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STRATIFICATIONS
OF HILBERT MODULAR VARIETIES

E. Z. GOREN AND F. OORT

Abstract

We consider g-dimensional abelian varieties in characteristic p, with
a given action of O, the ring of integers of a totally real field L of
degree g. A stratification of the associated moduli spaces is defined by
considering the action of O, on a certain canonical subgroup of abelian
varieties. The properties of this stratification and its relation to other
stratifications, e.g. by Newton polygons, are studied.

1. Introduction

There are two important stratifications of the moduli space A = Ay 1 ®F, of
principally polarized abelian varieties of dimension g in characteristic p. One is
given by Newton polygons. The other is given by the structure of the p-torsion
subgroup scheme. We will call the latter the Ekedahl-Oort stratification, see
[EO]. Similar constructions can be made for other Shimura varieties of Hodge
type. In this paper we consider a certain stratification of Hilbert modular
varieties in positive characteristic. It is a refinement of the Ekedahl-Oort
stratification on these varieties. We will examine its relation to the Newton
polygon stratification.

The stratification is obtained as follows. Fix a totally real field L of degree
g over Q. Let Oy, be the ring of integers of L and let p be a rational prime
that is inert in L. Fix an integer n > 3 and prime to p. Denote by F a finite
field obtained from a field of p9 elements by adjoining a primitive n-th root
of unity.

We consider quadruples X = (X, A, ¢, ) over a field k of characteristic p
containing F, consisting of an abelian variety X over k, a principal polarization
X of X, an embedding ¢ of Of, into the endomorphisms of X fixed by the Rosati
involution associated to A, and a full symplectic level-n structure o. We shall
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denote the moduli space of such data X by M,,. It is a regular, irreducible,
g-dimensional variety over F. It is a fine moduli scheme.

Given such X, the cotangent space of X is a free (O ® k)-module of rank
L. Let us denote the embeddings of Of,/p into F by {o1,--- ,0,}, ordered in
such a way that the Frobenius composed with o; is 0;4;. Let V denote the
Verschiebung map. Consider

ker(V : HO(Q}() — H(%)).

It is a k-vector space and an Or-module on which O /p acts by a set of
characters 7, each with multiplicity one. We call 7 the type of X and denote
it by 7(X). The stratification is obtained by the type.

Our main results are as follows: For every set 7 C {01, -+ ,0,} of characters
there exists a closed subscheme W, of M.,,, which is universal with respect to
the property 7(X) 2 7. We establish the following theorems.

. W; is locally irreducible and locally linear.

The generic point of every component of W, has type .
dim(W,) = g — |7].

W.NW, =W, 4.

. The variety W2, defined as W, \ UU;:T W,, is quasi-affine.

6. The components of all the W,’s have a natural structure of a simplicial
complex.

7. Let E be the Hodge bundle over M,,, and let W, = UITi:a W.. We
obtain formulae expressing W,, considered as an element of the Chow ring,
as a combination of certain tautological Chern classes. In particular,

G o

Wi = (p - Da(B).

8. Let 7(X) = 7(Y); then X[p] & Y[p| as principally polarized group
schemes with Op-structure.

9. The possible p-divisible groups up to isogeny are G, /9 + Gg—p))q for
0<{<g,and g-Gy/, . Let By < By < --- be the possible Newton polygons.

10. We say that a type is spaced if it contains no two consecutive o;’s. Let
A7) = max {|7'| : 7/ C 7,7’ is spaced} (except for g odd and 7 = {1,--- , g},
where we put A\(7) = (g+1)/2). The generic point of every component of W,
has Newton polygon equal to Br(ry-

11. We define A; to be the closed subscheme where the Newton polygon is
weakly above 3;. We conjecture that dim(A;) is equal to g—i, and prove this in
special cases (leaving a more systematic discussion for a future paper). Those
cases imply in particular the “weak Grothendieck conjecture” for principally
polarized p-divisible groups with real multiplication.
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We remark that as far as local computations are concerned, as long as p is
unramified, the assumption that p is inert in L is completely technical. We
hope to discuss the general case in a future paper.

The results of this paper seem fundamental to the study of Hilbert modular
forms mod p and p-adic Hilbert modular forms from a geometric point of view.
See [G].
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2. Local structure

2.1. Basic definitions. Fix a totally real field L of degree g over Q. Let
97, be the different ideal of L. Let Oy, be the ring of integers of L and let p
be a fixed rational prime that is inert in L. Fix an integer n greater than or
equal to 3 and prime to p. Denote by F a finite field obtained from a field of
p9 elements by adjoining a primitive n-th root of unity.

For any ring R of characteristic p, let W{(R) denote the ring of infinite Witt
vectors with values in R, and let

o:W(R) — W(R), 7:W(R) — W(R),

be, respectively, the ring homomorphism Frobenius and the additive map
Verschiebung. Write

Emb(Op, W(F)) = {01, -~ ,04},
where ¢ 0 0; = 0,1 1. We abuse notation and write also
Emb(OL/p9 F) = {017 e 70'9} .

We shall usually denote abelian varieties by the letters X, Y. We denote by
X[p] the p-torsion subgroup scheme of X and by X(p) the p-divisible group.
We use X to denote the dual abelian variety.
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Let f(X) and a(X) be the usual f-number and a-number of X. That is,
for X defined over a field k of characteristic p,

P00 = |X[pl(K)],  a(X) = dimy (Homg(ap, X[p])).

We denote by a(X) the maximal ay-elementary subgroup of X. The order of
a(X) is p*0,

We denote by D(X (p)) the contravariant Dieudonné module of X (p) and
by D(X(p)) the covariant Dieudonné module of X(p). The same notation
applies to a finite commutative p-torsion group scheme G.

Let M,, be the moduli space of quadruples X = (X, A, ¢, )/S consisting
of:

® 3 scheme S over F;

¢ a principally polarized abelian scheme (X, A) over S;

e an embedding of rings

Or, — End(X)?*,

where End(X)* denotes the endomorphisms of X/S, as an abelian scheme,
that are fixed by the Rosati involution associated to X;
e an isomorphism of symplectic Op-modules

a:0L/n0p ®o; /nopt — X[n](S).

This implies that X [n]/S is a constant group scheme over S, and the last
isomorphism can be interpreted as an isomorphism of constant group schemes
over S.

We consider M,, as a scheme over F. It is known to be a fine moduli
scheme. It is a regular, irreducible, g-dimensional variety over F. We denote
by M the coarse moduli scheme where we take no level structure—that is,
the coarse moduli scheme of triples (X, A, ¢).

We remark that the level structure a plays no significant role beyond en-
abling us to identify the universal deformation ring of X with the completion
of the local ring of the corresponding point in M,,.

Given a point t € M,(S), we let X; = (X, A, 1, ;) denote the corre-
sponding object obtained by pulling back the universal object over M,,. We
remark that by [DP], Corollaire 2.9, H%(Q /g) is a locally free O /p ® Og-
module of rank 1.

Definition 2.1.1. Let X = (X, \,¢,«)/k be as above with k an alge-
braically closed field. We define the type of X, 7(X) C Z/gZ, as fol-
lows: the action of Or/p on D(a(X)) is given by a(X) different characters
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{oil,- .- ’Uia(;q}- We let

T(X) = {7:1," . 7ia(X)} .

Notation. Given k matrices By, -- , By of size £ X £ and some 7 such that
1 < i < k, we denote by

ai(Bla fT Bk)
the matrix A in M (M;) that is everywhere zero except for
A1 =By, Aiy12=By,--+, Ai—11x = Bx.

For example, for i = 1 we get a diagonal matrix with the matrices By,--- , By
on the diagonal.

2.2. Review of equi-characteristic deformation theory. We quickly
review some of the definitions and results of equi-characteristic deformation
theory of abelian varieties and p-divisible groups. Our main references are
[NOJ, [CN], [03] and [Z]. Further references are cited there.

From abelian varieties to p-divisible groups.

Definition 2.2.1. Let S be a scheme. A p-divisible group of height h
(synonym: a Barsotti-Tate group of height h) over S is an inductive system
of finite flat commutative group schemes over S,

(closed immersions), such that G; is of order p"* and
Gi = Ker(pi : Gi+1 — GH—I)-

Given such a p-divisible group G, one can construct its Serre dual G*; see
[02], Section 7.6. One defines the codimension of G as the dimension of G*.
We have

dim(G) + codim(G) = height(G).

Example 2.2.2. Let X — S be an abelian scheme of relative dimension
g; then

o9
h

X(p) Y limX[p]

3

is a p-divisible group of height 2g and dimension g.
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Theorem 2.2.3 (Serre-Tate). Let S be a scheme such that p is locally
nilpotent in Og. Let T C Og be a nilpotent ideal, Sy = Spec(Os/I), and
Xo — So be an abelian scheme. The functor

(2.1) {X — S abelian scﬁeme} - { G— S p-divisz’blNe group }
U)Z'thf:XXSSO—)XO with¢:GXSSO—>X0(p)

given by X — X (p) is an equivalence of categories.

We refer to [K2], Section 1.2.1, and [Me], Section V.2.3., for more details
regarding this theorem.

Remark 2.2.4. A refined statement of Theorem 2.2.3, taking into account
polarizations and endomorphisms, is valid. Its formulation is clear.

We will usually apply this for the case where S is a characteristic p scheme,
ie,p=0on S, to study equi-characteristic deformations.

From p-divisible groups to Dieudonné modules.

Let R be a commutative ring with 1 having characteristic p. At the moment
R is arbitrary. Later on we will be interested, in particular, in the case
where R is a quotient of kl[t1,-- - ,%,4]] by a prime ideal, where k is a field of
characteristic p.

Consider the noncommutative Cartier ring C(R) = Cart,(R) as in [NO], p.
416. For R a perfect ring

C(R) = W(R)[F[[V]},

where W(R) is the Witt ring over R and F and V satisfy the following rela-
tions:

1. FV=VF =p;

2. Fao=aF, Va’ =aV, VaF =a", Va € W(R).

Definition 2.2.5. A Dieudonné module M over C(R) is a left C(R)-module
that satisfies the following:

1. V is injective on M and M/V M is a free R-module;

2. M is complete and separated in the V-adic topology.

We recall that a commutative formal group v over R is a group functor

{ R-algebras of finite

length as R-mo dules} ~ {commutatlve groups},

which is represented by a formal R-scheme I'. Moreover, - is formally smooth
if for every such R-algebra R; and for every ideal I of Ry, such that I? is the
zero ideal, the natural map from v(R;) to v(R1/I;) is surjective.

Example 2.2.6. Let X — Spec(R) be an abelian scheme. The connected
component of the p-divisible group X (p) is a commutative, formally smooth,
formal group.
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Theorem 2.2.7. There is a covariant functor,

{commutative, formally smooth,

formal groups over R } ~+ { Dieudonné C(R)-modules} ,

which is an equivalence of categories, given by I' — C(I'). Moreover, T is

finite dimensional over R if and only if C(T) is finitely generated over C(R).

The tangent space of I is canonically isomorphic with C(T')}/V - C(T').
Consider a class of C(R)-modules M given by dividing the free object

n-d

(2.2) PRy
=1

by the relations:
1. F@j =E?:+1daijei, j= 1, ,d,
2. € = V(E?:Jrldaijei)) .7 =d+ 17 Y (2an da
for some a;; € W(R) € C(R).

One can prove that under certain conditions, e.g., R perfect and V topo-
logically nilpotent, this defines a Dieudonné C(R)-module. Any Dieudonné
C(R)-module M, where R is a local artinian ring or a complete local noe-
therian ring, whose reduction is the Dieudonné module of a p-divisible group,
can be written in this form ([N], Section 1). One says it is displayed. In this
case («ay;) is invertible. If R is perfect, M is generated as a W (R)-module by
e1,- -+ ,eag, and if R is a perfect field this is a basis for M as a W (R)-module.

Using the notation
A B
(uj) = (C D> :

one finds that the Frobenius is given by

A pB
C pD/’
The module associated to Gt is given by the basis fi,-- , fn1q, with relations

L=V 2s,f), i=1,-- .4,
2. Ff ‘—‘Z?Ld%fi, j=d+1,--- ,n+d

‘We have the relation

(i) =1 ")~
(see [N], p. 504).
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A principal quasi-polarization
A:G =Gt

of a p-divisible group G (i.e., A = A* and X is an isomorphism), is equivalent
to an isomorphism

B:C(G) — C(GY),

with the same properties.

Studying deformations of Dieudonné modules.

From [N], Theorem 1, and the methods of [NO], Section 1, one can deduce
the following (see also [O3], Section 2):

Let k be a perfect field of characteristic p. Let G be a p-divisible group
over k of height ~ and dimension d. Let

R=kK[t;:1<i<d, 1<j<h—d]

(aiz) = <g g)

be a matrix giving a Dieudonné module D in displayed form over C(R), as in
(2.2), where n = h — d. Let T;; denote the Teichmiiller lift of ¢;; to the Witt
ring W(R) and let T = (T;;). The matrix

A+TC B+TD
C D

Let

(2.3)

is giving a display for the universal deformation of G over Spec(R).

Suppose further that A is a principal quasi-polarization, thus n = d, and
that e1, -+, entq are chosen as a symplectic basis. That is, for i < j, we
have (e;,e;) = 0 unless j equals ¢ + d, and then (e;, e;) = 1. In this case, the
universal deformation with principal polarization is given by dividing by the
ideal generated by t;; — t;; for all ¢, j.

Remark 2.2.8. Suppose that D is the Dieudonné module of the p-divisible
group of a principally polarized g-dimensional abelian variety (X, ). Let D
be the contravariant Dieudonné module. We have the well-known diagram

0 — HYUQY) — Hip(X) — HYOx) — O
| [ I
VD/pD D/pD D/VD

I I
Lie(X)* Lie(X?)
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The Hasse-Witt matrix is a matrix describing the action of the Frobenius on
H'(Ox). 1t is dual to the matrix of the Verschiebung acting on H%(QL,) in
the diagram

0 — HO(Q%) - H{R(X) — HYOx:) — 0,
I I l
VD/pD D/pD D/VD

I I
Lie(Xt)* Lie(X)

hence equal (for the right choice of bases) to the matrix of the Frobenius
on the term Lie(X). Note that when writing the module in a displayed
form, eg41,- -+ , €29 span HY(Q,) and e, - - - , €4 project to a basis of Lie(X).
Therefore:

The matrizx A+ TC appearing in (2.3) — read mod p ~ is the Hasse- Witt
matriz of the deformation corresponding to T

Remark 2.2.9. The theory of displays was originally developed by D.
Mumford {unpublished). It was expounded and developed by P. Norman and
Norman — Oort in [N] and [NO]. It was further studied by T. Zink in a
greater generality, applicable for non-equi-characteristic situations (see, e.g.,
[Z], Introduction, Theorem 9).

The theory developed by Zink is more suitable for treating the case of
non-perfect base rings B. We refer the interested reader to [Z], Introduction,
Definition 1.1, Equation 1.6, Definition 1.6, Example 1.9, Proposition 1.10
{and the following remark), Formula 2.31 and Section 2.2, for a quick overview
of how the theories are tied together. We remark that the computations are
virtually the same due to the fact that both objects are defined by the “same”
equations (see [Z], Equation 1.6).

Below, the computations done for R = k[[t1,--- ,%,]] and similar rings can
be interpreted as taking place in its perfect closure, or in terms of displays in
the sense of [Z].

2.3. The type and local deformations. Let ¢ € M, (k) be a geometric
point. Let ID be the covariant Dieudonné module of X; with the induced
Op-structure and perfect alternating pairing (-,-). We have a decomposition

(2.4) OLeWk) = @ Wk,
1€EL/9Z

given by

a®1l— (o1(a), - ,04(a)).
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The ring O ® W (k) acts on D and induces a decomposition

(2.5) D= P b
1€Z/9Z

The following lemma is essentially known (see [Ra], Proposition 3.5). We
include the proof for completeness.

Lemma 2.3.1. The decomposition (2.5) has the following properties:

(i) F(D;) € Diga, dimy (Dgy1/F(D5)) =1

(11) V(Dz) Q Di—17 dimk (D,Al/V(DI)) = 1,‘

(iii) O acts on ; via o;;

(iv) The pairing {-,-) induces on each D; a perfect alternating pairing (-,-)i,
and DZ_LD] fOT’ 1 71: _]

Proof. Part (iii) follows straight from the definition.

For clarity, we denote the action of an element r € O, on € D by [r]x.
Note that for every two elements r and s in O ® W (k), we have

([r]z, [sly) = (z, [rs]y).

Choosing r, s to be orthogonal idempotents giving the projections onto I;, D;
respectively, (iv) follows.

Let x € D;; then [r]z = o;(r)z. Every element r € O, induces an isogeny
[r] : D — D of Dieudonné modules. Hence [r]Fz = F[r|lz = Foy(r)z =
oo o;(r)z = oi+1(r)x. Parts (i} and(ii) follow. O

Definition 2.3.2. An admissible basis for D, given the polarization and
the Op-structure, is a basis {X4,--+,X,,Y1,--+, Yy} for D, such that
(i) {X;,Y;} is a symplectic basis for D;;

(i) Y; € V(Dir1).
(&%)

Let
be the corresponding display for such a basis. Note that for suitable a;, b;, c;,
d;, we have

A= 02(0427 o 7agaa1)9 B = OQ(an Tt 7bg9b1)7
O = 02(02, e ,Cg, Cl), D= Dg(dg, e ,dg,dl).

We have a universal display over C(R) as in (2.3).

Proposition 2.3.3. Let R = k[[t;;]]/(ti; — t;:). Then the mazximal closed
subscheme of Spec(R) to which the Or-action and the level-n structure extends
is given by H = Spec(H), where H = R/(t;; 1 i # j).

Proof. Since n is prime to p, the level structure extends to any deformation,
and uniquely. We can therefore disregard it.
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Tt is enough to prove that the (Op-action extends to this closed subscheme,
because it is well known that the local deformation ring of the Hilbert modular
variety is regular on g parameters. Let Dy be the display derived from (2.3)
by putting t;; = 0 for i # j. Then

Dy = 69 Dy,

where Dy ; is obtained from D; by extending scalars to W(H), with the nat-
urally given action of W (k) on each component. The action of Oy, is defined
via the map

0L — @W(k) y @ (Ul(a)7' o vag(a))'
This is a map of C(H )-modules if and only if it commutes with the Frobenius;
that is, if and only if
(2.6) MiM3 = MyM;,

where
M, = (A +TC p(B +TC’)) ,

C pD
M, = (Dl(al(a)w“ ,0g(a)) 0 ) '
0 v1(o1(a), -+, 04(a))
It is easy to verify that (2.6) holds. O
Theorem 2.3.4. Let t € M, (k) be a geometric point of type 7. There
is a choice of parameters t1,- - ,l4, such that the universal local deformation

ring of X, is isomorphic to Spec(k[[t1,--- ,t4]]), and such that for every type

p C 7 the property of “being of type containing p” is given by the closed regular

(g — |p|)-dimensional formal subscheme defined by the ideal (t; : i € p).
Proof. The universal Dieudonné module Dy is displayed by the matrix

A+TC B+TC
C D ’

and

A+TC =0v9(ag + Taca, -+, an + Tycq, a1 + Tic1),

C= 02(627 o 709701)-
By Remark 2.2.8, the matrix

(A —|—CTC’ g) (mod p)
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is the matrix of the Frobenius on H®(X), where X is the universal deforma-
tion over Spec(k([t1,-- ,1,]]), and the matrix

A+TC = 02((12 +coTo, - s Qg + Cng,a1 + ClTl),

read mod p, is the Hasse-Witt matrix. Note that a; = 0 (mod p) if and only
if F(Di—1) = V(Dy11), if and only if € 7(X). Since a; # 0 (mod p) implies
that a; + t;c; is invertible (mod p), the theorem follows. O

Definition 2.3.5. For 7 C Z/g7Z, let W, be the closed subscheme of M,
with the reduced induced structure, having the property that for every geo-
metric point ¢ € W, we have 7(X;) D 7. We let

WE = WT \ U W.,-/.
7/ DT,T/ ?S’T
Corollary 2.3.6. The subscheme W, is a locally irreducible and regular
scheme. In particular, different components of W, do not intersect and every
component 15 regular.
Proof. This follows directly from the theorem. O
Corollary 2.3.7. For any two types T and p,

W, NW, = Wi,

Proof. Clearly we have equality at least on geometric points, which implies
that W, N W, 2 W,y,. The only question is of multiplicity, and this is
supplied by Theorem 2.3.4. O

Definition 2.3.8. Let X/M,, be the universal principally polarized abe-
lian scheme with real multiplication by @, and symplectic level-n structure.
Let E be the relative cotangent bundle,

E:e*(Q;/Mn),

where e : M,, — X is the zero section. Let \; be the first Chern class of E,
or, equivalently, of det(E).

See Section 4.1 for more on this subject.

Proposition 2.3.9 (compare [EO]). The variety W2 is quasi-affine.

Proof. 1t is well known that \; is an ample line bundle on M,,. Indeed,
the sections of k)\; are modular forms of weight k& and give the Baily-Borel
compactification of M, see [vdG], Chapter X, Section 3. Hence A1 is ample
on W, (see also [MB], Introduction and Theorem VIL.3.2). We prove next
that it is torsion on W2:

Let (G,(-,-)) be the restriction to W2 of the universal p-torsion sub-
group scheme, i.e., X[p|, together with its perfect alternating form coming
from the polarization on X. The results of Section 3.2 show that (G, {-,")) has

B
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the same isomorphism type for every geometric point of WPO. It follows that
there exists a finite cover f : T — W2 such that

(g XWS T7 <'7 > XW.? T)

is constant. (One follows the argument of [EO] or [O1], Section 5. See also
Remark 3.2.9.) Therefore, its cotangent space,

(Lie(G xwo T))* 2 (Elwe) xwe T,

is constant as well, and so is its determinant. Hence f*X; is trivial, and since
f is finite, A; is torsion.

We conclude that for certain m > 1, the line bundle mA; is trivial on w9
and very ample on W,. It follows that we can represent mA; by an effective
divisor D contained in W, — W?2. Hence W, — D is quasi-affine, and so is
Wo. O

Before stating the next corollary, it may benefit the discussion to formulate
the following principle which we use repeatedly below.

Remark 2.3.10. Let S be an integral scheme and let { be its generic
point. Let ¢ be a nonsingular geometric point of S. Let X/S be an abelian
scheme, and denote by X, and X, the corresponding fibres. We may read
many of the properties of X¢ from the local deformation theory of X in the
following manner.

Let T be the formal neighborhood of ¢ in S. Let 1 be the generic point of
T; then X, is obtained from X by base change of fields. Hence, e.g., X, and
X¢ have the same g-number, f-number, Newton polygon, etc.

Corollary 2.3.11. The generic point of every component of W, has type
T

Proof. Let C be a component of W... It follows from Proposition 2.3.9 that
C contains a point ¢ of a strictly larger type 7'. It follows from Theorem 2.3.4
that we can find a local deformation of ¢ whose generic point is of type .
Now, using the local irreducibility of C, given by Corollary 2.3.6, the assertion
follows.

Corollary 2.3.12. Every component of W, contains a superspecial point.

Proof. Let C be a component of W,.. It follows from Proposition 2.3.9 that
C contains a point ¢ of a strictly larger type 7’. From Theorem 2.3.4 we know
that locally at ¢ the subscheme W.. is irreducible and is contained in W..
It follows that W, contains a component of W, and the result follows by
induction.

Corollary 2.3.13. For every type 7,

dim(W,) =g —|7].
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Proof. By Corollary 2.3.12 every component of W, contains a superspecial
point. Using Theorem 2.3.4 and Corollary 2.3.6, the result follows. O

3. The type and the p-torsion

3.1. The Ekedahl-Oort stratification. Consider the coarse moduli
space of principally polarized abelian varieties of dimension g in character-
istic p, and denote it by .A. Given a geometric point ¢ of A, we get a couple

(Xt[p]’ <'a >)a

where X, is the abelian variety parameterized by ¢ and

{+5-) : Xelp] X Xelp] — pp

is the perfect alternating pairing obtained from the polarization \; on X.

Ekedahl and Oort proved that over an algebraically closed field there are
finitely many isomorphism classes of such couples, and that every isomorphism
class is locally closed. The stratification itself is formed by taking carefully
chosen unions of such locally closed sets. Since the details are a bit lengthy,
we refer the reader to [O1], [EO], and [O2] for more on this fascinating story.

3.2. The type determines the Ekedahl-Oort strata in M,,.

Circular groups, swords, and dwords.

We follow [KO] and [02], extracting what we need.

Let k be an algebraically closed field of characteristic p. Let w = a; - - - a4
be a word in the letters {F,V}, i.e., a; is an element of {F,V}. Define

M, = Pk -z,
i=1
and make M,, into a (contravariant) Dieudonné module by defining

Fr, =0, z; =Vz;y1 ifa; =V,

FZEZ‘ = Tj+1, in—i—l =0 ifai ZF,

where by x4, we mean z;.

Thinking about the generators as the hours marks on a clock, F acts clock-
wise and V' acts counterclockwise, where a; = F (resp., a; = V) is telling
us that F' is not zero (resp., is zero) on z;. Note that the action of V
is then “almost imposed on us”, if we wish to have Im(V) = Ker(F) and
Im(F) = Ker(V). Hence, we call such a Dieudonné module a circular module
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and we call the corresponding group C,, a circular group. It is killed by p and
indeed satisfies

Im(V) = Ker(F), Im(F)=Ker(V).

Note that C,, depends only on w mod cyclic permutations. Another easy
property is that CP = €, p, where C is the dual group to Cy, and w® is
the word obtained from w by changing every F' to V and every V to F.

A dword (dual word) of length 2g is a couple (w,wP), where w is a word
of length g. Given a dword z = (w,w?”), we let

C,=Cp®Cyp.

A sword (special word) is a circular word w = a; - -- ag, with the property
a; # a4, for all 7, and for some 1 <i < 2g we have a; =V, aj41 = F (here,
as below, the indices are read in a cyclic way).

Example 3.2.1. Consider the sword w = FVVF. One finds that C, is a
group scheme of order p* killed by F?, by V3, and by F'V = p. It is isomorphic,
over an algebraically closed field, to the p-torsion of any supersingular, but
not superspecial, abelian surface. If we consider z = (FV,VF) instead, then
we get the p-torsion of a superspecial abelian surface. The group C. is killed
by F?, by V2, and by FV = p. In particular, C, is not isomorphic to C,,.

Remark 3.2.2. Note that a circular group C is the kernel of multiplication
by p on a p-divisible group G, i.e., Glp] = C. Conversely, for every p-divisible
group G, the kernel of multiplication by p is a direct sum of circular groups.
In this respect, our conventions are a slight variation on [02], Section 13.

We also remark that a circular group C,, is of local-local type if and only
if both the letters F and V appear in w. For example, the word w = VV
gives the Dieudonné module of u%, while the word w = F'F gives the constant
group scheme (Z/pZ)>.

Lemma 3.2.8. Let z be a dword or sword of length 2g. Then C, has a
naturally defined Or-structure and Or-polarization, i.e., a perfect alternating
patring

()y:CoxC, — k
such that

(Fz,y) = (z,Vy)?,
and
(az,y) = (z, ay)
for every a € O,
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Proof. We indicate how to define the pairing and Op-structure, leaving the
verification of the details to the reader.

Assume that z = (w,w?) is a dword and that

g g
My =Pk-zi, Myp =Pk yi.
=1 i=1
We let
M, =DM.);, (M.)i=k-zi+k-y,

and note that it has a natural O ® k = , W (k)-structure and hence, via
OL = 0L ®k, aw (d1(a), -+ ,04(a)),
also an Op-structure. The pairing is defined by decreeing
(s, yi) = —(yi, z3) = 1,
and

(M)iL(M);, i #J.

If z is a sword, we basically do the same. We let

2g
M = @k !
=1

and we put

etc. 1

Remark 3.2.4. Note that if z is a sword then the Op-structure on C,
depends on z and not only on z up to cyclic permutations. The same remark
applies to dwords.

Proposition 3.2.5. 1. Let z = (w,w”) be a dword; then C,, is Op-
wnvariant and indecomposable as an Or-group. In this case, the decomposition
C, = Cy ® Cyp s the unique decomposition, up to isomorphism, of C, into
indecomposable Oy -groups.

2. Let z be a sword. Then C, is indecomposable as an Or-group.
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Remark 3.2.6. Note that we are not claiming that C, or C,, are simple
Op-groups. This is not the case. For example, when g equals 2, a supersingu-
lar point t of M,, with a-number equal to 1 gives a counterexample. In this
case X;[p], which by Theorem 3.2.8 below is C, for a suitable sword z — in
fact z is FVVF — has a family of Op-subgroups of order p? parameterized by
Pt .

Proof. 1. Assume that z = (w,w?”) is a dword, where w = a;---a4. It
is clear that C,, is @p-invariant. Assume that C, = H & K is a nontrivial
decomposition into Or-groups. We look at the Dieudonné modules:

P)

g

g g
My, =P M) =Pk -z = P (H: © Ka)
i=1 i=1 i=1
where H = D(H) and K = D(K). We see that, for a suitable i, H; = k - z;
and H;y1 = 0. Thus K; = 0 and K;yq1 = k- 2441, If a; = F, we get
Hip1 = FH; # 0, a contradiction. If a; = V, we get Ky = VK11 #0, a
contradiction.

2. Assume that z is a sword, say z = a1 - - - az4. Assume that C, = H® K,
a sum of two nontrivial Or-invariant subgroups, and let H and K be the
corresponding Dieudonné modules. We have

g g g
(3.1) M, Z@Mi =®k'$i+k-l‘i+g =®(HZ’®K¢).

i=1 i=1 i=1
Let ® be the kernel of the Frobenius on M,,. It is the image of V. Similarly,
the image of F is the kernel of V. For every i, the submodule ®; is one
dimensional and ® is Oy-invariant. We establish the following points:
o For every i, we have both H; # 0 and K; # 0.

Indeed, if H; # 0 then H;y1 # 0, because either F'H; # 0, or F'H; = 0,
and then we have H; = VM; 1. Then, if H,1; = 0, we get H; = VK1, a
contradiction. Since, at least for one i, H; # 0, we get that this holds in fact
for every 7 and similarly for K.

o For every i, either H; = ®; or K; = @,.
Indeed, either VH, 11 # 0 or VK, 41 #0.

o Let 7= {1 <iy <- - <i, <g} be the indices such that FM;_ 1 = VM.
Assume that for some j, H;, = ®;,; then K = ®;,,,- Similarly, if K;; =
éij) then Hij+1 = q>7;j+1 .

The idea is this. Since H;, = ®;;, we must have FC;; # 0, and hence it is
the kernel of V on (My)s;+1. If 4541 # 45 + 1, then FK;; # VM 0 = @541,

i1
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Thus, F QICZ-], # 0, etc. This stops exactly at the first s such that F$K € V.M.
Thus, £, = @5, ,.

To finish the proof of irreducibility we just note that for any sword w, a(Cy)
is odd (then the last e gives the contradiction). This is the combinatorics.

We assume, to simplify notation, that in the word w = a; - - - asg we have
a1 = F and apy = V. Note that a(C,,) is the number of times that VF
appears in the circular word w. More precisely, i + 1 belongs to the type if
and only if a; # a;4.1. Write the elements of w in two rows:

ay 5] as L Qg

Og+1 | Qg2 | Gg43 | “*- | Gag

Go along this brick road from left to right, jumping from a V brick to a V
brick. You start at a,.1 and end at az,. The number of times you jump to
the upper row is thus the number of times you jump back to the lower row.
On the other hand each jump counts a couple VF — either on the upper or
on the lower row (but just on one of them each time). Thus we get an even
number of couples V F. But we still have to consider a40g+1 and aggay, which
are just F'V and V'F respectively. Hence the total number of couples V F is
odd.

Finally, our method of proof shows that in fact the decomposition into
indecomposable Op-groups is unique up to the obvious isomorphisms. O

Lemma 3.2.7. Let z and t be each either a sword or a dword. Then
C, =2 Cy as Op-groups if and only if both z and t are swords and z = t or
z=1t", or both z = (w,wP) and t = (v,v?) and w = v or w = v?.

Proof. If we have such equalities, clearly we get isomorphic polarized O -
groups (by construction). Conversely, Proposition 3.2.5 implies that z and
t are either both swords or both dwords. If both are dwords, we are done
because, obviously, C,,, together with the decomposition into one-dimensional
spaces M,, = @ M,, determines w. We are thus left with the case of swords.

An isomorphism as Op-groups
C, 2
implies an isomorphism

h=EPh: - POL); — DM,

where (M.);, (M); are as in (3.1). Say w = ap---agg and t = by --- b,
For some i we are given that a; = V,a;,; = F. This implies that the i -+ 1
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component of
C./(FC,+VC,)=C/(FC, + V)

is nonzero (“i + 1 belongs to the type”). Thus b;b;1 = VF or biygbitg11 =
VF.

Assume the first case holds, else take . The idea is that both words are
strings of letters — having the same letter in the i-th place — such that the
letter changes, say a; # a;11, if and only if either aja;11 = FV, or aja; 1 =
VF, that is, if and only if aja;41 = VF, or a;44a;1 441 = VF—equivalently,
if and only if the 7 + 1 component of

C./(FC, +VC,) = C,/(FCy + V)

is nonzero (“j + 1 belongs to the type”). Hence z equals . g

The type determines the Ekedahl-Oort stratification in M.

We prove that the type determines the Ekedahl-Oort stratification. More
precisely,

Theorem 3.2.8. Let t € M, (k) be a geometric point.

1. Suppose that {7(X,)| is odd. There exists a unique sword w, depending
only on |T(X;)|, such that Xi[p| is isomorphic to C, with the Or-structure
and polarization.

2. Suppose that |T(Xy)| is even. There exists a unigue dword z, depending
only on |T(X:)|, such that Xi[p] is isomorphic to C, with the Or-structure
and polarization.

Here uniqueness is taken in the sense of Lemma 3.2.7.

Proof. We may assume that 7 # {§, since otherwise, we can just take the
dword (F--- F,V --- V). We may also assume that 1 € 7, since this just affects,
e.g., for a sword, the place ¢ where a;a;,11 =VF.

We first define letters ag,--- ,ag4. Let
rT={1<izg < <ig<g}.
We let
(al’... aaigvl) Z(F,-” ’F)’ (aiw... 7ai3—1) = (‘/, ,V),"' ,

(ai{“... ,ag) = (X, 7){)7

where X = F or V (depending of course on the parity of 7). Then, we just
define ajyg = F ifa; =V,and a;1 g =V if a; = F.
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We consider the case of |7(X:)| = a even. In this case X equals V. Let w
be the word a; - - - a4 and let z be the dword (w, w?). Proving an isomorphism
D(X:[p]) & M, amounts to providing, for every i, a symplectic basis z;, y; of

D(X¢[p]):, with the property

Fri =241, yi=Vyis,
ifa; = F, and

zi =V, Fyi=yis1,
ifa; =V.

In what follows z;,y;, will denote elements in D(X;[p]);.

following way.

That may very
well involve a tacit claim that this is possiblel We choose the z;,y; in the

Start by taking some nonzero y; € Ker(F) and z; such that (z1,11) = 1.

Hence z; & Ker(F). Then choose:

definition of z; definition of y;

T y1 € ker(F)

xo = Faxq ngker(F): Vya =1

Tig—1 = Fziy2 Yig—1 € ker(F) : Vo1 = Yip—2
Tip = Fmiz—l Yio - Vy’ig = Yis—1

Tiy+1 € ker(F) : Vizg, 11 = 24y Yis+1 = Fyiy

Tin+2 €Eker(F): VEiq0 = Tint1  Yig+2 = FYigt1

Tig s Vi, = @iy Yiz = FYig-1

Ty, = Faz,—1 Yig * V¥ia = Yig—1
Tio+1 €Eker(F) : Vg, 41 =z, Yig+1 = Fys,

xg €ker(F): Vag =241 yg = Fyg_1

zh Vi =z, Y1 = Fy,

AiQitg

FV
PV

v
VF
VF
VF
VF
v

VF
VF

VF

g
ta+1

Note that for every r we have, by induction, (z,,y.) = 1. Hence, z, and

y, form a symplectic basis to D(X;[p]).. Note that

y1 € Im (Flpx, 1), ) = Ker (Vipx,i),) = Ker (Flox,p),) -
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Therefore, since k is algebraically closed, by taking a suitable multiple of y;
we may assume that y] = y;.

Since (z7,71) = (z1,71) = 1 we have 1 — &} € Ker(F). Thus we may
also assume that =} = x;. This finishes the proof in the case of even a. The
case of odd a is similar enough to be left to the reader. We just hint that the
required word w is a; - - - agy, the construction goes the same, and one argues
that by a suitable modification we can get | = y1, ¥y = x1. O

Remark 3.2.9. The proof of Theorem 3.2.8 suggests another method of
proving the assertion, made in the proof of Proposition 2.3.9, about the ex-
istence of a finite covering T — WY such that, denoting by G the universal
p-torsion subgroup scheme over W2,

G xT
wp
is constant. The problem, in terms of the proof, is to find sections {z;,v;}
satisfying the above relations. Locally on the base, this amounts to taking
certain p¢ — 1 roots, for various £'s, of functions.

4. The global structure

4.1. The Hodge bundle and W... In this section we follow some ideas
of [Mu] and [vdG1].

Let
(XN A — M,

be the universal object over M,,. We will abuse notation and write X for
(%X,A,I,A). Let e: M,, — X be the identity section, and let

be the Hodge bundle over M,,. It is a locally free sheaf of rank g over M,,.

Recall that a modular form of (equi-)level k is a section of w®*, where

w ¥ det(E).

It is known that w is an ample line bundle on M, —see [vdG], Chapter X,
Section 3, and {MB], Introduction, Theorem 1.1.

Consider the subvariety of M,, defined by
w, = ) w..

T |T|=r
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We want to explain how it is related to c,.(E), where ¢, denotes the r-th
Chern class of a vector bundle. This gives a “global interpretation” to our
stratification. To make our relations exact we continue to take a symplectic
full level-n structure, where n is at least 3 and prime to p, and work with M,,.
The result for the coarse moduli space M — where we take no level structure
— involves studying the ramification of the natural morphism from M,, to M.

To see the problem, notice that when g equals 1, Wy is the set of super-
singular elliptic curves, and deg(c1) = 1/24. This can be deduced from the
following facts:

w=E % Q) (cusps).

The right formula is Deuring’s mass formula,

Z H&E—) = p_;f = (p— 1) deg(c1).

E supersingular

Recall that we consider the regular scheme M,, as a scheme over the finite
field F containing Fpe. In particular we have a decomposition of O ® @ M,
induced from the decomposition

g
OL/p®TF @F, a®1—(o1(a), - ,04(a)).

g=1
Thus, over M,,, the Hodge bundle E is a direct sum of g line bundles:
E=L & - 9L,

Given any locally free sheaf K over O @ O M, » we will denote by K; its i-th
component. In particular, L; = E,;.

Let X(P) be the Frobenius image of X. Recall that it is defined by the
following cartesian square:

x®» ., x
4 !
Mo =2 M,

where Fips is the absolute Frobenius, defined as the identity on the underlying
topological space of M,,, and as raising to the p-th power on the structure
sheaf.

Let T be the relative cotangent sheaf of ¥(P) restricted to the origin. It is
easy to verify that

T=E®,
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where for any O, -sheaf K we define K® as the O m,,-sheaf obtained by
twisting by the Frobenius O, — O, ,

K® — O, ®0,,, K.

The definition is compatible under the dictionary between locally free sheaves
and vector bundles.
The Verschiebung morphism

P /M, — X/ M,,
which is Op-equivariant, induces a linear (O ® O, )-map
V:E—T.

This can be justified either by interpreting E and T as cohomology objects via
their embedding in the first de Rham cohomology, or by interpreting them as
the cotangent sheaves. We thus get, for every 4, an (07, ® O, )-linear map

V:Ei——a’]l‘i,

where O acts via o;.
Since E = P E,, it follows from the definitions that

T; = EP).
Thus, we get an (O ® O, )-linear map
V:E — EP,.

Furthermore, over any perfect O, -algebra R, in particular, for every geo-
metric point of M,,, we get a o~ !-linear map,

V: El m—— Ei_lp
by twisting with respect to ¢~!. That is, over R,
E;,_; = Egzi)l ®gr R.

Therefore, from this point of view, Wy;_1; is the degeneracy locus of the linear
map

V:E, — E®),.
To wit, for every geometric point ¢,
(D (), = (H° (U, ) /VH® (9h,)). = Bilz,) / (VEisalz,)
Thus, ¢ belongs to 7(X;) if and only if
ViEipalz, — Eilx,

is the zero map.
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Let
4 =c1(L;)
be the first Chern class of the line bundle L;; then
(4.1) crB)= Yl by,

1<iy <+ <ip<g
Applying the Thom-Porteous formula, see [F], Chapter 14, we conclude that
in the Chow ring CHE(M,,),
Wiy = er(LP —Lisy)
= ¢ (L7 = Liy1)
= pey(Li) — e1(Lig1)
=pb; —Lit1.

Using Corollary 2.3.7, we conclude the following theorem.
Theorem 4.1.1. The following equalities hold in CH{(My,):

r

Wiy iy = H (pﬁij - £i1+1) )

j=1
W, = Z H(pf] —€j+1)-
IcZ/gz jeI
| I|=r

Corollary 4.1.2. In CHE(My),
Wi = (p-De(E).

Corollary 4.1.3. The subspace of CHE(M,,) spanned by the tautological
classes {{1,---,£,} is equal to the one spanned by {W1,--- , W }.

4.2. A simplicial complex. In this section, we show that the compo-
nents of the W,’s form a simplicial complex, where every top-dimensional
simplex is of dimension g — 1 and corresponds to a superspecial point.

Definition 4.2.1. Define a graph 7 with g+1 levels, whose vertices at the
t-th level are the irreducible components of the W.’s with |7| = 4. Edges in
this graph exist only between consecutive levels. Two vertices v,v’, of levels 4
and ¢ + 1 respectively, corresponding to components C and C’ are connected
if and only if C > C".

Theorem 4.2.2. The graph T is a colored simplicial complex, in which
the faces of dimension i are the vertices of level i + 1 in T. In particular,
M, which is equal to Wy, corresponds to the empty set and the superspecial
locus of M, corresponds to the (¢ —1)-dimensional simplices. Every mazimal
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simplex is of dimension g—1. The vertices are colored according to their type,
and simplices intersect only along faces having the same coloring.

Remark 4.2.3. One may call 7 the “intersection complex” of all the W ’s.

Proof. All the assertions follow from the following points:

o The intersection of a component of W, and a component of W, is either
empty or a component of W .

This follows from Corollary 2.3.7.

e For every T, every component C of W, and every v/ C 71 there exists a
unique component C' of W, such that C' O C.

Take any geometric point ¢ of C. Theorem 2.3.4 shows that we may deform
X = (X¢, Ay te, 04) to a quadruple X = (X, A1, «) such that 7(X) = 7.
Hence t lies on some component C’ of W.,. But the local irreducibility of
W+, given by Corollary 2.3.6, implies €’ is unique.

e For every T, every component C of W, and every 7’ 2 7, there is a compo-
nent C' of W, such that C' C C.

By Corollary 2.3.12, C has a superspecial point. Use the previous point,
or repeat the argument. O

Corollary 4.2.4. Let H be a family of prime-to-p Hecke operators acting
transitively on the superspecial points in M,,. Then H acts transitively on the
components of W, for every T.

Proof. The prime-to-p Hecke operators act on the colored simplicial com-
plex T, i.e., they also preserve the type. The result follows by descending
induction on the dimension.

By assumption it holds for the top simplices. Assume it holds for faces of
dimension ¢ + 1 and take two faces of dimension i with the same color, i.e.,
two components C7 and Cs of W, where |7] equals i. Let

Lgr, 7 =1UL
Let Dy and D5 be components of type 7/, such that
D;CC;, j=1,2

By induction, there exists a Hecke operator T such that Dy € T(D»); hence
T(C3) contains a component Cf of W, containing D;. Since there is a unique
such component, we get that C] = Cj. |

It is thus natural to study the representation of the prime-to-p Hecke al-
gebra on the complex 7 as well as its homology as an abstract simplicial
complex! This could be viewed as a generalization of the classical study of
the action of the Hecke operators on the zero-dimensional complex of super-
singular elliptic curves (the case g = 1 in our discussion).
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As an indication of the interesting information that this complex encrypts,
we mention the following.

Theorem 4.2.5 (See [BG1]). Let g = 2. Assume that p > 2 and n > 3.
The number of components of Wiy, for i equal to 1 or 2, is

M s M] - (o (1),
and the number of components of Wy, oy is

P +1
2

My s M] - Co(—1).

5. Newton polygons

5.1. This section is devoted to some results concerning the Newton poly-
gon stratification of M, and a conjecture on the dimensions of the various
strata. We hope to return to this conjecture in a subsequent paper. Below,
we give certain partial results, which imply, in particular, what one may call
the “weak Grothendieck conjecture for M,,”:

Let 8 and v be two symmetric Newton polygons with the same initial and
end points (0, 0), (2g, g), respectively. Assume that 3 < v (see Definition 5.2.3
below). The weak Grothendieck conjecture, for abelian varieties, asserts that
there exist an integral scheme S, with a generic point 77 and a geometric point
t € S, and an abelian scheme X over S, such that the Newton polygon of X,
is B and the Newton polygon of X, is «v. The strong Grothendieck conjecture
is obtained by specifying the isomorphism class of X;.

It is clear how to formulate such conjectures for any PEL Shimura variety
(though not their validity), under the obvious assumption that § and -y appear
for some geometric points of this Shimura variety, or how to formulate it for
p-divisible groups. Theorem 5.3.3 below implies that the weak Grothendieck
conjecture holds for the Hilbert modular variety M,,.

We remark that Grothendieck formulated his conjecture, in the setting of
p-divisible groups, in a letter to Barsotti, reproduced as the Appendix to [Gr].
Given Theorem 2.2.3, this is essentially the “weak Grothendieck conjecture”
for abelian varieties. A stronger conjecture, regarding a sequence of polygons,
was formulated by Koblitz in [K], p. 215. For more extensive discussion and
results in this direction, including proofs of the “weak versions”, we refer the
reader to [O3], Section 6.
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Clearly, the Grothendieck conjecture is about the variation of the Newton
polygon along the local deformation ring of an abelian variety (possibly with
some extra structure). It is clear therefore that any local approach to this
conjecture is intimately related to Conjecture 5.2.5 (below).

5.2. The possible p-divisible groups.

Theorem 5.2.1. Let t be a geometric point of M,,. The p-divisible group
X, (p) is tsogenous to

or

9'G1/2

(under the convention ka/kb =k x a/b).

Proof. Let t be a geometric point of M,, and let (X, A, t, ) be the
corresponding object. Let D be the contravariant Dieudonné module of X (p).
We have a decomposition as in (2.5):

Note that (D, F9) is a o9-crystal, which decomposes as a direct sum of g
isogenous rank-2 ¢9-crystals,

(D, F9) = @ (Di, F9).
€L/ gZ
The isogeny is, essentially, F' itself. It follows that if the slopes of, say, (D1, F'9)
are o and 3, then the slopes of (D, F') are /g and /g, each appearing with
multiplicity g. On the other hand,

2
ordp(\F?|p,) = p°,

and its slopes have denominator at most 2 (see [Ka], Formula 1.3.1). O

Remark 5.2.2. The converse also holds, i.e., every such isogeny class is
obtained from some point of M,,. This follows from Theorem 5.4.11 below.

Definition 5.2.3. We say, for two Newton polygons 3,7, with the same
initial and end points, that 3 > « if every point of 3 is not below . We say
that 8 > ~ if in addition 7 # ~.

Let By < B1 < --- < B, be the possible Newton polygons of points of
M, given by Theorem 5.2.1 (e.g., B is the ordinary polygon and [, is the
supersingular polygon, s = [(¢ + 1)/2]). Given a geometric point ¢ of M,
we let NV; be the Newton polygon of (X, A, s, ). For every i such that
0 < i < s, let \V; be the closed subscheme “where N > 3;”.
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Remark 5.2.4. The reader should note that our definition of the order
between Newton polygons is the opposite of a frequently used definition (see
for example [04], Section 3). That is, in our definition 8 < v is what is often
denoted ¥ < 3. Our choice is based on the intuition that under specialization
Newton polygons go up and “up” is bigger then “down”. The other choice is
based on the intuition that if v < 3 then the dimension of the Newton strata
of «y is less than or equal to that of 3.

Conjecture 5.2.5. dim(N;) = g — i.

Remark 5.2.6. We intend to discuss this conjecture in a future paper.
Some partial results of independent interest are given below. See, in particu-
lar, Theorems 5.3.3 and 5.4.11.

5.3. The cyclic case. The following lemma is useful to us (see also [03],
Lemma 3.5).

Lemma 5.3.1. Let k be a perfect field of characteristic p. Let (M,F) be a
rank two o*-crystal with ord,( /\2 F) = g. Suppose that F is given with respect

to some basis by the matriz
m = .
ms My

Then the first Newton slope of (M, F) is given by
(5.1)

. i mai . @ m
mm{g, ord, (mf{ +my mi)} = mln{g: ord, <m1 +mg m—§i>}

(under the convention 0/0 = 1).

Proof. Since the argument is symmetric, we just prove the first formula —
the one involving ms.

If mz = 0, then the result is clear. If ms # 0, then, denoting the basis
vectors by X and Y, we may consider the cyclic submodule of finite index
generated by X and Y’ = m;X + m3Y. With respect to this basis, the
Frobenius is given by

P
m.
0 — (m1my — mams)
. i
A m3
1 mi +my

The characteristic polynomial is
. O'i O'i
9 i m3 m3
x° — (m‘l’ + m4m—)x + (m1m4 - mgmg).
3 3

The lemma follows from [Dm], Lemma 2, p. 82, Lemma 3, p. 84 (or rather
their proofs). O
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Remark 5.3.2. A typical application of Lemma 5.3.1 will be as follows:
We will be interested in knowing the variation of the Newton polygon along
a certain formal subvariety of the deformation space of (X, A, ¢, a) or of an
RM crystal (defined in Section 5.4 below). Using displays, specifically (2.2)
and Proposition 2.3.3, we would know the effect of the Frobenius F' on a
deformation parameterized by this subvariety. Using the argument in the
proof of Theorem 5.2.1, it will be enough to study the effect of F¥ on some
;. Here Lemma 5.3.1 becomes handy.

Theorem 5.3.3. Lett € M, (k) be a geometric point such that a(X;) = 1.
Assume that the Newton polygon of X, is Be. There is a choice of parameters
t1,-+« .ty such that the local equi-characteristic universal deformation ring of
X; is given by k[[t1,- - ,t,]], and such that the following holds:

For every r < £ the closed formal scheme, “where the Newton polygon is
weakly above 8,7, is given by t1 =--- =t, = 0.

Proof. Let

g
D = Po;
i=1
be the covariant Dieudonné module of X;(p). The assumption a(X;) = 1 is
equivalent to I being a cyclic C(k)-module. It is also equivalent to
dim(D/(FD + VD)) = 1.

We assume, without loss of generality, that D; ¢ FD+VD. Thus, there exists
z € D that generates D over C(k). Consider the sets of elements

{2,V92,Fiz} {Fz,V9 'z}, {F9 'z, Va}.

Clearly, each generates the respective I; over W(k)[F?,V9]. In fact, for every
i # 1, we have that {F'z,V9'z} is a basis for D;; over W(k), and for D;
the same holds for {X,V9z}. Indeed, to see that, we first reduce to the case
of ;. We note that {Fiac, Vg_ia:} is not a basis if and only if

(Fiz, V9 %) =0 (mod p).
But
(Flz, VI ') = (x, Vgx)“i.

For Dy we argue as follows. If
(z,Viz) =0 (mod p),
then
(z, F9z) = (VIz2,2)°" =0 (mod p),
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and hence z, F9z, and V9z do not span Dy over W (k). This is a contradiction,
because they span over W (k)[F'9, V9] and note what /9, V9 do to the spanning
set.
It follows that for k algebraically closed, we can normalize z such that
{x,Viz) = 1.
Hence,
Xi=2,Y1 =V, X, = Fz,Y, =V lz,... X, =FIIX Y, =V,
is an admissible basis for D as defined in 2.3.2. Note that F9X; = aX; +cV;
and
c= (X1, F'X;) = (VIX, X)" = —1.
It follows that, with respect to the basis { X1, - - , Xg, Y1, , Yy}, the Frobe-
nius is given by
<02(1a17"' 717a) 02(0707"’ 707p)>
02(0707'“ 707—1) 02(1771)7"’ 7p70) )
The universal deformation over Spec(k|[[t1,--- ,t,]]) is given, with respect to
the basis {X1,Y1,---,X,,Y,}, by
a2(327 e 7Bg>B1)7

(1 pTy (1 pT, _fa-T1 p
BQ*<O p>a 7Bg_<0 p 7B1_ -1 0 -

Remark 5.3.4. If g; are 0™ linear maps, given, respectively, by matri-
ces M (i), then g; o go is a o™V *+"(_linear map and is given by the matrix
MM,

We compute the deformation of (D;, F¥) resulting from the universal de-
formation. Put §; = T} and else S; = ﬂ”g7i+1:

a—51 p\ ({1 pS, (1 pS2
-1 0/\0 p 0 »p

_ (a =81 (a=S)(PS2+---+p?71S,) —i—pg)

S\ -1 —(pSa + -+ +p9718,) '

Clearly, the deformation is ordinary if and only if §; # 0. Assume that S; = 0;

then, using Lemma 5.3.1, we see that the first Newton slope is < £ = ord,(a),

and for every k£ < /, the first Newton slope is k if and only if §; = --- = S;, = 0.
Finally, note that S; is equal to Ti"rm, where 7(1) = 0 and, for 2 < i < g,

r(i) = g — i+ 1 is the Teichmiiller lift of £*' . O

where
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Corollary 5.3.5. The strong Grothendieck conjecture for M., holds in the
case where the special fibre has a-number equal to 1. O

5.4. The Newton polygon on W,. In this section we compute the New-
ton polygon of the generic fibre of any component of W,.. We will use Re-
mark 2.3.10; hence we start with an analysis of the superspecial points.

Superspecial crystals.

By a ppRM crystal (for a given L) we mean a o-crystal D over W (k) of rank
2g, where k is an algebraically closed field of characteristic p, together with
an action of O and a principal Op-linear quasi-polarization. We assume that
D/FD 2 k9; hence we have a o~ !-linear operator V satisfying VF = FV = p.
Thus, such a I has a decomposition as in (2.5), and a notion of an admissible
basis as in Definition 2.3.2. Note that every principally polarized abelian
variety with Oy, action, (X, A, ), gives a ppRM crystal (D(X(p)), F).

We consider a superspecial ppRM crystal (D, F') over W (k), where k is an
algebraically closed field in characteristic p. Spelling this out, it just means
that we have

FD =VD,

and the Newton slopes of (Dy,F9) are g/2, g/2. Note that if (X, ) is
superspecial, then (D(X(p)), F) is a superspecial ppRM crystal. Thus, using
Corollary 2.3.12, we see that such crystals exist.

Let D be a superspecial ppRM crystal. Choose any Y7 € VI, such that
there exists X; € Dy satisfying

<X15Y1> =1,

that is, Y7 & pID. We note that any other choice X{,Y{ is given by a matrix

(5.2) M= (ml m2> .

mg Mg
To make our notation clear, this means that

X{ =mX1+ msYq, le/ =myX1 +msYi.
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The matrix M satisfies
(5.3) M e SLy(W(k)), M= (i 3) (mod p).

Let

1
Xy =——FV"1, Yo = FXj,
p

1
X3 =—=FY;, Y3 = FX;,
p

1
Xy = ——Z—)FYg_l, Y, =FX,_ .
Then, inductively, we get

(X, Y, = <—%Fm_1,FXi_1> = Ly vEx_) =1

1

p
It follows that {X;,---,X,,Y7,---,Y,} is an admissible basis for D. Let us
write

FX;,=aX,+cY,, FY;=0bX;+dY;.

Then the Frobenius, with respect to the basis {Xi,--- , Xg, Y1, Y}, is
given by

A pB — 02(0""7070‘) 02('-17,---,—;0,6)
C pD 02(1,“- ,l,C) 02(0,-” ,O,d) )

The universal deformation of D as a polarized ppRM crystal is given by

A+TC B+TD
C D ’
where T' = 0, (T, - -+, T,)—that is, by

02(T27T37 Tt 7Tgva + CTl) a2(_17 '—17 s 7——17 b/ + d/Tl)
32(1,1,"' 7176) D2(0707"' 707d,) ’

where b = pb’ and d = pd'.
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One calculates the effect of F'9 of the universal deformation as a ppRM

crystal, on Dy. It is

a+cS, b+dSy Sg -p Sg_1 -p\ Sy —p
c d 1 0 1 0 1 0)’
where §1 =11,5, = Tg", etc.

Lemma 5.4.1. The original F9 on Dy is given by

b
(—=1)lo=D/2ple-1)/2 (z d)’ g =1 (mod?2),
Q=
(—1)(9=2)/2p(9=2)/2 (b —pa)’ g =0 (mod2).
d —pc

We have:
1. for g odd: ad —bc=p, pla,b,d;
2. for g even: ad —bc=p, plb,d.
Conversely, any matriz satisfying these conditions will give a supersingular

crystal.

Proof. Consider the case where g is odd. We know that ad — bc = p,
because FY is symplectic and of rank p? on D, and we know that pl|b,d,
because Y, € VID; hence its image under Frobenius is divisible by p. In order
for @ to define a supersingular crystal, it is necessary and sufficient that the

3

are 2 x 1/2. But the first Newton slope is

slopes of

g

min {1/2, ord(a®’ + df—c—)} .

Therefore, a is not a unit.
Conversely, given such a matrix, we just define the Frobenius on

@ Di7

€L/ 9T
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where each I; is simply a rank-2 free W(k)-module, by using the matrices
0 —p a b
1 0/ \¢ d

in the obvious way.

There is a unique way to define V, and we get a supersingular crystal
together with an admissible basis. The case of g even is similar. O

Remark 5.4.2. If we change the original basis by a matrix M as in (5.2),
then the resulting matrix Q' for Frobenius is given by

Q/ — MLlQMUg.
If we put
b
. , g =1 (mod2),
0 c d
1 =
b —
pa v 9=0 (mod2),
d —pc
and
o (—1)le=D72ple-1/20r - g =1 (mod 2),
| (._1)(9—2)/217(9*2)/262’1’ g =0 (mod2),
then

Qi =M M.
Example 5.4.3. Let us consider the case

a by [0 —p

c d/ \1 o)

which gives a superspecial crystal for every g. Here are some examples of the
universal deformation of D:
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g | deformation matrix
Si —p
L ()

9 $1S2 —p —pS1
SQ —p

$18:85 —p(S1+S3)  —pS1S2+p°

3
5283 —p —pSa
<51525354 —p(S1S: + 5151 + S354) + p® ~pS15253 + p2(51 + S3)
4
828354 — p(Sa + Sa) —pS2Ss +p°
5155535485 — (515255 + 515455 —pS81525354 + p* (5152

+515585 + S384835) + p*(S1 + S+ S5) +S5184 + S3S4) —p°

5

582538455 — p(S2Ss

+5485 + S253) + p* —pS28354 + p*(S2 + S4)

Here 51 =1,,5 = Tg"_l, etc.

Theorem 5.4.4. For every g, for every totally real field L of degree g over
Q, and for every algebraically closed field k of characteristic p, where p is inert
in L, there exists a unique superspecial ppRM crysial.

Proof. As explained above, existence follows from Corollary 2.3.12. We
prove uniqueness.

Consider first the case where g is odd. We consider the matrix
a b
Q= (C )

as defining a o9-crystal structure on W (k)W (k), which we denote by (I, ®).
Put X = 9. We claim that there exists a matrix N € GLy(W (k)) such that

- {0 -p
(5.4) N 1Q1N2_<1 0).
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Indeed, @ defines a rank-two supersingular Y-crystal, and hence, if we let
Hy/o = W(k)[F]/(F? + p) with F, by definition, -linear, then we have an
injection

H — H, 5,

because of the semi-simplicity of the category of Y-crystals ®Q.
We claim that, in fact, (H, ®) is isomorphic to (H; 2, F). To see that, we

argue as follows. Let
0 -p
P = .

We may think of (Hy 5, F) as (W (k)?, P), where P is a linear operator, that
is, we consider

H ® Wi(k).
- O

Under this interpretation, the image of H is a lattice £ of W (k)? that is stable
under P.

Choose z € L\ PL. Let y = Pz. Then {x,y} is a basis of £ over W (k)
such that the matrix describing P with respect to this basis is P again. It
follows that (£, P|.) is isomorphic to (W (k)2, P). Thus,

(H, @) = (H 2, I)
as Y-crystals. Hence, there exists a basis Y = {y1,y2} of H such that ® is

given by
0 —p
1 0

with respect to this basis. Let N be the change of basis matrix.

One immediately checks that for Ny € GLy(W (k)) we have

(5.5) Np! (g ‘Op> NE = (‘1) —()p)

if and only if N1 € GLy(W (Fp2s)) and is of the form

z
nl _pn3
n3 7112 ’

On the other hand, equation (5.4) gives
det(N)* = det(N).
Therefore, since the norm map

Norm : W(Fp25)* — W(Fps)™
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is surjective, we can find N; satisfying equation (5.5) (e.g. by taking ng = 0)
such that det(NN;) = 1. Let M = NNN1l; then
_ 0 -p
M 1 MZ —
Q1 (1 / )

and det(M) = 1. Thus M defines a symplectic change of coordinates of Dy,
automatically satisfying the condition (5.3).

The case of even g is quite similar. In this case, the matrix

(b —pa
- )

is divisible by p. Put @y = —pR for some R € SLy(W(k)). We think of
the matrix R as defining a Y-crystal of rank 2 whose slopes are both equal
to zero. It is therefore, by a theorem of Katz ([Ka], Theorem 1.6.1), split

over an algebraically closed field. Therefore, we see that there exists a matrix
N € GLy(W(k)) such that

N7'RN = L.

The same argument as before shows we may choose N € SLy(W(k)). By
multiplying by a suitable lower or upper triangular matrix we can in fact get
N to also satisfy equation (5.3). Therefore, N gives us the desired change of
basis for Dy. |

Theorem 5.4.5. Assume that p > 2. Let By < 31 < -+ < B be the
possible Newton polygons as given in Theorem 5.2.1. Let x be a geometric
superspecial point of M,,. For every £, 0 < £ < s, there are g irreducible
nonsingular formal subschemes V{,--- ,V; of the formal neighborhood of x
such that the following hold.

1. The type of the generic point of V¥ is i and the Newton polygon is [Bs.

2. FEvery geometric deformation with type i and Newton polygon B¢ is a
point of V.

The equations defining V¥ are the following:

t; =0, tfil 4+ 441 =0+, tfilg—jl +tipe—1 =0

Proof. Using Theorem 5.4.4, we may assume that the crystal (ID, F') defined

as (D(X,(p)), F) is given by

(@ W (k), (g _()Z’)).

Consider the universal deformation of x of type 7. To ease notation we will
assume that ¢ = g, and hence ¢, = 0. We compute the effect of the universal
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deformation, given by a matrix A, on the Z-crystal D(g-1y2 if g is odd, and
on Dy /9 if g is even.

g odd: We have
Ao (T =\ (T P\ (0 -p
1 0 1 0 1 0
Uac+2 o 3
w [T5—1 P Tg—; Py
1 0 1 0 ’

where z = (g — 3)/2. Multiplying the middle five matrices, we get

TS —p
A=_— R

2 x z—1 x x— 2 x x—
y <<T1+T;_1)” Ty T pTET —p(T+ T Ty :+p2>

(T + T2 )T —p =p(Ty +Tg,)°

o_z+4
X TQ -3 -p e
1 0
Some reflection shows that

Azkpx<a><u1+p><* —anUQ"—pQX*)’
* p X *

where
0_2 O_.T
and uy,uy are a product of Teichmiiller lifts of the ¢, for i = ¢ raised to a

certain power. Applying the formula for the first Newton slope, we get that
the Newton polygon is weakly above 3; iff

pla uia”’ug’.
In other words,
pl(Th + ng—1)‘
However,
2 2
T _{_T;fl = (¢1,0,0,---) + (tg_l,o,(),...) = (i1 +t§_1,--~),
and we get in particular
ty=—tb_,.
It p > 2 then —1 is the Teichmiiller lift of —1, and hence we get from the
2
multiplicativity of the Teichmiiller map that in fact Ty + T;’“l = 0.
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We go back to the product defining A, and we get

A=—px--- 5" —p) (0 -p 90—1;3 I
1 0 1 0 1 0

and therefore we may argue in the same way.
g even: The story is very similar. The same kind of computations leave us
with

A —px Ty/2 —P\ (X ur+pXx* —poXuy+p®Xx*
- 7P 1 0 * P X * ’

which gives

A= px (axug—kpx* —paxu’2+p2x*>,
* D X *

and the same arguments apply. O

Remark 5.4.6. The proof clearly shows that the theorem holds for p = 2
as well, but the equations are more complicated due to the fact that the
Teichmiiller lift of —1 is not —1 in this case.

Corollary 5.4.7. The weak Grothendieck conjecture holds for principally
polarized abelian varieties with real multiplication.

Proof. Theorem 5.4.5 gives, for every 0 < i < s, the existence of a geometric
point £ of M,, with a(X;) =1 and N; = ;. Hence, the corollary follows from
Theorem 5.3.3. O

The Newton polygon.
We determine the Newton polygon of the generic point of every component
of W,. As before, we denote by

Bo<Pr--<Bs, 5= [m]’

2
the possible Newton polygons.

Definition 5.4.8. A subset p of Z/gZ is called spaced if i € p = i+1 ¢ p.
Given 7 C Z/gZ, we let

A(T) = max{|p| : p C 7, p spaced}

(except for g odd and T = {1,--- , g}, where we put A\(7) = (g + 1)/2).
Definition 5.4.9. Given a type 7, we may write it uniquely as

(56) T::KlH.”HKk"
where each K is a maximal set of consecutive elements of 7 (i.e., the blocks
of 7). We put par(K;) = 1 if K; is of odd length, and par(XK;) = 0 if K; is of

even length.
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The following lemma is elementary.
Lemma 5.4.10. For every type T,

k
Alr) = % ; |K;| + par(K;). O

Theorem 5.4.11. The Newton polygon of the generic point of every com-
ponent of Wy is Bxry.

Proof. Using Remark 2.3.10, Corollary 2.3.6 and Corollary 2.3.12, we re-
duce to studying the question locally at a superspecial point. By Theo-
rem 5.4.4 we may further assume that we are in the following situation:

Consider the standard superspecial crystal (I, ®) as in Example 5.4.3. Tt
is displayed by

02((),07"' aO) 02(—13_17"' )_1)
02(1917"' 71) 02(0707”' 70) '

The action of the Frobenius of the universal deformation on D, is given by

G D60

where Sy =Ty, 5, =T7 4, etc. It will be convenient to use the notation

Mi(S,) = (51 ‘5") .

M = My (51) - My(S,).

Let

We shall prove that if we put S; = 0 for 7 € 7, then the first Newton slope of
M is A(7). This would conclude the proof. We do it in two steps.

Step 1. We can assume that 7 is spaced. Indeed, write 7 in blocks,

=[5

as in equation (5.6). If par(K;) = 0, substitute 0 for any S, in the block K;.
If par(K;) = 1, substitute 0 for any S; in the block K that is not the first
element in the block. That is, if K; = n; ---m;, then we put

Spis1 = =Sy, =0.
For par(K;) = 0, this substitution has the effect

ﬁ M;(8;) = (—p)mimme=1)/2 ((1) 2) -

j=n;
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For par(K;) = 1, it has the effect
ms S "
QY = (—p)(mi—ns)/2 n;
J=ng

We can pull those powers of p outside the product M;(S1) - My(S,) that we
are trying to understand. What we are left with is a spaced type. That is,
those n; for ¢’s such that par(K;) = 1 are a spaced type in Z/gZ with the
indices of all the S;’s we equated to zero deleted. Using Lemma 5.4.10, we see
that we may assume that 7 is spaced.

Step 2. T is spaced. Without loss of generality, we assume that the first
index in 7 is 1 (otherwise compute on a suitable D; instead of D). Put

T={l<iag < -+ <ig}.
Note that i, < g and that A(7) = a. Put
T =70{,--,j}.

0, 1€,
€; =
1, i€
We prove, by induction on j in the set

12{2731 7i2_17i2+1a"' ,i3_1’i3+17'“ 79}7
that the ordered product

Let

J . .
€:S; —p> < pl7la; pm“bj)
5.7 =( " _ ,
(5.7) 11( 1 0 plil-le,  pinild,
where
(5.8) ord,(a;) = ord,(c;) = ord,(d;) = 0.

First, for j = 2 we get

CE D=5

and the induction starts. In the induction step we distinguish cases:
(i) We have j € T and j+ 1 € Z. Then

pl‘rjiaj p!TjH'lbj Sj+1 —p
pl7l=1c; plTi|dj 1 0
= <p|leaij+1 +pl7Htp;  plmltl. (—aj)> :
plTj}"lchj+1 +pITJ|d] p{Tjicj

Note that |7;| = |7;4+1], and the induction step is proved.
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(ii) We have j € Z and j + 1 ¢ Z. Then,

pla;p!™ 1y, 0 -p\ (Si+2 -p
plmil—le; pld; ) \1 0 1 0

_ < pl7la; pmH'lbj) < —-p 0 )
pl"—jl_lcj plTJidj Sj+2 —p

_ pl7j+2l(bj5’j+2 — aj) plTit2ltt . (—p))
- p|7j+2|—1(dj5j+2 —¢j) plmi+2l . (—d;)

The induction step follows easily. Using equations (5.7) and (5.8), as well

as Lemma 5.3.1, we see that the first Newton slope is A(T).

Corollary 5.4.12. Every isogeny class of p-divisible groups appearing n

Theorem 5.2.1 is realized for some point of My.

Remark 5.4.13. One could also prove this directly using Honda-Tate the-

ory.

Corollary 5.4.14. For every i, some component of N; is of dimension

greater than or equal to g — i.

Proof. Indeed, we just need to find a type 7 such that
I7| = A(7) =i.
Take for example
T=1{1,3,---,20+1}.

(For g odd, i = (g + 1)/2, use Theorem 5.4.5.)

Finally, our methods in this paper suggest that the following conjecture, if
true, would reduce Conjecture 5.2.5 to a fairly explicit local question.

Conjecture 5.4.15. Fuvery component of every Newton polygon strata

contains a superspecial point.

p\TjH'l . (_aj) +p|Tj|+1bij+2 p‘Tj|+2 . (_b

g)>

B < Pl (—ej) +p71d; 8540 PITIT - (—dy)
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