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The main goal of this paper is to give a bound on the denominators of Igusa class

polynomials for genus 2 curves. Our motivation is from cryptography via the use of

genus 2 curves with a prescribed number of points, and from class invariants with

a view towards class field theory and Stark’s conjectures. All known methods for

constructing such curves rely on complex multiplication and the calculation of Igusa

class polynomials. These polynomials have rational coefficients and their determination

requires extensive computation and precision. The results of this paper make it possi-

ble now to perform complexity analysis of these algorithms. The analysis for bounding

the denominators also informs the prime factorization for certain class invariants. Both

problems are translated into questions about isomorphisms between principally polar-

ized abelian surfaces with complex multiplication and products of elliptic curves with

the product polarization, over local artinian rings. We give an overview of Igusa’s results

on the moduli space of genus 2 curves and the method to construct genus 2 curves via

their Igusa invariants. We also give a complete characterization of the reduction type

of a CM abelian surface, for any type of prime decomposition of the prime, including

ramified primes. The methods used in the proofs of the main results involve studying

the embedding problem of the quartic CM field into certain matrix algebras over quater-

nions and invoking techniques from crystalline deformation theory.
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Genus 2 Curves with Complex Multiplication 1069

1 Introduction

While the main goal of this paper is to give a bound on the denominators of Igusa class

polynomials for genus 2 curves, our motivation is two-fold: on the one hand, we are inter-

ested in applications to cryptography via the use of genus 2 curves with a prescribed

number of points, and on the other hand, we are interested in constructions of class

invariants with a view towards explicit class field theory and Stark’s conjectures. In the

following, we give an overview of these motivating problems and explain the contents

of the paper.

Some basic protocols in public key cryptography, such as key exchange and

digital signatures, rely on the assumption that the discrete logarithm problem in an

underlying group is hard. Current available alternatives favor the use of the group of

points on an elliptic curve or the Jacobian of a hyperelliptic genus 2 curve over a finite

field as the underlying group. The security of the system depends on the largest prime

factor of the group order, so it is crucial to be able to construct curves such that the

resulting group order is prime, or a small multiple of a prime. Also, for applications

in pairing-based cryptography, it may be necessary to impose additional divisibility

conditions on the group order. Parameterized families of curves satisfying this type of

conditions are called pairing-friendly curves. Thus, algorithms to construct curves with

prescribed group orders are required. Currently, typical minimum security requirements

require a group size of at least 2256 when the best-known attacks are square-root algo-

rithms, giving roughly 128 bits of security. Compared with elliptic curves, Jacobians

of genus 2 curves are an attractive alternative because they offer comparable secu-

rity levels over a field of half the bit size, since the group size of the Jacobian of a

genus 2 curve over a finite field Fp is roughly p2, whereas elliptic curves have group size

roughly p.

In the case of elliptic curves, the polynomial-time point-counting algorithm pro-

posed by Schoof and improved by Elkies and Atkin (or the newer Arithmetic-Geometric

Mean algorithm, see Harley, Mestre and Gaudry [24, 38]) allows the following approach:

one can pick elliptic curves over a finite field of cryptographic size and count points

until a prime group order is found. This solution will not work for generating pairing-

friendly curves, however. Also, over prime fields of cryptographic size, point-counting

methods for hyperelliptic curves of genus greater than 1 are currently too slow to be

practical. Starting with the work of Atkin and Morain on generating elliptic curves with

a prescribed group order for primality proving, the standard approach to constructing

such curves has been to use the theory of Complex Multiplication in the so-called

CM method.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2012/5/1068/656542 by M
cG

ill U
niversity School of Law

 user on 08 O
ctober 2024



1070 E. Z. Goren and K. E. Lauter

Given a prime number p, and a group order N lying in the Hasse–Weil interval

[p+ 1− 2
√

p, p+ 1+ 2
√

p], the goal is to produce an elliptic curve E over Fp with N

points: #E(Fp)= N = p+ 1− t, where t is the trace of the Frobenius endomorphism of E

over Fp. Set D = t2 − 4p. The Frobenius endomorphism of E has a characteristic polyno-

mial x2 − tx+ p, so it follows from the quadratic formula that the roots of this polyno-

mial lie in Q(
√

D). It is standard to identify the Frobenius endomorphism with a root

of this polynomial. If E is not supersingular, as we shall henceforth assume, then R,

the endomorphism ring of E , is an order in the ring of integers of K =Q(
√

D). Now the

problem is transformed into one of generating elliptic curves with endomorphism ring

equal to an order R in K. Assume for simplicity that D is a fundamental discriminant

and so that R is the maximal order OK of K. It is well known that each such curve

can be obtained as the reduction of a unique up-to-isomorphism elliptic curve over Q̄

with CM by OK . The correspondence between isomorphism classes of elliptic curves

over Q̄ with endomorphism ring equal to OK and primitive, reduced, positive definite

binary quadratic forms of discriminant D gives an easy way to run through all such

elliptic curves.

Define the Hilbert class polynomial HD(X) associated to the field K as follows:

HD(X)=
∏(

X − j

(
−b+√D

2a

))
,

where the product ranges over the set of (a,b) ∈Z2 such that ax2 + bxy+ cy2 is a

primitive, reduced, positive definite binary quadratic form of discriminant D for some

c∈Z, and j denotes the modular j-function. The degree of HD(X) is equal to hK , the

class number of K, and it is known that HD(X) has integer coefficients. To find an

elliptic curve modulo p with N points over Fp, it suffices to find a root j of HD(X)

modulo p. One can then reconstruct the elliptic curve from its j-invariant j. Assuming

j �= 0,1728 and p �= 2,3, the required elliptic curve is given by the Weierstrass equation

y2 = x3 + 3kx+ 2k, where k= j
1728− j . The number of points on the elliptic curve is either

p+ 1− t or p+ 1+ t, and one can easily check which one it is by randomly picking points

and checking whether they are killed by the group order.

There are at least three approaches to computing the Hilbert class polynomial.

The complex analytic approach computes HD(X) as an integral polynomial by listing all

the relevant binary quadratic forms, evaluating the j-function as a floating point integer

with sufficient precision, and then taking the product and rounding the coefficients to

nearest integers. Another approach computes HD(X) mod � for sufficiently many small

primes � and then uses the Chinese remainder theorem (CRT) to compute HD(X) as a
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Genus 2 Curves with Complex Multiplication 1071

polynomial with integer coefficients; we shall refer to this approach as the CRT method.

The p-adic approach uses p-adic lifting to approximate the roots and recognize the poly-

nomial. See Belding [1] and the references therein, for a discussion and comparison of

these methods. These algorithms are all satisfactory in practice for small D. The cur-

rent world record for the largest D for which HD(X) has been computed (modulo enough

primes to uniquely determine it) is held by Sutherland, using the Explicit CRT method,

for some |D| ≈ 1016; see [51] for a description. (The explicit CRT method calculates HD(X)

modulo sufficiently many primes and then calculates from this data the reduction of

HD(X) modulo any other prime without calculating it as a polynomial with integer coef-

ficients; it was expounded by Bernstein [2], building on ideas of Montgomery, Silverman

and Couveignes.)

The situation for generating genus 2 curves is more difficult. The moduli space of

genus 2 curves is three dimensional and so at least three invariants are needed to specify

a curve up to isomorphism, and, in fact, Igusa’s results show that most genus 2 curves

are determined by three invariants. The CM algorithm for genus 2 is analogous to the

Atkin–Morain CM algorithm for elliptic curves just described. But whereas the Atkin–

Morain algorithm computes the Hilbert class polynomial of an imaginary quadratic field

K by evaluating the modular j-invariants of all elliptic curves with CM by K, the genus

2 algorithm computes Igusa class polynomials of a quartic CM field K by evaluating the

modular invariants of all principally polarized abelian varieties of dimension 2 with

CM by K.

For a primitive quartic CM field K, we can define Igusa class polynomials

hi(X)=
∏
τ

(X − i j(τ )), j = 1,2,3,

in analogy with the Hilbert class polynomial for a quadratic imaginary field; the class

polynomials depend on the quartic CM field K, but we suppress it in the notation.

The product is over period matrices in the Siegel upper half space H2 of genus 2 mod-

ulo Sp4(Z), such that the corresponding abelian surfaces have CM by OK . The func-

tions i j appearing in the definition are called in this paper absolute Igusa invariants

and are Siegel modular functions; they are defined in Section 2.3. The roots of the

class polynomials are thus CM values of Siegel modular functions, and it is known

that these roots generate abelian extensions of the reflex field of K. Again, in analogy

with the elliptic curve case (where, using the complex uniformization, E is isomorphic

to y2 = f(x)= 4x3 − g2(τ )x− g3(τ ), where g2(τ ) and g3(τ ) are Eisentein series and also
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1072 E. Z. Goren and K. E. Lauter

invariants of the cubic f(x), and τ is some element of the upper half plane H), CM

values of modular functions on the Siegel upper half space can be directly related to

the invariants of a binary sextic defining the genus 2 curve associated to the CM point.

Note that the j-invariant of an elliptic curve can be calculated in two ways, either as the

value of a modular function on a lattice defining the elliptic curve as a complex torus

over C, or directly from the coefficients of the equation defining the elliptic curve (the

j-invariant of y2 = 4x3 − g2(τ )x− g3(τ ) is 1728 · g2(τ )
3/(g2(τ )

3 − 27g3(τ )
2)). Similarly, for

genus 2 curves the triple of Igusa invariants can also be calculated in these two differ-

ent ways. Using classical invariant theory over a field of characteristic zero, Clebsch [7]

defined the triple of invariants of a binary sextic f defining a genus 2 curve y2 = f(x).

Bolza [3] showed how those invariants could also be expressed in terms of theta con-

stants on the period matrix associated to the Jacobian variety and its canonical polar-

ization over C. Igusa [28] showed how these invariants could be extended to work in

arbitrary characteristic, and so the invariants are often referred to as Igusa or Bolza–

Clebsch–Igusa invariants. These invariants will be discussed in more detail in Section

2. To recover the equation of a genus 2 curve given its invariants, Mestre [37] gave an

algorithm which works in most cases, and involves possibly passing to an extension of

the field of definition of the invariants.

The CM algorithm for genus 2 curves takes as input a quartic CM field K and out-

puts the Igusa class polynomials with coefficients in Q and, if desired, a suitable prime

p and a genus 2 curve over Fp whose Jacobian has CM by K. Alternative algorithms for

computing Igusa class polynomials have also been proposed and studied, such as the

genus 2 Explicit CRT algorithm [12] and a p-adic approach [16].

The basis of the CM method in genus 2 was developed in Spallek’s thesis [49],

where some of the procedures assume that the totally real subfield has class number

1. Later improvements and extensions were given by van Wamelen [54] and Weng [57].

In these algorithms one determines a collection of period matrices that form a set of

representatives for isomorphism classes of polarized abelian surfaces with CM by a

given field. These are used to compute the Igusa polynomials by evaluating Siegel mod-

ular forms to very high precision in order to recognize the coefficients of the minimal

polynomials as rational numbers. Unfortunately, the polynomials hi(X) have rational

coefficients, typically not integral coefficients, which makes them harder to recognize

from floating-point approximations. The running time of the CM method for generating

genus 2 curves over finite fields with a given number of points had not been analyzed

until recently, due to the fact that no bound on the denominators of the coefficients

of the Igusa class polynomials was known. This paper provides such a bound for the
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Genus 2 Curves with Complex Multiplication 1073

first time and in his Leiden thesis, M. Streng has used our results to perform a detailed

complexity analysis of the CM method; see [50].

Since the polynomials hi(X) have rational coefficients, we can ask about the

prime factorization of the coefficients. In particular, the primes appearing in the denom-

inators are of special interest. In [35], it was conjectured that primes in the denominator

are bounded by the discriminant of the CM field and satisfy some additional arithmetic

conditions. In fact, the primes in the denominator are primes of bad reduction for one of

the associated curves and they imply superspecial reduction of the Jacobian, and so the

additional arithmetic conditions are essentially covered by Goren [19], and in more gen-

erality by Section 3 of this paper. Furthermore, it was shown in [21] that bad reduction

of a CM curve at a prime is equivalent to the existence of a solution to a certain embed-

ding problem: embedding the ring of integers of the primitive quartic CM field into the

endomorphism ring of a product of supersingular elliptic curves in a way that is compat-

ible with the Rosati involution induced by the product polarization. In [21], we provided

bounds on the primes that can appear in the prime factorization of the denominators. In

this paper, we extend that work to provide bounds on the powers to which those primes

appear, thereby proving an absolute upper bound on the size of the denominators. In a

related work of Bruinier–Yang [4], the factorization of the denominators, when averaged

over the corresponding CM cycle, was studied and a precise conjecture was formulated.

In the subsequent work of Yang [59], the conjecture was proved for certain classes of

quartic CM fields, thereby giving tight bounds on the size of the denominators in those

cases. But a general bound needed for the complexity analysis has not been known until

the work of this paper.

The investigations carried out in this paper also have a completely different

motivation, which comes from class field theory and Stark’s conjecture. Consider the

modular form that we call Θ in this paper (Section 2.4); it is the unique Siegel cusp form

of weight 10 and full level, up to a scalar, and is equal, up to a scalar, to the product

of the squares of the 10 even Riemann theta constants of integer characteristics. (Some

call these “half-integral characteristics”; our terminology follows Farkas and Kra [14].)

In many ways Θ is the analog the elliptic cusp form Δ of weight 12. Because of this anal-

ogy, Deshalit and Goren have studied [10] certain algebraic numbers constructed from

values of Θ at CM points associated to a primitive quartic CM field K, whose definition

parallels the definition of the Siegel units. Certain expressions in such values gave quan-

tities u(a, b) associated to certain ideals in K, that depend also on the choice of CM type.

These quantities lie in the Hilbert class field of the reflex field of K and have many

appealing properties, such as a nice transformation law under Galois automorphism,
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1074 E. Z. Goren and K. E. Lauter

and their dependence only on the ideal classes of a and b. Thus, one is justified in calling

them class invariants.

A natural question that arose is whether the invariants u(a, b) are actually units,

or close to being units, in the sense that one knows their exact prime factorization, and

these primes are small relative to, say, the discriminant of the field K. While we do not

have a complete solution, several results concerning these invariants have been obtained

by the authors in recent years [20, 21]. See also the thesis of Vallieres [53] for numerical

data. One of the main reasons to study such quantities is Stark’s conjectures.

A particular case of Stark’s conjecture is the following. Let L/k be an abelian

extension of number fields with a Galois group G. Let S be a set of primes of k such

that |S| ≥ 2, and such that S contains all the archimedean primes and all the primes

ramifying in L, as well as a prime splitting completely in L. Let v be a place in S that

splits completely in L and w a place of L above it. For σ ∈G define the partial zeta

function:
ζS(s, σ )=

∑
(a,S)=1,σa=σ

Nk/Qa−s.

Stark’s conjectures state that there is a unit ε in L such that

log |εσ |w =−e · ζ ′S(0, σ ),

for all σ ∈G, where e denotes the number of roots of unity in L. See [52, Chapitre IV,

Section 2] for details. In spite of much work in this area, including a thorough study

and proof by Stark of the cases k=Q and k an imaginary quadratic field, it is fair to

say that Stark’s conjectures are essentially completely open. It is believed that the main

obstacle is finding a “good” construction of units, and that was precisely the motivation

of [10], although the problem of relating the class invariants u(a, b) to L-functions is

still outstanding. (It should be remarked that since a quartic CM field has two complex

places, the particular Stark conjecture formulated here is true, and easy, and one is

really interested in a higher analog, called the Rubin–Stark conjecture; see [45].)

Now, as it turns out, the denominators occurring in the coefficients of the Igusa

class polynomials hi have to do with the modular form Θ as well, and essentially

both questions—the nature of the denominators and the factorization of the invariants

u(a, b)—have the same underlying geometric question, which is whether an abelian sur-

face with CM by K, over some artinian local ring, can be isomorphic to a product of

elliptic curves (with additional conditions on polarizations).

There are two central results in this paper. The first result determines the

reduction of abelian surfaces with complex multiplication, extending the results in [19].
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Genus 2 Curves with Complex Multiplication 1075

The main invariants of an abelian surface Aover a field of characteristic p> 0 are

its f-number, that determines the size of the étale quotient of A[p], and the a-number

that, together with the f-number, determines, for surfaces, the size of the local-local

part of that group scheme. These numbers determine, for example, in which Ekedahl–

Oort strata the moduli point corresponding to A lies. It turns out, and that was essen-

tially known by Goren [19] and Yu [60], that these numbers can be read from the prime

factorization of p in the normal closure N of K over Q and the CM type. However, to

our knowledge, a complete analysis, covering also the case of ramified primes, had not

appeared in the literature, and we make this analysis explicit here, in a self-contained

manner. The relevance of this issue to denominators is the following. A key observation

is that for a prime p to appear in the denominators of the coefficients of the polynomials

hi, or for p|p to appear in the factorization of a u(a, b), some abelian surface with CM

by K must be isomorphic over F̄p to the product of two supersingular elliptic curves

E × E ′. This gives f = 0 and a= 2, for the reduced surface and so sieves out the “evil

primes” according to their factorization in N. The results about reduction of abelian

surfaces with complex multiplication appear in Section 3.

The second result, which is the main result of this paper, is the following

theorem concerning the valuation of special values of certain Siegel modular functions

of genus 2.

Let K =Q(
√

d)(
√

r), where d is a square-free integer and r ∈Z[
√

d] is a totally neg-

ative element. Assume that K is not biquadratic. Let K∗ be a reflex CM field associated

to K and a CM type; we denote its Hilbert class field by HK∗ . Let L = NHK∗ .

Theorem 1.1. Let f = g/Θk be a modular function of level one on H2 where:

1. The modular form Θ is −4χ10 in Igusa’s notation, and is equal to the product

of the squares of the 10 Riemann theta constants with even integral char-

acteristics, normalized to have Fourier coefficients that are integers and of

g.c.d. 1.

2. The modular form g is a level 1 modular form of weight 10 k with integral

Fourier coefficients.

Let τ be a CM point associated to K and K∗ the reflex field determined by the CM of τ .

Let pL be a prime of L above a rational prime p with ramification index e= e(pL/p). Then

f(τ ) ∈ L. If valpL ( f(τ )) < 0 then

valpL ( f(τ ))≥
⎧⎨
⎩−2ek[logp(d · Tr(r)2)+ 1], e≤ p− 1,

−16ek[logp(d · Tr(r)2)− 1
2 ], any other case.

(1.1)
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1076 E. Z. Goren and K. E. Lauter

Furthermore, unless we are in the situation of superspecial reduction, namely, we have

a check mark in the last column of the tables in Section 3, valpL ( f(τ ))≥ 0. The valu-

ation valpL is normalized so that a uniformizer at pL has valuation 1. In addition, if

valpL ( f(τ )) < 0, then
p≤ 4 · d · Tr(r)2. �

Corollaries 7.5 and 7.6, of this theorem give the applications to denominators of

Igusa class polynomials and class invariants described above.

As said, for a prime p to appear in the denominators of the hi, or for p|p to appear

in the factorization of a u(a, b), some abelian surface with CM by K must be isomorphic

over F̄p to the product of two supersingular elliptic curves E × E ′. A further, and most

important condition, is imposed by the fact that the Rosati involution of E × E ′ must

induce complex conjugation on K. We are able to translate the fact that a prime appears

to a certain power in the denominators of the hi (similarly for the u(a, b)) to the fact that

such an isomorphism with a product of elliptic curves must hold over a certain artinian

ring (R,m) and the index of nilpotency of m is proportional to the power of the prime.

This requires some results in intersection theory (Section 5) and the introduction of an

auxiliary moduli space (Section 4). A certain maneuver, already used in [21], allows us at

that point to reduce the problem to a question about endomorphisms of elliptic curves

over R whose reduction modulo m are supersingular. Some special instances of this

problem were studied by Gross in [22], but his results do not suffice for our purposes. We

approach this problem using crystalline deformation theory in Section 6; in the course

of developing the results we need, we provide more general results that are natural in

that context and are likely to be useful for others. Since crystalline deformation theory is

only valid under certain restrictions on ramification, we provide an alternative approach

that works without any restriction (Section 6.5) and gives results that are not too much

worse than crystalline deformation theory gives.

2 Moduli of Curves of Genus 2

2.1 Curves of genus two—Igusa’s results

Let y1, y2, and y3 be independent variables and let y4 = 1
4 (y1y3 − y2

2). The group of fifth

roots of unity μ5 acts on the ring Z[ζ5][y1, y2, y3, y4] by [ζ ](yi) := ζ i yi (and trivially on the

coefficients). The ring of invariants is defined over Z, namely it is of the form R⊗Z Z[ζ5].

We denote R, by abuse of notation, by

Z[y1, y2, y3, y4]μ5 .
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Genus 2 Curves with Complex Multiplication 1077

The ring R is generated over Z by 10 elements. One of Igusa’s main results [28, p. 613] is

that M2, the coarse moduli space of smooth projective curves of genus 2, satisfies

M2
∼= Spec(Z[y1, y2, y3, y4]μ5). (2.1)

We remark that outside the prime 2, namely if we work over Z[1/2], we can dispense with

y4 and conclude that

M2 ⊗ Z[1/2]∼= Spec(Z[1/2][y1, y2, y3]μ5)

(same abuse of notation). Note that to find generators over Z[1/2] for Z[1/2][y1, y2, y3]μ5

amounts to finding vectors (a,b, c) ∈Z3
≥0 such that a+ 2b+ 3c≡ 0 (mod 5) that gener-

ate the semigroup {(a,b, c) ∈Z3
≥0 : a+ 2b+ 3c≡ 0 (mod 5)}—one associates to the vector

(a,b, c) the monomial ya
1 yb

2 yc
3. Such generators are given by the following eight triples:

{(5,0,0), (3,1,0), (1,2,0), (2,0,1), (0,1,1), (1,0,3), (0,5,0), (0,0,5)}. (2.2)

On the other hand, given a field k of odd characteristic, to find generators for the fraction

field Frac(k[y1, y2, y3]μ5), one needs generators for the group {(a,b, c) ∈Z3 : a+ 2b+ 3c≡ 0

(mod 5)}, which one can choose to be the vectors (2,−1,0), (3,0,−1), (5,0,0) (corre-

sponding to the monomials y2
1/y2, y3

1/y3, y5
1 ), for example.

Igusa’s construction is based on much earlier work by Clebsch [7] and Bolza [3]

on invariants of sextics. A genus 2 curve is hyperelliptic, where a hyperelliptic curve is

defined to be a curve that is a double cover of the projective line. Over fields of charac-

teristic different from 2 the situation is very much like over the complex numbers, and

one can conclude that such a curve can be written as y2 = f(x), where f(x) is a separa-

ble monic polynomial of degree 6, uniquely determined up to projective substitutions,

thus reducing the problems of classifying genus 2 curves to studying when two sextics

are equivalent under a projective transformation, or, equivalently, studying the space

parameterizing unordered 6-tuples of points in P1.

2.2 Igusa’s coordinates

To describe the invariants of sextics we use Igusa’s notation. Let

y2 = f(x)=u0x6 + u1x5 + · · · + u6,
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1078 E. Z. Goren and K. E. Lauter

be a hyperelliptic curve and let x1, . . . , x6 be the roots of the polynomial f(x). The

notation (i j) is a shorthand for the expression (xi − xj). Consider then

A(u)=u2
0

∑
fifteen

(12)2(34)2(56)2, (2.3)

B(u)=u4
0

∑
ten

(12)2(23)2(31)2(45)2(56)2(64)2, (2.4)

C (u)=u6
0

∑
sixty

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2, (2.5)

D(u)=u10
0

∏
i< j

(i j)2. (2.6)

The subscript “fifteen” in A refers to the fact that there are 15 ways to partition 6 objects

into three groups of two elements, the subscript “ten” in B refers to the fact that there

are 10 ways to partition six objects into two groups of 3 elements. The subscript “sixty”

refers to partitioning six objects into two groups and then finding a matching between

these two groups: there are 10 ways to partition into two groups and six matching

between the two chosen groups. The invariants A, B,C , and D are denoted A′, B ′,C ′,

and D′ in [37, p. 319], but we follow Igusa’s notation; these invariants are often called

now the Igusa–Clebsch invariants. Another common notation one finds in the literature

is I2 = A, I4 = B, I6 = C , and I10 = D (for example, in the Magma help pages on February

2010), but we shall avoid using it, especially since it conflicts with Igusa’s notation as

in [30, p. 848].

The invariants A, B,C , and D are homogenous polynomials of weights 2,4,6,

and 10, respectively, in u0, . . . ,u6, thought of as variables. In addition, they are invariants

of index 6,12,18, and 30, respectively, which means the following: Let f(x, z) be the

homogenized form of f , that is,

f(x, z)=u0x6 + u1x5z+ · · · + u6z6.

Let M=
(
α β
γ δ

)
∈GL2 and let

x= αx′ + βz′, z= γ x′ + δz′.

Write, by substituting these expressions for x and z, and expanding,

f(x, z)=u′0x′6 + u′1x′5z′ + · · · + u′6z′6.
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Genus 2 Curves with Complex Multiplication 1079

Then, a polynomial J = J(u0, . . . ,u6) in the variables u0, . . . ,u6 is called an invariant of

index k if

J(u′0, . . . ,u
′
6)= det(M)kJ(u0, . . . ,u6).

The terminology here is classical and follows, for example, [37]. (An invariant, in the

terminology of [37] is a covariant of order 0, which means it is an expression in the

coefficients of f alone, as is the case here.) An invariant of degree r of a sextic has index

3r; cf. [37, p. 314].

Note that if we let f ′ be the polynomial f ′(t)=u′0t6 + · · · + u′6 then the two hyper-

elliptic curves

C : y2 = f(x), C ′ : y2 = f ′(x),

are isomorphic. Indeed, the map

(x′, y′) �→ (x, y) :=
(
αx′ + β
γ x′ + δ ,

y′

(γ x′ + δ)3
)

gives an isomorphism C ′ → C as we have ( y′
(γ x′+δ)3 )

2 = f( αx′+β
γ x′+δ ).

In characteristic 0, every separable sextic gives a vector (A, B,C , D) with D �= 0

and, vice versa, every such vector comes from a sextic. Two curves over an algebraically

closed field are isomorphic if and only if one curve has invariants (A, B,C , D) and

the invariants of the other curve are (r2 A : r4 B : r6C : r10 D) for some r �= 0 in the field

[28, Corollary, p. 632] (it would have been more natural to write the powers of r in mul-

tiples of 6, but we follow convention here). Thus, it is natural to associate to a sextic a

vector (A : B : C : D) in the weighted projective space P3
2,4,6,10. Similar to the case of the

usual projective space P3
1,1,1,1, the complement of the hypersurface defined by D = 0 is

affine. But, where for a usual projective space with coordinates (x0, x1, x2, x3) the affine

variety is Spec(Q[x0/x3, x1/x3, x2/x3]), for a weighted projective space we need more func-

tions; at the case in hand one needs 10 functions, and these will be given below in terms

of certain functions J2i; every regular function on the affine variety P3
2,4,6,10 \ {D = 0} is a

polynomial in these functions.

Define, as in Igusa [28, pp. 621–622],

J2 = 2−3 A, J4 = 2−53−1(4J2
2 − B), J6 = 2−63−2(8J3

2 − 160J2 J4 − C ),

J8 = 2−2(J2 J6 − J2
4 ), J10 = 2−12 D.

A calculation [28] shows that these invariants can be extended to characteristic 2 and 3.
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1080 E. Z. Goren and K. E. Lauter

Let R be the ring of homogenous elements of degree 0 in the graded ring gener-

ated over Z by J2, J4, . . . , J10 and localized at J10. In fact, any absolute invariant, namely

any invariant which is the quotient of two invariants of the same index, belongs to R

[28, Proposition 3, p. 633]. One can show that there is an isomorphism

R
∼−→Z[y1, y2, y3, y4]μ5,

determined by
Je1

2 Je2
4 Je3

6 Je4
8 J−e5

10 �→ ye1
1 ye2

2 ye4
3 ye4

4 ,

where the ei are nonnegative integers satisfying the relation e1 + 2e2 + 3e3 + 4e4 = 5e5

and as before y4 = 1
4 (y1y3 − y2

2) (and so R can be identified with the ring we previously

denoted R).

Over Z, the generators of R can be taken to be the following:

γ1 = J5
2 /J10, γ2 = J3

2 J4/J10, γ3 = J2
2 J6/J10, γ4 = J2 J8/J10, γ5 = J4 J6/J10,

γ6 = J4 J2
8 /J2

10, γ7 = J2
6 J8/J2

10, γ8 = J5
6 /J3

10, γ9 = J6 J3
8 /J3

10, γ10 = J5
8 /J4

10

(Over Z[1/2], a set of generators is

g1 = J5
2 /J10, g2 = J3

2 J4/J10 g3 = J2 J2
4 /J10, g4 = J2

2 J6/J10

g5 = J4 J6/J10, g6 = J2 J3
6 /J2

10 g7 = J5
4 /J2

10, g8 = J5
6 /J3

10

(and the reader will recognize the exponents from (2.2).) We call the {γi} the Igusa coor-

dinates of M2. Here are some consequences of these results.

1. Let C1 and C2 be curves over an algebraically closed field k of characteristic

different from 2, and write Ci : y2 = fi(x), where fi(x) ∈ k[x] is a sextic. Then,

C1
∼= C2 ⇐⇒ (γ1( f1), . . . , γ10( f1))= (γ1( f2), . . . , γ10( f2)).

(See [28] for the case of char(k)= 2.)

2. Let C now be defined over a number field L0, C : y2 = f(x), f(x) ∈ L0[x], then C

has potentially good reduction at a prime p of L0, namely there exists a finite

extension field L/L0 and an ideal P|p of L such that C has good reduction

modulo P, if and only if

valp(γi( f))≥ 0, i = 1, . . . ,10.
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Genus 2 Curves with Complex Multiplication 1081

3. Let C1 and C2, be curves over a number field L, Ci : y2 = fi(x) as above, having

good reduction at p. Then,

C1 (mod p)∼=/F̄p
C2 (mod p) ⇐⇒ (γ1( f1), . . . , γ10( f1))

≡ (γ1( f2), . . . , γ10( f2)) (mod p).

2.3 Efficacy of the absolute Igusa invariants

The so-called absolute Igusa invariants are the functions

i1 = A5/D, i2 = A3 B/D, i3 = A2C/D.

The choice of terminology is somewhat unfortunate, as it leads one to think that these

invariants determine the isomorphism class of the curve; we will discuss it further

below. We remark that these functions are absolute invariants in the sense discussed

previously, but this specific choice is not Igusa’s. Our terminology here follows [35, 54,

p. 313], for example, and agrees with [49] up to powers of 2. We also remark that there is

nothing canonical about the choice we make. For many purposes other choices of invari-

ants, each having the form f/Da, where f is some integral invariant and a a positive

integer, will be equally good and, in fact, one finds other choices in the literature [50, 57].

Since D = 212 J10, the functions i1, i2, and i3, belong to R⊗ Z[1/2]. It is a conse-

quence of the results mentioned so far that the functions γ j are rational functions of the

functions i j and vice versa. This calculation is presented in Tables 1 and 2.

An interesting consequence of this calculation is that the natural map

M2 ⊗ Z[1/6]= Spec(R⊗ [1/6])−→ Spec(Z[1/6][i1, i2, i3])=A3
Z[1/6],

can be inverted whenever i1 �= 0. However, given a triple (i1, i2, i3) that is in the image

of the map and such that i1 = 0, we find that A= 0 and hence also that i2 = i3 = 0. Thus,

there is a unique point of A3, which is in the image, for which we cannot invert the map

and it corresponds to all the genus 2 curves for which A= 0. Thus, the absolute Igusa

invariants fail to completely determine the isomorphism class of the curve, but only

if i1 = 0.

The vanishing locus of A is a surface in M2. There is a natural immersion,

ρ : M2 −→A2,1, (2.7)
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1082 E. Z. Goren and K. E. Lauter

Table 1. The absolute Igusa invariants i1, i2, i3 in terms

of the generators γ j

i1 8 · γ1

i2 1
2 · (γ1 − 24 · γ2)

i3 1
8 · (γ1 − 20 · γ2 − 72 · γ3)

Table 2. The generators γ j in terms of the absolute Igusa invariants i1, i2, i3 (the

last column gives the denominator)

γ1 2−3 · i1
γ2 2−63−1 · (i1 − 16 · i2)
γ3

1

3456
· (i1 + 80 · i2 − 384 · i3)

γ4 2−113−3 · i2
1 + 416 · i1i2 − 1536 · i1i3 − 768 · i2

2

i1

γ5 2−10 · 3−4 · (i1 − 16 · i2)(i1 + 80 · i2 − 384 · i3)
i1

γ6 2−25 · 3−7 · (i1 − 16 · i2)(i2
1 + 416 · i1i2 − 1536 · i1i3 − 768 · i2

2 )
2

i3
1

γ7 2−22 · 3−9 · (i1 + 80 · i2 − 384 · i3)2(i2
1 + 416 · i1i2 − 1536 · i1i3 − 768 · i2

2 )

i2
1

γ8 2−29 · 3−15 · (i1 + 80 · i2 − 384 · i3)5
i2
1

γ9 2−37 · 3−12 · (i1 + 80 · i2 − 384 · i3)(i2
1 + 416 · i1i2 − 1536 · i1i3 − 768 · i2

2 )
3

i4
1

γ10 2−52 · 3−15 · (i
2
1 + 416 · i1i2 − 1536 · i1i3 − 768 · i2

2 )
5

i6
1

of the moduli space of curves M2 to the moduli space of principally polarized abelian

surfaces with no level structure A2,1, sending a curve to its canonically polarized Jaco-

bian. The image is the complement of the Humbert surface H1, which is the divisor of

the modular form Θ, whose definition we now recall.

Let ε, ε′ ∈Qg, τ ∈Hg, and define the Riemann theta constant with characteristic[
ε
ε′
]

to be the power series

Θ

[
ε

ε′

]
(τ )=

∑
N∈Zg

e
(

1

2
t
(

N + ε

2

)
τ
(

N + ε

2

)
+ t

(
N + ε

2

)ε′
2

)
,
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Genus 2 Curves with Complex Multiplication 1083

where e(x)= e2πix. It can be shown that this series defines a holomorphic function

Hg →C. If [ε, ε′] ∈Z2g it is called an integral characteristic (our terminology follows [14,

Chapter VI, Section 1]). If tεε′ ≡ 0 (mod 2) it is called even, and else odd. It turns out that

for an odd characteristic the theta constant vanishes identically, and for even character-

isticΘ
[
ε
ε′
]
(τ )2 depends only on [ε, ε′] modulo (2Z)2g. For g= 1 this gives us three squares

of even theta constants, and for g= 2 this gives us 10 squares of even theta constants.

One can show that each Θ
[
ε
ε′
]
(τ ) to a large enough even power 2r is a Siegel

modular form of weight r of some level. For g= 1, it goes back probably to Jacobi that

Δ= c
∏[

ε
ε′
]

even
Θ
[
ε
ε′
]
(τ )4, where c is a constant and Δ= E3

4 − E2
6 is the classical modular

form of weight 12. Recall that the divisor of Δ is the cusp of SL2(Z)\H. Igusa proved for

g= 2 that

Θ := 2−12
∏

[
ε
ε′
]

even

Θ

[
ε

ε′

]
(τ )2, (2.8)

is a Siegel modular form of level Sp(4,Z) and weight 10. The power of 2 is introduced to

ensure integral Fourier coefficients with gcd 1 (cf. [21]). The divisor of Θ is precisely the

Humbert divisor H1 (with multiplicity 2). See Section 4.

Via the map (2.7), each of the Igusa invariants is, in a suitable sense, a pull-back

via ρ of a meromorphic Siegel modular form whose poles are supported on H1. These

modular forms were calculated by Igusa [31, pp. 177–178] and the reader is referred to

this reference for details. The invariant D is the pullback of a scalar multiple ofΘ. There

is a cusp form of weight 12, which Igusa denotes χ12, such that, in a suitable sense, A

is a scalar multiple of the weight 2 meromorphic form χ12/Θ, [29, p. 195]. We have thus,

as sets,

{A= 0} = ρ−1{χ12 = 0}.

However, there does not seem to be any simple interpretation for the vanishing

locus of A.

We say that a point x∈A2,1(C), with associated principally polarized abelian

surface (Ax, λx), is a CM point associated to a CM field K if K embeds in End(Ax)⊗Q and

the Rosati involution defined by λx induces complex conjugation on K. If K is a quartic

CM field, we say that K is nonbiquadratic, or primitive, if K is not a compositum of

two quadratic imaginary fields. In this case, any CM type of K is primitive, while if K

is biquadratic no CM type of K is primitive. If K is associated to a point x as above, we

also call x primitive, or imprimitive, accordingly.
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1084 E. Z. Goren and K. E. Lauter

Proposition 2.1. Assume the André–Oort conjecture for A2,1. Let V ⊆A2,1(C) be the

support of the divisor of χ12. There are finitely many primitive CM points on V . �

Proof. Recall Igusa’s description of M2 as P3
2,4,6,10 \ {D = 0} =U//Gm, where U is the

open set of vectors with nonzero last coordinate. Viewed thus, V is the image of

{(0, B,C , D) : D �= 0}, which is an irreducible (affine) variety, hence V is irreducible itself.

Let S be the collection of all primitive CM points on V . Let C be the Zariski

closure of S. If S is infinite then C is either a curve, or V itself. In either case, it follows

from the André–Oort conjecture, known to be true under GRH by the work of Klinger-

Yafaev [58], that C is either a Shimura curve, or a Shimura surface. It remains to review

the possibilities: (i) if C is a Shimura curve then every CM point on C is coming from

some biquadratic (equivalently, nonprimitive) CM field of degree 4; (ii) if C = V then

V is a priori in the Hecke orbit of some Humbert surfaces, but that Hecke orbit is a

union of Humbert surfaces (this follows easily from the moduli interpretation). Since

the Humbert surfaces in A2,1 are irreducible, as is V , V is a Humbert surface itself,

which is not the case. Indeed, V is the divisor of the modular form χ12 and the results of

van der Geer [17] (see, in particular, Section 8 there) imply that the divisor of χ12 is not

supported on a union of Humbert surfaces. �

Remark. As the referee had suggested, the proposition can also be proved for other sur-

faces in A2,1, such as the divisor of the Eisenstein series ψ4 or ψ6 (see below). The proof

is the same. This implies that for other invariants used in the literature as a system of

absolute invariants one also has that the locus where the invariants do not determine

the curve contains only finitely many primitive CM points. Thus, for all practical pur-

poses, when using any such system of invariants for the purpose of generating curves

whose Jacobian has CM by a given primitive CM field, one can “pretend” that the invari-

ants determine the curve. The likelihood this will cause a problem in the computation is

practically nill. �

2.4 Igusa class polynomials

In [21, Section 5.2], it was explained how the absolute Igusa invariants can also be

expressed in terms of Siegel modular functions. We summarize this here for the reader’s

convenience.

The Igusa functions i1, i2, and i3 can be defined as rational functions in Siegel

Eisenstein series, ψw, of weightsw= 4, 6, 10, 12. To begin with, the cusp formsΘ and χ12,

of weights 10 and 12, introduced above can be expressed in terms of these Eisenstein
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Genus 2 Curves with Complex Multiplication 1085

series as follows [29, p. 195; 30, p. 848]:

−2−2Θ = χ10 = −43867

212 · 35 · 52 · 7 · 53
(ψ4ψ6 − ψ10)

and

χ12 = 131 · 593

213 · 37 · 53 · 72 · 337
(32 · 72ψ3

4 + 2 · 53ψ2
6 − 691ψ12).

Then the Igusa functions i1, i2, and i3 can be expressed as

i1 = 2 · 35χ
5
12

χ6
10

, i2 = 2−3 · 33ψ4χ
3
12

χ4
10

, i3 = 2−5 · 3ψ6χ
2
12χ10 + 22 · 3ψ4χ

3
12

χ4
10

.

Let K be a primitive, that is, not biquadratic, CM field of degree 4 over Q. We define the

Igusa class polynomials to be

h1(x)=
∏
τ

(x− i1(τ )), h2(x)=
∏
τ

(x− i2(τ )), h3(x)=
∏
τ

(x− i3(τ )), (2.9)

where the product is taken over all τ ∈ Sp(4,Z)\H2, such that the associated principally

polarized abelian variety has CM by OK . One can define other absolute invariants, called

j1, j2, and j3, as in [21, p. 473], where it is also remarked that i1 = 2−12j1 and i2 = 2−12j2,

and then we define the corresponding class polynomials as follows:

hi(x)=
∏
τ

(x− ji(τ )), i = 1,2,3. (2.10)

The advantage of using these is that it is easy to see from their definition, and the fact

that the Fourier coefficients of Θ are integers with gcd 1 (cf. [21]), that they satisfy the

hypotheses of our Main Theorem.

2.5 Ramification locus of A2,n(C)→A2,1(C)

Let nbe a positive integer. We denote by A2,n the moduli scheme of principally polarized

abelian surfaces with symplectic level-n structure over Spec(Z[ζn,1/n]). A2,1 ⊗ Z[ζn,1/n]

is the quotient of A2,n by the finite group Sp(4,Z/nZ)/{±I4}. We denote the by HΔ,n the

Humbert surface of invariant Δ (the discriminant of a real quadratic order) in A2,n(C)

[18, Chapter IX]. It is irreducible for n= 1, but reducible for n> 1.
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1086 E. Z. Goren and K. E. Lauter

Let n≥ 3, so the representation Aut(A, λ)→Aut(A[3]) is faithful. The ramification

locus of πn : A2,n→A2,1 is clearly the locus of points x on A2,1 with nontrivial stabilizers,

which, by the moduli interpretation, correspond to principally polarized abelian sur-

faces (A, λ) such that rAut(A, λ) �= {1}, where rAut is the reduced automorphism group

(namely the group of automorphisms ϕ : A→ A such that ϕ∗λ= λ, modulo the subgroup

{±1}). Furthermore, in that case, any point in the fibre over x has the same ramification

index, equal to the cardinality of rAut(A, λ).

We say that a component of the Humbert divisor HΔ,n in A2,n(C) is ramified if

it is contained in the ramification locus of πn and otherwise we say it is unramified. If

every component of HΔ,n is unramified then

π∗n(HΔ,1)=HΔ,n.

Lemma 2.2. If Δ �= 1,4 then every component of HΔ,n is unramified. If Δ ∈ {1,4} then

the ramification index along each component of HΔ,n is 2. �

Proof. Suppose first that Δ is not a square. In this case, every abelian variety (A, λ)

parameterized by HΔ,n has real multiplication by a real quadratic order of discriminant

Δ and, generically, only by that order. Thus, generically, Aut(A, λ)= {±1} (as the Rosati

involution is the identity). That resolves this case.

Suppose now that Δ is a square, but Δ �= 1. Then, except for a codimension 1

subset, the points of HΔ,n correspond to curves C of genus 2 affording a map C → E

of degree
√
Δ to an elliptic curve E , that does not factor nontrivially through another

elliptic curve; see Frey–Kani [15].

From the classification of Aut(C ), cf. [28, Section 8], we deduce that there is only

one two-dimensional family of curves of genus 2 with a nontrivial reduced automor-

phism group; the reduced automorphism group of the generic member of this family is

cyclic of order 2. This family, as one observes, is comprised exactly the curves C of genus

2 allowing a map C → E of degree 2 to an elliptic curve E , ramified at exactly two points

of E . This family is thus the Humbert divisor H4,1, and in particular, we have proved the

lemma for all cases but Δ= 1.

It is easy to see that for a generic pair of elliptic curves E1 and E2 we have

Aut(E1 × E2, λ1 × λ2)= {(±1,±1)}. Thus, our proof is complete. �

2.6 Existence of good models for abelian varieties with complex multiplication

Our purpose in this section is to prove a lemma concerning models of abelian varieties

with complex multiplication with good reduction at a set of primes over specified
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number fields. For the notion of a reflex field, see Lang [33, Chapter 1, Section 5]. For

the notion of primitive CM type see [33, Chapter 1, Sections 2–3] (a primitive CM type is

called there a simple CM type, but we prefer the terminology primitive that agrees with

Shimura [48], for example).

We use here the notation Ag,n for the moduli scheme of g-dimensional abelian

varieties with symplectic level-n structure. We let πn: Ag,n→Ag,1 be the natural mor-

phism. For the notion of toroidal compactifications of Ag,n, in the setting we need them,

a good introduction is Chai [6], and the complete theory is in Faltings–Chai [13].

We let A= (A, ι, λ) be a g-dimensional complex abelian variety A with CM by a

field K of degree 2g over Q, ι :OK →EndC(A), and λ a principal polarization of A whose

Rosati involution induces complex conjugation on K. We let τ = τ1 be the moduli point of

A on Ag,1 and we let τn be a point of Ag,n such that πn(τn)= τ . The point τn is the moduli

point of An= (A, ι, λ, γ ), where γ : A[n]→ (Z/nZ)2g is a symplectic isomorphism of group

schemes.

We let Φ ⊂Hom(K,C) be the CM type associated to (A, ι) and K∗ the associated

reflex field. Let μ denote the roots of unity lying in K and Q(μ) the corresponding cyclo-

tomic subfield. Let HK∗ be the Hilbert class field of K∗. Let M[n] be the field of definition

of the point τn. We choose some embedding of K into C and view all fields as subfields

of C.

Lemma 2.3. With the notation above, assume that Φ is a primitive CM type and that

Q(μ)⊆ K∗. (This holds at least in the following cases: (1) μ= {±1}, which is the typical

case; (2) K is a quartic CM field and Φ is primitive; (3) K/Q is Galois and Φ is primitive.)

Let n≥ 3 be an integer.

1. Let S be a finite set of primes of HK∗ . Then A has a model A′ = (A′, ι′, λ′) over

HK∗ with good reduction at every prime p of S.

2. M[n] is a finite field extension of K∗ that is unramified at every prime p of K∗

not dividing n.

3. A has a model over M[n] with good reduction at every prime not dividing n.

4. Let N be the normal closure of K. Let L = NHK∗ and Ln= L M[n]. If p is a prime

of Ln not dividing n then the extension Ln/N is unramified at p. There exist a

model of A over Ln with good reduction at p. �

Proof. By Milne [39], noting that in our case the conditions added in the errata

hold automatically, A has a model over its field of moduli. This field is contained in
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1088 E. Z. Goren and K. E. Lauter

HK∗ [33, Chapter 5, Theorem 4.1]. There is thus no harm in assuming, to begin with,

that A is defined over HK∗ . We remark that in the case actually used in the sequel

K is a quartic CM field and then our assertion also follows from [47, Example 1,

p. 525].

We now prove (1). Since A is defined over HK∗ that contains Q(μ), the set S is

ordinary in the terminology of Serre–Tate [46, p. 505]; see the remarks there (their μm

is always contained in μ). Thus, we may apply Theorem 8 of [46] to deduce that (A, ι)

has a model of HK∗ with good reduction at every prime p of S. Furthermore, the abelian

variety A carries a principal polarization λ compatible with ι, by our assumption. The

complex uniformization of such polarizations as “TrK/Q(ξ ᾱβ)” [33, Chapter 1, Section 4]

shows that such a polarization is always invariant under μ. Therefore, applying the first

remark of [46, p. 506], we conclude that A has a model over HK∗ with good reduction at

every prime p of S.

Next we prove (2). The field M[n], being a field of definition for the isomorphism

class of An, contains the reflex field K∗. Let p be a prime of HK∗ not dividing n and let

A′ be a model of A over HK∗ with good reduction at p. Then M[n]⊂ HK∗(A′[n]), because A′

has a symplectic level-n structure defined over HK∗(A′[n]), which is a Galois extension

of HK∗ unramified at p by [46, Corollary 2]. Thus, HK∗(A′[n]) is also an extension of K∗

unramified at p. Since K∗ ⊆ M[n]⊆ HK∗(A′[n]), (2) follows.

For (3) we use that Ag,n is a fine moduli scheme over Spec(Z[ζn,1/n]). Let

A†
g,n be a smooth toroidal compactification of Ag,n over Spec(Z[ζn,1/n]). It carries a

semi-abelian variety X over it. Let β0 : Spec(M[n])→Ag,n ↪→A†
g,n be the morphism

corresponding to the point τn. Then β∗0X is a model for A over M[n]. Since the morphism

A†
g,n→ Spec(Z[ζn,1/n]) is proper, the morphism β0 extends to a morphism β over

Spec(Z[ζn,1/n]), β : Spec(O[1/n])→A†
g,n, where O is the ring of integers of M[n]. Then

β∗X is a principally polarized semi-abelian variety over O whose generic fiber is a model

for (A, λ), hence for (A, ι, λ), over M[n] (ι extends automatically from the generic fibre to

β∗X). Choose a prime P of M[n] not dividing n. As is well known, since [K : Q]= 2g> g, the

toric part of the mod P reduction of β∗X must be trivial and so β∗X has good reduction

modulo P.

Finally, (4) is a direct consequence of the previous claims. (In the sequel, we will

only use (4), and, in fact, only when K is a primitive quartic CM field.) �

Remark. Let P be a prime of HK∗ , p=P ∩ K∗. The part of the lemma which is important

for the sequel is the existence of a model for Aover an extension of HK∗,P (the completion
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Genus 2 Curves with Complex Multiplication 1089

of HK∗ at P) for which we can bound the ramification. The lemma gives such an extension

with ramification bounded by e(p/p). This can also be proved by other methods. Howard

[26] studied the local deformation space for abelian varieties with CM over F̄p in and

showed that it is given by Spf(WΦ), where WΦ is the completion of the maximal unram-

ified extension of OK∗,p. The universal object then gives a model of A that descends to

a finite field extension of K∗ contained in the maximal unramified extension of K∗
p. The

information is less precise than that given in the lemma, but suffices for the applications

in the paper. �

3 Reduction Type of Abelian Surfaces with Complex Multiplication

Our goal in this section is to study the reduction type of an abelian surface with complex

multiplication by a field K modulo a prime ideal of the field of definition, lying above

p, as a function of the decomposition of the prime p in K. Some basic algebra relevant

to this analysis is given in Section 3.1. An important tool in our analysis is the the-

ory of Dieudonné modules, which we quickly summarize in Section 3.2, for the reader’s

convenience. The results of these two sections are then used in Sections 3.3–3.6 to ana-

lyze the Dieudonné modules of abelian surfaces with CM. The final sections provide

examples.

3.1 Combinatorics of embeddings and primes

Let K be a number field and N its normal closure over Q. Let G be the Galois

group Gal(N/Q), acting on K by k �→ g(k), g∈G, and let H =Gal(N/K) <G. Fix

inclusions

ϕC : N →C, ϕp : N → Q̄p.

This allows us to make the following identifications:

Hom(K,C)= ϕC ◦ G/H, Hom(K, Q̄p)= ϕp ◦ G/H,

where a left coset gH gives the embeddings ϕC ◦ g and ϕp ◦ g. We then have an identifi-

cation

Hom(K,C)=Hom(K, Q̄p).
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1090 E. Z. Goren and K. E. Lauter

Let L ⊇ N be a finite extension and choose extensions of ϕC, ϕp to L. We have the follow-

ing diagrams:

L
� �
ϕC

�� C

N

��
�� ��

��

K

��
��

K∗

��
��

Q

L
� �
ϕp

�� Q̄p

N

��
�� ��

��

K

��
��

K∗

��
��

Q

Let P be the maximal ideal of Q̄p. The choice of ϕp provides us with a prime ideal

pL ,1 := ϕ−1
p (P) of L, and so with prime ideals pN,1 = pL ,1 ∩ N of N and pK,1 = pL ,1 ∩ K of

K. Let D be the decomposition group of pN,1 in N and I its inertia group. Let e= � I . The

prime ideals above p in N are in bijection with the cosets G/D:

pON =
∏

α∈G/D

pe
N,α, pN,α = α(pN,1).

The decomposition (respectively, inertia) group of pN,α is Dα := αDα−1 (respectively,

I α := α Iα−1). The primes dividing p in K correspond to the double cosets H\G/D. More

precisely,

pOK =
∏

HαD∈H\G/D

p
e(α)
K,α , pK,α = α(pN,1) ∩ K,

where, by Lemma 3.1, e(α)= [I α : I α ∩ H ].

Let α ∈G. It induces a homomorphism ϕp ◦ α : K → Q̄p that depends only on αH .

It therefore defines a prime (ϕp ◦ α)−1(P) of K, or more precisely (ϕp|K ◦ α)−1(P). We have

(ϕp|K ◦ α)−1(P)= (α−1ϕp|−1
N (P)) ∩ K = α−1(pN,1) ∩ K = pK,α−1 . (3.1)

That is, the coset αH corresponding to an embedding K → Q̄p induces the prime cor-

responding to the double coset Hα−1 D. (This “inversion” is a result of our definition of

pN,α as α(pN,1), as opposed to α−1(pN,1), made in order to conform with [19].)
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Genus 2 Curves with Complex Multiplication 1091

Suppose that we are given a finitely generated torsion-free OL-module M on

which OK acts as OL-endomorphisms. Then MC = M ⊗OL ,ϕC
C is a finite-dimensional vec-

tor space over C, which is an OK ⊗Z C= K ⊗Q C-module. We have then a decomposition

MC =
⊕

ϕ∈Hom(K,C)

MC(ϕ)=
⊕
α∈G/H

MC(α), (3.2)

where MC(ϕ) is the eigenspace for the character ϕ : K →C, and where, using the iden-

tifications Hom(K,C)=Hom(K, N)=G/H , we have let MC(α) := MC(ϕC ◦ α). We assume

that each eigenspace is either zero or one dimensional, and so we get a subset

Φ ⊂Hom(K, N),

corresponding to the nontrivial eigenspaces. We call Φ a “CM type”, although none of

the fields appearing in our discussion so far needs to be a CM field.

On the other hand, we also have the finite-dimensional Q̄p-vector space Mp :=
M ⊗OL ,ϕp Q̄p, grace of the homomorphism ϕp : L → Q̄p, which is an OK ⊗Z Q̄p= K ⊗Q Q̄p-

module. Since all the homomorphisms K → Q̄p factor as K → N
ϕp−→ Q̄p, we have a

decomposition, similar to the one in (3.2),

Mp=
⊕

ϕ∈Hom(K,Q̄p)

Mp(ϕ)=
⊕
α∈G/H

Mp(α). (3.3)

Moreover, the decomposition K ⊗Q N ∼=⊕α∈G/H N implies that for each α ∈G/H there is

a one dimensional L-subspace ML(α) of ML := M ⊗OL L, such that

MC(α)= ML(α)⊗L ,ϕC
C, Mp(α)= ML(α)⊗L ,ϕp Q̄p.

And so, in the obvious sense, Φ becomes a “p-adic CM type” as well.

Now, the decomposition in (3.3) can be packaged as follows: We have OK ⊗Z Zp=⊕
p|pOKp

and thus K ⊗Q Q̄p=
⊕

p|p(Kp ⊗Qp Q̄p), or

K ⊗Q Q̄p=
⊕

α∈H\G/D

(KpK,α ⊗Qp Q̄p).
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1092 E. Z. Goren and K. E. Lauter

This decomposition induces a decomposition

Mp=
⊕

α∈H\G/D

Mp,α. (3.4)

Note that, due to (3.1), the relation between (3.3) and (3.4) is (sic!)

Mp(α)⊆ Mp,α−1 . (3.5)

3.2 Background on Dieudonné modules and p-divisible groups

General references for this section are Manin [36] and Oda [41]. Let G be a commu-

tative p-divisible group over a perfect field k of characteristic p. By definition G is

a commutative group scheme over k and, letting G[pa] be the kernel of multiplica-

tion by pa, [pa] : G →G, we have G = lim−→ a
G[pa], [p](G[pa+1])=G[pa] and G[p] is a group

scheme of finite rank over k called the height of G. To a p-divisible group one asso-

ciates its Serre dual Gt = lim−→ G[pa]t, where G[pa]t is the dual of the finite commutative

group scheme G[pa] (representing the functor Hom(G[pa],Gm).) Then G is a direct sum

G =G�� ⊕ G�e ⊕ Ge�, where “�” stands for “local” (the spectrum of a local ring) and “e”

stands for “étale”, and each Gxy is a p-divisible group that is a direct limit of finite

commutative groups schemes that have property x and whose dual has property y.

If A is a g-dimensional abelian variety over k then A[p∞] := lim−→ A[pa], where A[pa]

is the pa-torsion of A, is a self-dual p-divisible group of dimension g and height 2g.

Let W(k) denote the Witt vectors of k, and σ : W(k)→W(k) the Frobenius auto-

morphism, lifting the Frobenius automorphism x→ xp on k. A Dieudonné module D over

k is a finitely generated W(k)-module, equipped with two additive functions F,V : D→ D

such that

F (λ · x)= σ(λ) · F (x), V(λ · x)= σ−1(λ) · V(x), ∀x∈ D, λ ∈W(k),

and such that, denoting by [p] the multiplication-by-p map on D, we have

F V = V F = [p].

The main theorem in the theory of Dieudonné modules is that there is

an anti-equivalence of categories between the category of commutative p-divisible

groups G over k and W(k)-torsion-free Dieudonné modules over k, G �→ D(G), with the
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Genus 2 Curves with Complex Multiplication 1093

following properties:

1. The functor D(·) commutes with base change: if k→ � is a homomorphism

of perfect fields then D(G ⊗k �)= D(G)⊗W(k) W(�) (where equality means

canonical isomorphism). In particular, D(G(p))= D(G)⊗k,σ k, where G(p) is

the base-change of G relative to Frobenius.

2. As a result, one finds that the Frobenius morphism F : G →G(p) induces a

σ -linear map F : D(G)→ D(G) which is precisely the map F in the definition

of a Dieudonné module. Similarly for Verschiebung.

3. G is local if and only if F : D(G)→ D(G) is topologically nilpotent; G is étale

if and only if F : D(G)→ D(G) is an isomorphism.

4. D(Gt)=Hom(D(G),W(k)⊗Zp Qp/W(k)) and where F and V are defined on the

right-hand side by (Fα)(x)= α(Vx)σ , (Vα)(x)= α(F x)σ
−1

.

5. The height of G is the length of D(G) as a W(k)-module.

6. There exists canonical isomorphisms T∗
G
∼= D(G)/F D(G) and TGt ∼= ker(V :

D(G)/pD(G)→ D(G)/pD(G)), where T denotes the tangent space at the

origin.

A closely related anti-equivalence is between the category of commutative finite

group schemes H over k killed by p and Dieudonné modules over W(k), killed by p (so,

in effect, k-vector spaces), H �→ D(H). It satisfies properties similar to the above. If G is

a p-divisible group then

D(G)/pD(G)= D(G[p]).

We define the a-number and f-number of a p-divisible group G as the a-

number and f-number of H =G[p], where those are the following. Consider the

group scheme αp :=Ker([p] : Ga→Ga)= k[x]/(xp) (with co-multiplication x �→ x⊗ 1+ 1⊗
x). Then Hom(αp, H) has a natural k-vector space structure [42, Chapter II.12] and

we let a(G)= dimk Hom(αp, H) (this number is denoted τ(G) in [42], but conventions

have changed); it depends only on H�,�. The f-number of H is that integer f such

that �H(kalg)= pf ; it depends only on He�. One can show that a(H) is the rank of

Ker(F ) ∩ Ker(V) ∩ H , and so is also the dimension over k of D(H)/(F D(H)+ V D(H)).

Similarly, the f-number is the rank of D(He�)/V D(He�). Thus, both the a-number and the

f-number can be read from the Dieudonné module of G. If G is the p-divisible group

of a g-dimensional abelian variety, its a-number and f-number satisfy the following

inequalities: 0≤ a≤ g, 0≤ f ≤ g, and a> 0⇔ f < g.
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1094 E. Z. Goren and K. E. Lauter

We recall that a g-dimensional abelian variety over a field k of characteristic p

is called ordinary if � A[p](kalg)= pg, where kalg is an algebraic closure of k. This is the

case if and only if f(A)= g. An abelian variety is called superspecial if A is isomorphic

over kalg to a product of g supersingular elliptic curves. By a theorem of Oort [43], this is

the case if and only if a(A)= g. Note that it follows then that f(A)= 0.

Finally, we remark that it is often easier to do calculations with a covariant the-

ory and, for that reason, some authors prefer to work with a covariant Dieudonné theory,

G �→D(G). Such a theory is easily deduced from the contravariant theory by duality, let-

ting D(G)= D(G)t.

3.3 The case of quartic fields and Dieudonné modules

Let K be a CM field of degree 4 over the rational numbers and let A be a principally

polarized abelian surface with complex multiplication by OK , CM type Φ, defined over a

field L and having everywhere good reduction. Let K∗ be the reflex field. We assume that

L contains a normal closure N of K and let G =Gal(N/Q). The module M is H1
dR(A/OL),

where A is an abelian variety over OL . Thus, our notation conforms with that in the

previous section.

Let K+ be the totally real subfield of K. Let p be a prime number. Our purpose

is to determine the reduction Ā of A modulo a prime ideal pL of L. It follows from

results of Yu [60] that the Dieudonné module of Ā is determined uniquely by Φ and

the prime decomposition of p in K (and not just in the case of surfaces). A fortiori, the

Ekedahl–Oort strata in which it falls is determined. In the case of surfaces, the complete

information is contained in two numbers

a(Ā)= dim HomF̄p
(αp, Ā⊗ F̄p), f(Ā)= logp �A[p](F̄p),

the a-number and f-number.

We make the situation more explicit than in [60], and provide a self-contained

proof in our case. We will have several fields to consider: N, K, K∗ (the reflex field deter-

mined by K and Φ), and the totally real subfields K+ and K∗+. The basic information

is the factorization of p in N. As above, we fix a prime ideal p= pN,1 = pL ∩ N of N. The

decomposition of p in each field is determined by the pair of subgroups (I, D), where I

is the inertia group of p in N and D is its decomposition group. The pair of subgroups

(I, D) of Gal(N/Q) satisfies the two restrictions:

• I � D;

• D/I is a cyclic group.
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As explained above, having chosen p, we may index the primes dividing p in N by

coset representatives for D in G. If these coset representatives are a,b, c, . . . (so G =
aD � bD � cD � · · · ), then we write pON = pe

N,ap
e
N,bp

e
N,c · · · , where e= �I and pN,a := a(pN)

(and in particular, pN,1 = p). Since the primes appearing in the decomposition of p in N

are determined by G/D, the primes appearing in the decomposition of p in a subfield

NH of N, corresponding to a subgroup H of G, are determined by H\G/D. As above, we

shall denote such primes by pNH ,x where x is a representative for a double coset HxD.

(This is consistent with the previous notation for H = {1}.) The following lemma is used

to determine ramification in subfields.

Lemma 3.1. Let Q⊂ B ⊂ N be three number fields where N/Q is Galois with Galois

group G. Let B correspond to a subgroup H of G. Let pN be a prime ideal of N, pB = pN ∩ B

and pQ = pN ∩ Q. Let I (pN) be the inertia group in G. Then,

e(pB/pQ)= [I (pN) : I (pN) ∩ H ]

and

e(pN/pB)= � I (pN) ∩ H. �

Proof. This is Lemma 3.3.29 in Cohen [9]. �

The main tool for studying the reduction Ā= A (mod pL) of the abelian surface

A is the covariant Dieudonné module D of Ā[p] over F̄p. To link between the properties

of Ā and the properties of A over the complex numbers, we make use of the de Rham

cohomology H1
dR(A/OL), which is a torsion-free OL-module of rank 2g with the follow-

ing properties. Let AC = A⊗OL C (via ϕC). We have H1
dR(A/OL)⊗OL C∼= H1

Betti(AC,C)⊃ T∗
AC,0

and so the complex CM type is visible. Let k=OL/pL ⊂ F̄p (via ϕp). Then, we have

H1
dR(A/k)=H1

dR(A/OL)⊗OL k, while D=H1
dR(A/k)⊗ F̄p, by [41]. This allows the transfer

of information from characteristic zero to characteristic p. The formalism of the previ-

ous section will be applied to M=H1
dR(A/OL).

The a-number and f-number of Ā can of course be read from D. The Dieudonné

module has a decomposition relative to the OK+ action and a refined decomposition

relative to the OK action. Using pK+ to denote a prime ideal of OK+ above p and

similarly for pK , we have, by virtue of the decompositions OK+ ⊗ Zp=⊕pK+OK+,pK+ ,
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1096 E. Z. Goren and K. E. Lauter

OK ⊗ Zp=⊕pKOK,pK , induced decompositions

D=⊕pK+D(pK+), D(pK+)=⊕pK |pK+D(pK).

Here each D(pK+) is a self-dual Dieudonné module of dimension 2e(pK+/p) f(pK+/p),

which is then decomposed in Dieudonné modules D(pK) of dimension e(pK/p) f(pK/p)

(here f(pK/p), etc. denotes the degree [OK/pK : Z/pZ] and should not be confused with

the f-number of the abelian variety). On D(pK+), there is an action of OK+,pK+ ⊗ F̄p
∼=

⊕αF̄p[t]/(te), where the summation is over embeddings α of the maximal unramified

subring Our
K+,pK+

of OK+,pK+ into W(F̄p) and e= e(pK+/p). There is a similar and com-

patible decomposition of OK,pK ⊗ F̄p. These decompositions induce decompositions of

the Dieudonné modules D(pK+) and D(pK), such that D(pK+)=⊕αD(pK+ , α) and D(pK)=
⊕αD(pK , α). D(pK+ , α) is a vector space of dimension 2e(pK+/p), which is a free rank 2

module over F̄p[t]/(te) on which OK+,pK+ =Our
K+,pK+

[π ] acts via the map ᾱ : Our
K+,pK+

→ F̄p

and π , which is an Eisenstein element, acts via t. A similar and compatible description

is obtained for D(pK , α). Frobenius induces maps D(pK+ , α)→D(pK+ , σ ◦ α).
Implicit in our considerations is the identification of Hom(K, N) with

Hom(K, Q̄p), where N is a normal closure of K. This identification is done as discussed

in detail above. In particular, we note that the subspace D(pK , α) is associated with the

prime ideal pK,α−1 . Since H0(Ā,Ω1
Ā,F̄p

)⊂D, any α ∈Φ contributes 1 to the dimension of

the kernel of Frobenius on D(pK,α−1). This often allows us to conclude that Fr2 = 0 on D.

In this case, since Im(F )=Ker(V) on D, we conclude that Ker(V) is a two-dimensional

F̄p-vector space on which both F and V act as zero. Thus, Ker(V) is the Dieudonné mod-

ule of αp⊕ αp, which implies a= 2 (and so f = 0); that is, we have superspecial reduction

(see Section 3.2).

Another useful tool to quickly decide some properties of the reduction is the

following relation. Let K∗ be the reflex field defined by the CM type of the abelian vari-

ety under consideration and let Φ∗ be the reflex type. Let pK∗,1 = pN,1 ∩ K∗. Then some

power of NormΦ∗(pK∗,1) is equal to a power of Fr, viewed as endomorphisms of the reduc-

tion. One can be more precise (see [33]), but we note that this suffices to calculate the

f-number of the reduction, because the f-number is equal to dimF̄p
(F nD) for n� 0.

3.4 K cyclic Galois

In this case, K = N = K∗. The Galois group is cyclic of order 4, generated by g, say, where

g2 is the complex conjugation. The CM type is {1, g}, {g, g2}, {g2, g3}, or {g3,1}. Since the
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Table 3. Reduction in the cyclic case

Decomposition of Decomposition of

I D p in K = K∗ p in K+ NormΦ∗(pK,1) a f ssp?

i {1} {1} pK,1pK,gpK,g2pK,g3 pK+,1pK+,g pK,1pK,g3 0 2 ×
ii {1} {1, g2} pK,1pK,g pK+,1pK+,g p 2 0

√

iii {1} G pK,1 pK+,1 p2 1 0 ×
iv {1, g2} {1, g2} p2

K,1p2
K,g pK+,1pK+,g pK,1pK,g 2 0

√

v {1, g2} G p2
K,1 pK+,1 p 2 0

√

vi G G p4
K,1 p2

K+,1 p2
K,1 2 0

√

reduction type does not depend on the way K is embedded in A, namely we can compose

with an automorphism K → K, we may assume that the CM type is {1, g}. The reflex CM

field K∗ is K and Φ∗ = {1, g−1}. The possibilities are listed in Table 3.

The unramified case appears in [19], but we shall do one case to illustrate our

method. Consider the case (ii). We have a decomposition

D=D(pK+,1)⊕ D(pK+,g),

and D(pK+,i), i = 1, g, is a two-dimensional F̄p-vector space that does not decompose fur-

ther relative to the OK+ action. However, D(pK+,i)=D(pK,i), because pK+,i is inert in K, and

D(pK,i)=D(pK,i, α)⊕ D(pK,i, σ ◦ α),

where α is an embedding K → Q̄p associated with pK,i. Frobenius takes D(pK,i, α) to

D(pK,i, σ ◦ α), and vice-versa. The CM type is {1, g} and we note that g switches pK,1 and

pK,g. This means that the cotangent space, or rather H0(A,Ω1
A/F̄p

)⊗F̄p,σ
F̄p=D(Ker Fr),

which is an OK-module, is not contained completely in any of D(pK,i). Thus, Frobenius

has a kernel on each of D(pK,i). It follows that Fr2 is zero on each D(pK,i) and hence on D

and that implies that a(Ā)= 2 and f(Ā)= 0, as explained in Section 3.3.

In case (iv) we again have

D=D(pK+,1)⊕ D(pK+,g),

and D(pK+,i) is a two-dimensional F̄p-vector space that does not decompose further rel-

ative to the OK+ action. However, D(pK+,i)=D(pK,i) and D(pK,i) becomes a rank 1 module
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1098 E. Z. Goren and K. E. Lauter

over F̄p[t]/(t2) by using the OK action and Frobenius is a module homomorphism. Once

more, since g permutes pK+,1 and pK+,g, it follows that Frobenius has a kernel on each

of D(pK+,i) and since the dimension of the kernel of Frobenius is two, it follows that the

kernel of Frobenius must be (t)⊕ (t)⊂ D(pK,1)⊕ D(pK,g) and Fr2 = 0.

In case (v), after a similar analysis we reach the conclusion that D= F̄p[t]/(t2)⊕
F̄p[t]/(t2) and that Frobenius, which commutes with the F̄p[t]/(t2) structure, permutes the

components. Whether the kernel of Frobenius is one of the components, or the submod-

ule (t)⊕ (t), we have Fr2 = 0 (in fact, taking into consideration the CM type we must have

that the kernel is (t)⊕ (t), but this is not important at present).

In case (vi) we conclude that D= F̄p[t]/(t4) and that Frobenius acts as a F̄p[t]/(t4)-

module homomorphism. It follows that the kernel of Frobenius, being an F̄p[t]/(t4)-

module is (t2) and so is the image. Hence Fr2 = 0 again.

3.5 K biquadratic

In this case K = N is the compositum K1K2 where Ki are quadratic imaginary fields.

Recall that we also call K imprimitive since, in this case, every CM type is imprimitive,

namely, induced from a CM type of a quadratic imaginary subfield. Let K+ be the totally

real subfield of K. Write the Galois group is {1, α1, α2, β} where Ki is fixed by αi and β is

the complex conjugation. We have the following diagram:

K
〈α1〉

��
��

��
��

〈β〉
〈α2〉

��
��

��
��

K1

��
��

��
��

K+ K2

��
��

��
��

Q

The possible CM types are {1, αi} and {β, αi} and twisting the action of OK by an automor-

phism we may assume the CM type is {1, α1} or {1, α2}. The situation being symmetric,

we assume w.l.o.g that the CM type is {1, α1} (it is induced from the CM type {1} of K2).

The reflex CM field is K1 and the reflex CM type is {1}. In this case A is isogenous to

E ⊗Z OL , or equivalently to E ⊗K1 K, where E is an elliptic curve with CM by OK1 . Thus,

Ā is ordinary if p is split in K1 and supersingular otherwise (and in that case one still

needs to figure out its a-number). Now, p is split in K1 if and only if 〈D, α1〉 �=G.
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Genus 2 Curves with Complex Multiplication 1099

Table 4. Reduction in the bi-quadratic case

Decomposition of Decomposition of

I D p in K = K∗ p in K+ NormΦ∗(pK,1) a f ssp?

i {1} {1} pK,1pK,α1pK,βpK,α2 pK+,1pK+,α1 pK,1pK,α1 0 2 ×
ii {1} {1, α1} pK,1pK,β pK+,1 p2

K,1 0 2 ×
iii {1} {1, β} pK,1pK,α1 pK+,1pK+,α1 p 2 0

√

iv {1} {1, α2} pK,1pK,β pK+,1 p 2 0
√

v {1, α1} {1, α1} p2
K,1p2

K,β p2
K+,1 p2

K,1 0 2 ×
vi {1, α1} G p2

K,1 p2
K+,1 p 2 0

√

vii {1, β} {1, β} p2
K,1p2

K,α1
pK+,1pK+,α1 pK,1pK,α1 2 0

√

viii {1, β} G p2
K,1 pK+,1 p 2 0

√

ix {1, α2} {1, α2} p2
K,1p2

K,β p2
K+,1 pK,1pK,α1 2 0

√

x {1, α2} G p2
K,1 p2

K+,1 p 2 0
√

xi G G p4
K,1 p2

K+,1 p2
K,1 2 0

√

Consider for example case (vi). After the usual analysis we find that D∼=
F̄p[t]/(t2)⊕ F̄p[t]/(t2), where Fr is F̄p[t]/(t2) σ -linear and switches the components. Its ker-

nel is then either one of the components, or the submodule (t)⊕ (t). In any case, Fr2 = 0

and so a= 2. Cases vii, viii and x lead exactly to the same setting.

In case (ix), once again D∼= F̄p[t]/(t2)⊕ F̄p[t]/(t2) but now Fr acts on each compo-

nent separately. Ā is ordinary if the kernel of Fr is one of the components and is super-

special if the kernel is (t)⊕ (t). Since ordinary is not possible, because p is inert in K1

(or, we can argue by using the CM type that Frobenius has a kernel on each component),

we are in the superspecial case.

In case (xi), we find that D∼= F̄p[t]/(t4) and we must have that the kernel of Frobe-

nius is the submodule (t2). It follows that Fr2 = 0.

3.6 K non-Galois

In this case, the normal closure of K is a Galois extension N/Q of degree 8 and Galois

group D4. As above, we view N as embedded in C. K is the fixed field of a noncentral

involution we call x. Let y be an element of order 4, then y2 is the complex conjuga-

tion and xyx= y−1 = y3. We identify Hom(K,C) with {1, y, y2, y3} and the CM types are

{1, y}, {y2, y3}, {1, y3}, and {y, y2}. We may twist the action of K by complex conjugation

and so assume that the CM type is {1, y} or {1, y3}. If it is {1, y−1} we can change the pre-

sentation of our group by using the generator y−1 instead of y. We can therefore assume
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Table 5. Reduction in the non Galois case

decomposition decomposition decomposition decomposition decomposition
I D of p in N of p in K of p in K+ of p in K∗ of p in K∗+ NΦ∗ (pK∗,1) a f ssp?

i {1} {1} ∏
α∈G pN,α pK,1pK,ypK,y2pK,y3 pK+,1pK+,y pK∗,1pK∗,ypK∗,y2pK∗,y3 pK∗+,1pK∗+,y pK,1pK,y3 0 2 ×

ii {1} 〈x〉 pN,1pN,ypN,y2pN,y3 pK,1pK,ypK,y2 pK+,1pK+,y pK∗,1pK∗,y2 pK∗+,1 p2
K,1pK,y 1 1 ×

iii {1} 〈xy〉 pN,1pN,ypN,y2pN,y3 pK,1pK,y2 pK+,1 pK∗,1pK∗,ypK∗,y3 pK∗+,1pK∗+,y p 2 0
√

iv {1} 〈xy2〉 pN,1pN,ypN,y2pN,y3 pK,1pK,ypK,y3 pK+,1pK+,y pK∗,1pK∗,y pK∗+,1 pK,1p
2
K,y3 1 1 ×

v {1} 〈xy3〉 pN,1pN,ypN,y2pN,y3 pK,1pK,y2 pK+,1 pK∗,1pK∗,ypK∗,y2 pK∗+,1pK∗+,y p2
K,1 0 2 ×

vi {1} 〈y2〉 pN,1pN,xpN,ypN,xy pK,1pK,y pK+,1pK+,y pK∗,1pK∗,y pK∗+,1pK∗+,y p 2 0
√

vii {1} 〈y〉 pN,1pN,x pK,1 pK+,1 pK∗,1 pK∗+,1 p2 1 0 ×
viii 〈y2〉 〈y2〉 p2

N,1p
2
N,xp

2
N,yp

2
N,xy p2

K,1p
2
K,y pK+,1pK+,y p2

K∗,1p
2
K∗,y pK∗+,1pK∗+,y pK,1pK,y 2 0

√
ix 〈y2〉 〈y〉 p2

N,1p
2
N,x p2

K,1 pK+,1 p2
K∗,1 pK∗+,1 p 2 0

√
x 〈y2〉 〈x, y2〉 p2

N,1p
2
N,y p2

K,1p
2
K,y pK+,1pK+,y p2

K∗,1 pK∗+,1 p 2 0
√

xi 〈y2〉 〈xy, y2〉 p2
N,1p

2
N,y p2

K,1 pK+,1 p2
K∗,1p

2
K∗,y pK∗+,1pK∗+,y p 2 0

√
xii 〈x〉 〈x〉 p2

N,1p
2
N,yp

2
N,y2p

2
N,y3 pK,1p

2
K,ypK,y2 pK+,1pK+,y p2

K∗,1p
2
K∗,y2 p2

K∗+,1 pK,1pK,y 1 1 ×
xiii 〈x〉 〈x, y2〉 p2

N,1p
2
N,y pK,1p

2
K,y pK+,1pK+,y p2

K∗,1 p2
K∗+,1 p 2 0

√
xiv 〈xy2〉 〈xy2〉 p2

N,1p
2
N,yp

2
N,y2p

2
N,y3 p2

K,1pK,ypK,y3 pK+,1pK+,y p2
K∗,1p

2
K∗,y p2

K∗+,1 pK,1pK,y3 1 1 ×
xv 〈xy2〉 〈x, y2〉 p2

N,1p
2
N,y p2

K,1pK,y pK+,1pK+,y p2
K∗,1 p2

K∗+,1 p 2 0
√

xvi 〈xy〉 〈xy〉 p2
N,1p

2
N,yp

2
N,y2p

2
N,y3 p2

K,1p
2
K,y3 p2

K+,1 p2
K∗,1pK∗,ypK∗,y3 pK∗+,1pK∗+,y pK,1pK,y3 2 0

√
xvii 〈xy〉 〈xy, y2〉 p2

N,1p
2
N,y p2

K,1 p2
K+,1 p2

K∗,1pK∗,y pK∗+,1pK∗+,y p 2 0
√

xviii 〈xy3〉 〈xy3〉 p2
N,1p

2
N,yp

2
N,y2p

2
N,y3 p2

K,1p
2
K,y p2

K+,1 pK∗,1p2
K∗,ypK∗,y2 pK∗+,1pK∗+,y p2

K,1 0 2
√

xix 〈xy3〉 〈xy, y2〉 p2
N,1p

2
N,y p2

K,1 p2
K+,1 p2

K∗,1pK∗,y pK∗+,1pK∗+,y p 2 0
√

xx 〈y〉 〈y〉 p4
N,1p

4
N,x p4

K,1 p2
K+,1 p4

K∗,1 p2
K∗+,1 p2

K,1 2 0
√

xxi 〈y〉 G p4
N,1 p4

K,1 p2
K+,1 p4

K∗,1 p2
K∗+,1 p 2 0

√
xxii 〈x, y2〉 〈x, y2〉 p4

N,1p
4
N,y p2

K,1p
2
K,y pK+,1pK+,y p4

K∗,1 p2
K∗+,1 pK,1pK,y 2 0

√
xxiii 〈x, y2〉 G p4

N,1 p2
K,1 pK+,1 p4

K∗,1 p2
K∗+,1 p 2 0

√
xxiv 〈xy, y2〉 〈xy, y2〉 p4

N,1p
4
N,y p4

K,1 p2
K+,1 p2

K∗,1p
2
K∗,y pK∗+,1pK∗+,y p2

K,1 2 0
√

xxv 〈xy, y2〉 G p4
N,1 p4

K,1 p2
K+,1 p2

K∗,1 pK∗+,1 p 2 0
√

xxvi G G p4
N,1 p4

K,1 p2
K+,1 p4

K∗,1 p2
K∗+,1 p 2 0

√
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Genus 2 Curves with Complex Multiplication 1101

that K is fixed by x, the Galois group is 〈x, y|x2, y4, xyxy〉 and the CM type is {1, y}. The

reflex CM field K∗ is then fixed by {1, xy3} (follow the recipe in [33, Chapter 1, Theorem

5.1]) and the reflex CM type is {1, y−1}.
We have the following diagrams of fields and subgroups:

{1}

{1, x}

�������������
{1, xy2}

							

{1, y2} {1, xy}










{1, xy3}

������������

{1, x, xy2 , y2}

�����������

							

{1, y, y2 , y3} {1, xy, y2 , xy3}

�����������



G

������������

������������

N

K

�����������������
· · · N+ · · · K∗

�����������������

K+

����������������
· · · K∗+

����������������

Q

����������������

����������������

The analysis of the reduction of A proceeds along the same lines as above.

Namely, one considers the decomposition of the Dieudonné module as a module over

OK ⊗ F̄p and the induced action of Frobenius, which is 1⊗ σ -linear, so to say. In most

cases, this suffices to determine the a and f numbers, but in certain cases one needs to

decide between two possibilities, and there the CM type matters. The interpretation of

the CM type mod p is done through the formalism of Section 3.1.

For example, referring to Table 5, in case (viii) we find that D∼= F̄p[t]/(t2)⊕
F̄p[t]/(t2) and Frobenius acts σ -F̄p[t]/(t2) linearly (meaning, it acts σ -linearly on F̄p and

commutes with t) on each component. The kernel, a priori could be one of the compo-

nents or the submodule (t)⊕ (t). Taking the CM type into consideration, we see that

Frobenius has a kernel in each component and so its kernel is (t)⊕ (t). It follows that

Fr2 = 0. Case (x) is the same.

Case (ix) is easier as in this case D∼= F̄p[t]/(t2)⊕ F̄p[t]/(t2), where Fr is acting σ -

F̄p-linearly, but permutes the components. The kernel is either one of the components or

the submodule (t)⊕ (t) and, regardless, Fr2 = 0. Case (xi) is the same.

3.7 Examples

Take a curve C of genus 2 over Q (to simplify). Given a prime p at which C has good

reduction C̄ , one has a simple method of writing down the Hasse–Witt matrix M of
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1102 E. Z. Goren and K. E. Lauter

Ā= Jac(C̄ ) and so deciding the a-number and f-number of Ā: the f-number is the rank

of M(p)M and the a-number is the co-rank of M. In general, it is hard to decide the

reduction type by examining M, but in certain cases we can do that and compare our

results with the results above when A= Jac(C ) has complex multiplication.

Let C : y2 = f(x), where f(x)= x5 + a4x4 + · · · + a0, be a hyperelliptic curve and

write f(x)(p−1)/2 =∑ j≥0 cjxj. Then the Hasse–Witt matrix M is given by
( cp−1 cp−2

c2p−1 c2p−2

)
, and

M(p) is
(

cp
p−1 cp

p−2

cp
2p−1 cp

2p−2

)
. Exactly the same recipe works if f(x) is a sextic. See [27, p. 129].

3.7.1 Cases (i), (ii), (iii) and (v) in Table 3 for Galois cyclic fields

Example 3.2. Let C : y2 = x5 + 1. The curve has good reduction outside 2 · 5. The Jaco-

bian has complex multiplication by Q(ζ5) and the automorphism group of the curve in

characteristic zero is μ10. The coefficient of xn in f(x)(p−1)/2 is 0 if 5 � n and is
(
(p−1)/2

n/5

)
if

5|n. We divide the analysis to several cases:

• If p≡ 1 (mod 5), then M=
(
((p−1)/2
(p−1)/5) 0

0 ( (p−1)/2
(2p−2)/5)

)
has rank 2 and we conclude that Ā

is ordinary. Note that p splits completely in this case. Namely we are in case

(i) of the cyclic Galois case.

• If p≡ 2 (mod 5), p> 2, M=
(

0 ((p−1)/2
(p−2)/5)

0 0

)
has rank 1 and M(p)M= 0. Thus, f = 0

and a= 1. This is supersingular, but not superspecial reduction, in accor-

dance with case (iii).

• If p≡ 3 (mod 5), M=
(

0 0
( (p−1)/2
(2p−1)/5) 0

)
has rank 1 and M(p)M= 0. Thus, f = 0 and

a= 1. This is a supersingular, but not a superspecial reduction, in accordance

with case (iii) again.

• If p≡−1 (mod 5), M= ( 0 0
0 0

)
has rank 0 and we have superspecial reduction,

in accordance with case (ii).

• p= 5. It follows from Igusa’s classification of genus 2 curves with many auto-

morphisms [28, Section 8] that the reduction of a stable model of y2 = x5 + 1

modulo 5 is isomorphic, possibly after base change, to the curve y2 = f(x),

where f(x)= x(x− 1)(x+ 1)(x− 2)(x+ 2). That is, since the characteristic is

5, f(x)= x5 − x. Then f(x)2 = x10 − 2x6 + x2 and the Hasse–Witt matrix is the

zero matrix, giving us superspecial reduction. This agrees with case (v).

• In characteristic 2, Igusa’s classification gives us the model y2 − y= x5.

According to our table, since we are in case (iii), this curve should be super-

singular, but not superspecial. The fact that the curve is supersingular, which

in genus 2 is equivalent to f = 0, follows from the theory of Artin–Schreier
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Genus 2 Curves with Complex Multiplication 1103

coverings, cf. [44, Lemma 2.6]. According to [27, Theorem 3.3] there are no

superspecial nonsingular curves of genus 2 in characteristic 2. Therefore, we

have supersingular and not superspecial reduction. �

3.7.2 Cases (v) and (vi) of Table 3 for Galois cyclic fields

Example 3.3. Consider the curve y2 =−8x6 − 64x5 + 1120x4 + 4760x3 − 48400x2 +
22627x− 91839, which has complex multiplication by the ring of integers of

K =Q(
√
−65+ 26

√
5) according to [54, 55]. The field is a cyclic Galois extension

with a totally real field K+ =Q(
√

5). Its discriminant is 53 · 132. The prime 5 decom-

poses as p2
K+ = p4

K and belongs to case (vi), the prime 13 decomposes as qK+ = q2
K and

belongs to case (v). In any case, we have superspecial reduction. And, indeed, in

both cases one finds that the Hasse–Witt matrix is identically zero modulo the corre-

sponding prime. For example, for p= 5 we have f(x)2 = 64x12 + 1024x11 − 13824x10 −
219520x9 + 1419520x8 + 16495568x7 − 87185232x6 − 398328128x5 + 2352249680x4 −
3064600880x3 + 9401996329x2 − 4156082106x+ 8434401921 and the Hasse–Witt matrix

is
(

2352249680 −3064600880
−219520 1419520

)≡ 0 (mod 5). �

Examples 3.4 and 3.5 also demonstrate cases (v) and (vi) in the table for Galois

cyclic fields. For both, we take the Galois cyclic field K =Q[x]/(x4 + 238x2 + 833), with

real quadratic subfield Q(
√

17). It can be constructed by adjoining
√
−119+ 28

√
17 to Q.

The class number of K is 2 and the field discriminant is 72173.

The three Igusa Class polynomials are as follows:

h1(x)= x2 + 316 · 11 · 163 · 4801 · t1 · t2
223 · 76 · 4312 · 17912

x− 330 · 622735 · 1731669435

222 · 712 · 4312 · 17912
,

h2(x)= x2 + 311 · 5 · 967 · t3
29 · 73 · 438 · 1798

x− 322 · 52 · 192 · 191 · 622733 · 1731669433

26 · 78 · 438 · 1798
,

h3(x)= x2 + 39 · 1823 · t4
211 · 73 · 438 · 1798

x− 318 · 359 · 1667 · 1811 · t5
210 · 78 · 438 · 1798

,

where t1, . . . , t5 are primes and t1 = 712465984819, t2 = 152160175753014902257305649

143422239021984895543, t3 = 199763665249568296384949088855973069605073, t4 = 81

97340996395223625771218888046149724668749 and t5 = 22812299742650826752203668

41972155717537.
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1104 E. Z. Goren and K. E. Lauter

Example 3.4 (Case (v)). The prime 7 decomposes in K as the square of an inert prime

with inertia degree 2. Modulo 7 the class polynomials reduce badly, since 7 is in the

denominator. The two CM curves each reduce to a product of elliptic curves with product

polarization modulo 7, and the Galois action takes one curve to the other. Both have

superspecial reduction. �

Example 3.5 (Case (vi)). The prime 17 is totally ramified in K. Modulo 17 the reduction

of the Igusa class polynomials is:

h1(x)= (x+ 13)2 (mod 17), h2(x)= (x+ 12)2 (mod 17), h3(x)= (x+ 2)2 (mod 17).

Taking the absolute Igusa invariants [i1, i2, i3]= [−13,−12,−2] modulo 17, we recover a

4-tuple of Igusa–Clebsch invariants [A : B : C : D]= [1 : 14 : 8 : 13] via the formulas: A= 1,

D = A5/i1, B = i2 · D/A3, and C = i3 · D/A2. Using Magma’s implementation of Mestre’s

algorithm, we obtain a genus 2 curve C : y2 = x6 + 16 with these invariants over F17.

Taking f(x)= x6 + 16 (mod 17), we compute the (p− 1)/2= 8th power and compute the

Hasse–Witt matrix. The only nonzero coefficients of f are for terms whose degree is 0

(mod 6), so the Hasse–Witt Matrix is zero and the reduction is superspecial. �

3.7.3 Cases (xii), (xiv), (xvii) and (xix) in Table 5 for non-Galois fields

In Examples 3.6 and 3.7 we deal with cases (xii) and (xiv) (Example 3.7) and cases

(xvii) and (xix) (Example 3.6) in the table for non-Galois fields. We work with a non-

Galois quartic CM field, given by K =Q[x]/(x4 + 134x2 + 89) with reflex field given by

K∗ =Q[x]/(x4 + 268x2 + 17600). The class number of K is 4 and the discriminant is

2411289.

For typographical reasons, we list the class polynomials in modified form. To

get the class polynomials hi(x) from the polynomials h∗i (x) listed below, divide by the

leading coefficient in each case.

h∗1 = 4678616850082741983158250085957006548008966486124546422530630657633460

63674621433392530889250338077545166015625 · x8 + 555449149845517528201830

8546307747022884602068365400323478066895570446806681210673803641169570

25544252246618270874023437500000 · x7 + 184033686764733003916214393323122
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Genus 2 Curves with Complex Multiplication 1105

1759307266571653588212097779374278645161702524660416788572844592879230

47251104058697819709777832031250000000 · x6 − 185325281967136109662487350

5998949692174429421865520993104612913429579686636021959485024627281624

1093321185745310256539534492913064849853515625000000000 · x5 − 1495176157

7386221607707550178552613566439016379414477407296451553911287348517794

686579946784109717502195174755425822553736877872571144391143148905722

3000000000000 · x4 − 2745002127877863203631749224519874186562888955642541

6852671533372575037558556384959106460164764658831329000379776543259072

657572814515177392240269322428312127339426217984·, x3 − 1297531069082446

2049428048723892236585223008161239232354502537340424218996558059300177

1951508989819214516847958284764562224480102456678890713123681109259524

8135449429095219200000 · x2 + 758161981204301642532100000301778098336405

676797563376671508724173668166965419616439591885451956553000669601811

4342720043906982109112415240533721325054782428254517780807680000000000·

x− 16656107625921887452438039161862781245920062995237772854060296102

410270027835247550412464024850182603102460369557884286225502239544621

4265265991340473323825199368431179137024000000000000000

h∗2 = 122620993224533990854266979572168589900407195091247558593750000 · x8

+ 74859292699910714365190193192134728726759194326538186885028839111328

12500000 · x7 + 127911590573429429764061252422626647909635036233546648623

604176763112582318377685546875000 · x6 − 43280146930239897012056393414348

6307948625635434432325277226168869895543943151085803437889746093750·

x5 − 7098975722037134589753904078350700421024098996960488931189373791394

1059181926255773255664903749716042965625 · x4 + 1412145839537492587461

9003891297821593782870891378302331148263540097872948880292889091382293
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1106 E. Z. Goren and K. E. Lauter

5905126587220991510912 · x3 − 3247309744253473149174880508572156550385390

9949441811199318879756089357883344645740631646799987771712972799044051

3280000 · x2 + 2878258800484146973496313274835799307245769049641717521354

166360884626643674126222273800205511215767305294130902374400000000·

x− 875776675051081603171574386294121650913389467088993679908740136586

9157766568945511079523707916023330470602373237659904000000000000

h∗3 = 31390974265480701658692346770475159014504241943359375000000000000 · x8

+ 493348323893392512322187882201836480657190909721221154566235351562

500000000000 · x7 + 2168443965418989986038492688067403045710941961035989

372240912887706777245531152343750000000 · x6 − 2302525585957788818152082

3526538293963374307938449148831689476104819215395357369878305636089843

75000 · x5 − 152380762091374020434799837277117715974184875809865052975561

585447684346918113356183254740900302324932628125 · x4 + 1012610953382711

9049053068717187006903486316579619512203213100610192022688776977601251

7741443429566675432329475648 · x3 − 8239423089006805080914763566055762368

5629965618893227966125666811860080407429030642077770538444660191227910

486571712000 · x2 − 19264091315676614841969614988160005311744110600313352

22220813078857194020390371535396618981891327471335621587834624000000·

x− 187037466975141460892373734518488999462823236919405610973354567763

8411383291159282002508930826987969131561815775577216000000000

Example 3.6 (cases (xvii), (xix)). The prime decomposition of 11 in K is such that it is

ramified in K+ and the prime above it in K+ is inert in K. Further, 11 is split in K∗+, and

mixed in K∗ (one degree-one prime ideal with ramification index 2, and one unramified

prime ideal of degree 2). The prime 11 appears in the denominator, so at least one of the

curves with CM by K is superspecial. �
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Genus 2 Curves with Complex Multiplication 1107

Remark. One can strengthen the conclusion: In fact, all the curves are superspecial:

although Table 5 assumes a fixed CM type,while the class polynomials do not, it is clear

that changing the CM type would lead to a situation where I is still generated by a

noncentral involution and D has 4 elements. These are cases (xiii), (xv), (xvii), and (xix)

in the table, and in all of them we have superspecial reduction. �

Example 3.7 (cases (xii) and (xiv)). The prime decomposition of 89 in K is mixed: one

ramified prime of degree 1 and two unramified primes of degree 1. It is split in K+,

ramified in K∗+, and that prime in K∗+ then splits in K∗. Modulo 89 the class polynomials

factor as a product of the squares of two quadratic polynomials:

h1 = (x2 + 17x+ 9)2(x2 + 18x+ 25)2 (mod 89),

h2 = (x2 + 37x+ 67)2(x2 + 69x+ 57)2 (mod 89),

h3 = (x2 + 83x+ 83)2(x2 + 85x+ 45)2 (mod 89). �

Note that in this case, it is not obvious from the polynomials how to match up

roots of the three polynomials to form triples of Igusa invariants. A common approach

has been to use the knowledge of the CM field to determine the possible group orders of

the Jacobian of the curve, and then to run through all triples of roots of these polynomi-

als until the correct triples and the corresponding curves are found. In the case that the

prime p splits completely in the field K (case (i) in Table 5), a method for determining the

possible group orders was given in [12, Proposition 4; 57], and the resulting CM curves

constructed there were indeed ordinary. For other decompositions of the prime p in K,

alternative algorithms are needed to compute the possible group orders. In the case of

p-rank 1, a solution of the problem of calculating the group order was given in [25].

In some of the other examples, we show how to determine the group orders for other

cases below.

The possible group orders in the case considered here (Example 3.7) are

#J(C )(F892)= 62045284 or 63439556, for a genus 2 curve C over F892 with CM by K. This

can be seen as follows: Let p= 89 then pOK = p1p2p
2
3. In this case, it can be verified using

Magma or Pari that both of the ideals p1p3 and p2p3 are principal, generated by π and π̄ ,

and (ππ̄)= (p). Using methods similar to [25], we find the Weil p2-numbers β =±ππ̄−1 p.

Then the corresponding group orders for these Weil p2-numbers are N =∏σ (1− βσ ),
where σ ranges over the complex embeddings of K.
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1108 E. Z. Goren and K. E. Lauter

Represent F892 = F89[α], where α satisfies α2 + 82α + 3= 0. The four curves are

y2 = f1(x)= α5245x6 + α2244x5 + α7129x4 + α1567x3 + α2060x2 + α5783x+ α3905,

y2 = f2(x)= α2667x6 + α795x5 + α1956x4 + α5619x3 + α5331x2 + α7272x+ 52,

y2 = f3(x)= α6464x6 + α795x5 + α4574x4 + α2946x3 + α1544x2 + α6684x+ α803,

y2 = f4(x)= α132x6 + α3403x5 + α2326x4 + α3493x3 + α5184x2 + α1943x+ α4418.

Calculating the Hasse–Witt matrix for the first curve, one computes f44
1 and finds c88 =

α7555, c87 = α7787, c177 = α950, and c176 = α1182, and that both M and M(p)M have rank 1, so

both the f-number and the a-number equal 1. The same is true for the other three curves

as well.

3.7.4 Cases (ii) and (iv) in Table 5 for non-Galois fields

We still refer to the field K =Q[x]/(x4 + 134x2 + 89) and the class polynomials

given above.

Example 3.8. To give an example for cases (ii) and (iv) in Table 5 for non-Galois fields,

we let p= 313. The prime p= 313 decomposes in K as the product of two prime ideals of

degree 1 and one prime ideal with residue degree 2. Modulo 313, the class polynomials

factor as a product of four degree-2 polynomials:

h1(x)= (x2 + 25x+ 273)(x2 + 137x+ 39)(x2 + 200x+ 108)(x2 + 312x+ 249) (mod 313),

h2(x)= (x2 + 20x+ 121)(x2 + 90x+ 119)(x2 + 138x+ 297)(x2 + 173x+ 78) (mod 313),

h3(x)= (x2 + 105x+ 276)(x2 + 133x+ 230)(x2 + 232x+ 183)(x2 + 289x+ 91) (mod 313).

The two possible group orders are #J(C )(F892)= 9607909136 or 9588315136, for a genus

2 curve C over F3132 with CM by K. This can be seen because both of the prime ideals of

K of degree 1 lying above p are principal, and letting π and π̄ be the generators, we find

the Weil p2-numbers β =±ππ̄−1 p (this is also explained in [25]). Then the corresponding

group orders for these Weil p2-numbers are N =∏σ (1− βσ ), where σ ranges over the

complex embeddings of K. Represent F3132 = F313[α], where α satisfies α2 + 310α + 10= 0.

We find eight curves defined over F3132 . For example, the first one is the hyperelliptic
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Genus 2 Curves with Complex Multiplication 1109

curve defined over F3132 by

y2 = f(x)= α20046x6 + α18815x5 + α77496x4 + α26504x3 + α19266x2 + α53721x+ α1332.

Calculating f(x)156, one finds that the coefficients of the Hasse–Witt matrix M are:

cp−1 = α91834, cp−2 = α18900, c2p−1 = α62990, and c2p−2 = α88024. The determinant of both M

and M(p)M is 0 and the rank is 1. The same is true for all 8 curves: they all have a= 1

and f = 1. �

3.7.5 Cases (iii) and (v) in Table 5 for non-Galois fields

This next set of cases is very interesting, because we can see here that the decomposition

of the prime in K only determines the reduction of the abelian surface in combination

with the CM type. This is our first example of both superspecial and ordinary reduc-

tion modulo the same prime (of CM abelian surfaces with CM by the same field K, but

different CM type). This phenomenon does not occur in genus 1.

We again work with the primitive quartic CM field K =Q[x]/(x4 + 134x2 + 89)

and the class polynomials given above. Let p= 47. As in cases (iii) and (v) in Table 5, the

prime p= 47 decomposes in K as a product of two prime ideals of degree 2: p is inert in

K+, the real quadratic subfield of K, and then splits in K. The class polynomials factor

modulo 47 as

h1(x)= (x+ 18)2(x2 + 22x+ 12)(x2 + 33x+ 19)(x2 + 37x+ 6) (mod 47),

h2(x)= (x+ 23)2(x2 + 10x+ 46)(x2 + 6x+ 17)(x2 + 9x+ 39) (mod 47),

h3(x)= (x+ 2)2(x2 + 42x+ 26)(x2 + x+ 19)(x2 + 27x+ 7) (mod 47).

Example 3.9 (case (v)). Both degree 2 prime ideals lying over p= 47 are principal in

this case, and we denote the generators by π and π̄ . In this case, ππ̄ = 47u, where u is a

unit. Setting β =±p2/u, gives two possible Weil p2-numbers. Two possible group orders

are #J(C )(F472)=∏σ (1− βσ )= 4901092 or 4865732, where σ ranges over the complex

embeddings of K. There are four ordinary CM points corresponding to these possible

group orders.
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1110 E. Z. Goren and K. E. Lauter

Represent F472 = F47[α], where α satisfies α2 + 45α + 5= 0. Then the four curves

with these group orders are:

y2 = α829x6 + α1842x5 + α622x4 + α1262x3 + α956x2 + α398x+ α1255,

y2 = α929x6 + α1219x5 + α1483x4 + α1511x3 + α251x2 + α224x+ α1437,

y2 = α1852x6 + α2038x5 + α1790x4 + α1078x3 + α1166x2 + α1634x+ α1518,

y2 = α1783x6 + α892x5 + α1454x4 + α665x3 + α1014x2 + α871x+ α1754.

For all four curves, we checked that the Hasse–Witt matrix M and M(p)M both have rank

2, so these curves are indeed all ordinary. �

Example 3.10 (case (iii)). Each of the three class polynomials has one linear factor mod-

ulo 47. The curve over F47 with those F47-rational invariants is the hyperelliptic curve

defined by

y2 = 40x6 + 22x5 + 43x4 + x3 + 29x2 + 8x+ 28.

Its Jacobian has #J(C )(F47)= p2 + 2p+ 1= 2304 points and #C (F47)= p+ 1= 48. The

Hasse–Witt matrix M is identically 0 modulo 47, so the curve is superspecial. This curve

occurs “with multiplicity two” modulo 47. �

The other two CM abelian surfaces reduce to curves defined over F472 . They are

the hyperelliptic curves defined by

y2 = α487x6 + α977x5 + α1698x4 + α1530x3 + α1790x2 + α1618x+ α1063,

y2 = α809x6 + α1759x5 + α318x4 + α1254x3 + α226x2 + α974x+ α1385.

They both have #J(C )(F472)= p4 − 2p2 + 1= 4875264 points and #C (F472)= p2 + 1=
2210. They both have the property that the Hasse–Witt matrix M is identically 0 modulo

47, so the curves are both superspecial.

In fact the referee pointed out that this is also a nice illustration of the compu-

tational utility of another aspect of our tables: the column which lists NΦ∗(pK∗,1). If our

starting point is the results in the table then, since NΦ∗(pK∗,1)= p, in the first case we

conclude that the Weil-numbers must be ±i
√

p and this predicts a group order of 48; in

the second case, we have p2-Weil numbers which would have to be ±ip and so the group

order would have to be 2210.
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Genus 2 Curves with Complex Multiplication 1111

3.7.6 Case (vii) in Table 5 for non-Galois fields

Example 3.11. We again work with the non-Galois quartic CM field K =Q[x]/(x4 +
134x2 + 89) and the class polynomials given above. The prime p= 13 is totally inert in

K. Modulo 13, the class polynomials are:

h1(x)= (x2 + 2x+ 9)(x2 + 6x+ 1)(x4 + 8x3 + 10x2 + 12) (mod 13),

h2(x)= (x2 + 5x+ 1)(x2 + 8x+ 1)(x4 + 7x3 + 6x2 + 7x+ 8) (mod 13),

h3(x)= (x2 + 2)(x2 + 11)(x4 + 6x3 + 4x2 + 5) (mod 13).

Among the curves whose invariants satisfy these hi (mod 13), we look for curves over

F132 with #J(C )(F132)= (p4 + 2p2 + 1)= 28900. Such curves have Weil-numbers ±ip and

so are supersingular. Represent F132 = F13[α], where α satisfies α2 + 12α + 2= 0. We find

four curves over F132 , for example the first one is:

y2 = α99x6 + α47x5 + α156x4 + α75x3 + α27x2 + x+ α148.

The invariants of this curve are (i1, i2, i3)= (−α36,−α96,−α133). These invariants satisfy

the polynomials x2 + 6x+ 1, x2 + 8x+ 1 and x2 + 2, over F13, respectively. The curve’s

Hasse–Witt matrix M has rank 1 and the rank of M(p)M is 0, so a= 1 and f = 0 as pre-

dicted in the tables. The same is true of the other three curves as well. We further remark

that the four CM curves defined over F134 have Jacobian group order equal to either

(1+ p2)4 or (1− p2)4. All four curves have a= 1 and f = 0 as predicted. �

4 The Moduli Space of Pairs of Elliptic Curves

Let n be a positive integer. Consider the functor Bn on schemes associating to a scheme

S the isomorphism class of triples

(E1, E2, γ ),

where πi : Ei → S, i = 1,2, are elliptic curves over S and γ is a symplectic level structure

on E1[n]× E2[n], namely, an isomorphism,

γ : E1[n]× E2[n]→ (Z/nZ)4,
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1112 E. Z. Goren and K. E. Lauter

which is symplectic relative to the Weil pairing on E1 × E2 (obtained as the product

of the Weil pairings on each elliptic curve, or, equivalently, associated to the product

polarization on E1 × E2) and the pairing on (Z/nZ)4 given by the matrix
( 0 1
−1 0

0 1
−1 0

)
.

An isomorphism ϕ : (E1, E2, γ )→ (E ′
1, E ′

2, γ
′) of two such triples over S is a pair

of isomorphisms of S-group schemes, ϕi : Ei → E ′
i, such that γ = γ ′ ◦ (ϕ1 × ϕ2).

The functor Bn is naturally equivalent to the functor parameterizing isomor-

phism classes of quadruples (A, λ, e, γ ) over S, where (A, λ) is a principally polarized

abelian surface over S, e∈EndS(A) is a nontrivial idempotent, fixed under the λ-Rosati

involution, and γ is a symplectic level nstructure. Indeed, given a triple (E1, E2, γ ) asso-

ciate to it (E1 × E2, λ1 × λ2, e, γ ), where λi are the canonical principal polarizations on Ei

and e is the idempotent endomorphism (x, y) �→ (x,0). The converse construction asso-

ciates to A the triple (E1, E2, γ ), where E1 =Ker(1− e), E2 =Ker(e). It is not hard to verify

that these constructions give a natural equivalence between the functors.

Lemma 4.1. For n≥ 3 the moduli problem is rigid. Namely, any automorphism ϕ of a

triple (E1, E2, γ ) is the identity. �

Proof. Such an automorphism induces an automorphism of (A, λ, γ ), where A= E1 ×
E2. It is well known that such an automorphism must be the identity. �

It follows then from standard techniques that for n≥ 3 the functor Bn is repre-

sentable by a quasi-projective scheme Bn over Z[ζn,n−1].

Proposition 4.2. Let n≥ 2. Let J be the automorphism of Bn whose effect on points is

(E1, E2, γ ) �→ (E2, E1, γ ◦ s),

where s is the natural “switch”, s : E1[n]× E2[n]→ E2[n]× E1[n]. There is a geometric

quotient Bn/〈J〉 for this action. We have a commutative diagram,

Bn

β

�����������

��

Bn/〈J〉 � �
βJ

�� A2,n
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Genus 2 Curves with Complex Multiplication 1113

where the diagonal arrow β is the natural morphism (E1, E2, γ ) �→ (E1 × E2, λ1 × λ2, γ ),

the vertical arrow is an étale Galois cover with Galois group Z/2Z and the bottom arrow

βJ is a closed immersion, induced by β, whose image is the Humbert surface H̄1,n in A2,n,

the Zariski closure in A2,n of H1,n⊂A2,n(C). �

Proof. The existence of the quotient follows immediately from [40, Theorem, p. 66] and

the remark following that theorem. We first show that the morphism Bn→Bn/〈J〉 is

unramified. Suppose that J(E1, E2, γ )= (E2, E1, γ ◦ s) is isomorphic to (E1, E2, γ ). There

are then isomorphisms ϕ1 : E2 → E1, ϕ2 : E1 → E2 such that γ ◦ s= γ ◦ (ϕ1 × ϕ2) and so

s= ϕ1 × ϕ2 on E1[n]× E2[n]. But, for (a,b) ∈ E1[n]× E2[n] we have s(a,b)= (b,a), while

ϕ1 × ϕ2(a,b)= (ϕ1(a), ϕ2(b)), which obviously cannot hold for every pair (a,b) if n≥ 2.

The morphism Bn→Bn/〈J〉, being a quotient by a finite group, is a finite mor-

phism. We conclude that it is a finite étale cover with Galois group Z/2Z. The natu-

ral morphism β : Bn→A2,n clearly factors through Bn/〈J〉 and we denote the induced

morphism

βJ : Bn/〈J〉→A2,n.

We claim that this is a geometrically injective morphism. Suppose that

(E1 × E2, λ1 × λ2, γ )∼= (E ′
1 × E ′

2, λ
′
1 × λ′2, γ ′).

By a theorem of Weil [56], after possibly switching E ′
1 with E ′

2, we may assume that

E1
∼= E ′

1, E2
∼= E ′

2 and therefore, under these identifications, that γ = γ ′. Namely, up to

applying J, every point in the image has a unique pre-image.

The morphism βJ is also proper. This follows from the valuative criterion of

properness. As we shall see below, the scheme Bn is a union of products of modular

curves, in particular, it is noetherian and so we can use discrete valuation rings in the

criterion. To apply it, we must show that if R is a discrete valuation ring with field of

fractions K, (A, λ, γ )/R is an abelian scheme whose generic fiber is isomorphic over K to

(E1 × E2, λ1 × λ2, γ ) then the elliptic curves Ei extend to elliptic curves over R and then

so does the isomorphism. The fact that the elliptic curves extend follows from the theory

of Néron models (since E1 × E2 = A⊗R K obviously has good reduction). The extension of

the isomorphism follows from the fact that A2,n has a toroidal compactification, which

is proper over Z[ζn,n−1]. Since both Bn/〈J〉 and A2,n are reduced and the morphism βJ

is proper and injective (hence quasi-finite), βJ is a finite injective morphism. We will

conclude that it is an isomorphism onto its image, the Humbert surface H̄1,n by showing
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1114 E. Z. Goren and K. E. Lauter

that for a geometric point x of Bn/〈J〉 and its image y in A2,n the completed local rings

are isomorphic. Note that the Humbert divisor H̄1,n is the image of βJ , since they have

the same generic fiber and both are the closure of their generic fiber.

Indeed, suppose that y is the image of the k-geometric point (y1, y2) of Bn. The

completed local ring on Bn is then just isomorphic to W(k)[[t1, t2]], as Bn is a product of

smooth curves. Moreover, if Ei is the elliptic curve corresponding to yi, then ti is the

parameter arising via the local deformation theory for elliptic curves (the level struc-

ture need not be a product level structure; regardless it extend uniquely by étaleness).

On the other hand, the completed local ring on A2,n of the point y corresponding to

(A, λ, γ )= (E1 × E2, λ1 × λ2, γ ) is isomorphic to the ring W(k)[[t11, t1,2, t2,1, t2,2]]/(t1,2 − t2,1)

and H̄1,n contains locally the closed formal subscheme defined by the ideal (t1,2, t2,1), as

is clear from the interpretation of the variables through local deformation theory. Since

Bn/〈J〉 is locally irreducible and the morphism is geometrically injective also H̄1,n is

locally irreducible. It follows that H̄1,n is defined locally by the ideal (t1,2, t2,1) and that

the morphism is an isomorphism on every completed local ring, which is sufficient to

conclude the proof.

Another way to conclude the proof is to prove that the morphism βJ is universally

injective (or a monomorphism) and then use EGA IV, Section 8.11, Proposition (8.11.5).

Since Bn/〈J〉 is the categorical quotient of Bn, we know it as a functor of points and

so injectivity boils down to the following statement: Given elliptic curves E1, . . . , E4

over a connected scheme S such that E1 × E2
∼= E3 × E4 as principally polarized abelian

schemes over S then, either E1
∼= E3 and E2

∼= E4, or E1
∼= E4 and E2

∼= E3. Note that to

identify E1 in E3 × E4 is equivalent to giving an endomorphism. Choose a geometric

point x of S and use Weil’s theorem as above together with Grothendieck’s theorem

EndS(E3 × E4) ↪→Endk(x)((E3 × E4)⊗ k(x)). �

We next discuss the complex uniformization of Bn. Recall the classical construc-

tion of the modular curves: Given τ ∈H one lets Eτ =C/〈1, τ 〉 be the corresponding ellip-

tic curve, and we get a symplectic isomorphism Eτ [n]→ (Z/nZ)2 by sending 1/n to t(1,0)

and τ/n to t(0,1). We call this level structure γ0. Let σ = Mτ , where M= ( a b
c d

) ∈ SL2(Z).

Then the isomorphism Eσ → Eτ is given by multiplication by j(M, τ )= cτ + d. Since

γ0(A+ Bσ)/n= t(A, B) and 1/n is sent to (d+ cτ)/n, while σ/n is sent (b+ aτ)/n, we find

that (Eσ , γ0) is isomorphic to (Eτ ,
(

a −b
−c d

) ◦ γ0). We remark that M= ( a b
c d

) �→ †M := ( a −b
−c d

)
is an outer automorphism of SL2(Z) given by conjugating by

(
1 0
0 −1

)
in GL2(Z). We

conclude that

(Eτ , γ0)∼= (EMτ ,
†M−1 ◦ γ0).
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Genus 2 Curves with Complex Multiplication 1115

Consider the space

H× H× Sp4(Z/nZ).

(The symplectic group is relative to the pairing fixed at the beginning of this section.) To

a point (τ1, τ2, γ ) of this space we associate the triple (Eτ1 , Eτ2 , γ ◦ (γ0 × γ0)). The group

SL2(Z)× SL2(Z) acts on the space by

(M1,M2) ∗ (τ1, τ2, γ )= (M1τ1,M2τ2, γ ◦ diag(†M1
−1
, †M2

−1
)).

The space of orbits is isomorphic to Bn(C). Furthermore, choose a complete set of rep-

resentatives γ1, . . . , γt (t= t(n)) for Sp4(Z/nZ)/(SL2(Z/nZ)× SL2(Z/nZ)). Then,

Bn(C)∼=
t∐

i=1

(Γ (n)\H)2 =
t∐

i=1

Y(n)× Y(n).

Via this identification, we associate to a pair (τ1, τ2) in the ith (or γith, if one prefers)

component of Bn(C) the triple (Eτ1 , Eτ2 , γi ◦ (γ0 × γ0)).

The involution J takes the γi-component to γ j-component where γ j is determined

by γi ◦ (γ0 × γ0) ◦ s ∈ (SL2(Z/NZ)× SL2(Z/NZ))γ j ◦ (γ0 × γ0). We always have γ j �= γi; that

is, J acts on the set of components as an involution with no fixed points. In fact,

the components of Bn are parameterized by Sp4(Z/nZ)/(SL2(Z/nZ)× SL2(Z/nZ)), while

the components of Bn/〈J〉 are parameterized by Sp4(Z/nZ)/[(SL2(Z/nZ)× SL2(Z/nZ))H ],

where H = {1, ( 0 I2
I2 0

)}. One has (SL2(Z/nZ)× SL2(Z/nZ))H = H(SL2(Z/nZ)× SL2(Z/nZ))

and (SL2(Z/nZ)× SL2(Z/nZ))H ∼= (SL2(Z/nZ)× SL2(Z/nZ))� H .

5 A Lemma in Arithmetic Intersection Theory

Let R be a Dedekind ring, finite over Zp, p � R a prime ideal. Let π : S→ Spec(R) be a

smooth scheme of finite type over Spec(R). Let x∈ S be a closed point of characteristic p

lying over p. Then O∧x
S , the completed local ring at S is isomorphic to R̃[[x1, . . . , xn]] where

n is the relative dimension of S over R and R̃= R⊗R0 W(R/p), where R0 the maximal

unramified subring of R. See Cohen [8]. In particular, O∧x
S is a noetherian unique factor-

ization domain. As a consequence, every divisor on Spf(O∧x
S ) is principal, a fact used in

the following lemma. (We remark that in fact this latter fact follows directly from the

Auslander–Buchsbaum theorem without need for Cohen’s theorem.)
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1116 E. Z. Goren and K. E. Lauter

Lemma 5.1. Let S→ Spec(R) be a smooth integral scheme of finite type over a Dedekind

ring R containing Z. Let B be a Dedekind ring containing R, K its field of fractions and

η the generic point of Spec(B). Let

ι : Spec(B)→ S,

be a morphism of schemes over R. Let f be a rational function on S such that the divi-

sor of f intersects the image of ι properly (in particular, f(ι(η))= ι∗ f is a well-defined

element of K; we shall abuse notation and write simply f(η)). Let the divisor of f equal

( f)0 − ( f)∞ =
∑

mi Di, where the mi are nonzero integers and Di irreducible reduced

effective divisors. Let Z be the closed reduced subscheme that is the support of ( f)0.

Let p be a nonzero prime ideal of B and x its image under ι. Suppose that

valp( f(η))= α > 0. Then d=max{mi : x∈ Di}> 0. Let a= "α/d#. Then a> 0 and the mor-

phism ι : Spec(B/pa) factors through Z :

Spec(B/pa) ��

�������������
Spec(B)

ι

�� S

Z
��

��
(5.1)

�

Remark. We shall apply this lemma later, in the following context: S will be the mod-

ular scheme A2,n, f will be a function such that f =Θk/g, where g is a modular form of

weight 10k with rational Fourier coefficients, the morphism ι will be such that ι(η) is a

CM point and our assumption will be that valp( f(η))= α > 0. �

Proof. We first argue that we may replace S by Spf(O∧x
S ). Indeed, on the one hand, if

the dashed arrow in diagram (5.1) exists then, by passing to completions at x, we get a

diagram

Spec(B/pa) ��

�������������
Spf(O∧x

S )

Z ∩ Spf(O∧x
S )

��

��

(5.2)

On the other hand, diagram (5.2), if true, is coming from unique continuous morphisms

O∧x
S → B/pa etc., that arise from morphisms OS → B/pa, etc. Hence, it is enough to show

that diagram (5.2) holds.
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Genus 2 Curves with Complex Multiplication 1117

In Spf(O∧x
S ) every divisor is principal and so we may write there D′

i = ( fi) where

fi ∈O∧x
S , and D′

i is the induced divisor on Spf(O∧x
S ). D′

i may be reducible, but it is reduced.

If x �∈ Di, then fi is a unit in O∧x
S . Via the morphism Spec(Bp)→ Spec(B)→ S, which

induces a morphism Spec(Bp)→ Spf(O∧x
S ), we may view f(η) as an element of Kp, which

is equal, up to a unit, to
∏

i fi(x)mi and so:

α= valp( f(η))=
∑

{i:x∈Di}
mi · valp( fi(η))

=
∑

{i:x∈Di ,mi>0}
mi · valp( fi(η))+

∑
{i:x∈Di ,mi<0}

mi · valp( fi(η)). (5.3)

We note that if x∈ Di then valp( fi)≥ 1 (it may be strictly bigger, of course). In particular,

d> 0. Consider α′ =∑{i:x∈Di ,mi>0} valp( fi(η)); clearly α′ · d≥ α and so α′ ≥ "α/d# and so it

will be enough to prove that diagram (5.2) holds with α′. Consider the function fZ =∏
{i:x∈Di ,mi>0} fi which defines Z ∩ Spf(O∧x

S ). To show diagram (5.2) holds is equivalent to

proving that fZ , when pulled back to Spec(Bp) has valuation at least α′. But the valuation

is precisely
∑

{i:x∈Di ,mi>0} valp( fi(η)) and we are done. �

5.1 Examples

The whole theory is developed precisely to deal with situations where one cannot just

“write down everything explicitly”, and so our examples are a bit artificial.

• Consider the scheme S= Spec(Z[y]) and the function f(y)= y2 − 1. The divisor

of f is
D1 + D2, D1 = div(y− 1), D2 = div(y+ 1).

Let x= 3 corresponding to the point determined by the homomorphism

Z[y]→Z, y �→ 3. We have val2( f(x))= val2(8)= 3. We examine the situation

on the completed local ring of the point (2, y− 3)= (2, y− 1)= (2, y+ 1) (the

reduction of x modulo 2). Also at this completed local ring the divisor of f

is given by D1 = div(y− 1), D2 = div(y+ 1) (with a slight abuse of notation).

It follows from our lemma that the morphism Spec(Z)→ Spec(Z[y])

corresponding to x induces a morphism

Spec(Z/23Z)→ D1 ∪ D2,

where by D1∪D2 we mean the closed reduced subscheme whose support is

D1∪D2, namely Spec(Z[y]/(y2−1)). Indeed, this is nothing but saying that

there is indeed a well defined homomorphism Z[y]/(y2−1)→Z/23Z taking

y to 3.
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1118 E. Z. Goren and K. E. Lauter

An interesting feature of this example is that the morphism

Spec(Z)→ Spec(Z[y]) only induces a well-defined morphism Spec(Z/2iZ)→ Di

(where Di is the reduced closed scheme supported on Di, namely

Spec(Z[y]/(y− 1)) for i = 1 and Spec(Z[y]/(y+ 1)) for i = 2). Moreover, the

divisors D1 and D2 intersect transversely, the intersection being (y− 1, y+ 1).

The subtlety is in the scheme structure on D1 ∪ D2 and in particular in the

fact that Z[y]/(y2 − 1)� Z[y]/(y− 1)× Z[y]/(y+ 1).

• Once more S= Spec(Z[y]) but now f(y)= y2 + 1, which is irreducible.

The point x= 2 corresponds to the homomorphism Z[y]→Z, y �→ 2.

We have val5( f(x))= val5(5)= 1. We have an induced morphism

Spec(Z/5Z)→ Spec(Z[y]/(y2 + 1)), which amount to the fact that there is

a homomorphism Z[y]/(y2 + 1)→Z/5Z taking y to 2.

In the completed local ring of the point (5, y− 2) the function f

decomposes as f(y)= (y− i)(y+ i) where i is an element of Z5 whose square

is −1 and whose reduction is 2 modulo 5. Thus, the function y− i vanishes

to first order at this point, while the function y+ i is a unit. The divisor of

f is locally D1 = div(y+ i) and the lemma, or, rather, its proof, states that

we have an induced morphism Spec(Z/5Z)→ Spf(Z5[[(y− 2)]]/(y− i)), which

amounts to the fact that there is a well-defined continuous homomorphism

Z5[[(y− 2)]]/(y− i)→Z/5Z taking y to 2.

6 A Problem in Deformation Theory

6.1 Deforming endomorphisms

Let A be an abelian variety of dimension g over a perfect field k of characteristic p

and let r be the rank over Z of Endk(A) (it is finite and at most 4g2). Let (R,mR) be a

local artinian ring with residue field k= R/mR of characteristic p. Let nR be the minimal

positive integer such that mnR
R = 0. Let tR be the least positive integer such that ptR ∈m

p−1
R .

Let A/R be a deformation of A. By that we mean that A→ Spec(R) is an abelian

scheme and that there are given closed immersions:

A

��

A

��

� ���

Spec(R) Spec(k)� ���
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Genus 2 Curves with Complex Multiplication 1119

By a fundamental result of Grothendieck, we have an inclusion of rings

EndR(A) ↪→Endk(A).

Let us define the magnitudes (a priori possibly infinite)

i(A/R)= [Endk(A) : EndR(A)]

(the index of EndR(A) in Endk(A)), and

i(R)= inf{i(A/R) : A/R a deformation of A}, (6.1)

I(R)= sup{i(A/R) : A/R a deformation of A}. (6.2)

These depend on Abut we suppress that from the notation. We are interested in studying

i(A/R), i(R) and I(R). Although we provide below some general results, our focus later

is on the case of elliptic curves. The general case certainly deserves further study, but it

will not be carried out here. The proof of the following proposition is given Section 6.3,

after we review Grothendieck’s crystalline deformation theory.

Proposition 6.1. The quantity i(A/R) is finite and is a power of p. So are i(R) and I(R).

The following inequalities hold:

1≤ i(R)≤ I(R)≤ p(r−1)tR"(nR−1)/(p−1)#. �

Corollary 6.2. Let K be a CM field and O′ an order of K. Let A→ Spec(R) be an abelian

scheme over a d.v.r. (R,mR) whose residue field is a perfect field k of characteristic p,

and suppose that we are given an optimal embedding ι : O′ ↪→EndR(A), that is, ι(K) ∩
EndR(A)=O′. Let O⊇O′ be the optimally embedded order of K in Endk(A⊗ k). Then

[O :O′] is a power of p. �

Proof. Let An= A (mod mn
R) and Rn= R/mn

R. We have

O′ =
⋂

n

ι(K) ∩ EndRn(An).

Thus, [O :O′]= infn{[O : ι(K) ∩ EndRn(An)]}, which must be equal to [O : ι(K) ∩ EndRn0
(An0)]

for any sufficiently large n0. Since [O : ι(K) ∩ EndRn0
(An0)] divides [EndR1(A1) :

EndRn0
(An0)], it is a power of p. �
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1120 E. Z. Goren and K. E. Lauter

Example 6.3 (of Corollary 6.2). Suppose that E is an elliptic curve over a number field

M with complex multiplication by an optimally embedded order O′ of a quadratic imag-

inary field K. Let p be a prime ideal of M of residue characteristic p, and assume that

E has good reduction modulo p, denoted E ′, and that the conductor of O′ is prime to p.

Then O′ is optimally embedded in End(E ′).

On the other hand, the conductor always becomes smaller when it is divisible by

p. Suppose that E has supersingular reduction, OK =Z[δ] and O′ =Z[prδ], where r ∈Z.

One verifies that prδ has degree divisible by p2. Since E ′ is supersingular any isogeny

of degree p2 vanishes on E ′[p] and it follows that rδ is also an isogeny of E ′. It is an

interesting situation. Because O′ is optimally embedded in End(E), the kernel of the

multiplication-by-p map on the finite flat group scheme Ker[prδ] has order p generically,

but order p2 modulo p. This example is well known but is usually proved by other tech-

niques. See, for example [34, Theorem 5, Section 13.2]. �

Proposition 6.4. Let A be an abelian variety over an algebraically closed field k of

characteristic p.

1. Let O⊂End(A) be a set. Let Ru be the universal formal deformation space

of A. There is closed subscheme ZO which is universal for the property of

extending O to a deformation.

2. Let n be an integer. There is a closed subscheme of Ru that is universal for

deformations A of A such that [End(A) : End(A)]|pn. (The same holds true if

we wish to work with elementary divisors for the quotient abelian group

End(A)/End(A).) �

Proposition 6.4 is folklore. The first assertion is proved in [11, Lemma 4.3.5]. The

proof consists of verifying Schlessinger’s criteria for pro-representability. The second

assertion follows immediately from the first given that there are only finitely many sub-

rings of a given index (let alone of given elementary divisors) and they are all finitely

generated as Z-modules.

6.2 Crystalline deformation theory

Our main reference here is Grothendieck’s monograph [23]. First recall the notion of

divided powers structure (d.p.) on a pair (R, I ) consisting of a ring R and an ideal I � R

[23, Chapitre IV, Section 1.1]. This is a sequence of functions γn : I → I,n= 1,2,3, . . . that
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Genus 2 Curves with Complex Multiplication 1121

“behave like” xn/n!,n= 1,2,3, . . ., that is, the following properties hold true:

1. γ1(x)= x;

2. γn(x+ y)= γn(x)+
∑n−1

i=1 γn−i(x)γi(y)+ γn(y);

3. γn(xy)= xnγn(y) for x∈ R, y∈ I ;

4. γm(γn(x))= (mn)!
(n!)mm!γmn(x);

5. γm(x)γn(x)= (m+n)!
m!n! γm+n(x).

The axioms imply the identities

xn=n!γn(x), x∈ I, n= 1,2,3 . . . .

Hence, if R is an integral domain, whose quotient field is of characteristic 0, there is at

most one d.p. structure on I . It is given by γn(x)= xn/n!. This d.p. structure is well defined

if xn/n! ∈ I for all x∈ I,n= 1,2,3, . . .. A d.p. structure is called nilpotent if there is an N,

such that for any positive integers a1, . . . ,ar with
∑r

i=1 ai ≥ N and elements x1, . . . , xr of

I , we have γa1(x1)γa2(x2) · · · γar (xr)= 0. Note that I itself is then nilpotent.

Example 6.5. Let p be a prime. Suppose that I p= 0 and that 1,2,3, . . . p− 1 are invert-

ible in R, then we may define γn(x)= xn/n!,n= 1,2, . . . , p− 1 and γn(x)= 0,n≥ p. This is

a nilpotent d.p. structure with N = p. �

Example 6.6. Let (R, I ) be a discrete valuation ring of mixed characteristic (0, p) and

uniformizer π . Normalize the valuation so that val(p)= 1 and val(π)= 1/e. We have

πn/n! ∈ I if and only if n/e≥ (n− sn)/(p− 1), where sn is the sum of the digits in the

p-adic development of n. See [23, Chapter IV, Section 1.3.] That is, πn/n! ∈ I for all n≥ 1

iff e≤ p− 1.

If R has a d.p. structure, that is, e≤ p− 1, then we have an induced d.p. struc-

ture on (R/I N, I/I N), which is nilpotent of level N if e< p− 1, and say then that the

d.p. structure on (R, I ) is topologically nilpotent. The condition e< p− 1 is necessary

for that. �

The theorem that we need is in [23, Chapter V, Section 4]. Following the notation

there, we use D∗(A)S to denote the relative de Rham cohomology H1
dR(A/S). It will take us

too long to define the notions of the crystalline site and crystals in general. For that see

[23]. We just note a particular example of that theorem: Let S ↪→ S′ be a closed immersion

of affine schemes, Spec(R)→ Spec(R′), where R′ → R is a surjective ring homomorphism

with kernel I that is nilpotent. This is called a “nilpotent thickening of S by S′. We will
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1122 E. Z. Goren and K. E. Lauter

be interested in the case where I is equipped with nilpotent d.p. If we globalize this

situation, then we arrive at the assumption of the following theorem.

Theorem 6.7. Let S be a scheme and S′ nilpotent thickening of S with d.p. which is

locally nilpotent. Consider the natural functor from abelian schemes over S′ to the cate-

gory of couples (A,Fil1
) of an abelian scheme A over S and a submodule, locally a direct

summand, Fil1 of D∗(A)S′ , which is a prolongation of Fil1D∗(A)S =ωA. This functor is an

equivalence of categories. �

Example 6.8. Let K be a quadratic imaginary field and OK,m be the order of conductor

m in K and say pa‖m, m= pan. Let E be a superspecial elliptic curve over F̄p with an

action of OK,n. One may wish to calculate the deformations of E to which the action of the

subring OK,m of OK,n extends. (Note that this is the general situation by Example 6.3.)

Unfortunately, such a calculation is not accessible via crystalline deformation theory.

For example, consider such deformations to characteristic zero that are defined over a

d.v.r. R with d.p. Every such deformation E defines then a submodule of H1
crys(E/R)=

H1
crys(E/W(F̄p))⊗ R, which is a direct summand of rank 1 extending the Hodge–de Rham

filtration on H1
dR(E/F̄p). We assume such a deformation exists, which means that there

are two embeddings ι1, ι2 :OK,n→ R, the first induced from the action of OK,n on the

tangent space and the second is its Galois twist. We have H1
crys(E/R)=OK,n⊗Z R ↪→ R⊕

R by (ι1 ⊗ 1, ι2 ⊗ 1). If p �= 2 is unramified, then this is an isomorphism of rings and

under this isomorphism the order of conductor m is sent to the subring Oa := {(x, y) ∈
R⊕ R : x≡ y (mod pa)}, generated as an R-module by (1,1), (pa,−pa). A direct summand

R-module of rank 1 of R2 is given by (x, y) with either x or y a unit. To be preserved

under Oa we must have x= 0 or y= 0. Thus, we see that there is a unique deformation

for which the action of Oa extends, and then also O0 acts. The conclusion is that elliptic

curves over a finite extension of Qp on which OK,m acts optimally are not defined over

a base affording d.p. That is, the ramification index is at least p. Of course, the theory

of complex multiplication and class field theory give more precise results. It remains an

interesting problem to actually calculate the closed subscheme of the deformation space

of E to which the action of OK,m extends. �

6.3 Proof of Proposition 6.1

We remark that there are many cases where i(R)= 1. An obvious example is when R= k[ε]

and we take the constant deformation A= A⊗k k[ε]. Interesting examples can be given

in the case of ordinary abelian varieties using Serre–Tate local parameters [32].
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Genus 2 Curves with Complex Multiplication 1123

Let (R,mR) be a local artinian ring with residue field k= R/mR. Let nR be the

minimal positive integer such that mnR
R = 0, as before. We define successively rings

R0 = R/mR, R1 = R/m1+(p−1)
R , R2 = R/m1+2(p−1)

R , . . . , R� = R/m1+�(p−1)
R ,

where �= "(nR − 1)/(p− 1)#. There are canonical surjections

R��R�−1� · · ·�R1�R0,

and we let I j =m
1+( j−1)(p−1)
R /m

1+ j(p−1)
R , j = 1,2, . . . , �, be the kernel of the surjection

Rj → Rj−1. We note that I p
j = 0 in Rj and hence the morphism

Spec(Rj−1) ↪→ Spec(Rj),

is a nil-immersion with canonical d.p. structure as in Example 6.5. Let tR be the minimal

power of p such that ptR ∈m
p−1
R . Then ptR I j = 0 in Rj.

Now, by arguing inductively on j, we reduce to the following situation. Let

A→ Spec(Rj−1) be an abelian scheme of relative dimension g and let A→ Spec(Rj) a

deformation of it. We need to show that [End(A) : End(A)] is finite and is equal to a power

of p. By Theorem 6.7, the closed immersion of abelian schemes A ↪→A corresponds func-

torially to a diagram

R2g
j

�� �� R2g
j−1 =H1

dR(A/Rj−1)

∪ ∪

ω j �� �� ω j−1 = H0(A,Ω1
A/Rj−1

)

where ω j−1, ω j are free R-modules that are rank g direct summands of R2g
j−1 and R2g

j ,

respectively. In particular, an endomorphism f ∈End(A) acts canonically and compati-

bly on R2g
j−1 and R2g

j and preserves ω j−1. It extends to an endomorphism of A if and only

if it preserves ω j. Consider then ptR f . Let x∈ω j and choose a y∈ω j such that f(x)= y

(mod I j), that is, equality holds between the images of f(x) and y in ω j−1. Then f(x)− y

is in the kernel of the homomorphism ω j →ω j−1, which is certainly contained in I j R
2g
j .

Since ptR I j = 0, we conclude that ptR f(x)− ptR y= 0 and so ptR f(x) ∈ω j.
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1124 E. Z. Goren and K. E. Lauter

We note that the same reasoning gives that if s · f extends to an endomorphism

of A and (p, s)= 1 then f also extends, because s is invertible in R. This can also be

concluded from the Serre–Tate theory [32] that gives End(A)= { f ∈End(A[p∞]) : f |A[p∞] =
g|A[p∞] for some g∈End(A)}, namely, the endomorphisms of A are the endomorphisms of

its p-divisible group whose restriction to the p-divisible group of A is induced from a

bona fide endomorphism of A.

We have r − 1 appearing in the power of p in the statement of the proposition,

namely there is “a saving of 1”, because Z⊆End(A) and is a direct summand in it (as an

abelian group). This concludes the proof of Proposition 6.1.

6.4 Supersingular elliptic curves

Let k= F̄p. Let V be a complete d.v.r. containing the completion of the maximal unram-

ified extension W(k) of Zp and of ramification index eV < p− 1. Then V → k has topo-

logically nilpotent d.p.’s coming from γn(x)= xn/n! in V . In fact, using results of Zink

(see [61, remarks on p. 6]), it is enough to assume that eV ≤ p− 1 and so that V has d.p.

structure (not necessarily nilpotent). The advantage is that p= 2 is allowed too, as long

as it is unramified.

Let E/k be a supersingular elliptic curve. Recall that End(E) is a maximal

order in the rational quaternion algebra Bp,∞ ramified only at p and ∞. We apply

Grothendieck’s crystalline deformation theory to study for a deformation E/R of E the

index [End(E) : End(E)].

Lemma 6.9. The following holds:

1. [End(E) : End(E)]= [End(E)⊗ Zp : End(E)⊗ Zp].

2. End(E)⊗ Zp
∼= {( a b

pbσ aσ
)

: a,b∈W(Fp2)
}=: D, where σ is the Frobenius auto-

morphism.

3. There is a basis {e1, e2} of H1
crys(E/W(k)) with respect to which the action of

End(E) is given as matrices as in the above point 2. �

Proof. The first claim holds, because by Proposition 6.1 the index is a power of p. To

prove the rest, we note that E can be defined over Fp2 and so H1
crys(E/W(k)) has a basis

e1 and e2 defined over Fp2 such that the σ -linear Frobenius map is given by the matrix(
0 1
p 0

)
with respect to this basis. Now, we have End(E)⊗ Zp

∼=End(E [p∞]) (this uses Tate’s

theorem at p plus the fact that the Galois action, being in the commutant of the quater-

nion algebra End0
(E) is central), which is in turn isomorphic to the endomorphisms of
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Genus 2 Curves with Complex Multiplication 1125

H1
crys(E/W(k)) commuting with

(
0 1
p 0

)
. The condition then comes out

(
a b

c d

)(
0 1

p 0

)
=
(

0 1

p 0

)(
aσ bσ

cσ dσ

)
,

that is, (
pb a

pd c

)
=
(

cσ dσ

paσ pbσ

)
,

from which now both (2) and (3) follow. �

Proposition 6.10. In the basis {e1, e2} the Hodge filtration on H1
dR(E/k) is given by the

image of the span of e1 in H1
crys(E/W(k)).

Let n be a positive integer. Any deformation E of E to R := V/mn
V , equipped with

its canonical d.p.’s structure, is given by the span of a vector in R2 = H1
dR(E/R) of the

form (1, y) with y∈mR and so we denote it Ey. In particular, an element
(

a b
pbσ aσ

)
in

End(E)⊗ Zp extends to the deformation Ey if and only if

(
a b

pbσ aσ

)(
1

y

)
∈ SpanR

〈(
1

y

)〉
. �

(The proof is straightforward.)

Theorem 6.11. Let V be as in Proposition 6.10. Then

p2("n/eV #−1) ≤ i(V/mn
V )≤ I(V/mn

V )≤ p3(n−1).

Furthermore, these bounds are optimal. �

Proof. Let R= V/mn
V and Dy=

{(
a b

pbσ aσ
)

: a,b∈W(Fp2),by2+ (a−aσ )y− pbσ ≡ 0 (mod mn
V )
}
.

Note that

(
a b

pbσ aσ

)(
1

y

)
∈ SpanR

〈(
1

y

)〉
⇔ by2 + (a− aσ )y− pbσ ≡ 0 (mod mn

V ),
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1126 E. Z. Goren and K. E. Lauter

and so Dy is a ring, identified with End(Ey)⊗ Zp by Proposition 6.10. We note that

the map

ϕ : D→ R,

(
a b

pbσ aσ

)
�→ by2 + (a− aσ )y− pbσ ,

is a Zp-linear map whose kernel is Dy. We shall give a lower bound on [D : Dy] by bound-

ing �D/Dy= �ϕ(D) from below.

Suppose that p �= 2. Let {1, α} be a Zp-basis of W(Fp2) such that ασ =−α and α is a

unit. We normalize the p-adic valuation so that val(p)= 1. If A, B ∈Zp then val(A+ Bα)=
val(A− Bα)=min{val(A),val(B)}. We note that

ϕ(D)= SpanZp
{y2 − p, α(y2 + p), αy}.

Consider the linear combination

C (A, B)= A(y2 − p)+ Bα(y2 + p), A, B ∈Zp.

We note that

val(C (A, B)) < γ := n

ev
&⇒ C (A, B) �= 0 in R= V/mn

V .

Let y denote also some lift of y∈ R to V . We distinguish cases:

1. val(y) > 1/2. We write

C (A, B)= y2(A+ Bα)− p(A− Bα).

Since val(A+ Bα)= val(A− Bα) and val(y2) > 1, we find that

val(C (A, B))= 1+min{val(A),val(B)}.

It follows that as long as either val(A) or val(B) are less than γ − 1, or, equiv-

alently, are less than "γ # − 1, we have C (A, B) �= 0 (mod mn
V ). Equivalently,

the group homomorphism

Z/p"γ #−1 × Z/p"γ #−1 −→ R, (A, B) �→ C (A, B),

is injective. We conclude that �ϕ(D)≥ p2("γ #−1).
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Genus 2 Curves with Complex Multiplication 1127

2. val(y) < 1/2. In this case, val(y2) < 1 and so we find that val(C (A, B))=
val(y2)+min{val(A),val(B)}< 1+min{val(A),val(B)} and we get the same

estimate (we do not bother with improving it).

3. val(y)= 1/2. In this case, we note that either val(y2 − p)= 1 or val(y2 +
p)= 1. So, either val(y2 − p)= 1 or val(α(y2 + p))= 1. We assume that

val(y2 − p)= 1, as the other case is entirely similar. In this case, we consider

the linear combination

D(A, B)= A(y2 − p)+ Bαy, A, B ∈Zp.

Since val(A(y2 − p))= val(A)+ 1 and val(Bαy)= val(B)+ 1/2 and, in particu-

lar, are never equal, we find that

val(D(A, B))=min{1+ val(A),1/2+ val(B)},

and, as long as val(A) < γ − 1 or val(B) < γ − 1/2, D(A, B) �= 0 ∈ R. Weaken-

ing the conclusion to val(A) < γ − 1 and val(B) < γ − 1, we find the previous

estimate.

Next consider the case p= 2. Represent W(Fp2) as W(Fp)[t] with t2 + t− 1= 0. A key point

turns out to be that α = t− tσ is a unit, and for A, B ∈Zp we have

val(A+ Bt)= val(A+ Btσ )=min{val(A),val(B)}.

One checks that

ϕ(D)= SpanZp
{y2 − p, ty2 − ptσ , αy}.

We let now

C (A, B)= A(y2 − p)+ B(ty2 − ptσ ), D(A, B)= A(y2 − p)+ Bαy, A, B ∈Zp.

As before the analysis is divided into three cases: (i) val(y) > 1/2, (ii) val(y) > 1/2 and

val(y)= 1/2, which are treated in an entirely similar manner. In cases (i) and (ii) it is

helpful to write C (A, B)= y2(A+ Bt)− p(A+ Btσ ) and in case (iii) first one argues that

we cannot have both val(y2 − p) > 1 and val(ty2 − ptσ ) > 1; assuming without loss of gen-

erality that val(y2 − p)= 1, one uses D(A, B) for the estimate, as before.
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1128 E. Z. Goren and K. E. Lauter

The upper bound on I(V/mn
V ) follows using the same technique as in the proof

of Proposition 6.1, which itself gives a slightly weaker exponent (3 · " p−1
eV
# · " n−1

p−1#).
We now show that the bounds in Theorem 6.11 are optimal.

Let E be a supersingular elliptic curve over F̄p with an action of the ring of

integers OK of a quadratic imaginary field K. The prime p is either inert or ramified in

K. Let Kp denote the completion of K at the prime p above p. Let V be the valuation ring

of W(F̄p)⊗W(OK/p) Kp. Gross [22] studies the deformations of E to which the action of OK

extends. He obtains that the endomorphism ring of such a deformation over V/(meV n
V )=

V/(pn) is precisely OK + pn−1EndF̄p
(E) and, in particular, of index p2(n−1) in End(E). This

shows that our lower bound for i(V/mn
V ) is the best possible.

A concrete case of a deformation where index p2(n−1) is achieved is the case when

V =W(Fp2), y= p> 2, n= 2 and eV = 1. Note that in that case the target of the map ϕ is

W(Fp2)/(p2), which has cardinality p4. It is also easily verified that ϕ(D) is generated in

this case over Zp/(p2) by p and αp and so has cardinality p2. We conclude that Dy has

index p2. In fact, Dy are the matrices in D defined by the condition a− aσ = bσ (mod p).

Thus, Dy contains pD and modulo pD it is given by the basis (a,b)= (1,0) and (a,b)=
(α,−2ασ ). If we take any quadratic imaginary field K =Q(

√−d) (d square-free integer)

in which p is inert and let α =√−d then we find one of the deformations considered by

Gross for K. This finishes the discussion of the lower bound.

Now consider the case of a (V,mV ), which is unramified over Qp, where p> 2, and

V satisties some additional conditions stipulated below. Let y∈mV be an element with

valuation 1, such that y �∈W(Fp2), and such that val(y− y′)= 1 for every Galois conjugate

y′ �= y of y over Qp. For example, y could be pζ where ζ is an �th root of unity where � �= p

is a large enough prime. The ring V must be large enough to contain such an element y,

and that is the only condition put on it.

For such a choice of y, suppose that there are A, B,C ∈Zp such that

A(y2 − p)+ Bα(y2 + p)+ Cαy= (Bα + A) · y2 + Cα · y+ p(Bα − A)≡ 0 (mod mn
V ). (6.3)

Observe that val(Bα − A)= val(Bα + A). If val(Bα + A) <n− 1 then, since val(y)= 1,

Equation (6.3) implies that val(C )= val(Bα − A) and so val(C )= val(Bα + A) as well. We

get an equation

y2 + Cα

Bα + A
y+ p

Bα − A

Bα + A
≡ y

(
y+ Cα

Bα + A

)
≡ 0 (mod mV ),

which is an equation with integral coefficients that holds in V/mV . By Hensel’s lemma

it follows that the polynomial Y2 + Cα
Bα+AY + pBα−A

Bα+A in the variable Y has a solution,
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Genus 2 Curves with Complex Multiplication 1129

say y0, in W(Fp2) lifting 0. Moreover, if y′0 is the other solution (so that f(Y)=Y2 +
Cα

Bα+AY + pBα−A
Bα+A = (Y − y0)(Y − y′0)) then val(y0 − y′0)= 0, as y′0 reduces to a unit modulo

the maximal ideal. Note that, since val(Bα + A) <n− 1 and (Bα + A) f(y)≡ 0 (mod mn
V ),

we have f(y)= (y− y0)(y− y′0)≡ 0 (mod m2
V ). Since val(y)= 1, y− y′0 is a unit and so

val(y− y0)≥ 2. It follows that y0 is closer to y than any of y’s conjugates and so, by

Krasner’s lemma, y∈Qp(y0)=W(Fp2)⊗Zp Qp and that is a contradiction.

Thus, for y chosen as above, a congruence (6.3) implies that val(Bα + A)≥n− 1.

We get then that min{val(A),val(B)} =n− 1 and then (6.3) gives that val(C )≥n− 1 as

well. This shows that for such a choice of y we get that � ϕ(D) (mod pn) is p3(n−1) and

so the upper bound in the theorem can be achieved. This shows that the bounds are

optimal. �

6.5 Bound in the case of high ramification

As above, let V be a discrete valuation ring, which is a finite extension of W(F̄p) with

absolute ramification index eV . As before, let E be a supersingular elliptic curve over F̄p.

The purpose of this section is to provide a lower bound on i(V/mn
V ) (defined in terms of

deformations E of E to V/mn
V ) which is valid regardless of whether the ramification index

eV is smaller than p or not. The proof uses different techniques than those used above.

Consider a deformation E over R where R= V/mn
V . The Hodge filtration

0→ H0(E,Ω1
E/R)→H1

dR(E/R),

is stable under End(E) and so there is a resulting ring homomorphism

ϕ : End(E)→ T(R),

where T(R) are the upper triangular matrices with entries in R,

T(R)=
{(

a b

0 d

)
: a,b,d∈ R

}
.

Let O′ =End(E)⊗Z Zp. As we have proved above, [End(E) : End(E)]= [O : O′], where O is

the maximal order of Bp,∞ ⊗Q Qp obtained as the p-completion of End(E).

Let O′′ ⊆O′ be a sub-order. There is an induced ring homomorphism

ϕ :O′′ → T(R).
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1130 E. Z. Goren and K. E. Lauter

Let K =Ker(ϕ), let

I (R)=
{(

0 b

0 0

)
: a,b,d∈ R

}
,

and let P = ϕ−1(I (R)). Note that I (R) is the kernel of the ring homomorphism

T(R)→ R⊕ R,

{(
a b

0 d

)
: a,b,d∈ R

}
�→ (a,d).

It follows that I (R) is a two-sided ideal, such that T(R)/I (R) is a commutative ring.

Moreover, I (R)2 = 0. As consequence, P is a two-sided ideal of O′′ such that P 2 ⊂ K,

where K = ker(ϕ) and O′′/P is commutative.

The following lemmas will be proved in the next subsection.

Lemma 6.12. Let ON =Zp+ pNO. Then, ON is an order of Bp,∞ ⊗Qp contained in O. In

the situation above, suppose that O′ ⊇ON , then, in the ring R, p4N+2 = 0. �

Lemma 6.13. For an order O′ ⊆O, let Ind(O′)= logp([O : O′]) and Appr(O′)=min{N :

O′ ⊇ON}. Then, Appr(O′)≤ Ind(O′). �

Assume the lemmas. Given the order O′, we have O′ ⊇ON, where N =Appr(O′)

and, by Lemma 6.12, p4N+2 = 0. Since the minimal power of p which is zero in R is "n/eV#
we conclude that (4 · Appr(O′)+ 2)≥ "n/eV#. Combining it with Lemma 6.13, we find that

Ind(O′)≥ 1
4 ("n/eV# − 2). To summarize, we have proved the following theorem.

Theorem 6.14. With the above notation,

p
1
4 ("n/eV #−2) ≤ i(V/mn

V ). �

6.5.1 Proof of the lemmas

We use the presentation for the maximal order O given above,

O=
{(

a b

pbσ aσ

)
: a,b∈W(F2

p)

}
.

The first statement in Lemma 6.12 is clear. Consider the situation where

O′ ⊇ON =Zp+ pNO. We have a homomorphism ϕ :ON → T(R) with kernel K and the
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Genus 2 Curves with Complex Multiplication 1131

ideal P = ϕ−1(I (R)). As we have noted P 2 ⊆ K. Let [x, y] := xy− yx. Since ON/P is commu-

tative, we must have [x, y] ∈ P for all x, y∈On, and so [x, y]2 ∈ K for all x, y∈ON . Consider

the elements

x= pN

(
1

p

)
, y= pN

(
t

ptσ

)
,

where for p �= 2 we choose t to be a unit in W(Fp2) such that tσ =−t and for t= 2 we

choose t∈W(Fp2) such that t2 + t− 1= 0. In both cases t− tσ is a unit whose square is a

unit in Zp, hence in ON . Now,

[x, y]= p2N+1

(
tσ − t

t− tσ

)
.

We conclude that

p4N+2

(
(tσ − t)2

(t− tσ )2

)
∈ K

and so that p4N+2 = 0 in R. Lemma 6.12 follows.

Lemma 6.13 is in fact trivial. The abelian group O/O′ has order pInd(O′) and thus,

if a∈O then pInd(O′) · a= 0 in O/O′, namely pInd(O′) ·O⊆O′.

Remark. One may ask whether the bound in Lemma 6.13 can be improved. The answer

to that is no. The reader is referred to a paper by Brzezinski [5]. In particular, in Propo-

sition 5.6 of that paper, we find the classification of all Gorenstein orders in O. Exami-

nation of the classification shows that our lemma cannot be improved; More precisely,

in cases (a)–(c1) one actually finds that Appr(O′)≤ "Ind(O′)/2# (and the passage to non-

Gorenstein order is not a problem using Proposition 1.4 of that paper), but this does not

persist in case (c2). �

7 The Main Theorem

Let K be a primitive CM field of degree four over Q. Let K+ =Q(
√

d) where d is a positive

square-free integer. Write

K =Q(
√

d)(
√

r), r = α + β
√

d' 0, α, β ∈Z.

(That is, r is negative under both embeddings of K+ into R.)
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1132 E. Z. Goren and K. E. Lauter

Let τ ∈ Sp(4,Z)\H2 be a point such that the associated principally polarized

abelian variety Aτ has CM by OK . Let L = NHK∗ , where N is the normal closure of K

over Q, K∗ is the reflex field of K with respect to the CM type determined by τ , and

HK∗ is the Hilbert class field of K∗. Let pL be a prime of L above the rational prime p.

We fix the notation as in Section 3. In particular, the CM type is Φ as given there and

we have prime ideals pN,1 = pL ∩ N, pK,1 = pL ∩ K, pK∗,1 = pL ∩ K∗, and p, corresponding

to the fields in the diagram:

���
�

���
L = NHK∗

N
���� ���

HK∗

K
��

K∗
��

Q

(where possibly K = K∗, in which case N = K as well). Let e= e(pN,1/p) be the ramifica-

tion index of pN,1 over p.

Theorem 7.1. Let τ be a CM point, as above. Let f = g/Θk be a modular function of

level one on H2 where:

1. The modular form Θ is −4χ10 in Igusa’s notation, and is equal to the product

of the squares of the ten Riemann theta constants with even integral char-

acteristics, normalized to have Fourier coefficients that are integers and of

g.c.d. 1.

2. The modular form g is a level one modular form of weight 10k with integral

Fourier coefficients.

Then f(τ ) ∈ L. If valpL ( f(τ )) < 0 then

valpL ( f(τ ))≥
⎧⎨
⎩−2ek[logp(d · Tr(r)2)+ 1], e≤ p− 1,

−16ek[logp(d · Tr(r)2)− 1
2 ], any other case.

(7.1)

Furthermore, unless we are in the situation of superspecial reduction, namely, we have

a check mark in the last column of the tables in Section 3, valpL ( f(τ ))≥ 0. The valu-

ation valpL is normalized so that a uniformizer at pL has valuation 1. In addition, if

valpL ( f(τ )) < 0, then

p≤ 4 · d · Tr(r)2. �
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Genus 2 Curves with Complex Multiplication 1133

Remark. We note that valpN = valpL ; that is, the ramification index e is determined by

the decomposition of p in N and so is visibly bounded. In addition, f(τ ) ∈ HK∗ and if we

normalize the valuation differently, taking a valuation valp such that valp(p)= 1, we can

restate (7.1) as follows:

valp( f(τ ))≥
⎧⎨
⎩−2k[logp(d · Tr(r)2)+ 1], e≤ p− 1,

−16k[logp(d · Tr(r)2)− 1
2 ], any other case.

(7.2)

Finally, we remark that the expression logp(d · Tr(r)2)− 1
2 is always nonnegative

if p≤ 4 · d · Tr(r)2. �

Proof. To begin with, the last statement of the theorem is the main result of [21]; that

the estimates of [21] in fact yield a slightly sharper inequality than stated there was

pointed to us by Marco Streng.

Let v= valpL ( f(τ )). We may assume that v < 0. To conceptualize the proof, we

divide it into steps.

Step 1: Adding level structure. Let n≥ 3 be an integer prime to p. We abuse nota-

tion and identify A2,n(C)with Γ (n)\H2, where Γ (n)⊆ Sp(4,Z) is the principal congruence

subgroup of matrices congruent to 1 modulo n. Let τn∈A2,n such that

πn(τn)= τ,

where πn: A2,n→A2,1 is the natural projection. The point τn can be defined over the field

Ln, where Ln= L(Aτ [n]) is the field obtained from L by adjoining the n-torsion points of

Aτ . The extension Ln/L is unramified at p (cf. proof of Lemma 2.3). We let pLn be a prime

of Ln such that pLn ∩ L = pL .

Lemma 7.2. Let fn= f ◦ πn. Then,

valpLn
( fn(τn))= valpL ( f(τ )).

�

Proof. This is clear: fn(τn)= f(τ ) and the extension Ln/L is unramified at pL . �

It is therefore enough to prove the same bound given in (7.1) but for valpLn
( fn(τn)).

Step 2: Reducing to a geometric problem.

Lemma 7.3. Let ( fn) be the divisor of fn on A2,n. Let ( f)∞ be its polar part. Let H̄1,n be

the Humbert divisor of invariant 1 on A2,n. Then,

( f)∞ = 4k · H̄1,n. �
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1134 E. Z. Goren and K. E. Lauter

Proof. It is well known that Θ vanishes to order 2 on H̄1,1. The lemma then follows

immediately from Lemma 2.2. �

By Lemma 2.3, the abelian variety Aτn has good reduction at pLn. Let Λ be the

ring of integers of L̃n (the completion of Ln at pLn) and P its maximal ideal. Then there is

a morphism

ι :Λ→A2,n,

corresponding to Aτn.

Proposition 7.4. Let A := Aτn. There is an unramified field extension M of L̃n of degree

at most 2, with ring of integers V , such that

A⊗ (V/mw
V )
∼=E× E′,

as polarized abelian varieties, where E and E′ are elliptic curves over V/mw
V , and where

w= "−v/4k#. �

Proof. By Lemma 5.1, applied to 1/ f , the morphism ι induces a morphism

ι :Λ/Pw→ H̄1,n.

In the notation of Proposition 4.2, we have H̄1,n= β(Bn).

Consider the cartesian diagram

S ��

��

Bn

β

��

�

Spec(Λ/Pw) �� H̄1,n

Since β : Bn→ H̄1,n is étale of degree 2, the morphism S→ Spec(Λ/Pw) is étale and affine,

and so S is an affine scheme, possibly disconnected. We can then choose a field M, as

in the statement of the proposition, such that Spec(V/mw
V ) is equal to S (or one of its
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connected components). We therefore get a point

Spec(V/mw
V )→Bn,

lifting ι, and that means precisely that A⊗ V/mw
V is isomorphic, as a polarized abelian

variety with level nstructure, to a product of elliptic curves over V/mw
V , with the natural

product polarization and some level n structure. �

Note that valmV ( fn(τn))= valpLn
( fn(τn)) and so it is enough to show that (7.1) holds

for valmV ( fn(τn)). Let us reset our notation and recall that at this point we have a prin-

cipally polarized abelian surface A= Aτn ⊗ V with CM by OK , having good reduction at

mV and such that

A⊗ V/mw
V
∼= (E× E′, λ1 × λ2),

where E and E′, are elliptic curves over V/mw
V . Recall also that V is an unramified exten-

sion of the completion of L = NHK∗ at the prime pL .

Step 3: Reduction to a statement about End(E).

Our notation for the field K =Q(
√

d)(
√

r) is precisely as in [21]. As in [21], one

argues that E and E′ have supersingular reduction, denoted E and E ′, respectively. One

writes

√
d �→

(
a b

b∨ −a

)
,

√
r �→

(
x y

−y∨ w

)
,

as elements of

Hom(E× E′)=
(

End(E) Hom(E′,E)

Hom(E,E′) End(E′)

)
.

(We are using ∨ to denote the dual isogeny. The w appearing in the matrix should not

be confused with the w defined in Proposition 7.4; the notation is chosen so as to make

comparison with [21] easier and should not cause confusion.) Note that b∈Hom(E′,E)

is an isogeny of degree bb∨ ≤d. Using b, we may view End(E× E′) as a subring of

M2(End0
(E)) by

(
ϕi j

)
�→

(
1

(b∨)−1

)(
ϕi j

)(1

b∨

)
.
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Appying this to the matrices defining
√

d and
√

r, we find the matrices

(
a bb∨

1 −a

)
,

(
x yb∨

− 1
bb∨ by∨ 1

bb∨ bwb∨

)
.

As in [21], the elements 1, x, yb∨, and xyb∨, which are endomorphisms of E (and not

just rational endomorphisms), must be linearly independent over Z (one shows that

otherwise they generate a quadratic imaginary subfield K1 of Bp,∞ such that we have

K ↪→ M2(K1), leading to a contraction). As in [21, p. 464], one finds that the norms of

these elements are bounded, respectively, by

1, δ2,dδ1,dδ1δ2,

where

δ1 = |α| − |β| · |a|, δ2 = |α| + |β| · |a|.

It follows that

[End(E) : End(E)]≤ [End(E) : Z[1, x, yb∨, xyb∨]]≤ 4d(δ1δ2)/p.

(Cf. [21, p. 460] for the last inequality.)

Step 4: Input from deformation theory. We now utilize the results of Section

6 to bound the index [End(E) : End(E)] from below. Recall that E is an elliptic curve

over V/mw
V and V is an unramified extension of the completion of L = NHK∗ , hence of N

completed at the prime pN,1. Thus, eV – the absolute ramification index of V – is equal to

e= e(pN,1/p).

1. Small ramification. Suppose that e≤ p− 1. By Theorem 6.11,

[End(E) : End(E)]≥ p2("w/e#−1),

and so 2("w/e# − 1)≤ logp(4d(δ1δ2)/p). Since δ1δ2 = α2 − β2a2 ≤ α2 = 1
4 (Tr(r))2,

we find that w/e≤ "w/e# ≤ 1
2 [logp(d · Tr(r)2)+ 1]. Since w= "−v/4k#, it follows

that −v ≤ 4kw≤ 2ek[logp(d · Tr(r)2)+ 1].
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2. High ramification. Suppose that e> p− 1. By Theorem 6.14,

[End(E) : End(E)]≥ p
1
4 ("w/e#−2).

Similar computations yield −v ≤ 16ek
[
logp(d · Tr(r)2)− 1

2

]
. �

7.1 Factorization of class invariants and denominators of Igusa class polynomials

We derive several consequences of Theorem 7.1.

Corollary 7.5. Let K be a quartic primitive CM field, as in the beginning of Section 7

and let hi(x), i = 1,2,3, be the class polynomial defined using the function fi/Θk(i) as in

Section 2.4, Equation (2.10), where k(i)= 6,4,4 for i = 1,2,3, respectively. In the notation

of Theorem 7.1, the coefficient of xdeg(hi)−t in hi(x), which is a rational number, is either

an integer at p, and, otherwise, has valuation valp greater or equal to

− 2t · k(i)[logp(d · Tr(r)2)+ 1], e≤ p− 1,

− 16t · k(i)
[
logp(d · Tr(r)2)− 1

2

]
, else. �

Proof. Straightforward from Theorem 7.1. �

Remark. We remark that this corollary is crucial in bounding the complexity of con-

struction of CM curves of genus 2, by the methods currently used. The corollary is proved

for the invariants that we find convenient; with little effort one can deduce easily such

bound for the Igusa class polynomials appearing in Equation (2.9), which are often used

in the literature. Further, we could have equally proved the corollary for class polyno-

mials formed out of the Igusa coordinates γi (see Section 2.3). In principle, this is “the

right thing to do”, on the other hand, given Proposition 2.1, in practice it suffices to deal

only with (some set of) absolute Igusa invariants. �

Corollary 7.6. Let u(Φ; a, b) be the class invariant defined in [10], associated to frac-

tional ideals a and b of K. Let pL be a prime of L, as in Theorem 7.1 and pHK∗ = pL ∩ HK∗ .

We note that u(Φ; a, b) ∈ HK∗ ⊆ L. We have

|valpHK∗
(u(Φ; a, b))| ≤

⎧⎨
⎩4e∗ · [logp(d · Tr(r)2)+ 1], e≤ p− 1,

32e∗ · [logp(d · Tr(r)2)− 1
2 ], else,

(7.3)

where e∗ is the ramification index of pK∗ = pK∗,1 over p. �
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Proof. We refer to [10] for the detailed definitions. We have

u(Φ, a)= Θ(Φ(a−1))

Θ(Φ(OK))
,

which may also be written as

u(Φ, a)=
(
Θ|γ
Θ

)
(τ ),

where τ is a period matrix for Φ(OK) and, for a−1 an integral ideal, γ ∈GSp(4,Q) is a

matrix with integral entries and determinant Norm(a) (cf. [10, p. 786 and Section 3.2]).

We remark that we may also write

u(Φ, a)=
(

Θ

Θ|γ−1

)
(τ ′),

where τ ′ is a period matrix corresponding to a−1.

Now fix a prime ideal P of Q̄ above the rational prime p. Assume a−1 is an inte-

gral ideal of norm n≥ 3, which is relatively prime to P. We note that both Θ|γ
Θ

and Θ
Θ|γ−1

are modular functions of level n, defined over Q(ζn), and u(Φ, a) is obtained by evaluating

them at a point with CM by OK . We can therefore apply Theorem 7.1, or, more precisely,

the result we have obtained in its proof by passing to level n. We consider both
(
Θ|γ
Θ

)
(τ )

and
(

Θ
Θ|γ−1

)
(τ ′) to get from one a bound on the denominator of u(Φ, a) at P and, from

the other, a bound on the numerator. The points τ and τ ′ correspond to abelian varieties

with CM by OK defined over the compositum L ′ of L and Q(ζn), which does not increase

the ramification index e of p at pL =P ∩ L. We may then consider the valuation at

pL ′ =P ∩ L ′. We conclude that

|valpL′ (u(Φ, a))| ≤
⎧⎨
⎩4e · [logp(d · Tr(r)2)+ 1], e≤ p− 1,

32e · [logp(d · Tr(r)2)− 1
2 ], else.

(7.4)

However, the algebraic number u(Φ, a) actually lies in HK∗ and so we get

|valpHK∗
(u(Φ, a))| ≤

⎧⎨
⎩4e∗ · [logp(d · Tr(r)2)+ 1], e≤ p− 1,

32e∗ · [logp(d · Tr(r)2)− 1
2 ], else.

where e∗ = e(pK∗/p).
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Genus 2 Curves with Complex Multiplication 1139

Let us now consider u(Φ; a, b). The class invariant u(Φ; a, b) depends only on the

ideal class of a and b in the class group of K. Having fixed P, we may assume therefore

that a−1, b−1 are integral and of norm prime to p and ≥ 3. We note the expressions:

u(Φ; a, b)= u(Φ, ab)

u(Φ, a)u(Φ, b)
= Θ(Φ(a−1b−1))Θ(Φ(OK))

Θ(Φ(a−1))Θ(Φ(b−1))
.

Instead of using directly our bound above, we note that for a−1 and b−1 integral ideals,

we may write

u(Φ; a, b)=
(
Θ|γ
Θ

)
(τ ′)

/(
Θ|β
Θ

)
(τ ),

where τ is a period matrix for Φ(OK), τ ′ is a period matrix for Φ(a−1), β, γ ∈GSp(4,Q)

are matrices with integral entries and determinants prime to p. Thus, repeating the

consideration above, we conclude the bound in the corollary. �
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