,q) = V (q,p). This structure appears in the theory
of Hodge structures.

Theorem 4. All maximal tori in G are conjugate in G over k̄. Their common
dimension is called the rank of G and denoted here rk(G).

For example, rk(GLn(k̄)) = n and rk(SO2n+1) = rk(SO2n) = n. Examples of
maximal tori for these groups were given in §2.2.

4.3. Solvable groups. A linear algebraic group G is called solvable if there is
a series of algebraic subgroups {1} ⊆ G1 ⊆ · · · ⊆ Gt = G, such that Gi−1 is normal
in Gi and the quotients Gi/Gi−1, that exist by a general theorem for quotients of
linear algebraic groups, are abelian.

The standard example is provided by the group B of upper triangular matrices
in GLn(k̄), given in §2.2. In fact, as B = T n U in the notation of loc. cit., B is
solvable if and only if U is solvable. One considers the subgroups of the form

1 0 ··· 0 ∗ ∗ ··· ∗
1 0 0 ∗ ··· ∗
. . .

. . .
1 0 ··· 0 ∗

1 0
. . .

1

 .
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They provide us with a series of subgroups with abelian quotients. In a sense B is
the most general example. More precisely:

Theorem 5 (Kolchin-Lie). Let G be a solvable subgroup of GLn(k̄) then G
can be conjugated into B.

We say that G acts on a variety V if we have a morphism G × V → V that
satisfies the expected diagrams for a group action (the details are left to the reader).
It is not hard to check that the Kolchin-Lie theorem is equivalent to the following
statement: A solvable algebraic group acting on a projective space has a fixed point.
Borel’s theorem generalizes this fact.

Theorem 6 (Borel). Let G be a connected solvable algebraic group acting on
a complete algebraic non-empty variety V , then G has a fixed point in V .

Definition. Let G be a linear algebraic group. A maximal connected solvable
subgroup of G is called a Borel subgroup of G.

We have given examples of Borel subgroups - the subgroups denoted by B and
B1 - in §2.2. Here are two important facts about Borel subgroups.

Theorem 7. Over k̄, every torus is contained in a Borel subgroup. If G is
reductive, all Borel subgroups are conjugate.

We will soon get to the definition of reductive group. The linear groups
GLn,SLn,SOn, Un,Sp2n (the last group, called the symplectic group, is the sub-
group of GL2n preserving the standard bilinear alternating pairing on k̄2n given
by the matrix

(
0n In
−In 0n

)
) are all reductive, as is any torus. A product of reductive

groups, or, more generally, an extension of reductive groups, is reductive.

4.4. Radicals, semisimple and reductive groups. We define here the no-
tions of semisimple and reductive groups. The reductive groups are a more general
class than the semisimple groups and it is the class of algebraic groups for which
one can develop an elegant theory of their linear representations (often by reduc-
tion to the semisimple case). It is perhaps a good place to remind the reader our
standing assumption that the base field k has characteristic 0. In this case, a group
is reductive, in the sense defined below, if and only if it is linearly reductive, that is,
any linear representation of the group is a direct sum of irreducible representations;
over a field of positive characteristic the representation theory of a reductive group
is not as easy and one needs to distinguish between a reductive group and a linearly
reductive group. In fact, by a theorem of Nagata, a connected algebraic group over
a field of positive characteristic is linearly reductive if and only if it is a torus (cf.
[Koh]).

Definition. For a linear algebraic group G we let R(G), the radical of G,
denote the maximal connected-normal-solvable-subgroup of G. We let Ru(G), the
unipotent radical of G, denote the maximal connected-normal-unipotent-subgroup
of G. A connected linear algebraic group G is called semi simple if R(G) = {1}. It
is called reductive if Ru(G) = {1}.

Of course, behind those definitions are a series of lemmas without which the
definition would not make sense. For example, that the product of two connected
(resp. normal, resp. solvable) subgroups of G is a connected (resp. normal, resp.
solvable) subgroup of G. The groups SLn,SOn,Sp2n are semisimple, while the
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group GLn as well as any nontrivial torus are reductive but not semisimple. The
Borel subgroup B of GLn, n > 1, is not reductive as its unipotent radical is U .

Any linear algebraic group G has a decomposition

G = H nRu(G),

where H is a maximal reductive subgroup of G - see [Bor1, §5.1] for this fact and
other properties of reductive groups stated below. This particular statement uses
once more our assumption that char(k) = 0. The group G/Ru(G) is reductive and
the group G/R(G) is semisimple. Further, if G is reductive and Z(G) denotes its
centre, then G/Z(G) is semisimple. In that case the connected component of Z(G)
is a torus. And so, morally speaking, for connected algebraic groups, the difference
between reductive and semisimple is just a central torus.

From the point of view of representation theory, the reductive groups are pre-
cisely the linear algebraic groups for which the representation theory is managable.
To see the problem, consider the unipotent group U of GL2(k̄) acting naturally
on k̄2. This representation is not a sum of irreducible representations, but rather
a non-split extension 0→ k̄ → k̄2 → k̄ → 0, where the action on both kernel and
quotient is the trivial representation. Without presuming to offer here a serious
discussion, we can appreciate the complications arising from such a phenomenon
where a representation cannot be captured by a decomposition into irreducible
representations, or even a filtration by such. The main difference is the following
fundamental result:

Theorem 8. Let G be a reductive group and ρ : G→ GL(V ) ∼= GLn(k̄) a finite
dimensional representation of G. Then k̄[ρ(G)], the sub-algebra of the algebra of
n × n matrices Mn(k̄), is a semisimple algebra. Consequently, the representation
V decomposes into a direct sum of irreducible representations of G.

Conversely, if G is a connected linear algebraic group that is linearly reductive
then G is reductive.

4.5. Parabolic subgroups. Let G be a connected linear algebraic group. A
subgroup P of G is called parabolic if G/P is a projective variety. A basic result is

Theorem 9. P is a parabolic subgroup of G if and only if P contains a Borel
subgroup of G.

Example. A flag F in k̄n is a sequence of subspaces

F = ({0} ( F1 ( F2 ( · · · ( Fa ( k̄n).

Let d = (d1, . . . , da), di = dim(Fi). We call d the type of F . The space of all
flags of type d is a complete algebraic variety Fd. This is a classical result in
algebraic geometry; the basic example being the case of a single subspace, that is
d = (d1) for some integer 0 < d1 < n. The resulting space is called the Grassmann
variety G(d1, n) (and, still specializing, the case d1 = 1 is nothing else than the
projective space Pn−1). The general case could be understood as a closed subset
of G(d1, n) × G(d2, n) × · · · × G(da, n), a so-called incidence variety. At any rate,
the group GLn(k̄) acts transitively on Fd and so the stabilizer of a given point is a
parabolic subgroup. For example, taking Fi = Span{e1, . . . , edi}, where ei are the
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standard basis elements, we find the parabolic
M1 ∗ . . . ∗

M2 . . . ∗
. . .

Ma+1

 ,

where Mi ∈ GLdi−di−1(k̄) (put d0 = 0 and da+1 = n for convenience). Note that
taking the maximal type d = (1, 2, . . . , n−1) gives us the standard Borel subgroup.

Now consider V = k̄n with the bilinear form q =

 1
1

. .
.

1
1

 as in §2.2. An

isotropic flag is a sequence of subspaces of k̄n,

F = ({0} ( F1 ( F2 ( · · · ( Fa),

such that each Fi is isotropic, that is, the restriction of q to Fi×Fi is identically zero.
The type is defined in the same way. Let F◦d be the flag variety of isotropic flags. As
before, F◦d is a complete algebraic variety and SOq acts transitively on F◦d by Witt’s
extension theorem. Thus, the stabilizer of a point is a parabolic subgroup of SOq. If
we let Fi = Span{e1, . . . , edi} (where di ≤ n/2 necessarily) then Fi is isotropic and
we get an isotropic flag. The fact that a linear transformation T in SOq preserves q
implies that if it preserves Fi it must preserve F⊥i = Span{e1, . . . , en−di} and if
T acts on Fi by the matrix Ai, it acts on k̄n/F⊥i = Span{en−di+1, . . . , en} by the

matrix Ãi := J tA−1
i J , where J is the matrix

 1
1

. .
.

1
1

 of the same size as Ai.

Putting it together, we get a parabolic subgroup

M1 ∗ · · · ∗
M2 ∗ · · · ∗

. . .

R
...

. . .

M̃2 ∗

M̃1


;

the Mi are arbitrary invertible matrices of size di − di−1 and R ∈ SO(W ), where
W is the span of {eda+1, . . . , en−da}.

The example we just gave may mislead the reader to think that pullback of
parabolic subgroups are often parabolic (in this case, the pullback from GLn).
This is rarely the case. Indeed, we have the following theorem.

Theorem 10 (Chevalley, cf. [DMOS, Proposition 3.1, p. 40]). Let G be a
linear reductive group and H a linear algebraic subgroup of G. Then there is an
embedding G→ GLn such that H = G∩P , where P is a parabolic subgroup of GLn.
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5. Roots and parabolic subgroups

We define here the root system of a reductive algebraic group G. We explain
how the root system gives a detailed map of all parabolic subgroups of G.

5.1. Lie algebra. LetG be a linear algebraic group over k̄. Left multiplication
by an element of g ∈ G, `g(x) = gx, is an automorphism of G that induces an
automorphism of the tangent bundle, `g,∗ : TG → TG (taking the tangent space at
a point x to the tangent space at the point gx). The Lie algebra of G, Lie(G) is
initially the tangent space TG,1 to G at the identity; due to the structure above,
elements of TG,1, viewed as derivation at the point 1, can be extended to left
invariant derivations of G, that is, to a section of TG that is invariant under the
map `g,∗ for any g ∈ G.

Thinking of X,Y ∈ Lie(G) as derivations allows us to define the bracket of
X and Y , namely [X,Y ] := X ◦ Y − Y ◦ X, which is a again a left-invariant
derivation. This makes the k̄ vector space Lie(G) into a Lie algebra. Namely,
besides the fact that [X,Y ] is bilinear and alternating also the Jacobi identity
holds: [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.

The association G→ Lie(G) is functorial. In particular, a homomorphism of
algebraic groups f : G→ H induces a homomorphism Lie(f) : Lie(G)→ Lie(H) of
Lie algebras. In particular, the conjugation homomorphism Intg(x) = gxg−1 in-
duces an automorphism Lie(Intg) : Lie(G)→ Lie(G), commonly denoted

Ad(g) : Lie(G)→ Lie(G).

In particular Ad(g) is a linear map and the resulting homomorphism into the au-
tomorphisms of Lie(G), viewed merely as a vector space,

G→ Aut(Lie(G)) ∼= GLn(k̄), g 7→ Ad(g),

is called the adjoint representation of G on its Lie algebra (n = dim(G)). Passing
to the Lie algebras, we get a homomorphism of Lie algberas

(3) ad : Lie(G)→ End(Lie(G)).

5.1.1. The Lie algebra of GLn(k̄). This is the fundamental example. One can
show that the Lie Algebra of GLn(k̄), customarily denoted gln, can be canonically
identified with the vector space Mn(k̄) of n×n matrices, endowed with the bracket
[X,Y ] = XY − Y X. The adjoint representation is simply

Ad(g)(X) = gXg−1,

and its derivative is

ad(g)(X) = gX −Xg.
5.1.2. The Lie algebra of a general linear group. Let H ⊂ GLn(k̄) be a linear

algebraic group. There is an easy method to calculate the Lie algebra of H as a sub
Lie algebra of gln; one develops the equations defining H to first order around the
identity and takes the resulting linear equations as defining a subspace of gln. This
subspace can be proven to be Lie(H). Note that this gives a quick way to calculate
dim(H) as it is equal to dimk̄(Lie(H)). We illustrate this in a few examples.

(1) The group SLn(k̄). The group SLn is determined by the condition
det(M) =

∑
σ∈Sn sgn(σ)

∏n
i=1mσ(i),i = 1 for a matrix M = (mij). Write

M = In + X and X = (xij). Writing the formula for 1 − det(M) = 0
and ignoring any terms in the square of the maximal ideal, namely terms
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in the ideal ({xijxkl : 1 ≤ i, j, k, l ≤ n}) we find that only one term sur-
vives. This is the term

∑
i xii = 0 coming from the product

∏
i(1 + xii).

Consequently,

sln = {M ∈ gln : Tr(M) = 0}.

In particular, dim(GLn) = n2 and dim(SLn) = n2 − 1.
(2) The group On(k̄). Let q be the bilinear form defined by the identity

matrix In. Then Oq, denoted in this case On, is the group of matrices
{M ∈ GLn(k̄) : tM ·M = In}. Again, writing M = In + X we find that
In = t(In +X)(In +X) = In + tX +X + tXX. Modulo the square of the
maximal ideal we get that X = −tX. We find that oq = Lie(Oq) is given
by

oq = {M ∈ gln : M = −tM}.
Note that the Lie algebra son of SOn is the same; we have that the de-
terminant 1 condition is translated into the trace being zero, but that
is a consequence of M = −tM . This is of course expected, the orthogo-
nal group is disconnected with SOn being the connected component of the
identity. The tangent space at the identity depends, of course, only on the
identity component. We conclude also that dim(On) = dim(SOn) =

(
n
2

)
.

(3) The group Sp2n(k̄). The group Sp2n(k̄) is defined as the subgroup of
GL2n(k̄) that preserves the alternating bilinear form given by the matrix(

In
−In

)
. Writing such a matrix around the identity as I2n + (A B

C D ) we

find the conditions B = tB,C = tC, tA = −D and dim(Sp2n) = 2n2 + n.
(4) The maximal torus T of GLn(k̄). The same reasoning as above allows

us to identify the Lie algebra h of T as the diagonal matrices of size n.

Let G be a semisimple algebraic group with a maximal torus T and let h be the
Lie algebra of T . Via the adjoint representation Ad, T acts on the Lie algebra g
of G. The properties of the Jordan decomposition guarantee that the elements of
T are “universally semisimple” and commuting, it follows that we can decompose g
canonically as

g = h⊕
⊕
α∈Φ

gα,

where Φ = {α ∈ X∗(T )− {0} : gα 6= 0} and gα = {x ∈ g : Ad(t)(x) = α(t) · x, ∀t ∈
T} is the eigenspace of T corresponding to the character α.

The set Φ is finite. It is contained in the real vector space X∗(T ) ⊗Z R of
dimension equal to the rank of G. This real vector space is endowed with a canonical
inner product (·, ·) called the Killing form. To begin with, the Killing form is a
bilinear symmetric form on g given by

B(x, y) = Tr(ad(x) ◦ ad(y)).

We can restrict this bilinear form to h and then one finds that (cf. [FH, §14.2])

B(x, y) =
∑
α∈Φ

α(x)α(y).

Here we implicitly identify the roots for the action of T on g with the roots for the
action of its Lie algebra h on g. The restriction of Killing form to h is thus non-
degenerate and consequently, it provides an isomorphism of the dual vector space
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h∗ with h and in particular every root α is assigned a particular element Tα ∈ h.
By definition, the inner product on the roots of T is

(α, β) = B(Tα, Tβ).

See the references above and also [GW, §§2.4-2.5] for more details. In it an in-
teresting theorem that if the Killing form is non-degenerate then G is semisimple
(see [GW, Theorem 2.5.11]). We will not discuss the Killing form further except to
provide it for GLn below.

The set Φ is a root system of X∗(T )⊗Z R, which means that (i) it is finite and
spans X∗(T )⊗ZR, (ii) Φ doesn’t contain 0 and Φ = −Φ, (iii) for all α ∈ Φ, sα(Φ) =

Φ, where sα(v) = v − 2(v,α)
(α,α) · α, and (iv) for all α, β ∈ Φ, sα(β) − β is an integral

multiple of α (equivalently, 2(β,α)
(α,α) ∈ Z).

A Weyl chamber W is a connected component of (X∗(T ) ⊗Z R) \ ∪α∈Φα
⊥.

It is an open polyhedral cone in X∗(T ) ⊗Z R with finitely many faces. A Weyl
chamber W determines an ordering of the roots: one says that α is positive if
(α, v) > 0,∀v ∈ W and extends this notion to Φ by saying that α > β if α − β is
positive. A positive root α is called simple if it not the sum of positive roots in
Φ− {α} with positive integer coefficients. Let ∆ ⊂ Φ be the set of simple roots.

5.2. Parabolic subgroups and roots. The basic theorem in this business
is the following.

Theorem 11. A choice of a Borel subgroup B ⊇ T corresponds to a choice of
Weyl chamber W and thus to an ordering of the roots. This correspondence is such
that if b = Lie(B) then

b =
∑
α≥0

gα.

This Lie algebra contains a Lie subalgebra u =
∑
α>0 gα. There is a corresponding

decomposition B = TU , where U is the unipotent radical of B; u = Lie(U).
Given a subset Θ ⊆ ∆, let SΘ be the connected component of ∩α∈ΘKer(α),

which is a torus of rank rk(G)− ]Θ. Let Z(SΘ) be the centralizer of SΘ in G and
let

PΘ = Z(SΘ) · U.
We call such a group a standard parabolic group. There is a bijection between
conjugacy classes of parabolic subgroups of G and standard parabolic subgroups.
The set of standard parabolic subgroups has cardinality 2]∆.

5.2.1. Example: parabolic subgroups of GLn. We take G = GLn(k̄), with the
maximal torus T = {t = diag(t1, . . . , tn) :

∏
ti 6= 0}. Let

λi(t) = ti.

Then

X∗(T ) = ⊕ni=1Z · λi.
The Lie algebra g = gln can be identified with the n × n matrices with entries in
k̄ and has a basis consisting of the elementary matrices {Eij : 1 ≤ i, j ≤ n}, where
Eij has ij entry equal to 1 and all its other entries are zero. An easy calculation
gives t · Eij · t−1 = ti

tj
· Eij = (λi − λj)(t) · Eij . Hence,

Φ = {λi − λj : 1 ≤ i, j ≤ n, i 6= j},
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and

g = h⊕
⊕
α∈Φ

gα,

where if α = λi − λj , gα = k̄ · Eij , and h comprised the diagonal matrices with
entries in k̄. For the action of h we find again that the matrices Eij are a basis
of eigenvectors: for t = diag(t1, . . . , tn) ∈ k̄n, let πi(t) = ti, then ad(t)(Eij) =
(πi − πj)(t)Eij , but where now, as a result of passing from T to its Lie algebra
h, subtraction is really subtraction. That is, (πi − πj)(t) = ti − tj . From this it
is an exercise in matrices to conclude that the Killing form on gln is B(x, y) =
2n · Tr(x ◦ y) − 2 · Tr(x)Tr(y) (where, recall, x, y are n × n matrices). If x =
diag(x1, . . . , xn), y = diag(y1, . . . , yn) then

B(x, y) = 2n(
∑
i

xiyi)− 2(
∑

xi)(
∑

yi).

The functional πij := πi−πj (or λij , if you will) corresponds to the diagonal matrix
Tij = 1

2n (Eii − Ejj), and one may now proceed to calculate the inner product on
X∗(T ).

Choosing the upper diagonal matrices B as a Borel subgroup containing T , we
get

b = Lie(B) =

{( t11 ··· t1n
. . .

...
tnn

)
: tij ∈ k̄

}
= Span({Eij : i ≤ j}),

and thus the induced order is that λi ≥ λj ⇔ i ≤ j. Use the notation λij = λi−λj .
We have

Φ+ := {λij : i < j} ⊇ ∆ := {λ12, λ23, . . . , λn−1,n},
and ∆ are the simple roots.

Note that generally if Θ = ∅ then SΘ = T = Z(T ) and P = B, while, on the
other extreme, if Θ = ∆ then SΘ is a central torus and so Z(SΘ) = G and also
P = G, the maximal parabolic subgroup.

For n = 2, these two extremal choices for Θ exhaust all possible choices and
we conclude that the standard parabolics are just GL2 and B; every parabolic
subgroup is conjugate to one of those.

For n = 3 there are two more choices. First, taking Θ1 = {λ1 − λ2} we

get SΘ1
= {diag(t11, t11, t33)} and PΘ1

=

{(
GL2

∗
∗

GL1

)}
. Secondly, taking

Θ2 = {λ2 − λ3} we get PΘ2
=

{(
GL1 ∗ ∗

GL2

)}
. Every parabolic subgroup of

GL3 is conjugate to exactly one of the standard parabolic subgroups GL3, PΘ1
, PΘ2

and B, whose inclusion relation is

GL3

vvv
v HHH

H

PΘ1

III
I

PΘ2

uuu
u

B

6. Representations and Hilbert’s invariants theorem

We discuss briefly the representation theory of a semisimple group G, using
weights and the notion of highest vector. Some examples are given in the context
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of quadratic forms. We apply the theory to prove Hilbert’s theorem about the finite
generation of rings of invariant polynomials.

6.1. Representations and weights. Let G be a semisimple group over k̄
and fix T ⊆ B, a maximal torus and a Borel subgroup of G. Let ρ : G→ GL(V )
be a finite dimensional linear representation of G. That is, after fixing a basis for
V , we have a homomorphism ρ : G→ GLn, n = dim(V ), that is a homomorphism
of algebraic groups. As the elements of T are semisimple, they are mapped to
semisimple elements of GLn and consequently we have a decomposition

V = ⊕α∈X∗(T )Vα, Vα = {v ∈ V : ρ(t)v = α(t) · v,∀t ∈ T}.

The weights of ρ are the set {α : Vα 6= 0}. The weight lattice Λw of G is the
minimal subgroup of X∗(T ) containing all weights of all linear representations of
G. On the other hand, the root lattice Λr of G, is the Z-span of the roots Φ in the
group X∗(T ); namely, the span of the weights of the adjoint representation of G.
Evidently, Λw ⊇ Λr and it is a theorem that the index is finite.

Fix an ordering on the roots of G, equivalently, a Weyl chamberW. One of the
most fundamental results concerning representations of G is the following: let V be
an irreducible representation of G, ρ : G→ GL(V ). There exists a unique maximal
weight α among the weights of ρ; furthermore, α determines the representation
ρ up to isomorphism. Let us use then the notation V ∼= Uα, where we fix some
arbitrary representation Uα of G of highest weight α (in particular, U0 = k̄ is the
trivial representation). It is known that the set of α appearing as highest weight
vectors is Λw ∩W. The weights that appear in Uα have the property that they are
congruent to α mod Λr.

Given any finite dimensional linear representation W of G one can decompose
W into an irreducible sum “by hand”. For example, starting with a given repre-
sentation V , we often want to decompose V ⊗n⊗ (V ∗)⊗m,∧aV,Syma(V ) and so on,
where V ∗ is the dual vector space on which G acts by ρ∗(g); if we fix a basis for V
and take the dual basis for V ∗ then ρ∗(g) = tρ(g)−1 . Find then a maximal weight
α1 appearing in W . Then, as a semisimple group is reductive, W = Uα1

⊕ W ′

for some linear representation W ′. We now repeat the process for W ′. Of course,
as such, it is easier said than done. However, this is indeed quite easy to do in
any given case if one has a good method to find all the weights appearing in Uα;
that determines the weights of W ′, without any need to calculate W ′ itself, and
thus one can proceed rather smoothly. There is indeed a rather elegant theory for
determining the weights in Uα, but we will not describe it here.

6.1.1. Example: representations of SL2. We have seen that the root system of
GL2 is Z · (λ1 − λ2). The maximal torus of SL2 is the sub-torus S = {diag(t, t−1) :
t ∈ k̄×} of the maximal torus we have used for GL2. On this sub-torus we have
(λ1−λ2)(diag(t, t−1)) = t2. If we use χ(diag(t, t−1)) = t as a basis for the characters
of S, we have X∗(S) = Z ·χ and Λr = 2Z ·χ. The character 2χ appears as a highest
weight vector in the Adjoint representation of SL2 on its Lie algebra, which is a 3-
dimensional vector space, identified with the 2× 2-matrices of trace 0. The adjoint
representation is irreducible simply because it has a unique positive root, although
irreducibility can be check “by hand” too. The roots are ±2χ.

Of course, the group SL2 has an even simpler representation - its action on the
two dimensional vector space V = k̄2. The natural basis e1, e2 span the weight
spaces, V = k̄ · e1 ⊕ k̄ · e2 = Vχ ⊕ V−χ. It follows that [Λw : Λr] = 2 in this
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case. Note that Sym2(V ) is a 3-dimensional space containing the weights ±2χ, 0.
It follows that Sym2(V ) is isomorphic to the adjoint representation. Sym3(V ) is a
4 dimensional representation containing the weights ±3χ,±χ, where a basis for the
eigenspaces is {e1⊗e1⊗e1, e2⊗e2⊗e2, e1⊗e1⊗e2, e2⊗e2⊗e1}. We know that there
is an irreducible sub representation U3χ containing e1 ⊗ e1 ⊗ e1 as highest weight
vector. Applying

(
1

−1

)
we see that U3χ also contains e2 ⊗ e2 ⊗ e2. Applying

( 1 ε
1 ), we see that it contains also (e1 + εe2) ⊗ (e1 + εe2) ⊗ (e1 + εe2) and thus

ε · e1⊗ e1⊗ e2 + ε2 · e2⊗ e2⊗ e1. Taking ε ∈ {±1} we conclude that U3χ = Sym3(V )

and that, in particular, Sym3(V ) is irreducible. In fact, for every n ≥ 0, Symn(V ) is
an irreducible representation of SL2 and its highest weight is n ·χ; conversely, every
irreducible representation of SL2 arises as Symn(V ) for a unique n determined by
the highest weight (or the dimension of the representation, dim(Symn(V )) = n+1);
cf. [FH, §11.1].

6.2. Hilbert’s invariants theorem. As above, let G be a reductive group
and ρ : G→ GL(V ) a finite dimensional linear representation. Let M be a k̄-vector
space, Sym(M) = ⊕∞n=0M

⊗n/J , where M⊗0 := k̄,M⊗1 = M and in general
M⊗n = M⊗n−1⊗k̄M ; here J is the ideal generated in the non-commutative tensor
algebra ⊕∞n=0M

⊗n by {a ⊗ b − b ⊗ a : a, b ∈ M}. It is thus the minimal ideal we
can mod out by to get a commutative k̄-algebra. The image of M⊗a in Sym(M) is
denoted Syma(M).

Consider then symmetric algebra Sym(V ∗). It has a rather concrete interpre-
tation as the ring of polynomial functions on V . Indeed, fix a basis {v1, . . . , vn} for
V ; the dual basis λ1, . . . , λn gives us the linear functions on V∑

i

xivi
λj7→ xj , j = 1, . . . , n.

On the other hand, one can show that Sym(V ∗) is nothing but the k̄-algebra of finite
sums {

∑
I aIλ

I : aI ∈ k̄}, where I is a multi-index I = (i1, . . . , in) ∈ Nn and λI :=

λi11 · · ·λinn . Indeed, there is a natural identification of
∑
{I:|I|:=i1+···+in=a} aIλ

I

with the image of Syma(V ∗) in Sym(V ∗). Thus, Sym(V ∗) ∼= k̄[x1, . . . , xn], the
polynomial ring in n variables.

To ease notation, let R = Sym(V ∗). G acts on R linearly by substitutions:

(g ∗ f)(v) := f(g−1v), g ∈ G, f ∈ R.

The fundamental problem of classical invariant theory is to give a presentation for
the k̄-algebra RG - the G-invariant elements of R; that is, to give a presentation of
the algebra of G-invariant polynomial functions on V .

Theorem 12 (Hilbert’s theorem). RG is a finitely-generated k̄-algebra.

The heuristic meaning of this theorem is that there are finitely many “basic
invariants” for the group G from which all other invariants can be constructed (in
a polynomial fashion). Prior to Hilbert’s work this was not known; the setting
in which such questions were asked is similar to our following example. Hilbert’s
theorem did somewhat of a disservice to that area of mathematics. The theorem
provides no method to construct such “basic invariants” - this remains a hard
problem to this day; yet, the a priori knowledge that such are guaranteed to exist
took some of the enthusiasm out of the subject for many years.
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6.2.1. Example: binary quadratic forms. Let G = SL2(k̄). It acts on vector
space symmetric bilinear forms q =

(
a b
b d

)
over k̄ by conjugation; if g ∈ G then

g ∗ q := g q tg.

If we write q(x, y) = ax2 + 2bxy + dy2 and g =
(
α β
γ δ

)
then the quadratic form

g ∗ q is obtained by substituting for x the quantity αx+ βy and for y the quantity
γx+ δy. We note that

det(q) = ad− b2,
which is −4 times the usual discriminant of the form ax2 + 2bxy+ dy2, is invariant
under the action of G. At this point, natural questions arise: (i) Is det(q) the only
basic invariant in the sense that every other invariant is a polynomial in det(q)
with k̄-coefficients? Is the ring of invariants RG in this case sufficient to classify
(i.e., separate) the orbits for the action of G? Namely, is it the case that two
symmetric quadratic forms are equivalent under SL2(k̄) if and only if they have the
same determinant? What is the nature of the map

Spec(R)→ Spec(RG),

that corresponds to V 7→ V//G? In this case classical results in linear algebra answer
all these questions. Every quadratic form over a field of characteristic 0 (or just
different than 2) can be diagonalized and, furthermore, over an algebraically closed
field it can be brought into the form diag(0, 0),diag(1, 0) or diag(1, d). As diag(0, 0)
is in the closure of the orbit of diag(1, 0), we see that the orbits of diag(0, 0) and
diag(1, 0) can not be separated by the value of any invariant function. However,
the orbits of all the non-zero forms are classified by the determinant. It is then not
hard to prove that RG = k̄[det(q)] and in particular is a free polynomial ring. We
get a morphism

V “ = ” Spec(R)→ A1
k̄ = Spec(k̄[t]),

corresponding to the ring homomorphism t 7→ ad − b2. It is a surjective flat mor-
phism whose fibres are the quadratic surfaces ad− b2 = t. The fibres over non-zero
points t are non-singular surfaces that are single orbits corresponding to quadratic
forms with discriminant t; The fibre over zero is a cone consisting of two orbits;
one orbit consists of quadratic forms q whose matrix has rank 1, the other to those
of rank 0 (namely, the zero matrix) and is the singular point of the cone.

Pretty much the same considerations apply to the action of SLn(k̄) on qua-
dratic forms in n-variables. Once more there is only “one” invariant; it is just the
determinant of the matrix defining the quadratic form, or, up to a constant, the
discriminant of the quadratic form. Let R = k̄[{xij : 1 ≤ i, j ≤ n}]/({xij − xji}).
The morphism

Spec(R)→ A1
k̄

is flat has a fibre over d that consist of a single orbit - the forms of discriminant
d - if d 6= 0. While the fibre over 0 consists of n-orbits, each of which corresponds
to degenerate quadratic forms of a given rank. In any case, the fibre is a degree n

surface in An(n+1)/2

k̄
.

When V is replaced by an arbitrary variety (or even a scheme) and G is a general
reductive group (scheme), the study of the quotient V → V//G (including its precise
definition) is the subject of geometric invariant theory. We have the following
fundamental result:
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Theorem 13 (Chevalley-Iwahori-Nagata, cf. [DC]). For any action of
a reductive group G on an affine algebraic variety V = Spec(A), the fibres of
V → V G := Spec(AG) are union of orbits of G; the set of orbits always surjects
onto V G. We have a bijection between the set of orbits and the points of V G if and
only if each orbit is Zariski closed.

Remark: It is rather clear from the definitions that the fibres are unions of
orbits and that every fibre is a closed set (remember that we doing classical algebraic
geometry, where points means k̄-points). The difficult parts are to show that every
point of V G is obtained as the image of an orbit and that if an orbit is closed then
there are “enough invariant functions” to separate it from other orbits.

Going back to our example, we see that the fibres over d 6= 0 are the closed
Zariski sets of quadratic forms of discriminant d, while the fibre over 0 is a union of
orbits C0, . . . , Cn−1, one for every rank less than n, and in fact the Zariski closure
of Cr is C0 ∪ C1 ∪ · · · ∪ Cr.

The study of geometric invariant theory in great generality was carried out by
D. Mumford in [Mum] in 1965, in a work that had revolutionized the subject.

We now turn to the proof of Hilbert’s theorem, following [GW, §5.1.1]. We write

R = Sym(V ∗) =
⊕
d≥0

Symd(V ∗),

where Symd(V ∗) can be thought of as homogenous polynomials of degree d. Note

that Symd(V ∗) is a finite dimensional space preserved by the action of G. Since G

is reductive, we can decompose Symd(V ∗) into a sum of irreducible representations
of G. Letting d vary now, we can collect like linear representations. That is, we
have two decompositions:

R =
⊕
d≥0

R[d], R =
⊕
α∈Λr

Rα,

where R[d] = Symd(V ∗) and Rα is the isotypical component of R type α. That is,
Rα is the sum of all irreducible sub representations of Sym(V ∗) that are isomorphic
to Uα, in the notation of §6.1. Note that these decompositions are compatible in
the sense that

R[d] = ⊕α(R[d] ∩Rα), Rα = ⊕d(R[d] ∩Rα).

In particular, if f ∈ Rα then f can be written as a sum of homogenous polynomials
each of which lies in Rα. Therefore, taking a polynomial f ∈ R, we may write

(4) f =
∑
α

fα, fα ∈ Rα,

where each fα is a sum of homogenous polynomials lying in Rα; furthermore, if f
itself is homogenous of degree d then each fα is homogenous of degree d.

We define the Raynolds operator f 7→ f \, where f \ is the trivial representation
component in the decomposition (4); if you wish, using previous notation, we can
also say that f \ = f0 ∈ U0. This operator is clearly k̄-linear map. Its crucial
property is the following.

Lemma 14. The Raynolds operator satisfies

(ϕf)\ = ϕf \, ∀ϕ ∈ RG.
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That is, f 7→ f \ is a homomorphism of RG-modules.

Proof. Using linearity, it is enough to prove the lemma for f ∈ R[d]α and it
is therefore enough to show that multiplication by ϕ preserves R[d]α. We have an
isomorphism k̄ · ϕ⊗k̄ R[d]α ∼= ϕ ·R[d]α by ϕ⊗ f 7→ ϕ · f . This is easily checked to
be an isomorphism of G-modules: g ∗ (ϕ⊗ f) = ϕ⊗ (g ∗ f) which is mapped to the
function v 7→ ϕ(v) ·f(g−1v). As ϕ(v) ·f(g−1v) = ϕ(g−1v) ·f(g−1v) = (ϕf)(g−1v) =
(g∗(ϕf))(v), the equivariance of the map follows. But, k̄ ·ϕ⊗k̄R[d]α ∼= k̄⊗k̄R[d]α =
R[d]α as G-modules and so is clearly of type α �

Let RG+ =
∑
d>0R[d]G and consider the ideal R · RG+ of R. R is a polynomial

ring in finitely many variables over k̄. Thus, by Hilbert’s basis theorem, the ideal
R · RG+ is finitely generated. Thus, there are f1, . . . , fN ∈ RG+ such that R · RG+ =
〈f1, . . . , fN 〉R and, as we may replace each fi by the set of its homogenous parts,
we may assume each fi is homogenous of some positive degree. We show that
RG = k̄[f1, . . . , fN ].

Let ϕ ∈ RG. To show ϕ ∈ k̄[f1, . . . , fN ] we may assume that ϕ is homogenous,
and we argue by induction on its degree; the case of degree 0 being obvious. Now,
write ϕ =

∑
i aifi, ai ∈ R. By homogeneity, we may assume that each ai is

homogenous and deg(aifi) = deg(ϕ). Then ϕ = ϕ\ =
∑
i a
\
ifi. We may replace

a\i by their suitable homogenous part so that still ϕ =
∑
i a
\
ifi and now, if a\i 6= 0,

deg(a\ifi) = deg(ϕ). However, this implies that for all i, either a\i = 0 or deg(a\i) <

deg(ϕ). Thus, by the induction hypothesis, for all i, a\i ∈ k̄[f1, . . . , fN ] and so is ϕ.
This completes the proof of the theorem.

Acknowledgement. I would like to thank Dylan Attwell-Duval and Andrew
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