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Abstract. Let M be the Shimura variety associated with the group
of spinor similitudes of a quadratic space over Q of signature (n,2).
We prove a conjecture of Bruinier-Kudla-Yang, relating the arithmetic
intersection multiplicities of special divisors and big CM points on M
to the central derivatives of certain L-functions.

As an application of this result, we prove an averaged version of
Colmez’s conjecture on the Faltings heights of CM abelian varieties.

Contents

1. Introduction 1
2. Special endomorphisms of Lubin-Tate groups 8
3. CM Shimura varieties 23
4. Orthogonal Shimura varieties 39
5. Big CM cycles on orthogonal Shimura varieties 62
6. Arithmetic intersections and derivatives of L-functions 71
7. Proof of the arithmetic intersection formula 80
8. The height of the tautological bundle 107
9. Colmez’s conjecture 111
References 129

1. Introduction

1.1. The average Colmez conjecture. Let E be a CM field of degree 2d
with maximal totally real subfield F . Let A be an abelian variety over C
of dimension d with complex multiplication by the maximal order OE ⊂ E
and having CM type Φ ⊂ Hom(E,C). In this situation, Colmez [Col93]
has proved that the Faltings height hFalt(A) of A depends only on the pair
(E,Φ), and not on A itself. We denote it by

hFalt
(E,Φ) = h

Falt(A)
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Colmez stated in [loc. cit.] a conjectural formula for hFalt
(E,Φ)

in terms of

the logarithmic derivatives at s = 0 of certain Artin L-functions, constructed
in terms of the purely Galois-theoretic input (E,Φ). The precise conjecture
is recalled in §9.1, where the reader may also find our precise normalization
of the Faltings height.

When d = 1, so E is a quadratic imaginary field, Colmez’s conjecture is a
form of the famous Chowla-Selberg formula. When E/Q is an abelian exten-
sion, Colmez proved his conjecture in [loc. cit.], up to a rational multiple of
log(2). This extra error term was subsequently removed by Obus [Obu13].
When d = 2, Yang [Yan13] was able to prove Colmez’s conjecture in many
cases, including the first known cases of non-abelian extensions.

Our first main result, stated in the text as Theorem 9.5.5, is the proof of
an averaged form of Colmez’s conjecture for a fixed E, obtained by averaging
both sides of the conjectural formula over all CM types.

Theorem A.

1

2d
∑
Φ

hFalt
(E,Φ) = −

1

2
⋅
L′(0, χ)

L(0, χ)
−

1

4
⋅ log ∣

DE

DF
∣ −

d

2
⋅ log(2π).

Here χ ∶ A×
F → {±1} is the quadratic Hecke character determined by the

extension E/F , and L(s,χ) is the usual L-function without the local factors
at archimedean places. The sum on the left is over all CM types of E, and
DE and DF are the discriminants of E and F , respectively.

Remark 1.1.1. Very shortly after this theorem was announced, Yuan-Zhang
also announced a proof; see [YZ15]. The proofs are very different. The
proof of Yuan-Zhang is based on the Gross-Zagier style results of [YZZ13]
for Shimura curves over totally real fields. Our proof, which is inspired by
the d = 2 case found in [Yan13], revolves around the calculation of arith-
metic intersection multiplicities on Shimura varieties of type GSpin(n,2),
and makes essential use of the theory of Borcherds products, as well as
certain Green function calculations of Bruinier-Kudla-Yang [BKY12].

Remark 1.1.2. Tsimerman [Tsi15] has proved that Theorem A implies the
André-Oort conjecture for all Siegel (and hence all abelian type) Shimura
varieties.

1.2. GSpin Shimura varieties and special divisors. Let (V,Q) be a
quadratic space over Q of signature (n,2) with n ≥ 1, and let L ⊂ V be
a maximal lattice; that is, we assume that Q(L) ⊂ Z, but that no lattice
properly containing L has this property. Let L∨ ⊂ V be the dual lattice of
L with respect to the bilinear form

[x, y] = Q(x + y) −Q(x) −Q(y),

and abbreviate DL = [L∨ ∶ L] for the discriminant of L.
To this data one can associate a reductive group G = GSpin(V ) over Q,

a particular compact open subgroup K ⊂ G(Af), and a hermitian domain

D = {z ∈ VC ∶ [z, z] = 0, [z, z] < 0}/C×
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with an action of G(R) by holomorphic automorphisms. The n-dimensional
complex orbifold

M(C) = G(Q)/D ×G(Af)/K
is the space of complex points of a smooth algebraic stack M over Q, called
the GSpin Shimura variety. It admits, as we explain in §4, a flat and normal
integral modelM over Z, which is smooth after inverting DL. For any prime
p > 2 the special fiber MFp is normal and Cohen-Macaulay.

The Weil representation

ωL ∶ S̃L2(Z)→ AutC(SL)

defines an action of the metaplectic double cover S̃L2(Z) → SL2(Z) on the
space SL = C[L∨/L] of complex valued functions on L∨/L. Associated with
it are, for any half-integer k, several spaces of vector-valued modular forms:
the space of cusp forms Sk(ωL), the space of weakly holomorphic forms
M !
k(ωL), and the space of harmonic weak Maass forms Hk(ωL). There are

similar spaces for the complex-conjugate representation ωL. By a theorem
of Bruinier-Funke [BF04], these are related by an exact sequence

(1.2.1) 0→M !
1−n

2
(ωL)→H1−n

2
(ωL)

ξ
Ð→ S1+n

2
(ωL)→ 0,

where ξ is an explicit conjugate-linear differential operator.
Let ϕµ ∈ SL be the characteristic function of the coset µ ∈ L. Each form

f ∈H1−n
2
(ωL) has a holomorphic part, which is a formal q-expansion

f+ = ∑
m≫−∞
µ∈L∨/L

c+f (m,µ)ϕµ ⋅ q
m

valued in SL. The sum is over all m ∈D−1
L Z, but there are only finitely many

nonzero terms with m < 0.
The Shimura variety M comes with a family of effective Cartier divisors

Z(m,µ), indexed by positive m ∈D−1
L Z and µ ∈ L∨/L. If the harmonic weak

Maass form f has integral principal part, in the sense that c+f (m,µ) ∈ Z for

all m ≤ 0 and µ ∈ L∨/L, then we may form the Cartier divisor

Z(f) = ∑
m>0

µ∈L∨/L

c+f (−m,µ) ⋅Z(m,µ)

onM. A construction of Bruinier [Bru02] endows this divisor with a Green
function Φ(f), constructed as a regularized theta lift of f . From this divisor
and its Green function, we obtain a metrized line bundle

Ẑ(f) = (Z(f),Φ(f)) ∈ P̂ic(M).

1.3. The arithmetic Bruinier-Kudla-Yang theorem. We now explain
how to construct certain big CM cycles on GSpin Shimura varieties, as in
[BKY12].

Start with a totally real field F of degree d, and a quadratic space (V ,Q)
over F of dimension 2 and signature ((0,2), (2,0), . . . , (2,0)). In other
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words, V is negative definite at one archimedean place, and positive def-
inite at the rest. The even Clifford algebra E = C+(V ) is a CM field of
degree 2d with F as its maximal totally real subfield.

Now define a quadratic space

(1.3.1) (V,Q) = (V ,TrF /Q ○Q)

over Q of signature (n,2) = (2d − 2,2), and fix a maximal lattice L ⊂ V .
As described above in §1.2, we obtain from this data a GSpin Shimura
variety M → Spec(Q), but now endowed with the additional structure of
a distinguished 0-cycle. Indeed, the relation (1.3.1) induces a morphism
T → G, where T is the torus over Q with points

T (Q) = E×/ker (Nm ∶ F × → Q×) .

From the morphism T → G one can construct a 0-dimensional Shimura
variety Y over E, together with a morphism Y →M of Q-stacks. The image
of this morphism consists of special points (in the sense of Deligne), and are
the big CM points of [BKY12].

In §3.2 we define an integral model Y of Y , regular and flat over OE , along
with a morphism Y →M of Z-stacks. Composing the pullback of metrized
line bundles with the arithmetic degree on the arithmetic curve Y defines a
linear functional

P̂ic(M)→ P̂ic(Y)
d̂eg
ÐÐ→ R.

We call this linear function arithmetic degree along Y, and denote it by

Ẑ ↦ [Ẑ ∶ Y].

To state our second main theorem, we need to introduce one more actor
to our drama. This is a certain Hilbert modular Eisenstein series E(τ⃗ , s) of
parallel weight 1, valued in the dual representation S∨L. Starting from any
f ∈ H2−d(ωL), we may apply the differential operator of (1.2.1) to obtain a
vector-valued cusp form

ξ(f) ∈ Sd(ωL),

and then form the Petersson inner product L(s, ξ(f)) of ξ(f) against the
diagonal restriction of E(τ⃗ , s) to the upper-half plane. This rather mysteri-
ous function inherits analytic continuation and a functional equation from
the Eisenstein series, and the functional equation forces L(s, ξ(f)) to vanish
at s = 0. Our second main result, stated in the text as Theorem 6.4.2, is a
formula for its derivative.

Theorem B. For any f ∈H2−d(ωL) with integral principal part, the equality

[Ẑ(f) ∶ Y]

degC(Y )
= −
L′(0, ξ(f))

Λ(0, χ)
+
a(0,0) ⋅ c+f (0,0)

Λ(0, χ)

holds up to a Q-linear combination of {log(p) ∶ p ∣Dbad,L}.
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The unexplained notation in the theorem is as follows: Dbad,L is the
product of certain “bad” primes, depending on the lattice L ⊂ V = V ,
specified in Definition 5.3.3;

degC(Y ) = ∑
y∈Y (C)

1

∣Aut(y)∣

is the number of C-points of the E-stack Y , counted with multiplicities;
Λ(s,χ) is the completed L-function of (6.0.1); and the constant a(0,0) =
aF (0, ϕ0) is defined in Proposition 6.2.3. In fact, a(0,0) is essentially the
derivative at s = 0 of the constant term of E(τ⃗ , s). By Proposition 7.8.2, it
satisfies

(1.3.2)
a(0,0)

Λ(0, χ)
= −

2Λ′(0, χ)

Λ(0, χ)

up to a Q-linear combination of {log(p) ∶ p ∣Dbad,L}.
A key component of the proof of Theorem 6.4.2 is the Bruinier-Kudla-

Yang [BKY12] calculation of the values of the Green function Φ(f) at the
points of Y, which we recall in Theorem 6.3.1. In fact, a form of Theorem
B was conjectured in [BKY12] based on these Green function calculations.

The bulk of this paper is devoted to computing the finite intersection
multiplicities that comprise the remaining contributions to the arithmetic
intersection [Ẑ(f) ∶ Y]. More concretely, most of the paper consists of
the calculation of the degrees of the 0-cycles Y ×M Z(m,µ) on Y, and the
comparision of these degrees with the Fourier coefficients of the derivative
E′(τ⃗ ,0).

The first main new ingredient for the calculation, found in § 2.5, is the
computation of the deformation theory of certain ‘special’ endomorphisms of
Lubin-Tate formal groups, which, using Breuil-Kisin theory, we are able to
do without any restriction on the ramification degree of the fields involved.
This is a direct generalization of the seminal computations of Gross [Gro86]
for Lubin-Tate groups associated with quadratic extensions of Qp.

The second new ingredient is the computation of certain 2-adic Whittaker
functions, which forms the bulk of § 7.1.

The introduction to each section has some further explanation of its role
in the proof of the main theorem.

Remark 1.3.1. The authors’ earlier paper [AGHM17] proves a result similar
to Theorem B, but for a cycle of small CM points Y → M defined by
the inclusion of a rank 2 torus into G. In the present work the cycle of
big CM points Y → M is determined by a torus of maximal rank. One
essential difference between these cases is that the big CM points always
have proper intersection (on the whole integral model M) with the special
divisors Z(f). Thus, unlike in [AGHM17], we do not have to deal with
improper intersection.

Remark 1.3.2. In the special case of d = 2, results similar to Theorem B can
be found in the work of Yang [Yan13], and of Yang and the third named
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author [HY12]. Note that when d = 2 we are working on a Shimura variety
of type GSpin(2,2), and this class of Shimura varieties includes the classical
Hilbert modular surfaces.

The paper [How12] contains results similar to Theorem B, but on the
Shimura varieties associated with unitary similitude groups instead of GSpin.
Of course the unitary case is easier, as those Shimura varieties can be real-
ized as moduli spaces of abelian varieties.

1.4. From arithmetic intersection to Colmez’s conjecture. We ex-
plain how to deduce Theorem A from Theorem B, following roughly the
strategy of Yang [Yan13]. First, we choose the harmonic weak Maass form
f of Theorem B so that f is actually weakly holomorphic. In other words,
we assume that

f = ∑
m≫−∞
µ∈L∨/L

cf(m,µ)ϕµ ⋅ q
m ∈M !

2−d(ωL),

and so ξ(f) = 0 by the exact sequence (1.2.1). Combining Theorem B with
(1.3.2) gives

(1.4.1)
[Ẑ(f) ∶ Y]

degC(Y )
≈L −cf(0,0) ⋅

2Λ′(0, χ)

Λ(0, χ)
,

where ≈L means equality up to a Q-linear combination of log(p) with p ∣
Dbad,L.

The integral modelM carries over it a line bundle ω called the tautological
bundle, or the line bundle of weight one modular forms. Any g ∈ G(Af)
determines a uniformization

D
z↦(z,g)
ÐÐÐÐ→M(C)

of a connected component of the complex fiber ofM, and the line bundle ω
pulls back to the tautological bundle on D, whose fiber at z is the isotropic
line Cz ⊂ VC. If we now endow ω with the metric ∣∣z∣∣2 = −[z, z], we obtain
a metrized line bundle

ω̂ ∈ P̂ic(M).

For simplicity, assume that d ≥ 4 (this guarantees that V contains an
isotropic line; throughout the body of the paper, we only require d ≥ 2).
After possibly replacing f by a positive integer multiple, the theory of
Borcherds products [Bor98, Hör14, HM15] gives us a rational section Ψ(f)

of the line bundle ω⊗cf (0,0), satisfying

− log ∣∣Ψ(f)∣∣2 = Φ(f) − cf(0,0) log(4πeγ),

and satisfying div(Ψ(f)) = Z(f) up to a linear combination of irreducible
components of the special fiber MF2 .

We define a Cartier divisor

E2(f) = div(Ψ(f)) −Z(f),
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on M, supported entirely in characteristic 2, which should be viewed as an
unwanted error term. Endowing this divisor with the trivial Green function,
we obtain a metrized line bundle Ê2(f) ∈ P̂ic(M) satisfying

[ω̂⊗cf (0,0) ∶ Y] = [Ẑ(f) ∶ Y] − cf(0,0) log(4πeγ) ⋅ ddegC(Y ) + [Ê2(f) ∶ Y].

If we choose f such that cf(0,0) ≠ 0, then combining this with (1.4.1) and
dividing by cf(0,0) leaves

[ω̂ ∶ Y]

degC(Y )
+ d ⋅ log(4πeγ) ≈L −

2Λ′(0, χ)

Λ(0, χ)
+

1

cf(0,0)

[Ê2(f) ∶ Y]

degC(Y )
.

The pullback to Y of the metrized line bundle ω̂ computes the averaged
Faltings heights of abelian varieties with CM by E. More precisely, the cycle
Y carries a canonical metrized line bundle ω̂0 with two important properties:
First, we show in Theorem 9.4.2 that the arithmetic degree of ω̂0 computes
the averaged Faltings height:

1

2d−2 ∑
Φ

hFalt
(E,Φ) =

d̂egY(ω̂0)

degC(Y )
+ log ∣DF ∣ − 2d ⋅ log(2π).

Second, in Proposition 9.5.1, we prove the approximate equality

[ω̂ ∶ Y]

degC(Y )
≈L

d̂egY(ω̂0)

degC(Y )
+ log ∣DF ∣.

Putting all this together, we find that

1

2d
∑
Φ

hFalt
(E,Φ) = −

1

2
⋅
L′(0, χ)

L(0, χ)
−

1

4
⋅ log ∣

DE

DF
∣ −

d

2
log(2π) +∑

p

bE(p) log(p)

for some rational numbers bE(p), with bE(p) = 0 for all p ∤ 2Dbad,L.
The integer Dbad,L depends on the choice of auxiliary F -quadratic space

(V ,Q) and lattice L, and to show that bE(p) = 0, one only has to find
some choice of the auxiliary data for which p ∤ 2Dbad,L. We show that for
any prime p the auxiliary data can be chosen so that p ∤Dbad,L, and hence
bE(p) = 0 for all p > 2. This proves Theorem A, except that we have not
shown that bE(2) = 0.

For this, we embed L in a larger lattice L◇ that has rank 2d+2, and which
is self-dual at 2. The integral model M◇ of the Shimura variety associated
with L◇ is a smooth integral canonical model in the sense of [Kis10].

Using a result of Bruinier [Bru15], we now pick a Borcherds lift Ψ◇(f) over
M◇, whose divisor intersects Y properly, and which allows us to compute
the height of the canonical bundle ω̂ along Y even at the prime 2. This
enables us to prove that the constant bE(2) does indeed vanish.

1.5. Acknowledgements. The authors thank Jan Bruinier, Pierre Colmez,
Steve Kudla, Jacob Tsimerman, and Tonghai Yang for helpful conversations.

Parts of this research were carried out during the various authors’ visits to
the Erwin Schrödinger International Institute for Mathematical Physics, the
Mathematisches Forschungsinstitut Oberwolfach, the Banff International



8 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

Research Station, the Centre de Researches Mathématiques, and the Uni-
versità Statale di Milano. The authors thank these institutions for their
hospitality.

2. Special endomorphisms of Lubin-Tate groups

In this section, we generalize the results of Gross [Gro86] to Lubin-Tate
groups over arbitrary finite extensions K/Qp. Namely, we study the defor-
mation theory of certain ‘special’ endomorphisms of such groups.

This generalization, which appears as Theorem 2.5.5, is the basis for the
local intersection theory calculations underlying the proof of our main tech-
nical result, Theorem 6.4.2. To be able to avoid restrictions on the ramifi-
cation index of K, we are compelled to employ the theory of Breuil-Kisin
modules [Kis06]. This allows us to give a uniform treatment of all relevant
cases.

The reader uninterested in the nitty gritty of p-adic Hodge theory, wanting
only to understand the statement of Theorem 2.5.5, can find the relevant
definitions in the first paragraphs of § 2.3, 2.4, and 2.5.

2.1. Breuil-Kisin modules and p-divisible groups. Fix a prime p. Let

Qalg
p be an algebraic closure of Qp, and let Cp be its completion. Set W =

W (Falg
p ) and let Frac(W )alg ⊂ Cp be the algebraic closure of its fraction field

Frac(W ). Let K ⊂ Frac(W )alg be a finite extension of Frac(W ), and let

ΓK = Gal(Frac(W )alg/K)

be its absolute Galois group.
Set S = W [∣u∣], the power series ring over W in the variable u. Fix a

uniformizer $ ∈ OK and let E(u) ∈W [u] be the associated Eisenstein poly-
nomial satisfying E(0) = p. A Breuil-Kisin module over OK (with respect to
$) is a pair (M, ϕM), where M is a finite free S-module and

ϕM ∶ ϕ∗M[E−1]
≃
Ð→M[E−1]

is an isomorphism of S-modules. Here, ϕ ∶S→S is the Frobenius lift that
extends the canonical Frobenius automorphism Fr ∶ W → W and satisfies
ϕ(u) = up.

Usually, the map ϕM will be clear from context and we will denote the
Breuil-Kisin module by its underlying S-module M.

We will write 1 for the Breuil-Kisin module whose underlying S-module
is just S equipped with the canonical identification ϕ∗S =S.

By [Kis10], there is a fully faithful tensor functor M from the category of
Zp-lattices in crystalline ΓK-representations to the category of Breuil-Kisin
modules over OK . It has various useful properties. To describe them, fix a
crystalline Zp-representation Λ. Then:

● There is a canonical isomorphism of F -isocrystals over Frac(W ):

(2.1.1) M(Λ)/uM(Λ)[p−1]
≃
Ð→Dcris(Λ) = (Λ⊗Zp Bcris)

ΓK .
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● If we equip ϕ∗M(Λ) with the descending filtration Fil●ϕ∗M given
by

Filiϕ∗M(Λ) = {x ∈ ϕ∗M(Λ) ∶ ϕM(Λ)(x) ∈ E(u)
iM(Λ)},

then there is a canonical isomorphism of filtered K-vector spaces

(2.1.2) (ϕ∗M(Λ)/E(u)ϕ∗M(Λ))[p−1]
≃
Ð→K ⊗Frac(W )Dcris(Λ).

Here, the left hand side is equipped with the filtration induced from
Fil●ϕ∗M(Λ).

Kisin’s functor can be used to classify p-divisible groups over OK . This
was done by Kisin himself [Kis06] when p > 2, and the case p = 2 was dealt
with by W. Kim [Kim12]. We now present a summary of their results.

We will say that M has E-height 1 if the isomorphism ϕM arises from a
map ϕ∗M→M whose cokernel is killed by E(u).

Let S → OK be the p-adic completion of the divided power envelope of
the surjection

W [u]
u↦$
ÐÐÐ→ OK .

The natural map W [u] → S extends to an embedding S ↪ S, and the
Frobenius lift ϕ ∶ S → S extends continuously to an endomorphism ϕ ∶ S →
S.

Write Fil1S ⊂ S for the kernel of the map S → OK . If M is a Breuil-Kisin
module of E-height 1, and M = S ⊗ϕ,S M, we will set

(2.1.3) Fil1M = {x ∈M = S⊗Sϕ
∗M ∶ (1⊗ϕM)(x) ∈ Fil1S⊗SM ⊂ S⊗SM}.

The image of Fil1M in OK ⊗S M = OK ⊗S ϕ∗M is a OK-linear direct
summand, and so equips the ambient space with a two-step descending
filtration.

For any p-divisible group H over a p-adically complete ring R, we will
consider the contravariant Dieudonné F -crystal D(H) associated with H
(see for instance [BBM82]).

Given any nilpotent thickening R′ → R, whose kernel is equipped with
divided powers, we can evaluate D(H) on R′ to obtain a finite projective
R′-module D(H)(R′) (this construction depends on the choice of divided
power structure, which will be specified or evident from context). If R′

admits a Frobenius lift ϕ ∶ R′ → R′, then we get a canonical map

ϕ ∶ ϕ∗D(H)(R′)→ D(H)(R′)

obtained from the F -crystal structure on D(H).
An example of a (formal) divided power thickening is any surjection of the

form R′ → R′/pR′, where we equip pR′ with the canonical divided power
structure induced from that on pZp. Another example is the surjection
S → OK considered above.

The evaluation on the trivial thickening R → R gives us a projective R-
module D(H)(R) of finite rank equipped with a short exact sequence of
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projective R-modules:

0→ Lie(H)∨ → D(H)(R)→ Lie(H∨)→ 0.

We will set

Fil1D(H)(R)
def
= Lie(H)∨ ⊂ D(H)(R),

and term it the Hodge filtration.

Theorem 2.1.1. For any p-divisible group H over OK , write H∨ for its
Cartier dual. Then the functor H ↦M(Tp(H

∨)) is an exact contravariant
equivalence of categories from the category of p-divisible groups over OK to
the category of Breuil-Kisin modules of E-height 1. Moreover, if we abbre-
viate

M(H)
def
= M(Tp(H)∨),

then the functor has the following properties:

(1) The ϕ-equivariant composition

ϕ∗M(H)/uϕ∗M(H)
ϕM(H)
ÐÐÐÐ→M(H)/uM(H)[p−1]

(2.1.1)
ÐÐÐ→

≃
Dcris(Tp(H)∨)

≃
Ð→ D(H)(W )[p−1]

maps ϕ∗M(H)/uϕ∗M(H) isomorphically onto D(H)(W ). Here, in
a slight abuse of notation, we write D(H)(W ) for the evaluation on
W of the Dieudonné F -crystal associated with the reduction of H

over Falg
p .

(2) The filtered isomorphism

ϕ∗M(H)/E(u)ϕ∗M(H)[p−1]
(2.1.2)
ÐÐÐ→

≃
K ⊗Frac(W )Dcris(Tp(H)∨)

≃
Ð→ D(H)(OK)[p−1]

maps ϕ∗M(H)/E(u)ϕ∗M(H) isomorphically onto D(H)(OK).
(3) There is a canonical ϕ-equivariant isomorphism

S ⊗ϕ,S M(H)
≃
Ð→ D(H)(S)

whose reduction along the map S → OK gives the filtration preserving
isomorphism in (2).

Proof. This follows from [Kisa, Theorem 1.1.6], using the work of Kim [Kim12]
when p = 2. Note that this corrects an error in the statement of [Kis10, The-
orem 1.4.2], which is off by a Tate twist. �

2.2. Lubin-Tate groups. Fix a finite extension E of Qp, and a uniformizer
πE ∈ E. Let e(X) ∈ OE[X] be a Lubin-Tate polynomial associated with πE ,
so that

e(X) ≡ πEX (mod X2),

e(X) ≡Xq (mod πE).

Here, q = #kE is the size of the residue field kE of E.
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Let G = Spf(OE[∣X ∣]) be the unique formal OE-module in one variable
overOE with multiplication by πE given by the polynomial [πE](X) = e(X).
For each n ∈ Z>0, write G[πnE] for the πnE-torsion OE-submodule of G. These
fit into a πE-divisible group G[π∞E ] over OE .

Assume now that we have an embedding E ↪K. We obtain a formal OE-
module GOK over OK and a πE-divisible group G[π∞E ]OK . For simplicity,
we will omit OK from the subscripts in what follows, and so will be viewing
both G and G[π∞E ] as objects over OK .

Let

TπE(G)
def
= lim
←Ð
n

G[πnE](Frac(W )alg).

be the πE-adic Tate module associated with G[π∞E ]. This a crystalline Zp-
representation of ΓK equipped with an OE-action, making it an OE-module
of rank 1. We will now describe the associated Breuil-Kisin module

M(G)
def
= M(TπE(G)

∨)

with its OE-action. This will involve constructing an explicit candidate M
for such a module, and then showing that this candidate is indeed isomorphic
to M(G).

Let E0 ⊂ E be the maximal unramified subextension, and let Emb(E0) be
the set of embeddings E0 ↪ Frac(W ). Let ι0 ∈ Emb(E0) be the distinguished
element induced by the embedding E ↪ K. The Frobenius automorphism
Fr of W acts on Emb(E0), and every ι ∈ Emb(E0) is of the form Fri(ι0) for
a unique i ∈ {0,1, . . . , d0 − 1}, where d0 = [E0 ∶ Qp].

The underlying OE-equivariant S-module for our candidate is

M =S⊗Zp OE = ⊕
ι∈Emb(E0)

S⊗ι,OE0
OE =⊕

ι
Sι,

where, for ι ∈ Emb(E0), we have set Wι = W ⊗ι,OE0
OE and Sι = Wι[∣u∣].

There is a canonical OE-equivariant identification of S-modules

ϕ∗M =⊕
ι
ϕ∗SFr−1(ι) =⊕

ι
Sι =M.

The S⊗Zp OE-equivariant isomorphism ϕM will now arise from a map

ϕM ∶ ϕ∗M =M
≃
Ð→
β

M,

for some

β ∈ (S⊗Zp OE) ∩ (S[E−1]⊗Zp OE)
× = ∏

ι∈Emb(E0)

Sι ∩Sι[E
−1]×.

To describe β explicitly, we have to specify each of its components

βι ∈Sι ∩Sι[E
−1]× ⊂Sι[E

−1].



12 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

Let Eι0(u) ∈Wι0[u] be the Eisenstein polynomial for $ over Wι0 satisfying
Eι0(0) = ι0(πE), and set

βι =

⎧⎪⎪
⎨
⎪⎪⎩

Eι0(u) if ι = ι0

1 otherwise.

From M, we obtain an abstract ‘crystalline’ realization

Mcris
def
= W ⊗S ϕ

∗M =W ⊗Zp OE =⊕
ι
Wι,(2.2.1)

where we view W as an S-algebra via u ↦ 0. This also identifes Fr∗Mcris

with ⊕ιWι. Under these identifications, the F -crystal structure on Mcris is
given by multiplication by the image of β under

S⊗Zp OE
ϕ⊗1
ÐÐ→S⊗Zp OE

u⊗1↦0
ÐÐÐÐ→W ⊗Zp OE .

This image is easy to describe: Its ι-component is 1 when ι ≠ Fr(ι0), while
its Fr(ι0)-component is Fr(ι0(πE)) ∈WFr(ι0).

Similarly, we obtain an abstract ‘de Rham’ realization

MdR
def
= OK ⊗S ϕ

∗M,(2.2.2)

where we view OK as an S-algebra via u ↦ $. Write Mι for the ι-isotypic
component of MdR; this is simply

OK,ι
def
= OK ⊗ι,OE0

OE

viewed as a module over itself.
The recipe in (2.1.2) also gives us a direct summand Fil1MdR ⊂MdR. This

is an OK ⊗ZpOE-stable submodule, and so it suffices to specify its ι-isotypic

component Fil1Mι ⊂Mι for each ι. To do this, we first need to describe the
subspace Fil1ϕ∗M. By definition, we have

Fil1ϕ∗M = {x ∈ ϕ∗M ∶ ϕM(x) ∈ E(u)M}.

From this, we deduce

(Fil1ϕ∗M)
ι
=

⎧⎪⎪
⎨
⎪⎪⎩

{x ∈Sι ∶ Eι0(u)x ∈ E(u)Sι} if ι = ι0

E(u)Sι otherwise.
(2.2.3)

Reducing mod E(u), we now find

Fil1Mι =

⎧⎪⎪
⎨
⎪⎪⎩

{x ∈Mι ∶ Eι0($ ⊗ 1)x = 0} if ι = ι0

0 otherwise.
(2.2.4)

Clearly, M has E-height 1. Therefore, by Theorem 2.1.1, there exists a
p-divisible group H over OK , equipped with an OE-module structure, such
that M =M(H). Moreover, the OE-action on M translates to an OE-action
on H.
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Let TπE(H) be the πE-adic Tate module over K associated with H. We
can use the explicit descriptions of Mcris and MdR above to obtain a descrip-
tion of the associated E-equivariant, filtered ϕ-module

Dcris
def
= Dcris(TπE(H)∨).

The underlying Frac(W )-vector space is

Dcris =Mcris[p
−1] = Frac(W )⊗Qp E =⊕

ι
Frac(W )ι.

As before, this description also identifies Fr∗Dcris with ⊕ιFrac(W )ι, and
under these identifications, the F -isocrystal structure onDcris is given simply
by multiplication by πι0 on the ι0-factor, and the identity on the remaining
factors.

To complete our description, we need to know the subspace

Fil1DdR ⊂DdR =K ⊗Frac(W )Dcris.

Let Dι ⊂ DdR be the ι-isotypic component. This is a rank 1 free module
over Kι =K ⊗W Wι. Note that we have a quotient map

(2.2.5) Kι0 =K ⊗ι0,E0 E →K

induced by the distinguished embedding E ↪ K. This gives us an idem-

potent projector e0 ∶ Kι0 → Kι0 such that (2.2.5) identifies e0Kι0
≃
Ð→ K.

From (2.2.4), we now have

Fil1DdR =⊕
ι

Fil1Dι ⊂⊕
ι
Dι,

where

Fil1Dι =

⎧⎪⎪
⎨
⎪⎪⎩

e0Dι if ι = ι0

0 otherwise.

Proposition 2.2.1. There is a OE-equivariant isomorphism

M(G)
≃
Ð→M

of Breuil-Kisin modules. In particular, we have OE-equivariant isomor-
phisms

D(G)(W )
≃
Ð→Mcris, D(G)(OK)

≃
Ð→MdR

of F -crystals over W and filtered OK-modules, respectively.

Proof. The first assertion of the proposition amounts to showing that we
have an OE-equivariant isomorphism

TπE(H)
≃
Ð→ TπE(G)

of πE-adic Tate modules over K. In fact, since all OE-lattices in TπE(G)[p
−1]

are simply dilations of TπE(G) by powers of πE , it is enough to show that
we have an OE-equivariant isomorphism

TπE(H)[p−1]
≃
Ð→ TπE(G)[p

−1].
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To do this, we will show that the admissible filtered ϕ-modules associated
with the two representations are OE-equivariantly isomorphic. We have
already computed the admissible ϕ-module Dcris associated with TπE(H)∨.
So we have to check that it agrees with that obtained from TπE(G)

∨. This
follows from [RZ96, Lemma 1.22].

The last assertion follows from the first via (1), and (2) of Theorem 2.1.1.
�

2.3. Special endomorphisms. We will assume that E is equipped with
a non-trivial involution τ . Let F ⊂ E be the fixed field of τ . If E/F is
unramified, then we will further assume that the uniformizer πE is in fact
a uniformizer in F . Given a p-adically complete OE-algebra R, a special
endomorphism of GR will be an element f ∈ End(GR) such that

f([a](X)) = [τ(a)](f(X)),

for any a ∈ OE . Write V (GR) for the space of special endomorphisms of G.
The following proposition is clear.

Proposition 2.3.1.

(1) The subspace V (GR) ⊂ End(GR) is OE-stable. If it is non-zero, then
it is a finite free OE-module of rank 1.

(2) For any x1, x2 ∈ V (GR), there exists a unique ⟨x1, x2⟩ ∈ OE such that

x1 ○ x2 = [⟨x1, x2⟩] ∈ EndOE(GR).

(3) The pairing (x1, x2)↦ ⟨x1, x2⟩ is a Hermitian pairing on V (GR).

It will be useful to have the following notation: Let R be a commutative
ring with a non-trivial involution τ . For any R-module M , we will set:

V (M,τ) = {f ∈ End(M) ∶ f(a ⋅m) = τ(a)f(m), for all a ∈ R}.

This is an R-submodule of End(M), where we equip the latter with the R-
module structure obtained from post-composition with scalar multiplication
by R.

The embedding ι0 ∈ Emb(E0) induces an embedding kE ↪ Falg
p . Set

V (G1) = V (GFalg
p

)

and

Vcris(G) = V (Mcris, τ),

where we view Mcris as an OE ⊗Zp W -module.
We now have the following easy lemma, whose proof we omit.

Lemma 2.3.2.

(1) Vcris(G) is an OE-stable subspace of End(Mcris), which is free of rank
1 over W ⊗Zp OE. Conjugation by ϕ0 ∶ Fr∗Mcris → Mcris induces a
OE ⊗Zp W -linear automorphism

ϕ ∶ Fr∗Vcris(G)[p
−1]

≃
Ð→ Vcris(G)[p

−1].
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(2) There is a canonical identification

V (G1) = Vcris(G)
ϕ=1

of V (G1) with the ϕ-equivariant elements in Vcris(G).
(3) For x, y ∈ Vcris(G), x ○ y ∈ End(Mcris) corresponds to multiplication

by an element ⟨x, y⟩ ∈W ⊗Zp OE. The assignment

(x, y)↦ ⟨x, y⟩ ∈W ⊗Zp OE

is a τ -Hermitian form on Vcris(G), which restricts to the canonical
OE-valued Hermitian form on V (G1) from Proposition 2.3.1.

It will be useful to have an explicit description of Vcris(G) along with that
of the conjugation action of the semi-linear endomorphism ϕ0 of Mcris. This
is easily deduced from the explicit description of Mcris from (2.2.1).

For each ι ∈ Emb(E0), set Vι =W ⊗ι,OE0
V (OE , τ). This is a rank 1 free

module over Wι. Using (2.2.1), we now obtain a canonical OE-equivariant
identification

Vcris(G) =W ⊗Zp V (OE , τ) = ⊕
ι∈Emb(E0)

Vι.

This also identifes Fr∗Vcris(G) with ⊕ι∈Emb(E0) Vι.
As before, set d0 = [E0 ∶ Qp]. Any element of Vcris(G) is a tuple of the

form f = (fi)0≤i≤d0−1 for some ai ∈ VFri(ι0)
, and

ϕ(f)i = ηiϕ(fi−1) ∈ VFri(ι0)
[p−1],

for certain ηi ∈ Frac(WFri(ι0)
).

To pin the ηi down, first consider the case where E is unramified over
F . In this case, πE is a uniformizer for F by hypothesis, and hence satisfies
τ(πE) = πE . Also, τ acts non-trivially on Emb(E0): If r ∈ Z≥1 is such that
2r = d0, we have, for any ι ∈ Emb(E0),

Frr(ι) = τ(ι)
def
= ι ○ τ.

We can now identify

Vι = HomWι(Wτ(ι),Wι),

as Wι-modules. Here, we view Wι as acting on Wτ(ι) via the isomorphism

Wι
≃
Ð→Wτ(ι) induced by τ .

Now, as seen in (2.2), the F -crystal structure on Mcris corresponds under
the identification (2.2.1) to multiplication by the element β0 ∈ W ⊗Zp OE ,
whose ι0-isotypic component is 1⊗ πE , and whose ι-isotypic component for
ι ≠ ι0 is 1. From this we deduce:

ηi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1⊗ πE if i = 1

1⊗ π−1
E if i = r + 1

1 otherwise.
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Using this, we easily obtain the following explicit description of the space
V (G1) ⊂ Vcris(G).

Proposition 2.3.3. When E/F is unramified, V (G1) ⊂ Vcris(G) consists
precisely of the elements f = (fi) such that:

● f0 ∈ V
Frd0=1
ι0 = V (OE , τ);

● fi = Fri((1⊗ πE)a0), for 1 ≤ i ≤ r;
● fi = Fri(a0), for r + 1 ≤ i ≤ 2r − 1.

In particular, we have an isometry

(V (G1), ⟨⋅, ⋅⟩)
≃
Ð→ (V (OE , τ), πE⟨⋅, ⋅⟩)

f ↦ f0

of Hermitian OE-modules, where, for x, y ∈ V (OE , τ), ⟨x, y⟩ ∈ OE is the
element such that x ○ y ∈ End(OE) is multiplication by ⟨x, y⟩.

Let us now consider the case where E/F is ramified. In this case, τ fixes
every element in Emb(E0) and so induces involutions τ ∶Wι →Wι for each ι ∈
Emb(E0). Once again, as in the ramified case, from the explicit description
of the F -crystal structure on Mcris under the identification (2.2.1), we have
Vι = V (Wι, τ), and also

ηi =

⎧⎪⎪
⎨
⎪⎪⎩

1⊗πE
1⊗τ(πE)

if i = 1

1 otherwise.

So we obtain:

Proposition 2.3.4. When E/F is ramified, V (G1) ⊂ Vcris(G) consists pre-
cisely of the elements f = (fi) such that:

● f0 ∈ Vι0 satisfies (1⊗ πE)Frd0(f0) = (1⊗ τ(πE))f0;
● fi = (1⊗ πE

τ(πE)
) ⋅ Fri(f0), for i = 1, . . . , d0 − 1

In particular, the map

W ⊗Zp V (G1)→ Vcris(G)

is an isomorphism. Moreover, if γ ∈ W ×
ι0 is such that (1 ⊗ πE)Frd0(γ) =

(1⊗ τ(πE))γ, then we have an isometry

(V (G1), ⟨⋅, ⋅⟩)
≃
Ð→ (V (OE , τ), γτ(γ)⟨⋅, ⋅⟩)

of Hermitian OE-modules defined by f ↦ γ−1f0.

2.4. Special endomorphisms with denominators. LetR be a p-adically
complete OE-algebra. Fix an element µ ∈ E/OE , and choose any representa-
tive µ̃ ∈ E for it. If µ ≠ 0, the positive integer r(µ) = −ordp(µ̃) depends only

on µ; if µ = 0, set r(µ) = 0. Let [µ̃] ∈ π
−r(µ)
E End(GR) be the corresponding

quasi-isogeny from GR to itself. Set:

Vµ(GR) = {f ∈ V (GR)[π
−1
E ] ∶ f − [µ̃] ∈ EndOF (GR)}.

This does not depend on the choice of representative µ̃.
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Proposition 2.4.1. Suppose that E/F is ramified.

(1) If µ = 0, then Vµ(GR) = V (GR).
(2) If µ ≠ 0, then Vµ(GOK/$) is non-empty if and only if

r(µ) ≤ ordE(dE/F ) − 1,

in which case it is a torsor under translation by V (GOK/$). Here,
dE/F is the relative different of E over F .

(3) If p ≠ 2 and µ ≠ 0, then Vµ(GOK/$) = ∅.

Proof. For simplicity, set m = ordE(dE/F ).
The first assertion is clear. Suppose therefore that µ ≠ 0, and that we

have f ∈ Vµ(GOK/$). In the notation of Proposition 2.3.4, f corresponds

to a tuple (fi) with fi ∈ Vιi[π
−1
E ] = V (Wιi , τ)[π

−1
E ], where fi = Fri(f0), and

where f0 satisfies:

(2.4.1) Frd0(f0) =
τ(πE)

πE
f0.

Here, we are identifying πE with the element 1⊗ πE ∈Wι0 .
Moreover, by hypothesis, f0−[µ̃] ∈ End(Wι0). Now, [µ̃] is invariant under

the action of Frd0 . Therefore, (2.4.1) implies:

(1 −
τ(πE)

πE
) ⋅ f0 = f0 − Frd0(f0) ∈ Vι0 .

This implies

m − 1 = ordE (1 −
τ(πE)

πE
) ≥ r(µ).

Hence, we find that Vµ(GOK/$) = ∅ whenever r(µ) >m − 1.
Assume now that r(µ) ≤ m − 1. To finish the proof of assertion (2), we

have to show that we can always find f0 as above satisfying (2.4.1) and with
f0 − [µ̃] ∈ End(Wι0).

For this, choose any f̃0 ∈ Vι0[π
−1
E ] such that f̃0 − [µ̃] lies in End(Wι0). We

now have

πE
τ(πE)

Frd0(f̃0) − f̃0 = (
πE

τ(πE)
− 1)Frd0(f̃0) + Frd0(f̃0 − [µ̃]) − (f̃0 − [µ̃]).

Since r(µ) ≤m − 1, we see that this belongs to Vι0 .
Now, notice that the endomorphism

Vι0

πE
τ(πE)

⋅Frd0−id

ÐÐÐÐÐÐÐÐ→ Vι0

is surjective: Indeed, mod πE , this is immediate from the fact Fp is alge-
braically closed. A simple lifting argument, using the completeness of Wι0

now does the rest.
Therefore, there exists f ′0 ∈ Vι0 with

πE
τ(πE)

Frd0(f ′0) − f
′
0 =

πE
τ(πE)

Frd0(f̃0) − f̃0.
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It is an immediate check that we can now take f0 = f̃0 − f
′
0.

Assertion (3) is clear from (2), since, when p ≠ 2, m − 1 = 0.
�

2.5. Deformation theory. Assume now that K is generated over Frac(W )
by the image of ι0 ∶ E → Frac(W )alg. Set $ = ι0(πE); this is a uniformizer
for K. For any k ∈ Z≥1, set Gk = GOK/$k+1 , and for each µ ∈ d−1

E/F /OE , set

Vµ(Gk)
def
= Vµ(GOK/($k)).

Let MdR be the de Rham realization of GOK as in (2.2.2): It is a free
OK ⊗Zp OE-module of rank 1 equipped with the OK-linear direct summand

Fil1MdR, described in (2.2.4).
In the notation of § 2.3, let

VdR
def
= V (MdR, τ) ⊂ EndOK(MdR)

be the space of τ -semilinear endomorphisms of MdR.
Given f1, f2 ∈ VdR, there is a canonical element ⟨f1, f2⟩ ∈ OK ⊗Zp OE such

that, for every m ∈MdR, (f1 ○f2)(m) = ⟨f1, f2⟩ ⋅m. Set V̆dR = VdR⊗OE d−1
E/F .

Similarly, for each k ∈ Z≥1, let MdR,k =MdR ⊗OK OK/$k be the induced

filtered free module over OK/$k, and let VdR,k = V (MdR,k, τ). We have

VdR,k = VdR ⊗OK OK/$k+1. Set V̆dR,k = V̆dR ⊗OK OK/$k.
For each k ∈ Z≥1,

Õbk = V̆dR ⊗OK⊗ZpOE ,1⊗τ(ι0)
OK/$k.

This is a rank 1 free module over OK/$k.

Now set Obk =$
k−1 ⋅ Õbk: This is a 1-dimensional vector space over Falg

p .

Proposition 2.5.1. For each k ∈ Z≥1, there is a canonical map

obk+1 ∶ Vµ(Gk)→ Obk+1

with the following properties:

(1) An element f ∈ Vµ(Gk) lifts to Vµ(Gk+1) if and only if obk+1(f) = 0.
(2) If a ∈ OE, then the diagram

Vµ(Gk)
obk+1 //

f↦a⋅f

��

Obk+1

x↦ι0(τ(a))⋅x

��
Va⋅µ(Gk)

obk+1

// Obk+1

commutes.

Proof. For any p-adicaly complete OE-algebra R, an element f ∈ Vµ(Gk) can
be viewed as a τ -semilinear homomorphism

f ∶ GR → HomOE(dE/F ,GR)

of formal OE-modules over R.
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For each k ∈ Z≥1, OK/$k+1 → OK/$k is a divided power thickening, and
so every f ∈ Vµ(Gk) has a canonical crystalline realization1

fk+1 ∶MdR,k+1 ⊗OE dE/F →MdR,k+1,

which is a τ -semilinear homomorphism of OK/$k+1 ⊗Zp OE-modules, and

thus can be viewed as an element fk+1 ∈ V̆dR,k+1.
We claim that the map obk+1 which takes f ∈ Vµ(Gk) to the image of fk+1

in Obk+1 answers to the requirements of the lemma.
For this, set

a = f − [µ̃] ∈ EndOF (Gk).

It is easily checked that f lifts to an element of Vµ(Gk+1) if and only if a
lifts to EndOF (Gk+1).

The crystalline realization of a gives a homomorphism

ak+1 ∶MdR,k+1 →MdR,k+1

of OK/$k+1 ⊗Zp OF -modules.
By Grothendieck-Messing theory [Mes72]—which applies even when p = 2,

by the theory of Zink [Zin01], because G is connected—a lifts to End(Gk+1)
if and only if ak+1 preserves the direct summand Fil1MdR,k+1 ⊂MdR,k+1.

We now use the explicit description of the filtration from (2.2.4). Since
Eι0(u) = −u + 1 ⊗ πE , we find that, in terms of the natural isotypic decom-
position MdR,k+1 = ⊕ιMdR,k+1,ι, we have:

Fil1MdR,k+1,ι =

⎧⎪⎪
⎨
⎪⎪⎩

{x ∈MdR,k+1,ι ∶ (1⊗ πE −$ ⊗ 1)x = 0} if ι = ι0

0 otherwise.

Here, we are using the fact that the cokernel of the map

MdR,ι0

1⊗πE−$⊗1
ÐÐÐÐÐÐ→MdR,ι0

of OK-modules is free of rank 1 over OK , and hence the formation of its
kernel is compatible with arbitrary base change.

For this, choose an OK,τ(ι0)-module generator u ∈ V̆dR,k,τ(ι0), and let c ∈

OK,τ(ι0)/($
k+1 ⊗ 1) be such that c ⋅ u = fk+1. The proposition will follow

once we show that f lifts to Vµ(Gk+1) if and only if c maps to 0 under

OK,τ(ι0)/($
k+1 ⊗ 1) = (OK/$k+1)⊗τ(ι0),OE0

OE
1⊗τ(ι0)
ÐÐÐÐ→ OK/$k+1.

Equivalently, if and only if c ∈ (1⊗ τ(πE) −$ ⊗ 1) ⋅OK,τ(ι0)/($
k+1 ⊗ 1).

First, suppose that E/F is unramified. In this case VdR,k+1 = V̆dR,k+1, we
can take µ̃ = 0, and f lifts precisely when we have

fk+1(Fil1MdR,k+1) ⊂ Fil1MdR,k+1.

Now, we have

u(Fil1MdR,k+1) = Fil
1
MdR,k+1

def
= {x ∈MdR,k+1,τ(ι0) ∶ (1⊗τ(πE)−$⊗1)x = 0}.

1Recall that we are using the contravariant Dieudonné F -crystal.
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Therefore, we must have c ⋅ (Fil
1
MdR,k+1) = 0, which is precisely equivalent

to c ∈ (1⊗ τ(πE) −$ ⊗ 1).
Suppose now that E/F is ramified, so that ι0 = τ(ι0) ∈ Emb(E0). In this

case, the homomorphism

fk+1,ι0 − 1⊗ µ̃ ∶MdR,k+1,ι0 ⊗OE dE/F →MdR,k+1

lifts to the endomorphism ak+1,ι0 ∈ EndOF (MdR,k+1,ι0). The proposition now

reduces to the following easy observation: Suppose that f∞ ∈ V̆dR is such
that f∞ − 1⊗ µ̃ ∈ EndOF (MdR). Then we have

(f∞ − 1⊗ µ̃)(Fil1MdR,k+1) ⊂ Fil1MdR,k+1

if and only if f∞,ι0 ∈ (1⊗ τ(πE) −$ ⊗ 1) ⋅ V̆dR,ι0 . �

Suppose that k ≤ e, so that the surjection

W [u]/(uk)
u↦$
ÐÐÐ→ OK/($k)

is a divided power thickening (its kernel is generated by p). Upon evaluating
the crystal D(G) on this thickening, we obtain a free W [u]/(uk) ⊗Zp OE-

module Mk of rank 1. Using the Frobenius lift ϕ on W [u]/(uk) satisfying
ϕ(u) = up and the F -crystal structure on D(G), we also obtain a canonical
W [u]/(uk)⊗Zp OE-linear map

ϕk ∶ ϕ
∗Mk →Mk.

Let Vk = V (Mk, τ) be the space of 1⊗τ -semilinear endomorphisms of the
W [u]/(uk)⊗ZpOE-moduleMk. Conjugation by ϕk induces an isomorphism

ϕk ∶ ϕ
∗Vk[p

−1]
≃
Ð→ Vk[p

−1].

Set V̆k = Vk ⊗OE d−1
E/F .

The OE-module structures on Mk, Vk and V̆k equips them with isotypic
decompositions

Mk =⊕
ι
Mk,ι ; Vk =⊕

ι
Vk,ι ; V̆k =⊕

ι
V̆k,ι.

Lemma 2.5.2.

(1) For each k ≤ e, the reduction map Vk → Vcris(G) induces an isomor-

phism Vk[p
−1]ϕk=1 ≃

Ð→ V (G1)[p
−1].

(2) Suppose that k < e and that f ∈ Vµ(Gk). Set

βk+1 =
k

∑
i=0

ui ⊗ τ(πE)
k−i ∈W [u]/(uk+1)⊗τ(ι0),OE0

OE .

Then obk+1(f) = 0 if and only if

βk+1 ⋅ f̃k+1,τ(ι0) ∈ (1⊗ τ(πE)
k+1) ⋅ V̆k+1,τ(ι0).
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Proof. The first assertion is well-known, and is essentially Dwork’s trick:
Given an element f0 ∈ V (G1)[p

−1], and any lift f̃ ∈ Vk[p
−1], ϕk−1

k (f̃) ∈

Vk[p
−1] will be the unique ϕk-invariant lift of f0.

For the second assertion, by multiplying both sides of the condition by
(1⊗ τ(πE) − u⊗ 1), we see that it is equivalent to:

(2.5.1) f̃k+1,τ(ι0) ∈ (1⊗ τ(πE) − u⊗ 1) ⋅ V̆k+1,τ(ι0).

The pre-image Fil1Mk+1 of Fil1MdR,k+1 in Mk+1 can be explicitly de-
scribed using (2.2.3) and the canonical isomorphism

ϕ∗M⊗SW [u]/(uk+1)
≃
Ð→Mk+1

obtained from assertion (3) of Theorem 2.1.1. We find:

Fil1Mk+1 =
E(u)⊗ 1

1⊗ πE − u⊗ 1
⋅Mk+1,ι0 + E(u) ⋅Mk+1

Now, W [u]/(uk) → OK/$k is a divided power thickening, its kernel be-

ing the ideal (p, uk−1), and f̃k+1, by virtue of being characterized by its
ϕk-invariance, is the evaluation of the crystalline realization of f on this
thickening. Therefore, obk+1(f) vanishes if and only if f̃k+1 −1⊗ µ̃ preserves
the submodule Fil1Mk+1 ⊂Mk+1.

If E/F is unramified, then we can take µ̃ = 0, and the condition translates
to:

E(u)

1⊗ τ(πE) − u⊗ 1
⋅ f̃k+1,τ(ι0) ∈ E(u) ⋅ Vk+1,ι0 .

This is easily seen to be equivalent to (2.5.1).
Now, suppose that E/F is ramified. Fix a Wι0[u]/(u

k+1)-module gener-

ator x ∈Mk+1,ι0 . Then the image of Fil1MdR,k+1,ι0 under f̃k+1,ι0 − 1 ⊗ µ̃ is
generated by

E(u)⊗ 1

1⊗ τ(πE) − u⊗ 1
⋅ f̃k+1,ι0(x) −

E(u)⊗ 1

1⊗ πE − u⊗ 1
⋅ (1⊗ µ̃) ⋅ x.

This lies in Fil1Mk+1,ι0 if and only if we have

(1⊗πE−u⊗1)f̃k+1,ι0(x)−(1⊗τ(πE)−u⊗1)(1⊗µ̃)⋅x ∈ (1⊗τ(πE)−u⊗1)Mk+1,ι0 .

Equivalently, if and only if

(1⊗ (πE − τ(πE)))f̃k+1,ι0(x) ∈ (1⊗ τ(πE) − u⊗ 1)Mk+1,ι0 ,

which, as is once again easily verified, is equivalent to (2.5.1). �

Lemma 2.5.3. For any k ∈ Z≥1, suppose that f ∈ Vµ(Gk) is such that f does
not lift to Vµ(Gk+1). Then, for every a ∈ OE with ordE(a) = 1, a⋅f ∈ Va⋅µ(Gk)
lifts to Va⋅µ(Gk+1) but not to Va⋅µ(Gk+2).

Proof. It is immediate from Proposition 2.5.1 that

obk+1(a ⋅ f) = ι0(τ(a))obk+1(f)
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vanishes. Therefore, a ⋅ f lifts to Va⋅µ(Gk+1). It remains to show that it does
not lift to Va⋅µ(Gk+2); that is, we must show that obk+2(a ⋅ f) ≠ 0.

Suppose first that k < e, where e = eE is the absolute ramification index
of E, and suppose that obk+2(a ⋅ f) = 0. We then claim that obk+1(f) = 0.
Indeed, this follows easily from assertion (2) of Lemma 2.5.2 and the identity

βk+2 ≡ (1⊗ τ(πE)) ⋅ βk+1 (mod uk+1).

This shows the lemma when k < e.
Now suppose that k ≥ e. Then the map OK → OK/$k is a divided power

thickening. Therefore, f ∈ Vµ(Gk) has a crystalline realization fcris ∈ V̆dR

whose reduction mod $k+1 is the crystalline realization fk+1 ∈ V̆dR,k+1. Set

Õb
def
= V̆dR ⊗OK⊗ZpOE ,1⊗τ(ι0)

OK .

Then, Õb is a rank 1 finite free OK-module, and, for each i ∈ Z≥1, we have
Õbi+1 = Õb⊗OK OK/$i+1.

The hypothesis obk+1(f) ≠ 0 means that that the image of fcris in Õb

does not lie in $k+1 ⋅ Õb. In turn, this implies that, the image of (a ⋅ f)cris =

(1⊗a) ⋅fcris in Õb does not lie in $k+2 ⋅Õb, and thus that obk+2(a ⋅f) ≠ 0. �

Define a function
ordE ∶ V (G1)Q → Z,

given by two defining properties:

● If a ∈ E, and f ∈ V (G1)Q, then

ordE(a ⋅ f) = ordE(a) + ordE(f).

● If f ∈ V (G1) is an OE-module generator, then

ordE(f) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if E is unramified over F ;

ordE(dE/F ), if E is ramified over F .

Lemma 2.5.4. If f ∈ Vµ(G1) is such that ordE(f) = 1, then f does not lift
to Vµ(G2).

Proof. Let fcris ∈ V̆cris(G)
def
= Vcris(G)⊗OE d−1

E/F be the crystalline realization

of f . Observe that, by Propositions 2.3.3 and 2.3.4, the hypothesis ordE(f) =
1 implies:

fcris,τ(ι0) ∈ (1⊗ πE) ⋅ V̆cris(G)/(1⊗ π
2
E) ⋅ V̆cris(G).

Now, one only needs to observe that OK/$2 is either W /p2W or the

ring Falg
p [u]/(u2) of dual numbers, and that, in either case, there exists an

isomorphism

V̆cris(G)⊗W OK/$2 ≃
Ð→ V̆dR,2

of OK/$2 ⊗Zp OE-modules carrying fcris to the crystalline lift f2 ∈ V̆dR,2.
This immediately implies ob2(f) ≠ 0, and thus gives us the lemma.

�
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Theorem 2.5.5. Suppose that f ∈ Vµ(G1). Then f lifts to Vµ(Gk) if and
only if ordE(f) ≥ k.

Proof. Immediate from Lemmas 2.5.4 and 2.5.3. �

3. CM Shimura varieties

Our goal in this section is to study a certain zero dimensional Shimura
variety. The proof of the main Theorem 6.4.2 will proceed by embedding this
zero dimensional variety into the higher dimensional GSpin Shimura varieties
studied in the next section, and then computing the degree of the special
divisors on the ambient Shimura variety along the resulting arithmetic curve.

As with the GSpin Shimura varieties themselves, the zero dimensional
variety studied here does not admit any obvious moduli interpretation. In-
stead, we have to resort to abstract existence theorems, working consistently
with the various realizations of the putative motives that live over the va-
riety, and exploiting properties arising from the comparison isomorphisms
among them. As a result, the exposition is necessarily somewhat technical.

Now for some notational conventions that will be in force throughout the
section: We will fix a CM field E with totally real subfield F . We will also
take Qalg to be the algebraic closure in C of Q and write ΓQ for the absolute

Galois group Gal(Qalg/Q). For any algebraic torus A over Q, we will write
X∗(A) (resp. X∗(A)) for the ΓQ-module of characters (resp. cocharacters)
of A.

If µ ∶ Gm → A is a cocharacter with field of definition F ⊂ Qalg, then its
reflex norm is given by

r(A,µ) ∶ ResF /QGm
Res µ
ÐÐÐ→ ResF /QA

NmF /Q
ÐÐÐÐ→ A.

Here, ResF /QA is the Weil restriction of the base change of A over F , Res µ
is the Weil restriction of µ, and NmF /Q is the usual norm map.

3.1. A zero dimensional Shimura variety. For any Q-algebra R, abbre-
viate TR = ResR/QGm. Set

T 1
F = ker(Nm ∶ TF → Gm),

and T = TE/T
1
F . The natural diagonal embedding Gm ↪ TE induces an

embedding Gm ↪ T . Set

Tso = ker(NmE/F ∶ TE → TF ).

The rule x↦ x/x defines a surjection

θ ∶ TE → Tso,

inducing isomorphisms TE/TF
≃
Ð→ T /Gm

≃
Ð→ Tso. The character groups of

these tori can be described explicitly. If for any number field M/Q we set

Emb(M) = {Embeddings M ↪ Qalg},
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then we have natural identifications

X∗(TE) = ⊕
ι∈Emb(E)

Z ⋅ [ι],(3.1.1)

X∗(T ) = {∑
ι

aι[ι] ∈X
∗(TE) ∶ aι + aι is independent of ι},

X∗(Tso) = {∑
ι

aι[ι] ∈X
∗(TE) ∶ aι + aι = 0, for all ι}

of ΓQ-modules.
Identify Emb(E) with the set of embeddings E ↪ C, and enumerate the

real embeddings F ↪ R as ι0, . . . , ιd−1. We will declare ι0 a distinguished
embedding, and we will fix, once and for all, an extension ι0 ∈ Emb(E) of
this embedding.

Define a cocharacter µ0 ∈X∗(TE) by the formula

(3.1.2) ⟨µ0, [ι]⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ι = ι0

0 otherwise.

We will also denote the induced cocharacter of T by µ0. The field of defini-
tion for µ0 is ι0(E) ⊂ Qalg ⊂ C. If no confusion can arise, we will identify E
with this subfield of C.

In our situation, the reflex norm r(TE , µ0) simplifies considerably: It is

simply the identity TE
id
Ð→ TE . In particular, the reflex norm r(T,µ0) ∶ TE →

T associated with µ0 ∈X∗(T ) is just the natural surjection from TE to T .
Let r(T,µ0)` ∶ (Q` ⊗Q E)× → T (Q`) be the evaluation of this map on Q`.

We will write r(T,µ0)λ ∶ E
×
λ → T (Q`) for its restriction to E×

λ . We also have
the adélic version

r(T,µ0)(Af) ∶ A×
f,E → T (Af).

Fix a compact open subgroup K ⊂ T (Af). To the triple (T,µ0,K) we
can attach a finite étale algebraic stack YK over E, which we will call a CM
Shimura variety. This is constructed as follows. Consider the composition

A×
f,E

r(T,µ0)(Af )
ÐÐÐÐÐÐÐ→ T (Af)→ T (Af)/T (Q)K.

This factors via the global reciprocity map through the abelianization of the
Galois group ΓE = Gal(Qalg/E). Therefore, we obtain a homomorphism

rK(T,µ0) ∶ ΓE → T (Af)/T (Q)K.

Now, suppose thatK is neat: This is equivalent to requiring thatK∩T (Q)
be torsion-free.2 Then YK will be a finite étale scheme over E corresponding
to the ΓE-set

YK(Qalg) = T (Q)/{µ0} × T (Af)/K,

2For instance, one can take K to be the image of the elements in (OE ⊗ Ẑ)× that are
congruent to 1 mod 3.
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equipped with the Galois action obtained from the map rK(T,µ0). More
precisely, there is a natural action of T (Af)/T (Q)K on YK(Qalg) obtained

via the right multiplication on T (Af) on itself. The action of ΓE on YK(Qalg)
is the one induced from that of T (Af)/T (Q)K via the map rK(T,µ0). For
general K, choose a neat compact open subgroup K ′ ⊂K. Then YK will be
the stack quotient of YK′ by the action of the finite group K/K ′.

3.2. The integral model. We will now choose a particular maximal com-
pact K0 ⊂ T (Af). Using the identification

Tso(Qp) =
(Qp ⊗Q E)×

(Qp ⊗Q F )×
,

we define K0,p,so to be the subgroup

(3.2.1) K0,p,so =
(Zp ⊗Z OE)

×

(Zp ⊗Z OF )×
⊂ Tso(Qp).

This will be the image of K0 in Tso(Qp).
The long exact sequence of ΓQp-cohomology associated with the short

exact sequence

1→ T 1
F → TE → T → 1

gives us a short exact sequence

0→
(Qp ⊗Q E)×

(Qp ⊗Q F )Nm=1
→ T (Qp)→⊕

p∣p

Q×
p/Nm(F ×

p )→ 0.(3.2.2)

Here, p varies over the p-adic places of F . Now define K0,p ⊂ T (Qp) to be
the largest subgroup mapping to K0,p,so ⊂ Tso(Qp), and to⊕p∣pZ×p/Nm(O×Fp

)

under (3.2.2). It sits in a short exact sequence

1→ Z×p →K0,p →K0,p,so → 1.

Finally, set K0 =∏pK0,p.
For any compact open subgroup K ⊂ T (Af), let YK be the normalization

of Spec(OE) in YK (see Definition 4.2.1 below). Set Y0 = YK0 , and Y0 = YK0 .

Proposition 3.2.1. Let K ⊂ T (Af) be a compact open subgroup. Suppose
that p is a prime such that Kp = K0,p, and set OE,p = OE ⊗Z Zp. Then
YK ⊗OE OE,p is finite étale over OE,p. In particular, Y0 is a finite étale
algebraic stack over OE.

Proof. By construction, YK is normal and finite flat over OE . We need to
study the ramification of YK . This is easily done from its explicit description.

Fix a prime q ⊂ OE lying above a rational prime p. Fix an algebraic

closure Qalg
p of Qp and an embedding ηp ∶ Qalg ↪ Qalg

p such that the closure

of ηp(E) ⊂ Qalg
p is Eq. This allows us to identify ΓEq = Gal(Qalg

p /Eq) with a
subgroup of ΓE .
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Set

YK,q = YK ×Spec(E) Spec(Eq)

YK,q = YK ×Spec(OE) Spec(OE,q),

so that YK,q is a finite étale algebraic stack over Eq. Assume that K is
neat. Then YK,q is the finite étale scheme over Eq associated, via the local
reciprocity map, with the composition

E×
q

r(T,µ0)q
ÐÐÐÐÐ→ T (Qp)→ T (Af)/T (Q)K.

Therefore, the ramification of YK,p over Ep is controlled by

ker(O×E,q
r(T,µ0)q
ÐÐÐÐÐ→ T (Qp)/Kp).

More precisely, the completed étale local ring of YK,q at any Falg
p -valued point

will be the ring of integers in the finite abelian extension of the compositum

W (Falg
p )OE,q classified by the above compact open subgroup of O×E,q.

From this, we conclude that to show that YK,q is finite étale over OE,q, it
is enough to show that

r(T,µ0)q(O
×
E,q) ⊂K0,p.

From the definition of r(T,µ0), this subgroup is exactly the image of O×E,q
under the map TE(Qp) → T (Qp). It follows easily from the definition of
K0,p that it must contain this image. �

3.3. Automorphic sheaves I. Fix a compact open subgroup K ⊂ T (Af).
We will now construct some natural sheaves on YK .

First, suppose that we have an algebraic Q-representation N of T . Then
we obtain a local system of Q-vector spaces

T (Q)/ ({µ0} ×N × T (Af)/K)

over YK(C). If we fix a K-stable lattice NẐ ⊂ NAf , we get a local system
NB of Z-vector spaces underlying this local system, where the fiber of NB

over a point [(µ0, t)] of YK(Af) is tNẐ ∩N .
We can also associate with N the vector bundle

NdR,C = T (Q)/ ({µ0} ×NC × T (Af)/K)

over YK(C). Here, we have equipped NC with its topological structure as a
C-vector space. There is a canonical isomorphism

OYK(C) ⊗ZNB
≃
Ð→NdR,C

of vector bundles over YK(C).
Let v0 be the infinite place of E underlying the distinguished embedding

ι0. Via the identification Ev0 = C obtained from ι0, we have a homomorphism

(3.3.1) C× = E×
v0

r(T,µ0)v0
ÐÐÐÐÐ→ T (R)
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where r(T,µ0)v0 is as defined in §3.1. This homomorphism equips the TC-
representation NC with a Hodge structure whose Hodge filtration is split
by the cocharacter µ−1

0 . Since this Hodge structure is T (Q)-equivariant, it
descends to one on the vector bundle NdR,C, and so we obtain a Hodge
filtration Fil●NdR,C on NdR,C. Therefore, the tuple

(NB,NdR,C,Fil●NdR,C,OYK(C) ⊗ZNB
≃
Ð→NdR,C)

corresponds to a variation of Z-Hodge structures on YK(C), which we denote
by NHdg. The assignment of NHdg to the pair (N,NẐ) is clearly functorial.

Fix a prime `. Suppose that K ′
` ⊂ K` is a compact open subgroup, and

set K ′ =K ′
`K

` ⊂ T (Af). Then the proof of Proposition 3.2.1 shows that the

map of integral models YK′ → YK is finite étale over OE[`
−1]. In particular,

the pro-finite OE-scheme

Y`[`
−1] = lim

←Ð
K′

`
⊂K`

YK′[`−1]

is a pro-finite Galois cover of YK[`−1] with Galois group K`. Therefore,
we obtain a functor from continuous `-adic representations of K` to locally
constant `-adic sheaves on YK[`−1] via the contraction product

N` ↦N` = (Y`[`
−1] ×N`)/K`.

The next result is easily checked from the definitions.

Proposition 3.3.1. Suppose that N is a Q-linear algebraic representation
of T and that NẐ ⊂ NAf is a K-stable Ẑ-lattice. Then, for each `, there is a
canonical isomorphism

Z` ⊗NB
≃
Ð→NZ` ∣YK(C)

of `-adic local systems on YK(C).

3.4. Abelian schemes. The norm character NmE/Q ∶ TE → Q factors
through a homomorphism Nm ∶ T → Gm. Suppose that H is a faithful
Q-representation of T that admits a T -invariant symplectic pairing

ψ ∶H ×H → Q(Nm)

such that the Hodge structure on H arising from the map (3.3.1) has weights
(0,−1), (−1,0) and is polarized by ψ.

For any K-stable lattice HẐ ⊂ HAf on which ψ takes values in Ẑ, the as-
sociated variation of Z-Hodge structures HHdg over YK(C) is the homology
of a polarized abelian scheme over YK,C. This abelian scheme is associated
with a map of Shimura varieties

YK,C → Xr,m,C,

where 2r = dimQ(H), m2 is the discriminant of ψ restricted to HẐ, and
Xr,m is the Siegel modular scheme over Z parameterizing polarized abelian
varieties of dimension r and degree m. By the theory of canonical models,
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this descends to a map YK → Xr,m,E over E, and so we obtain a polarized
abelian scheme AH,Q → YK .

Proposition 3.4.1. The abelian scheme AH,Q extends canonically to an
abelian scheme AH → YK . Moreover, for any prime `, the `-adic Tate mod-
ule of AH , viewed as an `-adic sheaf over YK[`−1] is canonically isomorphic
to HZ`.

Proof. For any prime `, it is immediate from Proposition 3.3.1 and the theory
of canonical models that the `-adic Tate module of AH,Q is canonically
isomorphic to the restriction of HZ` to YK . Since this sheaf extends to a
lisse sheaf over YK[`−1], it follows from the Néron-Ogg-Shafarevich criterion
for good reduction that AH,Q extends to an abelian scheme over YK[`−1]
for each prime `, and hence to an abelian scheme AH → YK , whose `-adic
Tate module is canonically isomorphic to HZ` . �

We will now give an explicit construction of such a symplectic represen-
tation. Write CM(E) for the set of CM types Φ for E; these are the subsets
Φ ⊂ Emb(E) satisfying

Φ ⊔Φ = Emb(E).

The total reflex algebra of E is the étale Q-algebra E♯ equipped with an
isomorphism

Hom(E♯,Qalg)
≃
Ð→ CM(E)

as sets with ΓQ-actions. It is easily checked that E♯ is a product of CM
fields, and is in particular equipped with a canonical complex conjugation
x↦ x, corresponding to the involution Φ↦ Φ on CM(E).

There is a total reflex norm Nm♯ ∶ TE → TE♯ , which factors through an
embedding

(3.4.1) Nm♯ ∶ T ↪ TE♯ .

This map can be described explicitly on the level of the associated character
groups. Using the natural identification of ΓQ-modules of (3.1.1), along with

X∗(TE♯) = ⊕
Φ∈CM(E)

Z ⋅ [Φ],

it is given by
X∗(Nm♯) ∶ [Φ]↦∑

ι∈Φ

[ι].

Write H♯ for E♯ viewed as a representation of TE♯ via multiplication. Via
the map Nm♯ ∶ T → TE♯ of (3.4.1), we can considerH♯ also as a representation
of T .

For Φ ∈ CM(E), write ιΦ for the corresponding element in

Hom(E♯,Qalg) = Hom(E♯,C).

Fix a non-zero element ξ ∈ E♯ such that, for any Φ ∈ CM(E) with ι0 ∈ Φ, we
have ιΦ(ξ) ∈ R>0 ⋅ i.

The following proposition is an easy check from the definitions.
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Proposition 3.4.2. The pairing (x, y) ↦ TrE♯/Q(ξxy) gives rise to a T -
equivariant symplectic pairing

ψ♯ ∶H♯ ×H♯ → Q(Nm)

such that the Hodge structure on H♯ arising from the map (3.3.1) has weights
(0,−1), (−1,0) and is polarized by ψ♯.

3.5. Automorphic sheaves II. Recall from §3.3 that we have a canonical
functor N ↦ (NdR,C,Fil●NdR,C) from algebraic Q-representations N of T to
filtered vector bundles over YK(C). We can interpret this a bit differently.
Given any E-linear algebraic representation M of E ⊗Q T , the constant
vector bundle

{µ0} ×MC × T (Af)/K
over {µ0}×T (Af)/K is T (Q)-equivariant, and so descends to a vector bun-
dle MdR,C over YK(C). When restricted to a Q-linear representation N
equipped with the filration Fil●NE split by the cocharacter µ0, this functor
recovers the filtered vector bundle associated with N .

Proposition 3.5.1. For any E-linear representation M of E⊗QT , the vec-
tor bundle MdR,C has a canonical and functorial descent to a vector bundle
MdR,Q over YK . In particular, for any Q-linear representation N , the fil-
tered vector bundle (NdR,C,Fil●NdR,C) has a functorial descent to a filtered
vector bundle (NdR,Q,Fil●NdR,Q) over YK .

Proof. This is essentially a consequence of Deligne’s theorem showing that
all Hodge cycles on abelian varieties are absolutely Hodge [DMOS82, Ch.
I]; see also [Har85, §3.15]. We sketch a proof here.

Take H to be a faithful Q-representation of T as in § 3.4, so that the
associated variation of Hodge structures HHdg (associated with some choice
of K-invariant lattice in H∣Af ) corresponds to a canonical abelian schemeAH
over YK . We can always find such a representation; see Proposition 3.4.2.
The relative first de Rham homology ofAH over YK gives a canonical descent
of HdR,C to a vector bundle HdR,Q over YK .

Let H⊗ (resp. H⊗
dR,Q) be the direct sum of tensor powers of H (resp.

H⊗
dR,Q) and its dual, and let {tβ} ⊂ H⊗ be a collection of tensors whose

pointwise stabilizer in GL(H) is T . By the functoriality of the construction
N ↦NHdg, these tensors give rise to Hodge tensors

{tβ,dR,C} ⊂H
0(YK,C,Fil0H⊗

dR,C).

By Deligne’s theorem, these tensors descend to a collection

{tβ,dR,Q} ⊂H
0(YK,Q,Fil0H⊗

dR,Q).

See [Kis10, Corollary 2.2.2].
Now, the functor on YK-schemes carrying a YK-scheme S to the set of

isomorphisms

η ∶ OS ⊗QH
≃
Ð→HdR,Q∣S



30 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

satisfying η(1 ⊗ tβ) = tβ,dR,Q, for all indices β is represented by a T -torsor
PT,Q → YK . Moreover, this T -torsor is canonical and does not depend on
the choice of representation H. This can be seen by comparing the torsors
obtained from H and a different representation H ′ with the one associated
with the direct sum H ⊕H ′; see the argument in [Har85, p. 177].

The construction of the functor M ↦MdR,Q is now simple: We will take
MdR,Q to be the contraction product

MdR,Q
def
= (PT,Q ×M)/T,

where T acts diagonally on PT,Q ×M .
�

We now want to extend this construction over the integral model YK . We
will do this using integral p-adic Hodge theory. Let q ⊂ OE be a prime lying

above a rational prime p. Fix an algebraic closure Falg
q for Fq and also an

algebraic closure Frac(W )alg of the fraction field Frac(W ) of W =W (Falg
q ).

Choose an embedding Qalg ↪ Frac(W )alg inducing the place q on E = ι0(E).

Let Oy be the completion of YK at an Falg
q -valued point y. Write Wq for

the ring of integers in the extension of Frac(W ) generated by the image of
Eq. Let

Iq = Gal(Frac(W )alg/Frac(Wq))

be the absolute Galois group of Frac(Wq). If Qalg
p ⊂ Frac(W )alg is the

algebraic closure of Qp, then Iq is identified with the inertia subgroup of

ΓEq = Gal(Qalg
p /Eq). Fix an embedding of Frac(Wq)-algebras Frac(Oy) ↪

Frac(W )alg, and let

Γy = Gal(Frac(W )alg/Frac(Oy))

be the absolute Galois group of Frac(Oy). Then Γy is a finite index subgroup
of Iq.

If Np is a continuous p-adic representation of Kp, we obtain from it a lisse
p-adic sheaf Np over YK , and restricting further to Spec(Frac(Oy)) gives us
a continuous representation of Γy, which we will denote by Np,y.

Proposition 3.5.2. Suppose that Np is a Kp-stable Zp-lattice in an alge-
braic Qp-representation N of TQp. Then the Γy-representation Λp,y[p

−1] is
crystalline.

Proof. This is essentially due to Rapoport-Zink [RZ96]. We give some details
of the proof.

Consider the map

(3.5.1) Γy ↪ Iab
q

≃
Ð→ O×E,q ↪ TE(Qp),

where the isomorphism in the middle is the reciprocity isomorphism of local
class field theory.

Via the map (3.5.1), given any algebraic Qp-linear representation M of
TE and a Kp-stable Zp-lattice Mp ⊂ M , we obtain, in a functorial way,
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a continuous Zp-linear representation Mp of Γy. The associated Qp-linear
representation Mp[p

−1] does not depend on the choice of the lattice Mp.
In particular, since any representation of T is naturally a representation

of TE , we obtain a functor from Qp-linear algebraic representations of T to
continuous Qp-representations of Γy. Applying this functor to N , we obtain
a continuous Qp-representation of Γy. Using the description of the functor

Mp ↦Mp above, as well as of the Q-structure on YK(Qalg) in §3.1, it is easy
to verify that this representation is precisely Np,y[p

−1].
Therefore, to finish the proof, it is enough to show that, for any Qp-

representation N of TE , Np[p
−1] is a crystalline representation of Γy. It

suffices to do this for a single faithful representation of TE : Indeed, any
other representation will yield a Galois representation that is a subquotient
of tensor powers of the Galois representation associated with the chosen
faithful representation of T .

We choose our faithful representation to be the tautological representation
H0 of TE obtained from its multiplication action on the Q-vector space E.
We have

H0,Qp =⊕
q′∣p

H0,q′ ,

where q′ ranges over the p-adic primes of E, and H0,q′ is simply Eq′ viewed
as a representation of TE,Qp .

By the explicit description of (3.5.1), we find that the associated repre-
sentation of Γy also admits a direct sum decomposition

H0,p[p
−1] =⊕

q′∣p

H0,et,q′[p
−1],

where Γy acts on H0,et,q via the reciprocity isomorphism Iq
≃
Ð→ O×E,q of local

class field theory, and trivially on H0,et,q′ for q ≠ q′.
Therefore, it is enough to show thatH0,et,q[p

−1] is crystalline. But, by the
construction of the local reciprocity isomorphism using Lubin-Tate theory,
this is simply the rational Tate module TπE(Gq)[p

−1], where Gq is the Lubin-
Tate group over OE,q associated with some choice of uniformizer π ∈ Eq. �

Remark 3.5.3. From the proof above, we see that the homomorphism

Γy → T (Qp)

giving rise to the functor Np ↦ Np,y factors through the image of E×
q in

T (Qp). Let Tq ⊂ TQp be the image of ResEq/QpGm. Then, if we set

Kq =Kp ∩ TEq(Qp),

we actually obtain a functor fromKq-stable lattices in algebraic Qp-representations
of Tq to continuous Γy-representations on finite free Zp-modules. When re-
stricted toKp-stable lattices in algebraic representations of TQp , this recovers
the functor Np ↦Np,y considered above.
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For the next result, we slightly expand the usual notion of an F -crystal
over W : For us, it will be a finite free W -module J0 equipped with an

isomorphism Fr∗J0[p
−1]

≃
Ð→ J0[p

−1] of W -modules. Also a filtered finite free
module over Oy is a finite free module J over Oy equipped with a filtration
Fil●J by Oy-linear direct summands.

Corollary 3.5.4. Let M be an algebraic Qp-representation of Tq, and let
Mp ⊂ M be a Kq-stable Zp-lattice. Then we can associate with Mp an F -
crystal Mcris,y over W and a filtered finite free Oy-module MdR,Oy with the
following properties:

(1) The assignments Mp ↦Mcris,y and Mp ↦MdR,Oy are functorial in
Mp.

(2) If Mp,y is the crystalline Γy-representation associated with Mp via
Remark 3.5.3, then we have canonical comparison isomorphisms

Bcris ⊗ZpMp,y
≃
Ð→ Bcris ⊗W Mcris,y;

BdR ⊗ZpMp,y
≃
Ð→ BdR ⊗Oy MdR,Oy .

(3) If Mp,y = Tp(H)∨ is the dual of the p-adic Tate module of a p-divisible
group H over Oy, then, in the notation of Theorem 2.1.1, we have
canonical isomorphisms

Mcris,y
≃
Ð→ D(H)(W );

MdR,y
≃
Ð→ D(H)(Oy)

of F -crystals over W and filtered finite free Oy-modules, respectively.
Under these isomorphisms, the comparison isomorphisms in asser-
tion (2) are carried to the canonical p-adic comparison isomorphisms
for abelian schemes over Oy.

Proof. Choose a uniformizer πy ∈ Oy, and let E(u) ∈W [u] be its associated
monic Eisenstein polynomial. Then, by the theory in §2.1, we obtain a
functor:

Mp ↦M(Mp)
def
= M(Mp,y)

from Kq-stable lattices in algebraic Qp-representations of Tq to Breuil-Kisin
modules over Oy (associated with the uniformizer πy).

Reducing ϕ∗M(Mp) mod u gives us an F -crystal Mcris,y over W . Re-
ducing it mod E(u) gives us a finite free Oy-module MdR,y. The existence
of the canonical comparison isomorphisms in assertion (2) follows from the
properties of the functor M as explained in § 2.1.

In particular,

MdR,Oy[p
−1] = Frac(Oy)⊗Frac(W )Dcris(Mp,y)

has a canonical filtration, and we will equip MdR,Oy with the induced fil-
tration.
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The constructions are clearly functorial in Mp, and their compatibility
with Dieudonné theory as stated in assertion (3) follows from Theorem 2.1.1.

�

Proposition 3.5.5. Fix an algebraic Q-representation N of T and a K-
stable lattice NẐ ⊂ NAf . Then we can canonically associate with this pair a
filtered vector bundle (NdR,Fil●NdR) over YK . Given a prime q ⊂ OE, we
can also canonically associate with the pair an F -crystal Ncris over YK,Fq.
These constructions have the following properties:

(1) They are functorial in the pair (N,NẐ).
(2) The restriction of NdR to YK is canonically isomorphic to NdR,Q as

a filtered vector bundle.
(3) If N = H is as in Proposition 3.4.1 with associated abelian scheme
AH over YK , then the filtered vector bundle HdR is canonically iden-
tified with the relative first de Rham homology of AH . Moreover, the
F -crystal Hcris over YK,Fq is canonically isomorphic to the dual of
the Dieudonné F -crystal associated with the restriction of AH over
YK,Fq.

(4) If y ∈ YK(Falg
q ), then the evaluation of NdR on Spec Oy is canoni-

cally isomorphic, as a filtered free Oy-module, to the filtered module
NdR,Oy obtained from NZp via Corollary 3.5.4.

(5) With y as above, the evaluation of Ncris on Spf W (Fq), viewed as
a formal divided power thickening of y, is canonically isomorphic to
the F -crystal Ncris,y, obtained from NZp via Corollary 3.5.4.

Proof. Fix a representation H of T as in Proposition 3.4.1, and a lattice
HZ ⊂ H such that HẐ ⊂ HAf is K-stable, giving us an abelian scheme
AH → YK . Let HdR be the first relative de Rham homology of AH over
YK . As in the proof of Proposition 3.5.1, if we fix tensors {tβ} ⊂H

⊗, whose
pointwise stabilizer is T , we obtain canonical global sections {tβ,dR,Q} of

Fil0H⊗
dR,Q.

We can assume that each tβ actually lies in H⊗

Ẑ
. Then, given a prime

p, the p-adic étale realizations of these invariant tensors give us canonical
global sections {tβ,p} of H⊗

p over YK[p−1].

Fix a prime q ⊂ OE lying above p, and a point y ∈ YK(Falg
q ). Then we

obtain Γy-invariant tensors {tβ,p,y} ⊂Hp,y.
From Corollary 3.5.4 we obtain canonical tensors {tβ,cris,y} ⊂H

⊗
cris,y and

{tβ,dR,Oy} ⊂H
⊗
dR,y such that the comparison isomorphisms

Bcris ⊗ZpHp,y
≃
Ð→ Bcris ⊗W (Fq)Hcris,y ; BdR ⊗ZpHp,y

≃
Ð→ BdR ⊗Oy HdR,Oy

carry 1⊗ tβ,p,y to 1⊗ tβ,cris,y and 1⊗ tβ,dR,Oy , respectively.
By a theorem of Blasius-Wintenberger [Bla94], the restriction of tβ,dR,Oy

to Frac(Oy) is precisely the evaluation of the de Rham tensor tβ,dR,Q on
Spec Frac(Oy). Therefore, we find that tβ,dR,Q extends to a section tβ,dR of
H⊗

dR over YK .
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This also shows that, for any Kp-stable lattice Np ⊂ NQp in an algebraic
Q-representation N , there is a canonical isomorphism

NdR,Oy[p
−1]

≃
Ð→NdR,Q∣Spec(Frac(Oy))

of filtered vector spaces. Indeed, as in the proof of Proposition 3.5.1, both
constructions arise from the T -torsor over Frac(Oy) parameterizing trivial-

izations Frac(Oy) ⊗H
≃
Ð→ HdR,Oy[p

−1], which carry 1 ⊗ tβ to tβ,dR,Oy , for
each index β.

In particular, using the functoriality of the construction Np ↦ NdR,Oy ,
one deduces that there is a canonical filtered vector bundle NdR,q over YK,q,

whose restriction to YK,q[p
−1] is isomorphic to the restriction of NdR,Q,

and whose evaluation at Spec Oy, for any point y ∈ YK(Falg
q ), is the lattice

NdR,Oy .
The construction of the functor Np ↦ Ncris proceeds similarly, but we

only give it in the case where YK,q is étale over OE,q, which will suffice for
our purposes. By a descent argument, we can assume that K is neat, so
that YK,q is a scheme over OE,q, and is in fact a disjoint union of schemes
of the form Y ′ = SpecOE′ , where E′/Eq is a finite, unramified extension.

Let F′ be the residue field of OE′ . Fix an embedding F ↪ Falg
q : This

determines a point y ∈ Y ′(Falg
q ). The construction in Corollary 3.5.4 gives

us an F -crystal Ncris,y over W (Falg
q ). It is now enough to show that it has

a canonical descent to an F -crystal Ncris,F′ over W (F′), which recovers the
Dieudonné F -crystal of AH when N = H. This can be deduced from the
functoriality of Kisin’s functor M. Alternatively, it can also be deduced by
observing that Kisin’s functor is already defined for crystalline Galois rep-

resentations of Gal(Qalg
p /E′), as is its compatibility with Dieudonné theory

of p-divisible groups, and we can therefore use it to produce F -crystals over

W (F′), and not just over W (Falg
q ).

It remains to globalize the construction of the de Rham realization. Let D
be the product of the finitely many rational primes at which E is ramified, or
at which we have Kp ≠K0,p. Note that T extends to a torus over Z[D−1]. We
will denote this extension again by T . From the construction of the compact
open subgroup K0,p in § 3.1, we find that, for p ∤ D, Kp = K0,p = T (Zp).
Moreover, for each such p, we can choose the tensors {tβ} so that their
stabilizer in GL(HZ

(p)
) is TZ

(p)
.

We can now consider the functor on YK[D−1]-schemes carrying S to the
set of isomorphisms

ξ ∶ OS ⊗ZHZ
≃
Ð→HdR∣S

of vector bundles over S satisfying ξ(1⊗ tβ) = tβ,dR, for all indices β. Since

T is a reductive group over Z[D−1], it follows from [Kis10, Corollary 1.4.3]
that this functor is represented by a T -torsor PT over YK[D−1]. Just as in
the proof of Proposition 3.5.1, this functor is independent of the choice of
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data (H,HZ), and we obtain from it a canonical functor

NZ[D−1] ↦ (NdR,Z[D−1],Fil●NdR,Z[D−1])

from algebraic representations of T on finite free Z[D−1]-modules to filtered
vector bundles over YK[D−1], which has properties (2), (3) and (4).

Given an arbitrary K-stable lattice NẐ ⊂ NAf , by enlarging the set of
primes appearing in the factorization of D if necessary, we can assume
that NẐ[D−1]

arises from an algebraic Z[D−1]-representation of T , and so

the desired filtered vector bundle (NdR,Fil●NdR) is canonically determined
outside of the primes dividing D. For a prime q ⊂ OE dividing D, it is
determined by the condition that its restriction to YK,q is isomorphic to
NdR,q.

�

To summarize the results of § 3.3 and of this subsection, from a pair
(N,NẐ) as in the Proposition above, we have obtained the following real-
izations:

● NHdg in the category of variations of Z-Hodge structures over YK(C);
● NdR in the category of filtered vector bundles over YK ;
● For each prime `, N` in the category of lisse `-adic sheaves over
YK[`−1];

● For each prime q ⊂ OE , Ncris in the category of F -crystals over
YK,Fq .

For ? = Hdg,dR, `, cris, let End(N?)Q be the endomorphism algebra of
N? in the appropriate isogeny category; this is a finite dimensional algebra
over Q?, where Q? = Q if ? = Hdg; Q? = E if ? = dR; Q? = Q`, if ? = `;
and Q? = Qp if ? = cris. This algebra depends only on N and not on the
choice of K-stable lattice NẐ. Let Aut○(N?) be the algebraic group over Q?

associated with the group of units in this algebra.
Fix a representation H as in Proposition 3.4.1 and a K-stable lattice in

H, and let AH be the associated abelian scheme over YK . Let Aut○(AH) be
the algebraic group over Q obtained as the group of units in the Q-algebra
End(AH)Q.

Proposition 3.5.6.

(1) There is a canonical map of algebraic groups,

θ?(N) ∶ TQ?
→ Aut○(N?)

functorial in the representation N .
(2) There is a canonical embedding T ↪ Aut○(AH) whose homological

realizations induce the maps θ?(H) for the representation H.

Proof. The simplest way to see this is to use the torus

T̃
def
= TE .
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In complete analogy with the construction of YK , given a compact open
K̃ ⊂ T̃ (Af), we can associate with it and the cocharacter µ0 an arithmetic

curve ỸK̃ over OE . If the image of K̃ in T (Af) is contained in K, then we
obtain a finite map

ỸK̃ → YK

of algebraic OE-stacks.
We also obtain realization functors (N,NẐ) ↦ N? over ỸK̃ . Here, N is

an algebraic representation of T̃ and NẐ ⊂ N .
We apply this to the representation H0 and the lattice H0,Ẑ from the

proof of Proposition 3.5.2 to obtain sheaves H0,? over ỸK̃ . Since the E-

action on H0 is T̃ -equivariant, the sheaves just obtained are E-linear objects
in the appropriate isogeny category. We now recover T̃Q?

as the group of
E-equivariant automorphisms

T̃Q?
= Aut○E(H0,?) ⊂ Aut○(H0,?).

From this, and the fact that H0 is a faithful representation of T̃ , it is not
hard to deduce that this actually gives us a canonical map

T̃Q?
→ Aut○(N?),

for every T̃ -representation N . We obtain the map from assertion (1) by

specializing now to representations of T̃ that factor through T .
As for assertion (2), since abelian varieties over C are a fully faithful

subcategory of Z-Hodge structures, the Betti realization θB(H) corresponds
to a map

T → Aut○(AH,Y (C)).

Since the étale realizations of this map descend over Y , it is easily checked
that the map itself descends:

T → Aut○(AH,Y ).

Our desired embedding is just the composition of this one with the inclu-
sion

Aut○(AH,Y )↪ Aut○(AH).

�

3.6. The standard representation and its realizations. We will now
consider a particular representation of T . As in the proof of Proposi-
tion 3.5.2, we have the tautological representation H0 of TE acting on E
via multiplication. Let c ∶ E → E be complex conjugation, and in the nota-
tion of §2.3, set:

V0 = V (H0, c) = {x ∈ End(H0) ∶ x(a ⋅ h) = c(a)x(h), for all a ∈ E}.

This is a TE-subrepresentation of End(H0) on which the action factors
through T , and in fact through Tso. We call this the standard represen-
tation of T .
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The ring of integers OE ⊂ E gives a natural lattice H0,Z ⊂ H0, and hence
a lattice

V0,Z = V (H0,Z, c) ⊂ V0.

Fix a prime q ⊂ OE , an algebraic closure Frac(W )alg of Frac(W ) (here,

W = W (Falg
q )), and an embedding Qalg

p ↪ Frac(W )alg inducing the place q

on E = ι0(E). Let Qalg
p be the algebraic closure of Qp in Frac(W )alg. We

can now view ι0 as an embedding Eq ↪ Qalg
p .

Fix a point y ∈ YK(Falg
q ). We can now describe the F -crystal V0,cris,y

quite explicitly. Fix a uniformizer πq ∈ Eq, and let Gq be the Lubin-Tate
group over OE,q associated with this uniformizer. Let

H0,cris,q = D(Gq)(W )

be the Dieudonné F -crystal over Frac(W ) associated with Gq. The OE,q-
equivariant structure on Gq induces anOE,q-equivariant structure onH0,cris,q.

For a prime q′ ⊂ OE lying over p with q′ ≠ q, let

H0,cris,q′ =W ⊗Qp OE,q′

be the rank 1 W ⊗Qp Eq′-module equipped with the constant F -isocrystal
structure arising from the automorphism Fr⊗ 1.

Now, set

H0,cris,y =⊕
q′∣p

H0,cris,q′ .

From the proof of Proposition 3.5.2, we find that this is precisely the crys-
talline realization obtained from the tautological representation H0 of TE ,
equipped with the standard OE-stable lattice.

The inclusion V0 ↪ End(H0) now gives us identifications:

V0,cris,y = V (H0,cris,y, c) ⊂ End(H0,cris,y).

In particular, the decomposition of H0,cris,y gives us a decomposition:

V0,cris,y =⊕
p′∣p

V0,cris,p′ ,

into F -crystals, where p′ ranges over the primes of OF lying above p, and
where

V0,cris,p′ = V (H0,cris,p′ , c) ⊂ End(H0,cris,p′).

Here,

H0,cris,p′ = ⊕
q′∣p′

H0,cris,q′

is an OF,p′-linear F -crystal over W .

Proposition 3.6.1. Let p ⊂ OF be the prime lying under q. Then the
following statements are equivalent:

(1) p is not split in F .

(2) The space of ϕ-invariants V ϕ=1
0,cris,p is non-zero.
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(3) The natural map

Frac(W )⊗Zp V
ϕ=1

0,cris,p → V0,cris,p[p
−1]

is an isomorphism.
(4) The natural map

Frac(W )⊗Zp V
ϕ=1

0,cris,y → V0,cris,y[p
−1]

is an isomorphism.

Proof. If p is split in E, we have:

H0,cris,p =H0,cris,q ⊕H0,cris,qc .

Moreover, V0,cris,p = V (H0,cris,p, c) consists of pairs (x1, x2) of OF,p-linear
maps

x1 ∶H0,cris,qc →H0,cris,q, x2 ∶H0,cris,q →H0,cris,qc .

Therefore, the space of ϕ-invariants consists of ϕ-equivariant such pairs.
However, by definition, H0,cris,qc is generated by its ϕ-invariants, while
H0,cris,q, being the Dieudonné F -isocrystal associated with a Lubin-Tate

group, has no non-zero ϕ-invariant elements. Thus we conclude that V ϕ=1
0,cris,p

has no non-zero elements.
On the other hand, suppose that p is not split in E. Then we can identify

V0,cris,p = V (H0,cris,p, c) with the space Vcris(Gq) defined in §2.3.
In Propositions 2.3.3 and 2.3.4, we described the structure of ϕ-invariants

in this space explicitly, and in particular showed that they generate the
whole space over Frac(W ).

From these considerations, the equivalence of statements (1), (2) and (3)
of the proposition are immediate. The equivalence of these statements with
(4) now follows from the fact that, for q′ ≠ q, H0,cris,q′ is generated by its
ϕ-invariants. �

Fix a representation H as in Proposition 3.4.1 and a K-stable lattice in
H, and let AH be the associated abelian scheme over YK .

Proposition 3.6.2. Fix a prime q ⊂ OE above a rational prime p and let
p ⊂ OF be the prime lying under it. The following equivalences hold:

p is not split in E⇔ AH,y is supersingular for all y ∈ YK(Falg
q );

Proof. Fix a point y ∈ YK(Falg
q ). By Proposition 3.4.1, the Dieudonné F -

isocrystal associated with AH,y is isomorphic to the F -isocrystal Hcris,y.
Now, the slopes of the F -isocrystal Hcris,y[p

−1] are determined by its
Newton cocharacter

ν(H) ∶ D→ Aut○ϕ(Hcris,y),

where D is the pro-torus over Qp with character group Q, and Aut○ϕ(Hcris,y)
is the algebraic group of Qp obtained as the group of units in the Qp-algebra
Endϕ(Hcris,y)Q of ϕ-equivariant endomorphisms of Hcris,y[p

−1].
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Lemma 3.6.3. For any Q-representation N of T , the Newton cocharacter
ν(N) for Ncris,y[p

−1] factors through the map θcris(N) ∶ TQp → Aut○ϕ(Ncris,y)
from Proposition 3.5.6.

Proof. The Newton cocharacter is functorial in N . If H0 is the tautological
representation of TE , then it is clear from the construction of H0,cris,y in §3.6
that its slope decomposition is stable under the E ⊗Q Qp-action, and hence
that the slope cocharacter for H0,cris,y[p

−1] factors through the commutant
in Aut○ϕ(Hcris,y) of E ⊗Q Qp. This is precisely the torus TE,Qp . Combining
this with the fact that any Q-representation of T , when viewed as a repre-
sentation of TE , appears as a subquotient of a tensor power of H0, one easily
deduces the lemma. �

Now, we find from (3.6.1) that V0,cris,y[p
−1] is generated by ϕ-invariants,

and hence that ν(V0) is trivial, if and only if p is not split in E. Since the
quotient Tso of T acts faithfully on V0, this implies in turn that p is not split
in E if and only if ν(H) factors through

Gm = ker(T → Tso).

This is the case if and only if ν(H) is constant, and hence if and only if
AH,y is supersingular.

�

4. Orthogonal Shimura varieties

Let (V,Q) be a quadratic space over Q of signature (n,2), with n ≥ 1.
Fix a maximal lattice L ⊂ V , and let L∨ be the dual lattice. As in the
introduction, the discriminant of L is DL = [L∨ ∶ L].

In this section, we lay out the theory of GSpin Shimura varieties associated
with (V,Q) and L. The main references are [Mad16] and [AGHM17]. The
models constructed in these references have to be modified slightly for our
purposes here, and we explain this in § 4.4.

The main notion studied is that of a special endomorphism, which allows
us to give a moduli interpretation for the special divisors considered by
Kudla in [Kud04]. This interpretation is crucial for the degree computations
underlying the proof of Theorem 6.4.2.

4.1. The GSpin Shimura variety. Let C(V ) be the Clifford algebra of
(V,Q), with its Z/2Z-grading

C(V ) = C+(V )⊕C−(V ).

Recall from [Mad16] that the spinor similitude group G = GSpin(V ) is the
algebraic group over Q with

G(R) = {g ∈ C+(VR)
× ∶ gVRg

−1 = VR}

for any Q-algebra R. It sits in an exact sequence

1→ Gm → G
g↦g●
ÐÐÐ→ SO(V )→ 1,
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where g ● v = gvg−1. Let ν ∶ G→ Gm be the spinor similitude.
The group of real points G(R) acts on the hermitian symmetric domain

(4.1.1) D = {z ∈ VC ∶ [z, z] = 0, [z, z] < 0}/C× ⊂ P(VC)

through the morphism G → SO(V ). There are two connected components
D = D+ ⊔D−, interchanged by the action of any γ ∈ G(R) with ν(γ) < 0.

The pair (G,D) is a Shimura datum. More precisely, given a class z ∈ D,
we can choose a representative z of the form x + iy, where x, y ∈ VR are
mutually orthogonal vectors satisfying Q(x) = Q(y) = −1. Then we obtain
a homomorphism

hz ∶ S = ResC/RGm → GR

satisfying hz(i) = xy ∈ G(R) ⊂ C+(V )×R. In this way, we can identify D with
the G(R)-conjugacy class of hz, for any z ∈ D. The reflex field of (G,D) is
Q.

Recall that we have fixed a maximal lattice L ⊂ V . Define a compact
open subgroup

(4.1.2) K = G(Af) ∩C(L̂)× ⊂ G(Af).

Here, we have set L̂ = LẐ. The image of K in SO(V )(Af) is the discriminant

kernel of L̂; this is the largest subgroup of the stabilizer of L̂ that acts
trivially on L̂∨/L̂.

By the theory of canonical models of Shimura varieties, we obtain an n-
dimensional algebraic stack M over Q, the GSpin Shimura variety associated
with L. Its space of complex points is the n-dimensional complex orbifold

(4.1.3) M(C) = G(Q)/D ×G(Af)/K.

Proposition 4.1.1. Suppose that one of the following conditions holds:

● n ≥ 2;
● DL is square-free.

Then the complex orbifold M(C) is connected.

Proof. The kernel of ν ∶ G → Gm is the usual spin double cover of SO(V ),
and hence is simply connected. Using strong approximation, it follows that
the connected components of M(C) are indexed by Q×

>0/A×
f /ν(K), and so

the claim follows once we prove that ν(K`) = Z×` for every prime `. When
LZ` contains a hyperbolic plane, the assertion is clear, so we only need to
consider the case where VQ` is anisotropic of dimension at least 3, and is
such that `2 does not divide DL. In this case, the result can be deduced
from the classification of maximal anisotropic lattices over Z`; see [Shi10,
§29.10]. �

Given an algebraic representation G → Aut(N) on a Q-vector space N ,
and a K-stable lattice NẐ ⊂ NAf , we obtain a Z-local system NB on M(C)

whose fiber at a point [(z, g)] ∈ M(C) is identified with N ∩ gNẐ. The
corresponding vector bundle NdR,M(C) = OM(C) ⊗NB is equipped with a
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filtration Fil●NdR,M(C), which at any point [(z, g)] equips the fiber of NB

with the Hodge structure determined by the cocharacter hz. This gives us a
functorial assignment from pairs (N,NẐ) as above to variations of Z-Hodge
structures over M(C).

Applying this to V and the lattice L̂ ⊂ VAf , we obtain a canonical variation
of polarized Z-Hodge structures (VB,Fil●VdR,M(C)). For each point z of
(4.1.1) the induced Hodge decomposition of VC has

V
(1,−1)
C = Cz, V

(−1,1)
C = Cz, V

(0,0)
C = (Cz +Cz)⊥.

It follows that Fil1VdR,M(C) is an isotropic line and Fil0VdR,M(C) is its an-
nihilator with respect to the pairing on VdR,M(C) induced from that on L.

Let H be the representation of G on C(V ) via left multiplication. It is

equipped with a K-stable lattice HẐ = C(L̂) ⊂ HAf . From this, we obtain
a variation of Z-Hodge structures (HB,Fil●HdR,M(C)). This variation has
type (−1,0), (0,−1) and is therefore the homology of a family of complex
tori over M(C). This variation of Z-Hodge structures is polarizable, and so
the family of complex tori in fact arises from an abelian scheme AC →MC.
For all this, see [AGHM17, (2.2)].

By [Mad16, §3], this abelian scheme descends to an abelian scheme A →
M . We call this the Kuga-Satake abelian scheme. It is equipped with a right
C(L)-action and a compatible Z/2Z-grading

A = A+ ×A−.

The first relative de Rham homology sheaf of A gives a canonical descent
of HdR,C over M as a filtered vector bundle with an integrable connec-
tion. We denote this descent by HdR. Using it, and Deligne’s results on
absolute Hodge cycles on abelian varieties, we obtain a canonical tensor
functor from algebraic Q-representations N of G to filtered vector bundles
(NdR,Fil●NdR) over M , which descends the already constructed functor to
objects over MC.

Similarly, if we fix a lattice NẐ ⊂ NAf , then, for any prime `, the `-adic
sheaf N`,C = Z` ⊗NB over M(C) descends canonically to an `-adic sheaf
N` over M . When N = H, H` is canonically isomorphic to the `-adic Tate
module of A.

For all this, see [Mad16, (4.15)].
In particular, for ? = B, `,dR, theG-equivariant embedding V ↪ EndC(V )(H)

determined by left multiplication gives rise to embeddings of homological re-
alizations

(4.1.4) V? ↪ EndC(L)(H?).

For x ∈ V with Q(x) > 0, define a divisor on D by

D(x) = {z ∈ D ∶ z ⊥ x}.
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As in the work of Borcherds [Bor98], Bruinier [Bru02], and Kudla [Kud04],
for every m ∈ Q>0 and µ ∈ L∨/L we define a complex orbifold

Z(m,µ)(C) = ⊔
g∈G(Q)/G(Af )/K

Γg/( ⊔
x∈µg+Lg
Q(x)=m

D(x)).

Here Γg = G(Q) ∩ gKg−1, Lg ⊂ V is the Z-lattice determined by L̂g = g ● L̂,
and

µg = g ● µ ∈ L∨g /Lg.

By construction Z(m,µ)(C) is the space of complex points of a disjoint
union of GSpin Shimura varieties associated with quadratic spaces of sig-
nature (n − 1,2). As such, it has a canonical model Z(m,µ) over Q, and
the obvious map Z(m,µ)(C) → M(C) descends to a finite and unramified
morphism

(4.1.5) Z(m,µ)→M.

Using the complex uniformization, one can check that, étale locally on the
source, (4.1.5) is a closed immersion defined by a single equation. Thus
(4.1.5) determines an effective Cartier divisor on M , which we call a special
divisor. Via abuse of notation, we will usually refer to Z(m,µ) itself as a
special divisor on M .

4.2. Integral models in the self-dual case. In this subsection, we will
fix a prime p such that the lattice L is self-dual over Z(p), and abbreviate

L(p) = LZ
(p)
.

The group G(p) = GSpin(L(p)) is a reductive model for G over Z(p).
The goal is to show that a large part of the results of [Mad16, §4] also

work without the assumption p > 2.
Consider the Kuga-Satake abelian scheme A →M . Its homological real-

izations are the sheaves associated with the representation H of G on C(V )

via left multiplication, and the lattice HẐ = C(L̂) ⊂HAf .
We can choose a G-invariant symplectic pairing ψ ∶ H ×H → Q(ν) such

that induced pairing on the Betti realization HB is a polarization of varia-
tions of Hodge structures; see [AGHM17, (2.2)] for details. This gives rise to
a polarization λ on AM(C), which descends to a polarization of A over M of

degree m2, where m2 is the discriminant of the lattice HẐ in the symplectic
space HAf . In this way, we obtain a map

M → X2n+2,m,Q,

which is finite and unramified. Here, X2n+2,m is the moduli stack over Z of

polarized abelian schemes of dimension 2n+2 and degree m2.

Definition 4.2.1. Given an algebraic stack X over Z(p), and a normal
algebraic stack Y over Q equipped with a finite map jQ ∶ Y → XQ, the
normalization of X in Y is the finite X -stack j ∶ Y → X , characterized by
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the property that j∗OY is the integral closure of OX in (jQ)∗OY . It is also
characterized by the following universal property: given a finite morphism
Z → X with Z a normal algebraic stack, flat over Z(p), any map of XQ-stacks
ZQ → Y extends uniquely to a map of X -stacks Z → Y.

We now obtain an integral model M(p) for M over Z(p) by taking the
normalization of X2n+2,m in M . By construction, the Kuga-Satake abelian
schemes extends to a polarized abelian scheme

A→M(p).

Theorem 4.2.2. The stack M(p) is smooth over Z(p).

Proof. When p > 2, this follows from the main result of [Kis10]. The general
case is shown in [KM15, Theorem 3.10]. �

Remark 4.2.3. Fix a prime ` ≠ p. Recall from §4.1 the functor which assigns
a lisse `-adic sheaf N` over M to each K`-stable Z`-lattice N` ⊂ NQ` in an
algebraic representation N of G. This functor extends (necessarily uniquely,
by the normality ofM(p)) to lisse `-adic sheaves overM(p), and carries HZ`
to the `-adic Tate module H` of A. Indeed, it is enough to show that the
induced functor to lisse Q`-sheaves over M extends over M(p). As shown
in [Mad16, (4.11),(7.9)], this functor is associated with a canonical étale
G(Q`)-torsor over M , which admits an extension over M(p).

We also have a canonical functor

(4.2.1) N ↦NdR

from algebraic Q-representations of G to filtered vector bundles over M
equipped with an integrable connection. The following result is [KM15,
Proposition 3.7].

Proposition 4.2.4. The functor (4.2.1) on algebraic Q-representations of
G extends canonically to an exact tensor functor

N ↦NdR

from algebraic Z(p)-representations N of G(p) to filtered vector bundles on
M(p) equipped with an integrable connection. When N =H(p), the associated
filtered vector bundle with integrable connection is simply HdR, the relative
first de Rham homology of A→M(p).

In particular, from the representation L(p), we obtain an embedding

VdR ↪ EndC(L)(HdR)

of filtered vector bundles over M(p) with integrable connections, mapping
onto a local direct summand of its target, and extending its counterpart (4.1.4)
over M .

We now expand our definition of an F -crystal over M(p),Fp to mean a
crystal of vector bundles N over M(p),Fp equipped with an isomorphism

Fr∗N
≃
Ð→N



44 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

in the Qp-linear isogeny category associated with the category of crystals
over M(p),Fp .

Write M̂p for the formal completion ofM(p) alongM(p),Fp . The relative
first crystalline homology of A over M(p),Fp gives an F -crystal Hcris over

M(p),Fp whose evaluation on M̂p is canonically isomorphic to the p-adic
completion of HdR as a vector bundle with integrable connection.

Proposition 4.2.5. There is a canonical functor N ↦Ncris from algebraic
Z(p)-representations of G(p) to F -crystals overM(p),Fp, which recovers Hcris

when applied to H(p), and whose evaluation on the formal thickening M̂p is
canonically isomorphic to the p-adic completion of NdR as a vector bundle
with integrable connection.

In particular, there is a canonical F -crystal Vcris over M(p),Fp, whose

evaluation on M̂p is canonically isomorphic to the p-adic completion of VdR

as a vector bundle with integrable connection. It admits a canonical embed-
ding

Vcris ↪ EndC(L)(Hcris)

mapping onto a local direct summand of its target, and compatible with the
embeddings of de Rham realizations.

Proof. See Proposition 3.9 of [KM15]. �

4.3. Special endomorphisms in the self-dual case. By Proposition 4.2.4
and Proposition 4.2.5, the embedding of G(p)-representations L(p) ↪ H(p)

gives rise to embeddings

(4.3.1) V? ↪ EndC(L)(H?)

for ? = B, `,dR, cris that map onto local direct summands of their targets.
If ? = B, let 1B be the locally constant sheaf Z over M(C); if ? = `,

let 1` be the lisse `-adic sheaf Z` over M(p)[`
−1]; if ? = dR, let 1dR be

the structure sheaf OM
(p)

, equipped with the connection a ↦ da and the
one-step filtration concentrated in degree 0; and, if ? = cris, let 1cris be the
structure sheaf over (M(p),Fp/Zp)cris, equipped with its natural structure of
an F -crystal.

The quadratic form on L(p) induces a form on the associated realizations.
More precisely, for any section f of V?, we have

f ○ f =Q(f) ⋅ id

under composition in EndC(L)(H?). Here Q(f) is a section of 1?. The

assignment f ↦ Q(f) is a quadratic form on V? with values in 1?. The
associated bilinear form is non-degenerate when ? = dR or cris.

Definition 4.3.1. For any M(p)-scheme S, we define an endomorphism
x ∈ EndC(L)(AS) to be special if all its homological realizations land in
the images of the embeddings (4.3.1). More precisely, we require the `-adic
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realizations over S[`−1] to lie in V`, the crystalline realizations over SFp to
lie in Vcris, and the de Rham realizations to lie in VdR.

We will write V (AS) for the space of special endomorphisms.

We now study the deformation theory of a special endomorphism x. In
what follows, we will frequently cite results from [Mad16, §5], where there
is a standing assumption that p is odd. However, the proofs there do not
use this assumption, as the reader can easily verify.

Suppose that S = Spec(O), with O a p-adically complete Z(p)-algebra. It
will be useful to have a notion of special endomorphisms for the p-divisible
group AS[p

∞]. We will call an endomorphism x ∈ EndC(L)(AS[p
∞]) special

if its crystalline realization lands in the image of the embedding (4.3.1) for
? = cris. We will write V (AS[p

∞]) for the space of special endomorphisms.
Suppose that we have a surjection O → O of p-adically complete Z(p)-

algebras, whose kernel I admits nilpotent divided powers. Suppose that
we have a map y ∶ Spec(O) → M(p) and let y ∶ Spec(O) → M(p) be the

restriction to Spec(O).
Let HO be the O-module obtained by restricting HdR to Spec(O), and

let VO ⊂ End(HO) be the corresponding realization of VdR, so that VO
is equipped with its Hodge filtration Fil1VO, which is a rank 1 projective
module over O. Denote by H

O
and V

O
the induced modules over O.

Let x ∈ V (Ay[p
∞]) be a special endomorphism. The crystalline realization

of x gives us an element xcris ∈ VO. Pairing against Fil1VO induces a linear
functional:

(4.3.2) [xcris, ⋅] ∶ Fil1VO → O.

The following two results are shown just as in [Mad16, Proposition 5.16
and Corollary 5.17].

Proposition 4.3.2. The endomorphism x lifts to an element of V (Ay[p
∞])

if and only if the functional (4.3.2) is identically 0.

Corollary 4.3.3. Suppose that k is an algebraically closed field of charac-
teristic p, that t ∈M(p)(k) and that x ∈ V (At[p

∞]) is a special endomor-
phism. Let Ot be the completed étale local ring of M(p),W (k) at t. There
is a principal ideal (fx) ⊂ Ot such that, for any map f ∶ Ot → R to a local
Z(p)-algebra R, x lifts to an element in EndC(L)(Af(t)[p

∞]) if and only if f
factors through Ot/(fx).

In other words, the deformation space of the endomorphism x within
the formal scheme Spf(Ot) is pro-representable, and cut out by a single
equation.

We have to explain how our notion of a special endomorphism relates to
the one defined in [Mad16, §5]. The main difference is that in [loc. cit.] an
endomorphism x ∈ EndC(L)(AS) was defined to be special if it is special in
our present sense at every geometric point of S, which appears to be a less
restrictive definition. It is not, as the following result demonstrates.
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Proposition 4.3.4. Let S be a connected M(p)-scheme, and suppose that

x ∈ EndC(L)(AS)

is a C(L)-equivariant endomorphism. Then the following statements are
equivalent:

(1) x is special;
(2) For any geometric point s→ S, the fiber of x at s is special;
(3) For some geometric point s→ S, the fiber of x at s is special.

Proof. If S is a scheme of finite type over Q, then this is clear, since the
conditions can be checked over SC, where everything follows from the fact
that the Betti realization is locally constant, and determines the étale and
de Rham realizations. The case of an arbitrary scheme over Q follows from
this, as M(p) is itself of finite type.

If S is an arbitrary Z(p)-scheme, then combining this with [Mad16, Lem-
mas 5.9 and 5.13] shows that (2) and (3) are equivalent. To complete the
proof of the proposition, we now need to know that, if x is special at a
point s → S in characteristic p, then the crystalline realization of x lands
in the image of (4.3.1) globally over SFp . This follows from Lemma 4.3.5
below. �

Lemma 4.3.5. Let R be a complete local algebra over W with perfect
residue field k. Suppose that we have a point t ∈ M(p)(R) and an endo-
morphism x ∈ EndC(L)(At). Let t0 ∈M(p)(k) be the induced point, and let
x0 ∈ EndC(L)(At0) be the fiber of x at t0. Then x is special if and only if x0

is special.

Proof. Let Ot0 be the complete local ring of M(p),W (k) at t0. By Theo-
rem 4.2.2, Ot0 is isomorphic to a power series ring over W (k) in n variables.
By Corollary 4.3.3, the deformation ring for the endomorphism x0 is a quo-
tient Ot0,x0 = Ot0/(fx0) of Ot0 by a principal ideal. Now, by our hypothesis,
x0 lifts over R, and so the map Ot0 → R factors through Ot0,x0 . In particu-
lar, it suffices to verify the lemma for R = Ot0,x0 , and so we can assume that
we have:

R =
W (k)[∣u1, . . . , un∣]

(f)
,

for some element f ∈W (k)[∣u1, . . . , un∣].
The crystalline realization of x is a section of EndC(L)(Hcris). We want

to show that it is in fact a section of Vcris. This is equivalent to showing
that its image in EndC(L)(Hcris)/Vcris is 0.

Let DR → R be the p-adic completion of the divided power envelope of R
in W (k)[∣u1, . . . , un∣]. In other words, this is the p-adic completion of the
subalgebra:

W (k)[∣u1, . . . , un∣] [
fn

n!
∶ n ∈ Z≥0] ⊂ Frac(W (k)[∣u1, . . . , un∣]).
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Note that the Frobenius lift

ϕ ∶W (k)[∣u1, . . . , un∣]→W (k)[∣u1, . . . , un∣]

defined by ui ↦ upi extends continuously to an endomorphism ϕ ∶DR →DR.
Evaluation along the formal divided power thickening

Spec(RFp)↪ Spec(DR)

establishes an equivalence from the category of crystals over (Spec(RFp)/Zp)cris

to the category of finite free DR-modules equipped with a topologically
nilpotent integrable connection. Furthermore, this establishes an equiva-
lence between F -crystals and finite free DR-modules M equipped with a
topologically nilpotent integrable connection as well as a map ϕ∗M[p−1] →
M[p−1] that is parallel for this connection.

Therefore the lemma is now immediate from Lemma 4.3.6 below. �

Lemma 4.3.6. Let M be a finite free DR-module with a topologically nilpo-
tent integrable connection:

∇ ∶M →M ⊗ Ω̂1
R/W (k)

and an isomorphism ϕ∗M[p−1] → M[p−1] that is parallel for ∇. Suppose
that m ∈M∇=0 is a parallel element that goes to 0 under the reduction map
M →M ⊗DR W . Then m = 0.

Proof. Let Û rig be the rigid analytic space over Frac(W (k)) associated with
the power series ring W (k)[∣u1, . . . , un∣] via Berthelot’s analytification func-
tor; see [de 95, §7]. This is simply the rigid analytic unit disc. The endo-

morphism ϕ induces a contraction map ϕ∗ ∶ Û rig → Û rig.
Now, there is a rational number rf ∈ (0,1) such that all elements in DR

converge in the open disc Û rig(rf) ⊂ Û rig of radius rf . Let Rrig be the

ring of global sections of the structure sheaf on Û rig(rf). Then we have an

inclusion DR ⊂ Rrig, and extending scalars along this inclusion gives us an
Rrig-module

M rig = Rrig ⊗DR M

equipped with an integrable connection and an isomorphism

ϕ∗M rig ≃
Ð→M rig.

In this situation, the image of the natural map

(M rig)∇=0 →M rig

generates M rig as an Rrig-module. This is just Dwork’s trick; see for in-
stance [Vol03, §3.4, Prop. 4].

Therefore, if a parallel section of M rig vanishes at a point, then it vanishes
everywhere on Û rig(rf), and is hence the zero section. This proves the
lemma. �
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Proposition 4.3.7. Let S be an M(p)-scheme. For each x ∈ V (AS), we
have

x ○ x = Q(x) ⋅ idAS ∈ End(AS)

for some integer Q(x). The assignment x ↦ Q(x) is a positive definite
quadratic form on V (AS).

Proof. This is shown as in [Mad16, Lemma 5.12]. �

4.4. Integral model over Z. We will now explain how to construct an
integral model for M over Z. In [AGHM17], using the results of [Mad16],
we gave a construction that worked over Z[1/2]. This is inadequate for our
current purposes for two reasons: First, of course, it omits the prime 2;
second, at primes p such that p2 ∣ DL, the integral model from [loc. cit.]
excluded points in the special fiber that will be relevant to this article;
see [AGHM17, Remark 2.4.4].

Fix a prime p. Choose an auxiliary quadratic space (V ◇,Q◇) over Q of
signature (n◇,2), admitting a maximal lattice L◇ ⊂ V ◇ that is self-dual over
Z(p), and admitting an isometric embedding

(V,Q)↪ (V ◇,Q◇)

carrying L into L◇. Set

Λ = L⊥ = {x ∈ L◇ ∶ [x,L] = 0} ⊂ L◇.

Set G◇ = GSpin(V ◇), and let D◇ ⊂ P(V ◇
C ) be the associated hermitian

domain; then there is a natural embedding of Shimura data

(G,D)↪ (G◇,D◇),

giving rise to a finite, unramified map of Shimura varieties M →M◇. Here,
M◇ is the Shimura variety associated with the maximal lattice L◇.

Since L◇ is self-dual over Z(p), M
◇ admits a smooth integral modelM◇

(p)

over Z(p). We have the Kuga-Satake abelian scheme A◇ →M◇
(p) with asso-

ciated de Rham sheaf H◇
dR, as well as the embeddings

V ◇
? ↪ EndC(L◇)(H

◇
? )

where ? = B, `,dR, cris. For any M◇
(p)-scheme S, we have the subspace

V (A◇
S) ⊂ EndC(L◇)(A

◇
S)

of special endomorphisms, whose homological realizations are sections of
V ◇

? .
DefineM(p) to be the normalization ofM◇

(p) in M (see Definition 4.2.1).

The restriction of Fil1V ◇
dR toM(p) gives us a line bundle ω overM(p), which

extends the line bundle Fil1VdR over the generic fiber M .

Proposition 4.4.1.

(1) The integral model M(p) and the line bundle ω are independent of
the choice of the auxiliary data (V ◇,Q◇) and L◇ ⊂ V ◇.
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(2) The Kuga-Satake abelian scheme A → M extends to an abelian
scheme A→M(p) and there is a canonical C(L◇)-equivariant graded
isomorphism

(4.4.1) A⊗C(L) C(L◇)
≃
Ð→ A◇

of abelian schemes over M(p).
(3) There is a canonical isometric embedding:

(4.4.2) Λ↪ V (A◇
M
(p)

).

(4) M(p) has the following extension property: If E/Qp is a finite ex-
tension, and t ∈ M(E) is a point such that At has potentially good
reduction over OE, then the map t ∶ Spec(E)→M extends to a map
Spec(OE)→M(p).

Proof. Assertion (1) is shown just as in the proof of [AGHM17, Prop. 2.4.5].
As for assertion (2), first note that, given the existence of the extension

A→M(p), the fact that C(L◇) is free over C(L) gives meaning to A⊗C(L)

C(L◇) as an abelian scheme overM(p); this is the Serre tensor construction.
We always have the canonical C(L◇)-equivariant graded isomorphism (4.4.1)
over the generic fiber M ; see [AGHM17, (2.12)]. In particular, as abelian
schemes over M , there is a canonical closed immersion A ↪ A◇. Note
that A◇ → M◇

(p) admits a polarization of degree prime to p; indeed, in

the notation of [AGHM17, § 2.4], arranging for this amounts to choosing an
element δ ∈ C+(L◇)×Z

(p)
satisfying δ∗ = −δ. That A extends to an abelian

scheme over M(p) now follows from the argument in [Madb, Prop. 4.2.2].
The argument actually shows the following: As in § 4.2, let ψ ∶H×H → Q(ν)
be a G-invariant symplectic pairing giving rise to a polarization on A∣M ,
and thus to a finite map M → X2n+2,m,Q to the generic fiber of a Siegel
moduli space. Then this map extends to a finite map M(p) → X2n+2,m,Z

(p)

parameterizing the abelian scheme A→M(p).
The existence of the isomorphism (4.4.1) of abelian schemes over M(p),

as well as the embedding (4.4.2) are now shown exactly as in the proof
of [AGHM17, Prop. 2.5.1].

Assertion (4) is immediate from the finiteness (hence properness) of the
map M(p) → X2n+2,m,Z

(p)
. �

Given the proposition, we can choose our auxiliary lattice L◇ to our con-
venience. We will choose it so that Λ = L⊥ ⊂ L◇ has rank at most 2. This
is not strictly necessary, but will make some proofs shorter. Moreover, it is
always possible to make such a choice, as can be easily verified using the
classification of quadratic forms over Q.

Let Z(Λ)→M◇
(p) be the stack such that, for anyM◇

(p)-scheme S we have

Z(Λ)(S) = {Isometric embeddings Λ↪ V (A◇
S)}.
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The argument from [AGHM17, Proposition 2.7.4] shows that Z(Λ) is an
algebraic stack that is finite and unramified over M◇

(p).

The embedding (4.4.2) corresponds to a map M(p) → Z(Λ). It is shown
in [Mad16, Lemma 7.1] that this map identifies M with an open and closed
substack of Z(Λ)Q.

Proposition 4.4.2. Let p be an odd prime. Suppose either that p2 ∤DL or
that n ≥ 3. Then Z(Λ) is normal and flat over Z(p). In particular, the map
M(p) → Z(Λ) identifies M(p) with an open and closed substack of Z(Λ).

Proof. Let Λ↪ V (A◇
Z(Λ)

) be the tautological isometric embedding and let

ΛdR ⊂ V ◇
dR∣Z(Λ)

be the coherent subsheaf generated by the de Rham realization of this em-
bedding. As in [Mad16, Lemma 6.16], there is a canonical open substack

Zpr(Λ) ⊂ Z(Λ)

containing Z(Λ)Q, and over which ΛdR is a local direct summand of V ◇
dR.

It is shown in [Mad16, Corollary 6.22] that, under our hypotheses, Zpr(Λ)
is a flat, normal Z(p)-stack.

When p2 ∤DL, it is shown in [Mad16, Lemma 6.16] that Zpr(Λ) = Z(Λ),
and so the proposition follows in this case. For the remaining cases, we will
need two lemmas.

Lemma 4.4.3. Suppose that n ≥ 2. The stack Z(Λ) (resp. Z(Λ)Fp) is a
local complete intersection over Z(p) (resp. Fp) of relative dimension n.

Proof. Since p > 2, we can find Λ′ ⊂ Λ and v ∈ (Λ′)⊥ ⊂ Λ such that p2

does not divide the discriminant of Λ′ and such that, over Z(p), we have an
orthogonal decomposition

ΛZ
(p)

= Λ′
Z
(p)
⊥ ⟨v⟩.

Then we have a factorization

Z(Λ)→ Z(Λ′)→M◇
(p)

into finite and unramified morphisms of Z(p)-stacks.
As above, it follows from [Mad16, Corollary 6.22 and Lemma 6.16] that

Z(Λ′) is a faithfully flat regular algebraic stack over Z(p), whose special
fiber is a geometrically normal, local complete intersection algebraic stack
of dimension n + 1 ≥ 3.

Fix a point t ∈ Z(Λ)(Falg
p ). We can also view this as a point t ∈ Z(Λ′)(Falg

p ).
Let OZ′,t (resp. OZ,t) be the complete local ring of Z(Λ′) (resp. Z(Λ)) at
t. Then it is shown in [Mad16, Corollary 5.17] that OZ,t is a quotient of
OZ(Λ′) cut out by a single equation.

In particular, this implies that Z(Λ) is étale locally an effective Cartier
divisor on Z(Λ′), and is in particular a local complete intersection over Z(p).
To show that Z(Λ)Fp is a local complete intersection stack over Fp, it now
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suffices to show that it does not contain any irreducible components of the
normal algebraic stack Z(Λ′)Fp . But this follows from [Mad16, Prop. 6.17],
which shows that, if η → Z(Λ′)Fp is a generic point, then the tautological
map Λ′ → V (A◇

η) is an isomorphism. �

Lemma 4.4.4. The codimension of the complement of Zpr(Λ)Fp in Z(Λ)Fp
is at least n − ⌊n◇/2⌋ .

Proof. By [Mad16, (6.27)], we find that this complement is supported en-
tirely on the supersingular locus

M◇,ss
(p),Fp ⊂M

◇
(p),Fp .

But, by [HP15], this locus has dimension at most ⌊n◇/2⌋. This dimension
count can also be deduced using the methods of Ogus from [Ogu01]. From
this the lemma is clear. �

By our assumption on Λ, n◇ ≤ n + 2. Therefore, by Lemma 4.4.4, we
see that Zpr(Λ) is fiberwise dense in Z(Λ) as soon as n ≥ 3. On the other
hand, Lemma 4.4.3 shows that Z(Λ) is a Cohen-Macaulay stack over Z(p).
Therefore, by the normality of Zpr(Λ) and Serre’s criterion for normality,
we find that Z(Λ) is itself normal and flat over Z(p), as soon as n ≥ 3. �

Theorem 4.4.5. Assume one of the following conditions:

● L(p) is self-dual;

● p is odd, p2 ∤DL and n ≥ 2;
● p is odd and n ≥ 5.

Then M(p),Fp is a geometrically connected and geometrically normal alge-
braic stack over Fp.

Proof. By Proposition 4.1.1, under our hypotheses, M is a geometrically
connected smooth algebraic stack over Q. Therefore, we only have to show
that M(p) has normal geometric fibers. Indeed, as soon as this is known,
it will follow from [Madb, Corollary 4.1.11] that M(p),Fp is geometrically
connected.

If L(p) is self-dual, then M(p) is smooth over Z(p) by Theorem 4.2.2, so
the theorem is clear under this hypothesis.

If p is odd, to prove the theorem, by Proposition 4.4.2 it is enough to
show that, under the given hypotheses, Z(Λ) is a normal algebraic stack,
flat over Z(p), with normal geometric special fiber. By [Mad16, Corollary
6.22], we find that, under our hypotheses, Zpr(Λ) has geometrically normal
fibers.

Therefore, by Lemma 4.4.3 and Serre’s criterion for normality, to show
that Z(Λ)Fp is normal, it is enough to show that the complement of Zpr(Λ)Fp
in Z(Λ)Fp has codimension at least 2. When p2 ∤ DL, this is clear, since
Zpr(Λ) = Z(Λ).
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For the general case, by Lemma 4.4.4, it suffices to show

⌊
n + 2

2
⌋ ≤ n − 2

whenever n ≥ 5. This is an easy verification. �

The construction of M → Spec(Z) now proceeds as in [AGHM17, § 2.4].
Choose a finite collection of maximal quadratic spaces L◇1 , L

◇
2 , . . . , L

◇
r with

the following properties:

● For each i = 1,2, . . . , r, L◇i has signature (n◇i ,2), for n◇i ∈ Z>0;
● For each i, there is an isometric embedding L↪ L◇i ;
● If, for each i, we denote by Di = DL◇i

the discriminant of L◇i , then

gcd(D1, . . . ,Dr) = 1.

It is always possible to find such a collection.
For i = 1,2, . . . , r, let M◇

i be the GSpin Shimura variety over Q attached
to L◇i . Then M◇

i admits a smooth integral model M◇

i,Z[D−1
i ]

over Z[D−1
i ].

Let MZ[D−1
i ] be the normalization of M◇

i,Z[D−1
i ]

in M .

Theorem 4.4.6. There is a unique flat, normal algebraic Z-stack M such
that, for each i, the restriction ofM over Z[D−1

i ] is isomorphic toMZ[D−1
i ].

Moreover:

(1) The Kuga-Satake abelian scheme A → M extends to an abelian
scheme A→M.

(2) The line bundle Fil1VdR over M extends canonically to a line bundle
ω over M.

(3) If L(p) is self-dual; or if p is odd and p2 ∤DL; or if p is odd and n ≥
5, then MFp is a geometrically connected and geometrically normal
algebraic stack over Fp.

Proof. This is immediate from Proposition 4.4.1 and Theorem 4.4.5. �

Suppose now that we have an isometric embedding

(V,Q)↪ (V ◇,Q◇)

into a quadratic space of signature (n◇,2), and a maximal lattice L◇ ⊂ V ◇

containing L. Then we have a finite and unramified map of Shimura varieties
M →M◇ over Q.

The next result is easily deduced from the construction of our integral
models; see [AGHM17, Prop. 2.5.1] for details.

Proposition 4.4.7. The map M →M◇ extends to a finite map of integral
models M→M◇. Moreover:

(1) If A◇ → M◇ is the Kuga-Satake abelian scheme, then there is a
canonical isomorphism

A⊗C(L) C(L◇)
≃
Ð→ A◇∣M

of abelian schemes over M.
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(2) Let ω◇ be the canonical line bundle over M◇ from assertion (2) of
Theorem 4.4.6. Then there is a canonical isomorphism

ω◇∣M
≃
Ð→ ω

of line bundles over M extending the natural identification

Fil1V ◇
dR∣M = Fil1VdR

over the generic fiber M .

4.5. Special endomorphisms and special divisors over Z. Let S be
a scheme over M. We have already encountered the notion of a special
endomorphism of AS in §4.3, at least in the situation where S is a Z(p)-
scheme, with p ∤DL. In [AGHM17, § 2.6], we gave a definition that worked
without this condition, but since we have somewhat modified our integral
models here, the theory there does not apply directly. We now explain how
to fix this.

Fix a prime p, and setM(p) =MZ
(p)

. Choose an auxiliary maximal lattice

L◇ of signature (n◇,2) that is self-dual at p, and which admits an isometric
embedding L↪ L◇. This gives us a finite map of Z(p)-stacks

M(p) →M
◇
(p).

It will be useful to have a notion of special endomorphisms for the `-
divisible group of A◇ as ` varies over the rational primes. If ` ≠ p, we will
define V (A◇[`∞]S) to be the space of endomorphisms of A◇[`∞]S , whose
`-adic realizations land in the space V ◇

` . If ` = p, we will define V (A◇[p∞]S)
to be the space of endomorphisms of A◇[p∞]S , whose p-adic realizations
land in the space V ◇

p over S[p−1] and whose crystalline realizations land in
V ◇

cris over SFp .
The isomorphism of Kuga-Satake abelian schemes

A⊗C(L) C(L◇)
≃
Ð→ A◇∣M

(p)

induces, for any M(p)-scheme S, canonical embeddings

EndC(L)(AS)↪ EndC(L◇)(A
◇
S),(4.5.1)

EndC(L)(AS[`
∞])↪ EndC(L◇)(A

◇
S[`

∞]),

for any prime `. We now declare an endomorphism

(4.5.2) x ∈ EndC(L)(AS) or x ∈ EndC(L)(AS[`
∞])

to be special if its image under (4.5.1) is a special endomorphism of A◇
S or

A◇
S[`

∞], respectively.
Let

Λ = L⊥ = {x ∈ L◇ ∶ [x,L] = 0}

be the orthogonal complement of L in L◇. Then there is a canonical em-
bedding

(4.5.3) Λ↪ EndC(L◇)(A
◇
M),
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described in the proof of [AGHM17, Prop. 2.5.1].

Proposition 4.5.1. The notion of x ∈ EndC(L)(AS) or x ∈ EndC(L)(AS[`
∞])

being special does not depend on the choice of the auxiliary lattice L◇.

Proof. As in the proof of [AGHM17, Lemma 2.6.1], we can reduce to the
case where L is itself self-dual over Z(p).

In this case, we have homological realizations V? over M(p), and a com-
muting square of embeddings

V?
//

��

EndC(L)(H?)

��
V ◇

? ∣M
(p)

// EndC(L◇)(H
◇
? )∣M(p)

.

of sheaves over M(p) mapping onto local direct summands of their targets;
see [AGHM17, Prop. 2.5.1(ii)].

In fact this square is cartesian: Both vertical arrows identify sections of
their domain with those of the target that anti-commute with the homo-
logical realizations of the embedding (4.5.3); see the argument in [Mad16,
§ 7.3].

From this, we find that x is special with respect to the lattice L◇ if
and only if its homological realizations land in V?, and so the notion of
being special is in this case intrinsic to the stackM(p), and independent of
choices. �

If S is now an arbitrary M-scheme, we declare an endomorphism (4.5.2)
to be special if its restriction to SZ

(p)
is special for every prime p. Write

V (AS) and V (AS[`
∞]) for the respective spaces of special endomorphisms.

We will also need certain distinguished subsets Vµ(AS) ⊂ V (AS)Q param-
eterized by µ ∈ L∨/L. To define these, we will first define subsets

Vµ`(AS[`
∞]) ⊂ V (AS[`

∞])Q

parameterized by µ` ∈ Z` ⊗ (L∨/L).
For this, note that over M(C), as K acts trivially on the quotient L∨/L,

we have a canonical isometry

Z⊗ (L∨/L)
≃
Ð→ V ∨

B /VB

of locally constant sheaves. For each prime `, this gives an isometry

α` ∶ Z` ⊗ (L∨/L)
≃
Ð→ V ∨

` /V`.

of étale sheaves of abelian groups over M . In fact, this can be extended to
an isometry of sheaves over M[`−1]. By the normality of M, it is enough
to show that the sheaves V` and V ∨

` extend to lisse sheaves over M[`−1].
This can be deduced using the argument from Remark 4.2.3.
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Fix a prime p, and let S be an M(p)-scheme. Then, for any ` ≠ p, the
`-adic realization of a special endomorphism x ∈ V (AS) is a section of the
submodule V` ⊂ EndC(L)(H`).

Now identify V ∨
` with an `-adic subsheaf of V`[`

−1]. Any element of the
dual subspace

V (AS[`
∞])∨ = {y ∈ V (AS[`

∞])Q ∶ [V (AS[`
∞]), y] ⊂ Z`} ⊂ V (AS[`

∞])Q

has a realization x` in V`[`
−1], where the pairing [⋅, ⋅] on V (AS[`

∞]) is the
one induced from composition in End(AS[`

∞]). This allows us to define

Vµ`(AS[`
∞]) ⊂ V (AS[`

∞])∨

to be the subset of elements x such that x` lies in V ∨
` , and maps to α`(1⊗µ`)

in V ∨
` /V`.

Next, we will define the subset

Vµp(AS[p
∞]) ⊂ V (AS[p

∞])∨

for µp ∈ Zp ⊗ (L∨/L). If S is a Q-scheme, then this can be defined just
as for ` ≠ p. For the general case, choose an auxiliary maximal lattice L◇

that is self-dual over Z(p) of signature (n◇,2), which admits an isometric
embedding L ↪ L◇. By Proposition 4.4.7 and [AGHM17, Prop. 2.6.4], this
gives a map of Z-stacks M→M◇ along with an isometric embedding

Λ↪ V (A◇
M).

Here, Λ = L⊥ ⊂ L◇.

Lemma 4.5.2. For any M(p)-scheme S, there are canonical isometries

V (AS)
≃
Ð→ Λ⊥ ⊂ V (A◇

S)

V (AS[p
∞])

≃
Ð→ Λ⊥Zp ⊂ V (A◇

S[p
∞]).

Proof. The first isometry follows from the definitions and the fact that the
subspace

EndC(L)(AS) ⊂ EndC(L◇)(A
◇
S)

consists precisely of those endomorphisms that anti-commute with Λ; see
also [AGHM17, Prop. 2.5.1]. The second is proven in similar fashion. �

Now, there are canonical isomorphisms

Zp ⊗ (L∨/L)
≃
←Ð Zp ⊗ (L◇/(L⊕Λ))

≃
Ð→ Zp ⊗ (Λ∨/Λ).

Therefore, we can canonically view µp as an element of Zp⊗ (Λ∨/Λ). More-
over, the inclusions

V (AS[p
∞])⊕Λ ⊂ V (A◇

S[p
∞]) ⊂ (V (AS[p

∞])⊕ΛZp)
∨ = V (AS[p

∞])∨ ⊕Λ∨
Zp

induce an embedding

(4.5.4)
V (A◇

S[p
∞])

V (AS[p∞])⊕ΛZp
↪
V (AS[p

∞])∨

V (AS[p∞])
⊕

Λ∨
Zp

ΛZp
.
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We now set

Vµp(AS[p
∞]) = {x ∈ V (AS[p

∞])∨ ∶ ([x], µp) is in the image of (4.5.4)},

where

[x] ∈
V (AS[p

∞])∨

V (AS[p∞])

is the class of x.

Proposition 4.5.3. The subset Vµp(AS[p
∞]) ⊂ V (AS[p

∞])∨ just defined
does not depend on the choice of the auxiliary lattice L◇. Moreover, if S is
a Q-scheme, then this definition agrees with the one already given above.

Proof. As usual, for the independence statement, we can reduce to the case
where L is itself self-dual over Z(p). In this case, µp = 0, and we have to
show that, if x ∈ V (AS[p

∞])∨ is such that ([x],0) is in the image of (4.5.4),
then x must belong to V (AS[p

∞]). However, ([x],0) being in the image
of (4.5.4) means exactly that x belongs to V (A◇

S[p
∞]) and is orthogonal to

ΛZp . So we are now done by Lemma 4.5.2.
We leave the verification of the second assertion to the reader. �

Now suppose that S is an arbitrary M-scheme, and p is any prime. We
decree that an element of V (AS[p

∞])∨ belongs to Vµp(AS[p
∞]) if and only

if it does so over SZ
(p)

.
Consider the dual space

V (AS)
∨ = {y ∈ V (AS)Q ∶ [V (AS), y] ⊂ Z} ⊂ V (AS)Q

of V (AS) with respect to the bilinear form induced from composition in
End(AS). For each prime p and each µp ∈ Zp ⊗ (L∨/L), let

Vµp(AS) ⊂ V (AS)
∨

be the subspace of elements mapping into Vµp(AS[p
∞]). In general, if µ ∈

L∨/L has p-primary part µp for each prime p, set

Vµ(AS) =⋂
p
Vµp(AS) ⊂ V (AS)

∨.

The next result is immediate from Proposition 4.3.7 and the definitions;
see also [AGHM17, Prop. 2.6.3].

Proposition 4.5.4. For each x ∈ V (AS), we have

x ○ x = Q(x) ⋅ idAS ∈ End(AS)

for some integer Q(x). The assignment x ↦ Q(x) is a positive definite
quadratic form on V (AS). If x ∈ Vµ(AS), then we have the congruence

(4.5.5) Q(x) ≡ Q(µ) (mod Z).

Fix a maximal lattice L◇ of signature (n◇,2), equipped with an isometric
embedding L↪ L◇, so that we have the corresponding finite map of algebraic
stacks M→M◇. Set Λ = L⊥ ⊂ L◇.
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Proposition 4.5.5. Fix an M-scheme S →M.

(1) There is a canonical isometric embedding Λ↪ V (A◇
S) and an isom-

etry

(4.5.6) V (AS)
≃
Ð→ Λ⊥ ⊂ V (A◇

S).

(2) For every µ ∈ L◇,∨/L◇ and every (µ1, µ2) ∈ (µ+L◇)/(L⊕Λ) the map
(4.5.6), tensored with Q, restricts to an injection

Vµ1(AS) × (µ2 +Λ)↪ Vµ(A
◇
S).

(3) The above injections determine a decomposition

Vµ(A
◇
S) = ⊔

(µ1,µ2)∈(µ+L◇)/(L⊕Λ)

Vµ1(AS) × (µ2 +Λ).

Proof. Assertion (1) is shown just as in Lemma 4.5.2. Everything else is
immediate from this and the definitions. �

Definition 4.5.6. For m ∈ Q>0 and µ ∈ L∨/L, define the special cycle
Z(m,µ)→M as the stack over M with functor of points

(4.5.7) Z(m,µ)(S) = {x ∈ Vµ(AS) ∶ Q(x) =m}

for any scheme S →M.
Note that, by (4.5.5), the stack (4.5.7) is empty unless the image of m in

Q/Z agrees with Q(µ).
For later purposes we also define the stacks Z(0, µ) in exactly the same

way. As the only special endomorphism x with Q(x) = 0 is the zero map,
we have

Z(0, µ) =

⎧⎪⎪
⎨
⎪⎪⎩

∅ if µ ≠ 0

M if µ = 0.

Once again, fix a maximal lattice L◇ of signature (n◇,2), equipped with
an isometric embedding L ↪ L◇, so that we have the corresponding finite
map of algebraic stacks M → M◇. Set Λ = L⊥ ⊂ L◇. For m ∈ Q≥0 and
µ ∈ L◇,∨/L◇, write Z◇(m,µ) →M◇ for the stack associated with the pair
(m,µ). The following result is immediate from Proposition 4.5.5.

Proposition 4.5.7. Fix µ ∈ L◇,∨/L◇. Then there is an isomorphism of
M-stacks

Z◇(m,µ) ×M◇M ≃ ⊔
m1+m2=m

(µ1,µ2)∈(µ+L
◇)/(L⊕Λ)

Z(m1, µ1) ×Λm2,µ2 ,

where

Λm2,µ2 = {x ∈ µ2 +Λ ∶ Q(x) =m2},

and Z(m1, µ1) × Λm2,µ2 denotes the disjoint union of #Λm2,µ2 copies of
Z(m1, µ1).



58 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

Proposition 4.5.8. There is a natural isomorphism

Z(m,µ)Q
≃
Ð→ Z(m,µ)

of stacks over M . Moreover:

(1) Suppose that m > 0. Étale locally on the source, Z(m,µ) is an
effective Cartier divisor on M.

(2) Suppose also that n ≥ 3. Then Z(m,µ) is flat over Z[1/2]. If, in
addition, L(2) is self-dual, then Z(m,µ) is flat over Z.

Proof. Assertion (1) is deduced from Proposition 4.5.7, exactly as in the
proof of [AGHM17, Proposition 2.7.4], by reducing to the case where L is
self-dual over Z(p) and using Corollary 4.3.3.

As for assertion (2), since Z(m,µ) is étale locally a divisor onM, it fails
to be flat exactly when its image in M contains an irreducible component
of MFp for some prime p.

If L(p) is self-dual at p, then the argument used in [Mad16, Prop. 5.21]
applies to show that Z(m,µ) is flat over Z(p).

For the other cases, we can now suppose that p > 2. Choose an auxiliary
maximal lattice L◇ that is self-dual over Z(p) and an embedding L ↪ L◇

as usual. If Λ = L⊥ ⊂ L◇, then by Proposition 4.4.2, we can identify M(p)

with a closed and open substack of the stack Z(Λ) →M◇
(p) parameterizing

isometric embeddings Λ↪ V (A◇
S).

By Proposition 4.5.7, it suffices to show that, for everym ∈ Q and every µ ∈
L◇,∨/L◇, the restriction of Z◇(m,µ) to Z(Λ) is flat over Z(p). Equivalently,
it is enough to show that the image of the map

Z◇(m,µ) ×M◇

(p)
Z(Λ)Fp → Z(Λ)Fp

does not contain an irreducible component of its target.
For this, let Zpr(Λ) ⊂ Z(Λ) be as in the proof of Proposition 4.4.2. We

saw there that, under the hypothesis n ≥ 3, Zpr(Λ) is a fiberwise dense open
substack of Z(Λ). Therefore, it is enough to show that the image of the
map

Z◇(m,µ) ×M◇

(p)
Zpr(Λ)Fp → Z

pr(Λ)Fp

does not contain an irreducible component of its target.
Note that the p-adic component of µ is necessarily trivial, and note also

that Zpr(Λ)Fp is normal and hence generically smooth. Therefore, the de-
sired assertion follows from [Mad16, Corollary 6.18]. �

4.6. Metrized line bundles. Let F∞ ∶M(C)→M(C) be complex conju-
gation. An arithmetic divisor on M is a pair

Ẑ = (Z,Φ)

consisting of a Cartier divisor Z on M and a Green function Φ for Z. This
means that Φ is an F∞-invariant smooth R-valued function defined on the
complement of Z(C) in M(C), such that if Ψ = 0 is any local equation
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for Z(C), the function Φ + log ∣Ψ∣2 extends smoothly across the singularity
Z(C). A principal arithmetic divisor is an arithmetic divisor of the form

d̂iv(Ψ) = (div(Ψ),− log ∣Ψ∣2)

for a rational function Ψ on M. The group of all arithmetic divisors is
denoted D̂iv(M), and its quotient by the subgroup of principal arithmetic

divisors is the arithmetic Chow group ĈH
1
(M) of Gillet-Soulé [GS90].

A metrized line bundle on M is a line bundle endowed with a smoothly
varying F∞-invariant Hermitian metric on its complex points. The isomor-
phism classes of metrized line bundles form a group P̂ic(M) under tensor
product. As in [Sou92, III.4], there is an isomorphism

(4.6.1) P̂ic(M)
≃
Ð→ ĈH

1
(M)

defined by sending a metrized line bundle L̂ onM to the arithmetic divisor

d̂iv(Ψ) = (div(Ψ),− log ∣∣Ψ∣∣2).

for any nonzero rational section Ψ of L.
By assertion (3) of Theorem 4.4.6, we obtain a canonical line bundle ω

over M. We call this the tautological bundle, or the line bundle of weight
one modular forms. Its fiber at a complex point [(z, g)] ∈M(C) is identified
with the isotropic line Cz ⊂ VC. Using this identification, we define the
Petersson metric on the fiber ω[(z,g)] by ∣∣z∣∣2 = −[z, z]. In this way we
obtain the metrized tautological bundle

ω̂ ∈ P̂ic(M).

4.7. Harmonic weak Maass forms. We recall some generalities about the
Weil representation and vector-valued harmonic forms from [BF04, BKY12,
BY09, Kud03].

Let S(V̂ ) be the space of Schwarz functions on V̂ = V ⊗Af , and denote
by

SL ⊂ S(V̂ )

the (finite dimensional) subspace of functions that are invariant under trans-

lation by L̂ = L ⊗ Ẑ, and supported on L̂∨ = L∨ ⊗ Ẑ. We often identify SL
with the space of complex-valued functions on

L̂∨/L̂
≃
Ð→ L∨/L.

In particular, for each µ ∈ L∨/L there is a corresponding Schwartz function

(4.7.1) ϕµ ∈ SL,

defined as the characteristic function of µ + L̂ ⊂ V̂ .
Write S̃L2(A) for the metaplectic double cover of SL2(A). This cover

splits over SL2(Q), yielding a canonical injection

(4.7.2) SL2(Q)↪ S̃L2(A).
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Pulling back the cover by the inclusions

SL2(R)→ SL2(A), SL2(Af)→ SL2(A)

yields double covers

S̃L2(R)→ SL2(R), S̃L2(Af)→ SL2(Af),

and we define S̃L2(Z) and S̃L2(Ẑ) by the cartesian diagrams

S̃L2(Z) //

��

S̃L2(R)

��

S̃L2(Ẑ) //

��

S̃L2(Af)

��
SL2(Z) // SL2(R) SL2(Ẑ) // SL2(Af).

The inclusion (4.7.2) induces an injection S̃L2(Z) → S̃L2(Ẑ), denoted
γ̃ ↦ γ̂, defined by demanding that the product

γ̃ ⋅ γ̂ ∈ S̃L2(R) ⋅ S̃L2(Af) ⊂ S̃L2(A)

be equal to the image of γ̃ under the composition

S̃L2(Z)→ SL2(Z)↪ S̃L2(A).

Denote by ψQ ∶ Q/A → C× the unramified character with archimedean

component ψQ,∞(x) = e2πix. The group S̃L2(Af) acts on S(V̂ ) via the Weil
representation ω determined by ψQ, and the restriction of this representation

to S̃L2(Z) ⊂ S̃L2(Ẑ) leaves invariant the finite dimensional subspace SL.
Denote this representation by

ωL ∶ S̃L2(Z)→ Aut(SL),

and define the complex conjugate representation ωL ∶ S̃L2(Z)→ Aut(SL) by

ωL(γ̃) ⋅ ϕ = ωL(γ̃) ⋅ ϕ.

If dim(V ) is even then ωL and ωL factor through SL2(Z). Note that our ωL
is the representation denoted ρL in [Bor98, Bru02, BF04, BKY12, BY09].

Denote by H1−n/2(ωL) the space of harmonic weak Maass forms of weight

1 − n/2 for S̃L2(Z) of representation ωL, in the sense of [BY09, §3], and
denote by

S1−n/2(ωL) ⊂M
!
1−n/2(ωL) ⊂H1−n/2(ωL)

the subspaces of cusp forms and weakly modular forms, respectively. By
a result of Bruinier-Funke [BF04], these spaces are related by an exact se-
quence

(4.7.3) 0→M !
1−n/2(ωL)→H1−n/2(ωL)

ξ
Ð→ S1+n/2(ωL)→ 0,

where ξ is a certain explicit differential operator.
As in [BY09, (3.4a)], any f ∈H1−n/2(ωL) has a holomorphic part

f+(τ) = ∑
m∈D−1

L Z
m≫−∞

c+f (m) ⋅ qm,
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which is a formal q-expansion with coefficients

c+f (m) = ∑
µ∈L∨/L

c+f (m,µ) ⋅ ϕµ ∈ SL.

When the principal part

Pf(τ) = ∑
m≥0

c+f (−m) ⋅ q−m.

is integral, in the sense that c+f (−m,µ) ∈ Z for all m ≥ 0 and µ ∈ L∨/L, we
define the corresponding special divisor

Z(f) = ∑
m>0

µ∈L∨/L

c+f (−m,µ)Z(m,µ)

on M. There is a natural Green function Φ(f) for Z(f), defined as a
regularized theta lift as in [BY09, (4.7)]. See also [Bru02, BF04, BKY12].
In particular, we obtain an arithmetic divisor

(4.7.4) Ẑ(f) = (Z(f),Φ(f)) ∈ ĈH
1
(M).

4.8. Borcherds products. Suppose

(4.8.1) f(τ) = ∑
m∈D−1

L Z
m≫0

cf(m) ⋅ qm ∈M !
1−n/2(ωL)

is a weakly holomorphic form, so that f = f+ and cf(m) = c+f (m).

The following result will be shown in the companion paper [HM15], gen-
eralizing a result of F. Hörmann [Hör14]. Here, we only sketch its proof. For
the applications to Colmez’s conjecture, we will only require the assertion
over primes of good reduction, which is already contained in [Hör14].

Theorem 4.8.1. Suppose that n ≥ 3 and that the principal part Pf(τ) is
integral. Then, after replacing f by a multiple kf , for any sufficiently divis-
ible k ∈ Z>0, there exists a rational section Ψ(f) of ω⊗cf (0,0), defined over
Q, such that

Φ(f) = − log ∣∣Ψ(f)∣∣2 + cf(0,0) log(4πeγ).

Here γ = −Γ′(1) is the Euler-Mascheroni constant.
In particular, the canonical isomorphism (4.6.1) produces identifications

ω̂⊗cf (0,0) = d̂iv(Ψ(f))

= Ẑ(f) − cf(0,0) ⋅ (0, log(4πeγ)) + Ê(f),

where (0, log(4πeγ)) denotes the trivial divisor endowed with the constant

Green function log(4πeγ), and Ê(f) = (E(f),0) is the divisor

E(f) = div(Ψ(f)) −Z(f)

endowed with the trivial Green function. Moreover, there is a decomposition

E(f) = ∑
p∣DL

Ep(f)
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in which the divisor Ep(f) is supported on the special fiber MFp, and:

● If p is odd and p2 ∤DL then Ep(f) = 0;
● If n ≥ 5 then E(f) = E2(f) is supported on MF2.
● If n ≥ 5 and L(2) is self-dual, then E(f) = 0.

Sketch of proof. For any sufficiently divisible k, all the Fourier coefficients
of k ⋅ f are integral, and the Borcherds lift of k ⋅ f , after a normalization,
descends to a section of ω⊗kcf (0,0). Replacing f by this multiple, we take our
desired section Ψ(f) to be this descent of the Borcherds lift. It is known
that the divisor of Ψ(f) in M is exactly Z(f)∣M ; see [Bor98] or [Bru02].
Thus E(f) = ∑p Ep(f) is supported in finitely many nonzero characteristics.

Assume that L(p) is self-dual, or that p is odd and p2 ∤ DL, or that p
is odd and n ≥ 5. To check that Ep(f) = 0, it suffices to show that both
Z(f) and div(Ψ(f)) are flat over Z(p). The flatness of Z(f) follows from
Proposition 4.5.8. For the flatness of div(Ψ(f)), note that the special fiber
MFp is irreducible, by Theorem 4.4.6. Thus div(Ψ(f)), if not flat, contains
a multiple of the entire special fiber MFp . Since a theory of integral q-
expansions is now available through [Madb], we can use the explicit product
q-expansion of Ψ(f) to check that the support of div(Ψ(f)) cannot contain
MFp , and hence that div(Ψ(f)) is also flat. To be more precise, the Fourier
coefficients in the q-expansion of Ψ(f) are integral and without a non-trivial
common divisor. Hence, the mod p reduction of such an expansion cannot
vanish identically. The q-expansion principle now implies that the form
Ψ(f) also cannot vanish identically along the special fiber. �

5. Big CM cycles on orthogonal Shimura varieties

As in Section 3, we will fix a CM field E with totally real subfield F .
We will also take Qalg to be the algebraic closure in C of Q and write ΓQ
for the absolute Galois group Gal(Qalg/Q). We will also fix a distinguished
embedding ι0 ∶ E → Qalg.

The goal here is to embed the zero dimensional Shimura variety from
Section 3 into the GSpin Shimura varieties from Section 4, and to study
the interaction between the various ‘motives’ that live over the two spaces.
The main result is Corollary 5.4.6, which explains the structure of the space
of special endomorphisms associated with points of the zero dimensional
Shimura variety.

5.1. Hermitian spaces. Let (V , ⟨⋅, ⋅⟩) be a rank one Hermitian space over
E that is negative definite at ι0, and positive definite at the remaining
archimedean places. The assignment

x↦ ⟨x,x⟩ = Q(x)

induces a quadratic form Q ∶ V → F on the underlying F -vector space of
signature

(5.1.1) sig(V ) = ((0,2), (2,0), . . . , (2,0)).
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The Clifford algebra of (V ,Q) is a quaternion algebra over F , with a
Z/2Z-grading

C(V ) = C+(V )⊕C−(V ).

The even part C+(V ) is isomorphic to E as an F -algebra. We will fix

an isomorphism E
≃
Ð→ C+(V ) of F -algebras. Now, the odd part C−(V ) is

identified with the F -vector space V . The action of E on V given by left
multiplication in the Clifford algebra is none other than the given E-module
structure on V .

Remark 5.1.1. If we fix any E-module isomorphism V ≃ E, there is a unique
ξ ∈ F× such that the hermitian form on V is identified with the hermitian
form ⟨x, y⟩ = ξxy on E. The element ξ is negative at ι0 and positive at
ι1, . . . , ιd−1, and the isomorphism class of V is uniquely determined by

ξ ∈ F ×/NmE/F (E
×).

Conversely, if we start with any CM field E with totally real subfield F ,
and any ξ ∈ F × negative at ι0 and positive at ι1, . . . , ιd−1, we obtain an
F -quadratic space (V ,Q) = (E, ξ ⋅NmE/F ) of signature (5.1.1) as above.

Let χ ∶ A×
F → {±1} be the quadratic character determined by E/F . Keep-

ing the notation of Remark 5.1.1, for every place v of F define the local
invariant

invv(V ) = χv(ξ) ∈ {±1}.

Thus invv(V ) = 1 if and only if ξ is a norm from E×
v , and α ∈ F×

v is rep-
resented by Vv if and only if χv(α) = invv(V ). The hermitian space V is
uniquely determined by its collection of local invariants, and the product of
the local invariants is 1.

Definition 5.1.2. Suppose that p ⊂ OF is a prime ideal nonsplit in E. The
nearby hermitian space pV is obtained from V by interchanging invariants
at ι0 and p. In other words, pV is the unique rank one hermitian space over
E with

invv(
pV )

≃
Ð→

⎧⎪⎪
⎨
⎪⎪⎩

−invv(V ) if v ∈ {p, ι0}

invv(V ) otherwise.

The (positive definite) hermitian form on pV is denoted p⟨x1, x2⟩, and the
associated F -quadratic form is pQ(x) = p⟨x,x⟩.

5.2. Reflex algebras and Clifford algebras. Associated with (V ,Q) is
the Q-quadratic space

(5.2.1) (V,Q) = (V ,TrF /Q ○Q)

of signature (n,2) = (2d − 2,2).
Let E♯ be the total reflex algebra associated with E. It is an étale Q-

algebra whose associated ΓQ-set is canonically identified with the set CM(E)
of CM types for E; see § 3.4.
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Proposition 5.2.1. The relation (5.2.1) determines a distinguished embed-
ding of Q-algebras E♯ ↪ C+(V ).

Proof. The E-action on V = V gives us a decomposition

(5.2.2) VQalg = ⊕
ι∈Emb(E)

V (ι),

into one-dimensional Qalg-vector spaces, where V (ι) = V ⊗E,ι Qalg. By
construction, the quadratic form Q induces a perfect pairing

V (ι) × V (ι)→ Qalg.

Therefore, for each embedding ιi ∶ F → Qalg, i = 0,1, . . . , d− 1, Q restricts to
a non-degenerate form on

Vi = V ⊗F,ιi Q
alg.

If i ≠ j then Vi and Vj are orthogonal, and so we obtain a Qalg-linear
orthogonal decomposition

VQalg =
d−1

⊕
i=0

Vi

into two-dimensional non-degenerate quadratic subspaces. In turn, this gives
us a natural ΓQ-stable commutative subalgebra

(5.2.3)
d−1

⊗
i=0

C+(Vi) ⊂ C
+(VQalg),

which descends to a Q-subalgebra B ⊂ C+(V ).

We claim that there is a canonical isomorphism of Q-algebras E♯ ≃
Ð→ B.

For this, it is enough to show that there is a canonical isomorphism of ΓQ-
sets:

HomQ−alg(B,Qalg)
≃
Ð→ CM(E).

But this is clear from the description in (5.2.3), since, for each i = 0,1, . . . , d−
1, we have canonical isomorphisms of Qalg-algebras with an involution:

E ⊗F,ιi Q
alg ≃
Ð→ C+(V )⊗F,ιi Q

alg ≃
Ð→ C+(Vi).

�

5.3. Morphisms of Shimura varieties. Assume now that d > 1, so that
n = 2d − 2 > 0. Write H for C(V ), viewed as a faithful representation of

G = GSpin(V )

via the left multiplication action of C(V ) on itself. Using the inclusion
E♯ ⊂ C(V ) of Proposition 5.2.1, the group TE♯ also acts faithfully on H
via left multiplication. The torus T = TE/T

1
F can be identified with the
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intersection of G and TE♯ inside of GL(H). In other words, there is a
cartesian diagram

T
Nm♯

//

��

TE♯

��
G // GL(H)

in which all arrows are injective. Here, Nm♯ is the total reflex norm defined
in § 3.4.

Now, we have canonical identifications

ResE/QSO(V ) = T 1
E = Tso

of tori over Q. This exhibits Tso as a maximal torus in SO(V ), and it also
identifies V with the standard representation V0 of T . Moreover, we have a
commutative diagram

1 // Gm
// T

θ //

��

Tso

��

// 1

1 // Gm
// G // SO(V ) // 1

with exact rows, and all vertical arrows are injective.
Via the decomposition (5.2.2), we obtain a T (C)-stable line

zcm = V (ι0)C ⊂ VC.

This line is isotropic with respect to the quadratic form TrF /Q ○Q, and we
use (5.2.1) to view zcm as a point of the hermitian domain (4.1.1).

The morphism T → G induces a morphism of Shimura data

(5.3.1) (T,{µ0})→ (G,D)

mapping µ0 to zcm ∈ D.
As in §4, let L ⊂ V be a maximal lattice of discriminant DL. Recall

that the choice of maximal lattice determines a compact open subgroup
K ⊂ G(Af) and a Shimura variety (4.1.3), with a canonical model M →
Spec(Q).

Consider the compact open subgroup KL,0 = K0 ∩K ⊂ T (Af). In § 3,
we associated with it a zero dimensional Shimura variety YKL,0 , as well as a
normal integral model YKL0

over OE . From now on we abbreviate

Y = YKL,0 .

This is an arithmetic curve over OE , whose generic fiber we denote by Y →
Spec(E). By the theory of canonical models, we now obtain a morphism

(5.3.2) Y →M

of Q-stacks, induced by the morphism of Shimura data (5.3.1).
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Proposition 5.3.1. The map (5.3.2) extends to a map of Z-stacks

Y →M

Proof. This follows from Proposition 3.6.2 and assertion (4) of Proposi-
tion 4.4.1. �

We will need some information about the compatibility of this map with
constructions of automorphic sheaves. For this, fix a prime q ⊂ OE lying
above a rational prime p, and an auxiliary quadratic lattice L◇ of signature
(n◇,2), self-dual at p and admitting L as an isometric direct summand. As-
sociated with it is the Shimura variety M◇ with a smooth integral canonical
model M◇

(p) over Z(p) and a finite map M(p) →M
◇
(p).

From Propositions 4.2.4 and 4.2.5, we obtain functors N(p) ↦ N◇
dR and

N(p) ↦ N◇
cris from G◇

(p)
def
= GSpin(L◇Z

(p)
)-representations to filtered vector

bundles over M◇
(p) and F -crystals over M◇

Fp , respectively. On the other

hand, any G◇
(p)-representation N(p) gives a Q-representation N = N(p)[p

−1]

of T , and a K0,L-stable lattice Np = N(p) ⊗ Zp ⊂ NQp . Therefore, by Propo-
sition 3.5.5 (or more precisely, its proof), it gives us a filtered vector bundle
NdR over Y(q) = Y ⊗OE OE,(q), and an F -crystal Ncris over YFq .

Proposition 5.3.2. There are canonical isomorphisms

NdR
≃
Ð→N◇

dR∣Y
(q)

; Ncris
≃
Ð→N◇

cris∣YFq

of filtered vector bundles and F -crystals, respectively.

We omit the proof of the proposition, which follows immediately from
unwinding the constructions. The main point is that both constructions,
when restricted to the completed étale local ring at a point y ∈ Y(Fq),
recover the functors Np ↦ NdR,Oy and Np ↦ Ncris,y of Corollary 3.5.4,
obtained from Kisin’s functor M

For any prime p, note that the F -action on V gives us an orthogonal
decomposition:

VQp =⊕
p∣p

Vp,

where p ranges over the p-adic places of F , and where we have set Vp =
Fq ⊗F V . For each p ∣ p, set

Lp = Lp ∩ Vp ⊂ Vp.

Definition 5.3.3. Call a prime p good for L, or simply good, if the following
conditions hold:

● For every p ∣ p unramified in E, the Zp-lattice Lp is OE,p-stable and
self-dual for the induced Zp-valued quadratic form.

● For every p ∣ p ramified in E, the Zp-lattice Lp is maximal for the
induced Zp-valued quadratic form, and there exists an OE,q-stable
lattice Λp ⊂ Vp such that

Λp ⊂ Lp ⊊ d−1
Eq/Fp

Λp.
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Here q ⊂ OE is the unique prime above p.

All but finitely many primes are good: Choose any OE-stable lattice
Λ ⊂ L. Then, for all but finitely many primes p, ΛZp = LZp will be self-dual
and hence good.

We will call a prime bad if it is not good, and we let Dbad be the product of
the bad primes. If we wish to make its dependence on the lattice L explicit,
we will write Dbad,L for this quantity.

Lemma 5.3.4. For every p ∤Dbad, we have

KL,0,p =K0,p ⊂ T (Qp).

In particular, Y is finite étale over OE[D
−1
bad].

Proof. Note that KL,0,p contains the subgroup Z×p of scalars. Therefore, it is
enough to show that the image K0,p,so of K0,p in Tso(Qp) is contained in the
discriminant kernel of LZp . This is easy to see from the explicit description
of LZp in Definition 5.3.3, as well as of K0,p,so in (3.2.1).

There are two main points: First, K0,p,so preserves all OE,p-stable lattices
in LZp . Second, for any prime p ⊂ OF ramified in E with q ⊂ OE the prime
above it, if α ∈ OE,q, then α and α are congruent mod dEq/Fp

.
Combining these two facts, if Λp ⊂ Lp is a maximal OE,q-stable lattice,

then K0,p,so stabilizes Λp and acts trivially on d−1
Eq/Fp

Λp/Λp. This implies that

it stabilizes Lp and acts trivially on L∨p /Lp. Since L∨/L is a subquotient of

⊕pL
∨
p /Lp, we find that K0,p,so preserves L̂ and acts trivially on L∨/L. �

5.4. The space of special endomorphisms.

Proposition 5.4.1. Suppose that y ∈ Y(C). Then V (Ay) = 0.

Proof. Let zcm = V (ι0)C ⊂ VC be as in §5.3. The proposition amounts to the
statement that there are no positive elements x ∈ V that are orthogonal to
zcm. But if such an x existed, then it would generate the one-dimensional
E-vector space V = V , and, since zcm ⊂ VC is E-stable, this would imply that
every element of V is orthogonal to zcm, which is clearly impossible. �

Recall that V is isomorphic as a T -representation to the standard repre-
sentation V0 = V (H0, c) from §3.6. If we are viewing V or V0 as an E-module,
we will emphasize this by writing V and V0, instead. There is a canonical
Hermitian form on V0: For x, y ∈ V0, we define ⟨x, y⟩0 ∈ E by the relation

x ○y = ⟨x, y⟩0 as elements of End(H0). Under the isomorphism V
≃
Ð→ V0, the

Hermitian form on V induced from Q is carried to the form ξ⟨x, y⟩0, for
some element ξ ∈ F such that ι0(ξ) < 0 and ιj(ξ) > 0, for j > 0.

The lattice LẐ ⊂ VAf is K0,L-stable, and we have a K0,L-equivariant em-
bedding LẐ ↪ EndC(L)(HẐ). From this data, and the constructions in § 3.3
and § 3.5, we obtain embeddings

(5.4.1) V? ↪ EndC(L)(H?)∣Y
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of sheaves over Y for ? = B, `,dR, cris. The images of these embeddings are
local direct summands of their targets when ? = B, `, but not necessarily
when ? = dR, cris. However, we have an embedding

(5.4.2) Vcris,Q ↪ EndC(L)(Hcris)Q∣Y

in the isogeny category associated with the category of F -crystals over Y.
The next result is clear from the definitions and Proposition 5.3.2.

Proposition 5.4.2. For any Y-scheme S, and any prime p,

V (AS[p
∞]) ⊂ EndC(L)(AS[p

∞])

consists precisely of those endomorphisms whose homological realizations
land in the images of the embedding (5.4.1) for ? = p over S[p−1], and
in the embedding (5.4.2) for ? = cris over SFp. In particular,

V (AS) ⊂ EndC(L)(AS)

consists of those endomorphisms whose `-adic realizations over S[`−1] land
in the image of the embedding (5.4.1), and whose crystalline realizations
over SFp land in the embedding (5.4.2).

Fix a rational prime p. Let q ⊂ OE be a prime above p, let p ⊂ OF be the
prime below q.

Proposition 5.4.3. If p is split in F , then

V (Ay) = V (Ay[p
∞]) = 0

for all y ∈ Y(Falg
q ).

Proof. Indeed, V (Ay[p
∞]) ⊂ Vcris,y[p

−1]ϕ=1 = 0, by Proposition 3.6.1. �

By Propositions 5.4.1 and 5.4.3, for a geometric point y of Y, if V (Ay) ≠ 0,

then y must be an Falg
q -valued point with q ⊂ OE the unique prime lying

above a prime p ⊂ OF that is not split in E.
Until otherwise specified, we will assume from now on that we have fixed

the data of such p, q and y. In this case, by Proposition 3.6.2, the abelian
variety Ay is supersingular. Therefore, for any prime `, the natural map

Z` ⊗End(Ay)→ End(Ay[`
∞]).

is an isomorphism. This implies that, if ` ≠ p, then the natural map

(5.4.3) V (Ay[`
∞])→ V`,y

is an isomorphism.
Also, if ` = p, then the natural map

(5.4.4) V (Ay[p
∞])Q → Vcris,y[p

−1]ϕ=1

is also an isomorphism. Moreover, by Proposition 3.6.1, Vcris,y[p
−1] is gen-

erated by its ϕ-invariants.
For any ?, since E acts T -equivariantly on V , we have a natural map

E → End(V?)Q giving an action of E on V? in the appropriate isogeny
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category. In particular, if y is as above, then, via the isomorphisms (5.4.3)
and (5.4.4), the space V (Ay[`

∞])Q has an E-action, making it a rank 1
module over Q` ⊗QE. If we want to emphasize this structure, we will write
V (Ay[`

∞])Q for this space, and V (Ay[`
∞]) for the lattice V (Ay[`

∞]) within
it.

Recall that there is a natural quadratic form Q on V (Ay[`
∞]) induced

from composition in End(Ay[`
∞]). There is now a unique Hermitian form

⟨⋅, ⋅⟩` on V (Ay[`
∞])Q with associated Q`⊗QF -quadratic form Q`(x) = ⟨x,x⟩`

such that, for any x, we have:

Q(x) = Tr(Q`⊗QF )/Q`(Q`(x)).

Set
V (Ay[∞]) =∏

`

V (Ay[`
∞]).

Then V (Ay[∞])Q has the structure of a Hermitian space over Af,E .

Proposition 5.4.4. The Hermitian space V (Ay[∞])Q is isometric to pVAf ,

where pV is the nearby Hermitian space from Definition 5.1.2.

Proof. For each prime ` ≠ p, (5.4.3) shows that V (Ay[`
∞]) is isometric to

LZ` . This shows that V (Ay[∞])Q is isometric to VAf , and hence to pVAf ,
away from the prime p.

Now consider what happens at the prime p. By (5.4.4) there is an isometry

V (Ay[p
∞])Q

≃
Ð→ Vcris,y[p

−1]ϕ=1,

and there is an orthogonal decomposition

Vcris,y[p
−1] =⊕

p′∣p

V [p−1]cris,p′ ,

where p′ ranges over the primes in OF lying above p. By the proof of
Proposition 3.6.1, for each p′ we have

V [p−1]cris,p′ = V (H0,cris,p′ , c)[p
−1].

Under this isomorphism, the Hermitian form on V [p−1]cris,p′ is carried to
the form ξ⟨⋅, ⋅⟩, where ⟨⋅, ⋅⟩ is the Hermitian form induced from composition
in End(H0,cris,p′).

If p′ ≠ p, there is an isomorphism of F -crystals

Wp′ ⊗OF H0
≃
Ð→H0,cris,p′ ,

where the left hand side is equipped with the semi-linear map Frd0 ⊗ 1.
Therefore, we obtain an isomorphism

V [p−1]ϕ=1
cris,p′ = Fp′ ⊗F V0

carrying the Hermitian form on the left hand side to ξ⟨⋅, ⋅⟩0. This shows that
V (Ay[∞])Q is isometric to VAf and hence to pVAf away from the place p.

Finally, if p′ = p, the F -crystal H0,cris,p is the Dieudonné F -crystal of a
Lubin-Tate group over OE,q associated with some uniformizer π ∈ Eq. If q is
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unramified over F and π is chosen to lie in Fp, then Proposition 2.3.3 shows
that we have an isomorphism

V [p−1]ϕ=1
cris,p

≃
Ð→ Eq ⊗E V0

carrying the Hermitian form on the left hand side to πξ⟨⋅, ⋅⟩0.
If q is ramified over F and π is chosen to lie in Fp, then Proposition 2.3.3

shows that we have an isomorphism:

V [p−1]ϕ=1
cris,p

≃
Ð→ Eq ⊗E V0

carrying the Hermitian form on the left hand side to γξ⟨⋅, ⋅⟩0, where γ = ββ,

for some β ∈W ×
q satisfying πFrd0(β) = πβ.

In either case, it is easily checked that this establishes an isometry of
V [p−1]ϕ=1

cris,p with pVp. This finishes the proof of the proposition. �

Proposition 5.4.5. Suppose that p is not split in E and that q ⊂ OE is the

unique prime above it. Fix a point y ∈ Y(Falg
q ). Then Ay is a supersingular

abelian variety. Moreover:

(1) V (Ay) ≠ 0;
(2) The natural map

(5.4.5) Ẑ⊗Z V (Ay)→ V (Ay[∞])

is an isometry of quadratic spaces over Ẑ.

Proof. It was already observed above that Ay being supersingular follows
from Proposition 3.6.2.

From Proposition 5.4.4, we find that, for any prime `, the rank of the
Z`-module V (Ay[`

∞]) is equal to 2d = dimV . Moreover, we can find a finite
extension of Fq over which y, and all the elements of V (Ay[`

∞]) are defined.
This shows that [Mad15, Assumption 6.2] is satisfied, and so our propo-

sition now follows from [loc. cit., Theorem 6.4]. The statement of the cited
result assumed p > 2, but its proof goes through without this assumption. �

Corollary 5.4.6.

(1) For any connected Y-scheme S, V (AS)Q has a canonical structure of
an E-vector space equipped with a positive definite Hermitian form
⟨⋅, ⋅⟩.

(2) We have V (AS)Q = 0 unless the image of S → Y is supported on a
single special fiber YFq with q ⊂ OE a prime lying over a non-split
prime p ⊂ OF .

(3) If S → Y is supported on a single special fiber YFq as in (2), then
there is an isometry

V (AS)Q
≃
Ð→ pV

of Hermitian spaces over E. Here, we have written V (AS)Q for
V (AS)Q equipped with its additional Hermitian E-vector space struc-
ture.
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Proof. From Proposition 3.5.6, we obtain an embedding T ↪ Aut○(AS),
whose homological realizations are the maps θ?(H) of [loc. cit.]. This implies
that V (AS)Q ⊂ EndC(L)(AS)Q is a T -stable subspace.

First assume that S is a geometric point y ∈ Y(Falg
q ), where q ⊂ OE lies

over a non-split prime p ⊂ OF . For any ` ≠ p, by (5.4.3), V (Ay)Q` is iso-
morphic as a TQ`-representation to VQ` . It is easy to see that, for each `,
the E action on VQ` identifies EQ` with the commutant of TQ` in End(VQ`).
Therefore, the commutant of T in End(V (Ay)Q) is a commutative Q-algebra
that, for every ` ≠ p, is isomorphic to EQ` over Q`. As such, this commu-
tant must be the field E. In this way, we obtain an E-action on V (Ay)Q,
making it a 1-dimensional E-vector space, which is irreducible as a repre-
sentation of T . In particular, there is a unique Hermitian form ⟨⋅, ⋅⟩ on it,
which when composed with TrF /Q gives the canonical quadratic form on
V (Ay)Q, It now follows from the Hasse principle for E-Hermitian spaces,
and Propositions 4.5.4, 5.4.4 and 5.4.5 that we have an isometry

V (Ay)Q
≃
Ð→ pV

of Hermitian spaces over E.
If S is any Y-scheme with V (AS) ≠ 0, it follows from Proposition 5.4.1

that the image of S in Y does not intersect the generic fiber Y , and thus is

supported in finite characteristics. Suppose that s ∈ S(Falg
q ) is a geometric

point lying above a point y ∈ Y(Falg
q ). This implies that q lies over a non-

split prime p ⊂ OF . Moreover, since V (Ay)Q is an irreducible representation
of T , the map

V (AS)Q → V (Ay)Q

must be an isomorphism. In particular, V (AS)Q has a canonical structure
of a Hermitian space over E, equipped with which it is isomorphic to pV . It
follows from this that the image of S in Y has to be supported over YFq . �

6. Arithmetic intersections and derivatives of L-functions

In this section, we set up the terminology required to state the main tech-
nical result of this paper, Theorem 6.4.2. In particular, following [BKY12],
we discuss the theory of incoherent Eisenstein series and their q-expansion
and recall the main theorem of loc. cit.

Keep E/F and (V ,Q) as in §5.1. Once again define a Q-quadratic space

(V,Q) = (V ,TrF /Q ○Q)

of signature (2d − 2,2) = (n,2), where d = [F ∶ Q]. We will assume that
d > 1, so that n > 0.

Let χ ∶ A×
F → {±1} be the quadratic character defined by the CM extension

E/F , and let DE and DF be the discriminants of E and F . If we set

ΓR(s) = π
−s/2Γ(s/2), the completed L-function

(6.0.1) Λ(s,χ) = ∣
DE

DF
∣
s/2

ΓR(s + 1)dL(s,χ)
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satisfies the function equation Λ(1 − s,χ) = Λ(s,χ). Furthermore,

(6.0.2)
Λ′(0, χ)

Λ(0, χ)
=
L′(0, χ)

L(0, χ)
+

1

2
log ∣

DE

DF
∣ −

d log(4πeγ)

2

where γ = −Γ′(1) is the Euler-Mascheroni constant.

6.1. Incoherent Eisenstein series. Recalling the standard additive char-
acter ψQ ∶ Q/A→ C× of §4.7, define

ψF ∶ F /AF → C×

by ψF = ψQ ○TrF /Q.
If v is an arichmedean place of F , denote by Cv the unique positive definite

rank 2 quadratic space over Fv. Set C∞ = ∏v∣∞Cv. The rank 2 quadratic
space

C = C∞ × V̂

over AF is incoherent, in the sense that it is not the adelization of any F -
quadratic space. In fact, C is isomorphic to V ⊗F AF everywhere locally,
except at the unique archimedean place ι0 at which V is negative definite.

To any Schwartz function

ϕ∞ ⊗ ϕ ∈ S(C∞)⊗ S(V̂ )
≃
Ð→ S(C )

we may associate an incoherent Hilbert modular Eisenstein series via the
process described in [Kud97, KY10, Yan05]. Briefly, the construction is as
follows. Denote by I(s,χ) the degenerate principal series representation of
SL2(AF ) induced from the character χ∣ ⋅ ∣s on the subgroup B ⊂ SL2 of upper
triangular matrices. Thus I(s,χ) consists of all smooth functions Φ(g, s) on
SL2(AF ) satisfying the transformation law

Φ((
a b

a−1) g, s) = χ(a)∣a∣s+1Φ(g, s).

As in §4.7, the Weil representation ωC (determined by the character ψF )
defines an action of SL2(AF ) on S(C ), and the function

Φ(g,0) = ωC (g)(ϕ∞ ⊗ ϕ)(0)

lies in the induced representation I(0, χ). It extends uniquely to a standard
section Φ(g, s) of I(s,χ), which determines an Eisenstein series

(6.1.1) E(g, s,Φ) = ∑
γ∈B(F )/SL2(F )

Φ(γg, s)

on SL2(AF ). As in [Kud97, Theorem 2.2], the incoherence of C implies that
E(g, s,Φ) vanishes identically at s = 0.

Endow AF with the Haar measure self-dual with respect to ψF , and give
F /AF the quotient measure. For every α ∈ F define the Whittaker function

(6.1.2) Wα(g, s,Φ) = ∫
AF

Φ(wn(b)g, s) ⋅ ψF (−αb)db,
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where w = ( −1
1 ) and n(b) = ( 1 b

1 ) . The Eisenstein series (6.1.1) has a
Fourier expansion

E(g, s,Φ) = ∑
α∈F

Eα(g, s,Φ)

in which the coefficient

Eα(g, s,Φ) = ∫
F /AF

E(n(b)g, s,Φ) ⋅ ψF (−αb)db

is related to the Whittaker function by

(6.1.3) Eα(g, s,Φ) =

⎧⎪⎪
⎨
⎪⎪⎩

Wα(g, s,Φ) if α /= 0

Φ(g, s) +W0(g, s,Φ) if α = 0.

The degenerate principal series decomposes I(s,χ) = ⊗vIv(s,χv), where
the tensor product is over all places of F . There is an obvious factorization
Φ = Φ∞ ⊗Φf into archimedean and nonarchimedean parts, which induces a
corresponding factorization

Wα(g, s,Φ) =Wα,∞(g∞, s,Φ∞) ⋅Wα,f(gf , s,Φf)

of the integral (6.1.2). In practice there will be a further factorization ϕ =

⊗pϕp ∈ S(V̂ ) over the rational primes, and hence a factorization

Wα(g, s,ϕ) =Wα,∞(g∞, s, φ∞) ⋅∏
p

Wα,p(gp, s, ϕp)

of Whittaker functions. When the component ϕp admits a further factor-
ization ϕp = ⊗p∣pϕp so does

Wα,p(gp, s, ϕp) =∏
p∣p

Wα,p(gp, s, ϕp).

From now on we will always take the archimedean component ϕ∞ of our
Schwartz function to be the Gaussian distribution

ϕ1
∞ = ⊗ϕ1

v ∈⊗
v∣∞

S(Cv)

defined by ϕ1
v(x) = e

−2πQv(x) (Qv is the quadratic form on Cv.) By [KY10,
Lemma 4.1] the resulting Eisenstein series (6.1.1) has parallel weight 1. As
the archimedean component will remain fixed, the section Φ is determined
by ϕ ∈ S(V̂ ), and we will often write

E(g, s,ϕ) = E(g, s,Φ).

6.2. A formal q-expansion. As in the previous section, fix a Schwartz
function ϕ ∈ S(V̂ ), and let E(g, s,ϕ) be the corresponding incoherent weight
1 Eisenstein series on SL2(AF ).

For any τ⃗ ∈Hd let gτ⃗ ∈ SL2(AF ) be the matrix with archimedean compo-
nents

gτi =
⎛

⎝

1 ui
1

⎞

⎠

⎛

⎝

v
1/2
i

v
−1/2
i

⎞

⎠
,
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and take all finite components to be the identity matrix. Here

u⃗ = (u0, . . . , ud−1), v⃗ = (v0, . . . , vd−1)

are the real and imaginary parts of τ⃗ . Exactly as in [BKY12, (4.4)], define
a classical weight 1 Hilbert modular Eisenstein series

E(τ⃗ , s, ϕ) =
1

√
N(v⃗)

⋅E(gτ⃗ , s, ϕ),

where N(v⃗) = v0⋯vd−1. Its derivative at s = 0 has the Fourier expansion

E′(τ⃗ ,0, ϕ) =
1

√
N(v⃗)

⋅ ∑
α∈F

E′
α(gτ⃗ ,0, ϕ).

As in [Kud97, KY13], for any α ∈ F× define the difference set

Diff(α) = {places v of F ∶ Cv does not represent α}.

Usually α will be totally positive, in which case

Diff(α) = {primes p ⊂ OF ∶ Vp does not represent α}

= {primes p ⊂ OF ∶ χp(α) ≠ invp(V )}.

Remark 6.2.1. Note that Diff(α) is a finite set of odd cardinality, and any
place v ∈ Diff(α) is nonsplit in E. If p ⊂ OF is a finite place, then Diff(α) =
{p} if and only if α is represented by the nearby hermitian space pV of
Definition 5.1.2.

All parts of the following proposition follow from the statement and proof
of [BKY12, Proposition 4.6].

Proposition 6.2.2. For any totally positive α ∈ F we have

1
√
N(v⃗)

⋅E′
α(gτ⃗ ,0, ϕ) =

aF (α,ϕ)

Λ(0, χ)
⋅ qα

for some constant aF (α,ϕ) independent of τ⃗ . Furthermore:

(1) If ∣Diff(α)∣ > 1, then aF (α,ϕ) = 0.
(2) If Diff(α) = {p}, then

aF (α,ϕ)

Λ(0, χ)
∈ Q(ϕ) ⋅ logN(p),

where Q(ϕ)/Q is the extension obtained by adjoining all values of ϕ.

Now we study the constant term. Much of the following proposition is
implicit in the statement and proof of [BKY12, Proposition 4.6], but the
relevant part of [loc. cit.] is misstated, and we need more information than
is found there.

Proposition 6.2.3. There is a meromorphic function M(s,ϕ) such that

(6.2.1)
E0(gτ⃗ , s, ϕ)

√
N(v⃗)

= ϕ(0) ⋅N(v⃗)s/2 −N(v⃗)−s/2
Λ(s,χ)

Λ(s + 1, χ)
⋅M(s,ϕ).
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If ϕ = ⊗pϕp factors over the primes of OF , then so does

M(s,ϕ) =∏
p

Mp(s,ϕp).

Each factor Mp(s,ϕp) is a rational function, with coefficients in Q(ϕp), in
the variable N(p)s, and all but finitely many factors are equal to 1. Finally,

(6.2.2)
1

√
N(v⃗)

⋅E′
0(gτ⃗ ,0, ϕ) = ϕ(0) logN(v⃗) +

aF (0, ϕ)

Λ(0, χ)
,

where the constant aF (0, ϕ) is defined by the relation

aF (0, ϕ)

Λ(0, χ)
= −2ϕ(0) ⋅

Λ′(0, χ)

Λ(0, χ)
−M ′(0, ϕ).

Proof. Assume that ϕ = ⊗pϕp admits a factorization over the finite places of
F , so that there are similar factorizations

Φ(g, s) =∏
v

Φv(g, s), W0(g, s,Φ) =∏
v

W0,v(g, s,Φv)

over all places of F . We define

M(s,ϕ) =∏
p

Mp(s,ϕp),

where

Mp(s,ϕp) =
N(p)f(p)/2

γp(V )
⋅
Lp(s + 1, χ)

Lp(s,χ)
⋅W0,p(I, s,Φp)(6.2.3)

=
N(p)f(p)/2

γp(V )
⋅
Lp(s + 1, χ)

Lp(s,χ)
⋅ ∫

Fp

Φp (wn(b), s) db.

Here I ∈ SL2(Fp) is the identity matrix, f(p) = ordp(DFDE/F ), where DF

and DE/F are the different and relative discriminants of F /Q and E/F ,
respectively, and

(6.2.4) γp(V ) = χp(−1) ⋅ invp(V ) ⋅ εp(χ,ψF ) ∈ {±1,±i}

is the local Weil index (relative to ψF ) as in [Yan05]. These satisfy

(−i)d∏
p

γp(V ) = −1.

Note that for a given ϕ, all but finitely many p satisfy Mp(s,ϕp) = 1. This
is an easy exercise. Alternatively, as two factorizable Schwartz functions are
equal in all but finitely many components, it suffices to prove the claim for
any one factorizable Schwartz function. This is done below.

Extend ϕ ↦ M(s,ϕ) linearly to all Schwartz functions. Combining the
definition (6.2.3) with the calculation

W0,∞(gτ⃗ , s,Φ∞) = (−i)d
ΓR(s + 1)d

ΓR(s + 2)d
⋅N(v⃗)(1−s)/2
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of [Yan05, Proposition 2.4], we find

W0(gτ⃗ , s,Φ) = −N(v⃗)(1−s)/2
Λ(s,χ)

Λ(s + 1, χ)
⋅M(s,ϕ).

Plugging this equality and

Φ(gτ⃗ , s) = N(v⃗)(s+1)/2 ⋅Φ(I, s) = N(v⃗)(s+1)/2 ⋅ ϕ(0)

into the equality

E0(gτ⃗ , s, ϕ) = Φ(gτ⃗ , s) +W0(gτ⃗ , s,Φ)

of (6.1.3) proves (6.2.1). As the left hand side of (6.2.1) vanishes at s = 0,
the functional equation Λ(1 − s,χ) = Λ(s,χ) implies M(0, ϕ) = ϕ(0), and
(6.2.2) then follows directly from (6.2.1) by taking the derivative.

It only remains to prove the claims concerning the rationality of the local
factors Mp(s,ϕp). First we describe Mp(s,ϕp) for a specific choice of ϕp.
Fix an isomorphism

(6.2.5) (Vp,Qp)
≃
Ð→ (Ep, ξp ⋅NmEp/Fp

)

with ξp ∈ F
×
p . If p is either split or ramified in E, we choose this isomorphism

so that ξp ∈ O×F,p. If p is inert in E, we choose the isomorphism so that

ordp(ξp) ∈ {0,1}. Now let ϕ̃p be the characteristic function of OE,p ⊂ Ep = Vp.
For this choice of Schwartz function, the calculations of [Yan05] (see also
Corollary 7.1.9 below) show that

Mp(s, ϕ̃p) =

⎧⎪⎪
⎨
⎪⎪⎩

N(p)−1 ⋅
Lp(s+1,χ)
Lp(s−1,χ) if p is inert in E and invp(V ) = −1

1 otherwise.

By the linearity of ϕp ↦ Mp(s,ϕp), it now suffices to show that when
ϕp(0) = 0, the function

(6.2.6)
Lp(s,χ)

Lp(s + 1, χ)
⋅Mp(s,ϕp) =

N(p)f(p)/2

γp(V )
⋅ ∫

Fp

Φp(wn(b), s)db

is a polynomial in N(p)s with coefficients in Q(ϕp). We assume ϕp(0) = 0
in all that follows.

If ∣b∣ ≤ 1 then Φp(wn(b), s) is independent of s, by the definition of a
standard section. If ∣b∣ ≥ 1 then the factorization

wn(b) = (
−1

1 b
) = (

b−1 −1
b
)(

1
b−1 1

)

shows that

Φp(wn(b), s) = χp(b)∣b∣
−s−1Φp ((

1
b−1 1

) ,0) .

As Φp(g,0) is locally constant, this last equality also implies that for all b
outside of some sufficiently large ball p−c, we have

Φp(wn(b), s) = χp(b)∣b∣
−s−1Φp(I,0) = χp(b)∣b∣

−s−1ϕp(0) = 0.
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Using these observations, one can check that (6.2.6) is a polynomial in N(p)s

by decomposing the integral as a sum of integrals over annuli pk ∖ pk+1 in
the usual way.

For all sufficiently large c we have

1

γp(V )
∫
Fp

Φp(wn(b),0)db =
1

γp(V )
∫
p−c

Φp(wn(b),0)db

= ∫
p−c
∫

Vp

ϕp(x)ψF,p(bQ(x))dxdb

= ∫
Vp

ϕp(x) (∫
p−c
ψF,p(bQp(x))db) dx.

The second equality is easily obtained from the explicit formulas [HY12,
(4.2.1)] defining the Weil representation. In the above equalities, Haar mea-
sure on Vp is normalized as in [HY12, Lemma 4.6.1], so that, for any iso-
morphism (6.2.5),

Vol(OE,p) = N(p)−ordp(DE/F )/2N(p)−ordp(ξp).

The Haar measure on Fp is chosen to be self-dual with respect to ψF,p, so
that

Vol(p−c) = N(p)c ⋅Vol(OF,p) = N(p)c ⋅N(p)−ordp(DF )/2.

The inner integral above is

∫
p−c
ψF,p(bQp(x))db =

⎧⎪⎪
⎨
⎪⎪⎩

Vol(p−c) if Qp(x) ∈ p
cD−1

F,p

0 otherwise,

and from this it is clear that the value at s = 0 of (6.2.6) lies in Q(ϕp).
By the interpolation trick of Rallis, as in [KY10, Lemma 4.2], the calcu-

lation above can be extended to show that the value of (6.2.6) lies in Q(ϕp)
for any s ∈ Z≥0. This shows that (6.2.6) has the form R(N(p)s) where
R(T ) ∈ C[T ] is Q(ϕp)-valued at infinitely many T ∈ Z, and from this it
follows that R(T ) has coefficients in Q(ϕp).

This completes the proof of Proposition 6.2.3. �

As in [BKY12, Proposition 4.6], define a formal q-expansion

E(τ⃗ , ϕ) = aF (0, ϕ) + ∑
α∈F+

aF (α,ϕ) ⋅ q
α,

where F+ ⊂ F is the subset of totally positive elements. Its formal diagonal
restriction is the formal q-expansion

E(τ,ϕ) = ∑
m∈Q

a(m,ϕ) ⋅ qm

defined by a(0, ϕ) = aF (0, ϕ), and

(6.2.7) a(m,ϕ) = ∑
α∈F+

TrF /Q(α)=m

aF (α,ϕ)

for all m /= 0. In particular a(m,ϕ) = 0 if m < 0.
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6.3. The Bruinier-Kudla-Yang theorem. Fix a maximal lattice L in
the Q-quadratic space (V,Q). Recalling the Schwartz function ϕµ ∈ S(V̂ ) =

S(V̂ ) of (4.7.1), abbreviate

a(m,µ) = a(m,ϕµ), aF (α,µ) = aF (α,ϕµ)

for any µ ∈ L∨/L.
Fix also a harmonic weak Maass form f ∈H2−d(ωL) with integral principal

part. Let us temporarily denote by

f = ξ(f) ∈ Sd(ωL)

the image of f under the Bruinier-Funke differential operator of (4.7.3).
Decompose f(τ) = ∑µ fµ(τ)ϕµ, where the sum is over µ ∈ L∨/L, and define
a generalized L-function

L(s, ξ(f)) = Λ(s + 1, χ)∫
SL2(Z)/H

∑
µ∈L∨/L

fµ(τ)E(τ, s,ϕµ)
dudv

v2−d

exactly as in [BKY12, (5.3)]. Here τ = u + iv ∈ H, and E(τ, s,ϕ) is the re-
striction of the Hilbert modular Eisenstein series E(τ⃗ , s, ϕ) to the diagonally
embedded H ↪ Hd. This L-function is an entire function of the variable s,
and vanishes at s = 0.

Abbreviate

degC(Y )
def
= ∑

y∈Y (C)

1

∣Aut(y)∣
=

∣T (Q)/T (Af)/KL,0∣

∣T (Q) ∩KL,0∣
,

where Y (C) is the set of complex points of Y , viewed as an E-stack. If we
set

Y∞ = Y ×Spec(Z) Spec(C),

then

∑
y∈Y∞(C)

1

∣Aut(y)∣
= 2d ⋅ degC(Y ).

The following theorem is the main result of [BKY12].

Theorem 6.3.1 (Bruinier-Kudla-Yang). In the notation above,

Φ(f,Y∞)

2 degC(Y )
= −
L′(0, ξ(f))

Λ(0, χ)
+ ∑
µ∈L∨/L
m≥0

a(m,µ) ⋅ c+f (−m,µ)

Λ(0, χ)
,

where Φ(f) is the Green function for Z(f) appearing in (4.7.4), and, using
the morphism Y∞(C)→M(C) induced by (5.3.2), we abbreviate

Φ(f,Y∞) = ∑
y∈Y∞(C)

Φ(f, y)

∣Aut(y)∣
.
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6.4. The arithmetic intersection formula. Exactly as in §4.6, we may
form the group of metrized line bundles P̂ic(Y) on Y.

Let F∞ ∶ Y∞(C) → Y∞(C) be complex conjugation. As Y is flat of
relative dimension 0 over OE , all Cartier divisors on Y are supported in
nonzero characteristics. If Z is such a divisor, by a Green function for Z we
mean any F∞-invariant R-valued function Φ on Y∞(C). Exactly as in §4.6,
we define an arithmetic divisor on Y to be a pair

Ẑ = (Z,Φ)

consisting of a Cartier divisor on Y together with a Green function. The

codimension one arithmetic Chow group ĈH
1
(Y) is the quotient of the group

of all arithmetic divisors by the subgroup of principal arithmetic divisors

d̂iv(Ψ) = (div(Ψ),− log ∣Ψ∣2),

for Ψ a nonzero rational function on Y. Once again we have an isomorphism

P̂ic(Y)
≃
Ð→ ĈH

1
(Y).

Remark 6.4.1. Any arithmetic divisor (Z,Φ) decomposes as (Z,0)+ (0,Φ),
and Z can be further decomposed as the difference of two effective Cartier
divisors.

To define the arithmetic degree, as in [GS90, KRY04, KRY06], of an arith-

metic divisor Ẑ as above, we first assume that Ẑ = (Z,0) with Z an effective
Cartier divisor. Then

d̂eg(Ẑ) = ∑
q⊂OE

log N(q) ∑
z∈Z(Falg

q )

length(OZ,z)

∣Aut(z)∣

where OZ,z is the étale local ring of Z at z. If Ẑ = (0,Φ) is purely
archimedean, then

d̂eg(Ẑ) =
1

2
∑

y∈Y∞(C)

Φ(y)

∣Aut(y)∣
.

The arithmetic degree extends linearly to all arithmetic divisors, and defines
a homomorphism

d̂eg ∶ P̂ic(Y)→ R.
We now define a homomorphism

[⋅ ∶ Y] ∶ P̂ic(M)→ R,
the arithmetic degree along Y, as the composition

P̂ic(M)→ P̂ic(Y)
d̂eg
ÐÐ→ R.

Theorem 6.4.2. Recall the integer Dbad = Dbad,L defined following Defini-
tion 5.3.3. For any f ∈H2−d(ωL) with integral principal part, the equality

[Ẑ(f) ∶ Y]

degC(Y )
= −
L′(0, ξ(f))

Λ(0, χ)
+
a(0,0) ⋅ c+f (0,0)

Λ(0, χ)
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holds up to a Q-linear combination of {log(p) ∶ p ∣Dbad}.

Theorem 6.4.2 is the technical core of this paper; its proof will occupy all
of §7, with the completion of the proof appearing in §7.8.

Remark 6.4.3. By Proposition 5.4.1, the Z-quadratic space of special endo-
morphisms V (Ay) is 0 for any complex point y ∈ Y(C). By the very defi-
nition of the special divisors Z(m,µ), it follows that the image of Y →M
is disjoint from the support of all Z(m,µ), and hence from the support of
Z(f), in the complex fiber. As Y is flat over Z of relative dimension 0, this
implies that the image of Y meets the support of Z(f) properly; i.e. the
intersection has dimension 0, and is supported in finitely many nonzero
characteristics.

7. Proof of the arithmetic intersection formula

In this section we prove Theorem 6.4.2. There are two main computations
that are independent of each other: Proposition 7.3.2 and Theorem 7.7.4.
The first computes the Fourier coefficients of an incoherent Eisenstein series,
and the second computes the lengths of the local rings of the intersection
between the special divisors on the ambient GSpin Shimura variety with the
zero dimensional Shimura variety from Section 3.1. These combine to give
Theorem 7.8.1, which is at the heart of the proof of the main theorem.

7.1. Local Whittaker functions. Let p be a good prime, in the sense of
Definition 5.3.3, and let p ⊂ OF be a prime above it. We will assume that p
is not split in OE . Let q ⊂ OE be the unique prime above p.

Let m(p) and n(p) be the p-adic valuations of the different dFp/Qp and

relative discriminant DEq/Fp
= NmEq/Fp

(dEq/Fp
), respectively. The integer

n(p) is non-zero if and only if q is ramified over F . Set f(p) =m(p) + n(p);
this is the p-adic valuation of dFp/QpDEq/Fp

.

Let e(p) be the absolute ramification index of p. If p ≠ 2, then the only
possible non-zero value for n(p) is 1. If p = 2, then n(p) belongs to the set
{2e(p) + 1} ∪ {2i ∶ 0 ≤ i ≤ e(p)}.

Since p is good, the quadratic space Lp = Lp ∩ Vp contains a maximal
OE,q-stable lattice Λp. Moreover, if p is unramified in E, then this lattice is
itself self-dual and in particular is equal to Lp.

Fix a uniformizer πp ∈ OF,p. If p is unramified in E, we will also write πq
for this element, when we view it as a uniformizer for Eq. If p is ramified in
E, we assume that πp has the form Nm(πq) = πp for a uniformizer πq ∈ Eq.
Here Nm is the norm from Eq to Fp.

We will now explicitly describe the possibilities for Λp.

● If p is inert in E, then the self-dual quadratic form on Lp is the trace
of an Eq-valued Hermitian form. In this case, Lp = Λp, and we have
an isometry of Hermitian lattices:

(Lp, ⟨x1, x2⟩) ≃ (OE,q, π
−m(p)
p x1x2).
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The nearby Hermitian module pLp =
pΛp is defined by

(pLp,
p⟨x1, x2⟩) = (OE,q, π

−m(p)+1
p x1x2).

(In other words, the underlying OE,q-module is the same, but the
hermitian form is rescaled by πp.)

● If p is ramified in E, with q ⊂ OE the prime above it, then, for
an appropriate choice of unit β+ ∈ O×F,p, we have an isometry of
Hermitian lattices:

(Λp, ⟨x1, x2⟩) ≃ (OE,q, β+π
−m(p)
p x1x2).

The nearby Hermitian module pΛp is defined by

(pΛp,
p⟨x1, x2⟩) = (OE,q, β−π

−m(p)
p x1x2),

where β− = δβ+, and δ ∈ 1 + π
n(p)−1
p OF,p

3 is such that χ(δ) = −1.
(In other words, the underlying OE,q-module is the same, but the
hermitian form is rescaled by δ.)

Let pV be the nearby Hermitian space as in Definition 5.1.2. Then, by
construction, the nearby lattice pΛp is a lattice in pVp. Moreover, again
by construction, we have an identification of OE,q-modules (though not an
isometry)

(7.1.1) Λp =
pΛp.

Fix a coset

λ +Λp ⊂ π
−n(p)
q Λp

of Λp, and let pλ + pΛp be the associated coset of pΛp obtained from the
identification (7.1.1).

Let (p)ϕλ ∈ S(
(p)Vp) be the characteristic function of (p)λ + (p)Λp. Here,

and in the sequel, we will use the superscript (p) to indifferently denote
objects related to both V and pV ; e.g., S((p)Vp) means either S(Vp) or
S(pVp).

Write (p)Φλ
p ∈ Ip(s,χ) for the standard section associated with (p)ϕλ as in

§6.1, with corresponding Whittaker function

Wα,p(I, s,
(p)Φλ

p) = ∫
Fp

(p)Φλ
p(wn(b), s) ⋅ ψFp(−αb)db.

Let I ∈ SL2(Fp) be the identity. For convenience, set

W ∗
α,p(I, s,

(p)Φλ
p) =

γp(
(p)V )

N(p)f(p)/2
⋅Wα,p(I, s,

(p)Φλ
p).

Here, γp(
(p)V ) is defined by (6.2.4).

The next result follows from [Kud97, Proposition 1.4].

3If n(p) = 1, then we set 1 + π
n(p)−1
p OF,p = O

×

F,p.
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Proposition 7.1.1. Suppose that α ∈ F×
p is not represented by (p)Vp. Then

Wα,p(gp,0,
(p)Φλ

p) = 0.

Set

ξp =

⎧⎪⎪
⎨
⎪⎪⎩

π
−m(p)
p if p is unramified in E

β+π
−m(p)
p if p is ramified in E,

and

pξp =

⎧⎪⎪
⎨
⎪⎪⎩

π
−m(p)+1
p if p is unramified in E

β−π
−m(p)
p if p is ramified in E.

(7.1.2)

The proofs of the two propositions below are essentially contained in [HY12,
§4.6] and [Yan05]. In particular, see [Yan05, Propositions 2.1, 2.2, and 2.3].

Proposition 7.1.2. Suppose that p is unramified in E.

(1) If ordp(α) < −m(p), then

Wα,p(I, s,
(p)Φ0

p) = 0.

(2) If ordp(α) ≥ −m(p), then

W ∗
α,p(I, s,Φ

0
p) =

1

Lp(s + 1, χ)
∑

0≤k≤ordp(α)+m(p)

(−1)kN(p)−ks,

and

Wα,p(I, s,
pΦ0

p) =Wα,p(I, s,Φ
0
p) − (1 +N(p)−1).

Proposition 7.1.3. Suppose that p is ramified in E.

(1) If ordp(α) < −m(p), then

Wα,p(I, s,
(p)Φ0

p) = 0.

(2) If ordp(α) ≥ −m(p), then

W ∗
α,p(I, s,

(p)Φ0
p) = 1 + χp(

(p)ξpα)N(p)−(ordp(α)+m(p)+n(p))s.

Now, suppose that p is ramified in E. As above, let πq ∈ Eq be a uni-
formizer, chosen so that Nm(πq) = πp.

For any a1, a2, ζ ∈ F
×, write a1 ≡ a2 (mod ζ) to mean a1 ≡ a2 (mod ζOF,p).

Proposition 7.1.4. Suppose that λ ∉ Λp.

(1) If p ≠ 2, then

W ∗
α,p(I, s,

(p)Φλ
p) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if α ≡ (p)Q((p)λ) (mod (p)ξp)

0 otherwise.

(2) Suppose that p = 2. Then

α ≡ Q(λ) (mod ξp) ⇔ α ≡ pQ(pλ) (mod pξp).
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Moreover, Wα,p(I, s,
(p)Φλ

p) is identically 0 unless these equivalent
congruences hold, and when they hold we have

W ∗
α,p(I, s,

(p)Φλ
p) = 1 + χp(

(p)ξpα)N(p)−(n(p)−r(λ))s,

where r(λ) ∈ Z>0 is the smallest positive integer such that λ ∈ π
−r(λ)
q Λp.

Proof. When p ≠ 2, this computation is contained in [HY12, Proposition
4.6.4]. When p = 2, the result appears to be new. We present a mostly
self-contained proof here that covers both possibilities.

For simplicity, write Φ, χ, ψ and ξ for (p)Φλ
p , χp, ψFp and ξp, respectively.

By a standard argument, we have a decomposition:

Wα,p(I, s,Φ) =Wα,p(I, s,Φ)≤1 +Wα,p(I, s,Φ)>1,

where

Wα,p(I, s,Φ)≤1 = ∫
∣b∣≤1

Φ(wn(b))ψ(−αb)db;

Wα,p(I, s,Φ)>1 = ∫
∣b∣>1

χ(b)∣b∣−(s+1)Φ(n−(b
−1))ψ(−αb)db.

Here, n−(b
−1) = (

1 0
b−1 1

), and we have abbreviated Φ(g,0) to Φ(g).

By the definition of Φ, and basic properties of the Weil representation,
for any b ∈ OF,p, we have

Φ(wn(b)) = γp(
(p)V )∫

(p)λ+(p)Λp

ψ(b ⋅ (p)Q(x))dx

= γp(
(p)V ) ⋅ ψ(b ⋅ (p)Q((p)λ)) ⋅ ∫

(p)Λp

ψ(b ⋅ (p)Q(x) + b ⋅ (p)⟨(p)λ,x⟩) dx

= γp(
(p)V ) ⋅ ψ(b ⋅ (p)Q((p)λ)) ⋅ ∫

(p)Λp

ψ(b ⋅ (p)Q(x)) dx.

Here, dx is the Haar measure on (p)Vp that is self-dual with respect to the
pairing

(x1, x2)↦ ψ(TrEq/Fp
((p)⟨x1, x2⟩)).

We have also used the fact that, for any x ∈ Λp,
(p)⟨(p)λ,x⟩ belongs to d−1

Fp/Qp ,

and hence
ψ(b ⋅ (p)⟨(p)λ,x⟩) = 1.

Set sλ =
(p)Q((p)λ). Using [HY12, Lemma 4.6.1], we then obtain

Φ(wn(b)) = N(p)−f(p)/2γp(
(p)V )ψ(bsλ)∫

π
−m(p)
p OF,p

(1 + χ(ξy))ψ(by)dy

= N(p)−f(p)/2γp(
(p)V )ψ(bsλ)

× [N(p)m(p)/2 +
∞

∑
k=−m(p)

N(p)−k ∫
O×F,p

χ(ξy)ψ(πkp by)dy]

= N(p)−n(p)/2γp(
(p)V )ψ(bsλ).
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The second equality here is deduced by noting
(7.1.3)

∫
π−rp OF,p

ψ(ζy)dy =

⎧⎪⎪
⎨
⎪⎪⎩

N(p)−rVol(OF,p) = N(p)r−m(p)/2 if ordp(ζ) ≥ r −m(p)

0 otherwise,

and the last by using the following lemma, which is a standard Gauss sum
computation, using the fact that χ has conductor n(p).

Lemma 7.1.5. For α ∈ Fp,

∫
O×F,p

χ(y)ψ(αy)dy =

⎧⎪⎪
⎨
⎪⎪⎩

N(p)−f(p)/2 ⋅ χ(α) ⋅ εp(χ,ψ) if ordp(α) = −f(p)

0 otherwise.

Therefore, we have

Wα,p(I, s,Φ)≤1 = N(p)−n(p)/2γp(
(p)V ) ⋅ ∫

OF,p

ψ((sλ − α)b)db

=

⎧⎪⎪
⎨
⎪⎪⎩

N(p)−f(p)/2 ⋅ γp(
(p)V ) if α ≡ sλ (mod ξ)

0 otherwise.
(7.1.4)

To compute Wα,p(I, s,Φ)>1, we will need

Lemma 7.1.6. Suppose that c ∈ OF,p and that k = ordp(c) > 1. For any
integer t ∈ Z≥1, set

U tF,p = 1 + πtpOF,p.

Set

d(k, λ) = 2k − (n(p) − r(λ)).

Then Φ(n−(c)) ≠ 0 only if

n(p) − r(λ)

2
< k < n(p) −

r(λ)

2
.

In this case, we have

Φ(n−(c)) =
ψ(c−1sλ)

Vol(U
d(k,λ)
F,p )

⋅ ∫
U
d(k,λ)
F,p

χ(y)ψ(−c−1sλy)dy.

In particular, if p ≠ 2, then Wα,p(I, s,Φ)>1 = 0.

Proof. As in [HY12] and [Yan05], this uses the identity n−(c) = −wn(−c)w,
so that

Φ(n−(c)) = χ(−1)Φ(wn(−c)w)

= χ(−1) ⋅ γp(
(p)V )∫

(p)Vp

ψ(−c ⋅ (p)Q(x))ω(w)((p)ϕλ)(x)dx

= ∫
(p)Vp

ψ(−c ⋅ (p)Q(x))∫
(p)λ+(p)Λp

ψ(−Tr((p)⟨x, y⟩))dy dx.

Here, we have used the identity γp(
(p)V )2 = εp(χ,ψ)

2 = χ(−1).
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For x ∈ (p)Vp, set tλ(x) = Tr((p)⟨(p)λ,x⟩). We compute

∫
(p)λ+(p)Λp

ψ(−Tr((p)⟨x, y⟩))dy = ψ(−tλ(x))∫
Λp

ψ(−Tr((p)⟨x, y⟩))dy

= N(p)−n(p)/2 ⋅ ψ(−tλ(x)) ⋅ char(π
−n(p)
q Λp)(x),

and hence

Φ(n−(c)) = N(p)−n(p)/2∫
π
−n(p)
q Λp

ψ(−c ⋅ (p)Q(x) − tλ(x)) dx.

If k ≥ n(p) then

ordp(c ⋅
(p)Q(x)) ≥ k − n(p) −m(p) ≥ −m(p)

for all x ∈ π
−n(p)
q Λp. Therefore, under this assumption, we have

Φ(n−(c)) = N(p)−n(p)/2∫
π
−n(p)
q Λp

ψ(−tλ(x)) dx = 0,

where we have used (7.1.3).
Now, suppose that k < n(p). Note that

−c ⋅ (p)Q(x) − tλ(x) = −c ⋅
(p)Q(x + c−1 ⋅ (p)λ) + c−1sλ.

Therefore,

Φ(n−(c)) = N(p)−n(p)/2ψ(c−1sλ) ⋅ ∫
c−1⋅(p)λ+π

−n(p)
q Λp

ψ(−c ⋅ (p)Q(x)) dx.

Using Lemma 4.6.1 of [HY12], we find

Φ(n−(c)) = N(p)−(f(p)+n(p))/2ψ(c−1sλ) ⋅ ∫
c−2sλ+π

−f(p)
p OF,p

(1 + χ(ξy))ψ(−cy) dy

= N(p)−(f(p)+n(p))/2ψ(c−1sλ) ⋅ ∫
c−2sλ+π

−f(p)
p OF,p

χ(ξy)ψ(−cy) dy.

Here, for the last identity, we have also used (7.1.3) combined with the
inequality

ordp(c) = k < n(p) = f(p) −m(p).

If 2k > n(p) − r(λ), then

ordp(c
−2sλ) = −2k −m(p) − r(λ) < −f(p).

Therefore, the substitution y ↦ (c−2sλ)
−1y, combined with the observation

that χ(sλ) = χ(ξ) gives us

Φ(n−(c)) =
ψ(c−1sλ)

Vol(U
d(k,λ)
F,p )

⋅ ∫
U
d(k,λ)
F,p

χ(y)ψ(−c−1sλy)dy.

If k ≥ n(p) −
r(λ)

2 , then d(k, λ) ≥ n(p). Since χ has conductor n(p), in this
case we get

Φ(n−(c)) =
ψ(c−1sλ)

Vol(U
d(k,λ)
F,p )

⋅ ∫
U
d(k,λ)
F,p

ψ(−c−1sλy)dy,
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which vanishes by (7.1.3).
If 2k ≤ n(p) − r(λ), then we have

∫
c−2sλ+π

−f(p)
p OF,p

χ(y)ψ(−cy) dy = ∫
π
−f(p)
p OF,p

χ(y)ψ(−cy) dy.

In this case, it is not hard to see, using Lemma 7.1.5, that this integral
vanishes, and hence that Φ(n−(c)) = 0.

�

When p ≠ 2, this, combined with (7.1.4), finishes the proof of Proposi-
tion 7.1.4. Therefore, we now specialize to the case where p = 2. In this
case, we have

pQ(pλ) = δQ(λ),

where δ ∈ U
n(p)−1
F,p . From this, and the condition r(λ) < n(p), it follows easily

that the conditions

α ≡ Q(λ) (mod ξ), α ≡ pQ(pλ) (mod ξ)

are equivalent. This shows the first part of assertion (2) of the proposition.
For the second part, observe that Lemma 7.1.6 gives us:

Wα,p(I, s,Φ)>1 =∑
k

N(p)−k(s+1)
∫

ordp(b)=−k
χ(b)Φ(n−(b

−1))ψ(−αb) db.,

where
n−r(λ)

2 < k < n(p)+
ordq(λ

2 , and the summand indexed by k is equal to

N(p)−ks

Vol(U
d(k,λ)
F,p )

∫
U
d(k,λ)
F,p

χ(y)∫
O×F,p

χ(b)ψ(bπ−kp (sλ − α − sλy))db dy.(7.1.5)

.
Now, we have

ordp(π
−k
p sλ(1 − y)) = k − f(p) > −f(p),

and therefore

ordp(π
−k
p (sλ − α − sλy)) = −k + ordp(sλ(1 − y) − α)

can equal −f(p) if and only if ordp(α) = k − f(p). So, using Lemma 7.1.5,
we see that

∫
O×F,p

χ(b)ψ(bπ−kp (sλ − α − sλy))db = N(p)−f(p)/2 ⋅ χ(−sλ) ⋅ χ(y − (1 − s−1
λ α)) ⋅ εp(χ,ψ)

if ordp(α) = k − f(p), and that it vanishes otherwise. Therefore (7.1.5) is
non-zero only if ordp(α) = k − f(p), in which case it is equal to

N(p)−f(p)/2 ⋅ γp(
(p)V ) ⋅N(p)−ks

Vol(U
d(k,λ)
F,p )

∫
U
d(k,λ)
F,p

χ(y(y − (1 − s−1
λ α))) dy.

Here, we have also used the formula for γp(
(p)V ) from (6.2.4), combined

with the identity χ(sλ) = χ(ξ) = invp(
(p)V ).
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Combining this with (7.1.4), we obtain

W ∗
α,p(I, s,Φ) =

⎧⎪⎪
⎨
⎪⎪⎩

N(p)−ks ⋅M(α,λ) if α ≢ sλ (mod ξ)

1 +N(p)−ks ⋅M(α,λ) if α ≡ sλ (mod ξ),
(7.1.6)

where k = ordp(α) + f(p), and where

M(α,λ) =
1

Vol(U
d(k,λ)
F,p )

∫
U
d(k,λ)
F,p

χ(y(y − (1 − s−1
λ α))) dy.

Now, if α ≡ sλ (mod ξ), then ordp(s
−1
λ α) = 0, and so k = n(p) − r(λ).

Therefore, the proof of the proposition will be completed by the following
lemma:

Lemma 7.1.7. We have

M(α,λ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if α ≡ sλ (mod ξ) and (p)Vp represents α

−1 if α ≡ sλ (mod ξ) and (p)Vp does not represent α

0 if α ≢ sλ (mod ξ).

Proof. If α ≡ sλ (mod ξ) and (p)Vp represents α, then we can choose our

coset representative (p)λ so that

sλ =
(p)Q((p)λ) = α.

Therefore, s−1
λ α = 1, and the formula for M(α,λ) reduces to

M(α,λ) =
1

Vol(U
d(k,λ)
F,p )

∫
U
d(k,λ)
F,p

χ(y2) dy = 1.

If α ≡ sλ (mod ξ) is not represented by (p)Vp, then Proposition 7.1.1
shows that

1 +M(α,λ) =W ∗
α,p(I,0,Φ) = 0,

and so M(α,λ) = −1.
Now, suppose that α ≢ sλ (mod ξ). Set ζ = 1 − s−1

λ α. We have

∫
U
d(k,λ)
F,p

χ(y(y − ζ)) dy = ∫
U
d(k,λ)
F,p

χ(1 − y−1ζ) dy

= ∫
U
d(k,λ)
F,p

χ(1 − yζ) dy

= χ(−ζ)∫
U
d(k,λ)
F,p

χ(y − ζ−1) dy.(7.1.7)

Note that

ordp(ζ) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if k > n(p) − r(λ)

k − (n(p) − r(λ)) if k < n(p) − r(λ).

Moreover, when k = n(p)−r(λ), ordp(ζ) is an integer between 0 and r(λ)−1.
In particular, we find that we always have

n(p) − 1 − ordp(ζ) ≥ d(k, λ).
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Choose η ∈ U
n(p)−1
F,p such that χ(η) = −1. This choice determines a measure

preserving bijection

α ∶ U
d(k,λ)
F,p

≃
Ð→ U

d(k,λ)
F,p

by y ↦ y + (1 − η)ζ−1. We now compute

∫
U
d(k,λ)
F,p

χ(y − ζ−1) dy = ∫
U
d(k,λ)
F,p

χ(α(y) − ζ−1) dy

= ∫
U
d(k,λ)
F,p

χ(y − ηζ−1) dy

= −∫
U
d(k,λ)
F,p

χ(η−1y − ζ−1) dy

= −∫
U
d(k,λ)
F,p

χ(y − ζ−1) dy.

Combining this with (7.1.7) shows that M(α,λ) = 0. �

This completes the proof of Proposition 7.1.4. �

We now record a few more results that are easy consequences of Proposi-
tions 7.1.2, 7.1.3 and 7.1.4. We omit their proofs.

Proposition 7.1.8. We have

W0,p(I, s,Φ
λ
p) =

⎧⎪⎪
⎨
⎪⎪⎩

γp(V )

N(p)f(p)/2
⋅
Lp(s,χ)
Lp(s+1,χ) if λ ∈ Λp

0 if λ ∉ Λp.

Corollary 7.1.9. Let Mp(s,ϕλ) be as in (6.2.3). Then Mp(s,ϕλ) is con-
stant. In fact, it is either 1 or 0 depending on whether λ is zero or non-zero.

Proposition 7.1.10. Suppose that α ∈ F × is such that Diff(α) = {p}. Set

X(α,λ) = {x ∈ pλ + pLp ∶
pQ(x) = α ∈ F×

p }.

(1) If X(α,λ) = ∅, then

W ′
α,p(I,0,Φ

λ
p) = 0.

(2) If X(α,λ) ≠ ∅, then Wα,p(I,0,
pΦλ

p) ≠ 0. Moreover, in this case, we
have

W ′
α,p(I,0,Φ

λ
p)

Wα,p(I,0, pΦλ
p)

=
`p(α)

2
⋅ logN(q),

where

`p(α) =

⎧⎪⎪
⎨
⎪⎪⎩

ordp(ξ−1
p α)+1

2 if p is unramified in E

ordp(ξ
−1
p α) + n(p) if p is ramified in E.
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7.2. Nearby Schwarz functions. We will keep our notation from the pre-
vious subsection.

If p′ ∣ p is a prime of OF not equal to p, set pΛp′ = Λp as Hermitian spaces
over OE,p. Note that pΛp′[p

−1] is isometric to pVp′ , and set

Λp =⊕
p′∣p

Λp′ ,
pΛp =⊕

p′∣p

pΛp′ .

As in (7.1.1), we have a canonical OE,p-linear isomorphism (but not an
isometry):

(7.2.1) Λp
≃
Ð→ pΛp ⊂

pVp.

We set
(p)Λ∨

p =⊕
p′∣p

(p′)−n(p
′)((p)Λp′).

Note that pΛ∨
p is not necessarily the dual lattice associated with pΛp, but

the notation will be convenient.
Suppose that we are given a class

λ = (λp′) ∈ Λ∨
p/Λp =⊕

p′∣p

((p′)−n(p
′)Λp′/Λp′) .

Observe that the isomorphism (7.2.1) carries the coset λ + Λp to a coset
pλ + pΛp of pΛp in pΛ∨

p . We have a further factorization

pλ + pΛp =∏
p′∣p

pλp′ +
pΛp′ .

Let pϕλp′ ∈ S(
pVp′) be the characteristic function of pλp′ +

pΛp′ . We now set

pϕ̃λ =⊗
p′∣p

pϕ̃λp′ ,

where pϕ̃λp′ =
pϕλp′ , for p′ ≠ p, and where

pϕ̃λp =

⎧⎪⎪
⎨
⎪⎪⎩

pϕλp if ordq(λp) > −n(p)

0 otherwise.
(7.2.2)

Fix µ ∈ L∨/L. Associated with this is the characteristic function ϕµ ∈

S(V̂ ) of the coset µ + L̂. We will now associate with this class a nearby

Schwarz function pϕµ ∈ S(
pV̂ ) as follows. First, we will have a factorization

pϕµ =⊗
`

pϕµ` ∈⊗
`

S(pV`) ⊂ S(
pV̂ ).

If ` ≠ p, then pϕµ` = ϕµ` will be the characteristic function of µ`+L` under
the obvious identification

S(pV`) = S(V`).

If ` = p, we can view µp+Lp as a subset of Λ∨
p , and, as such, it is a disjoint

union
µp +Lp = ⊔

λ∈µp+Lp

λ +Λp
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of cosets of Λp in Λ∨
p . We now set

(7.2.3) pϕµp = ∑
λ∈µp+Lp

pϕ̃λ = ∑
λ∈µp+Lp

⊗
p′∣p

pϕ̃λp′ .

As in the discussion of §6.1, let I(s,χ) be the space of the degenerate prin-

cipal series representation of SL2(AF ) induced from χ∣ ⋅ ∣s, and let (p)Φµ(g, s)
be the standard section of I(s,χ) determined by the Schwartz function

ϕ1
∞ ⊗ (p)ϕµ ∈ S(C∞)⊗ S((p)V̂ ),

Associated to this and each α ∈ F is the Whittaker function

Wα(g, s,
(p)Φµ) =Wα,∞(g∞, s,

(p)Φµ
∞) ⋅Wα,f(gf , s,

(p)Φµ
f )

admitting a factorization into infinite and finite parts.
We have a decomposition of the finite part

(p)Φµ
f = ⊗`

(p)Φµ
` ∈ ⊗`I`(s,χ),

where (p)Φµ
` ∈ I`(s,χ) is the standard section associated with (p)ϕµ` . This

gives us a decomposition of Whittaker functions

Wα,f(gf , s,
(p)Φµ

f ) =∏
`

Wα,`(g`, s,
(p)Φµ

` ).

We have

ϕµp = ∑
λp∈µp+Lp

ϕλ ∈ S(Vp),

where ϕλ is the characteristic function of λ+Λp, and the analogous decompo-
sition for pϕµ from (7.2.3). Each coset λ+Λp admits a further decomposition

λ +Λp = ⊔
p′∣p

λp′ +Λp′ ,

and so we obtain a finer decomposition

(7.2.4) ϕµp = ∑
λp∈µp+Lp

⊗
p′∣p

ϕλp′ ,

where ϕλp′ is the characteristic function of λp′ +Λp′ .

7.3. Orbital integrals and Fourier coefficients. Normalize the Haar
measure on

Tso(R) = {s ∈ (E ⊗Q R)× ∶ ss = 1}

to have total volume 1, and fix any Haar measure on

Tso(Af) = {s ∈ Ê× ∶ ss = 1}.

There is an induced quotient measure on Tso(Q)/Tso(A), and for any com-
pact open subgroup U ⊂ Tso(Af) we have

Vol(U) =
∣Tso(Q) ∩U ∣

∣Tso(Q)/Tso(Af)/U ∣
⋅Vol(Tso(Q)/Tso(A)).
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Definition 7.3.1. Fix a prime p ⊂ OF nonsplit in E, and let pϕ ∈ S(pV̂ ) be

any Schwartz function on the nearby hermitian space pV̂ = pV ⊗Af of §5.1.

For each α ∈ F̂ × define the orbital integral

O(α, pϕ) =
1

Vol(Tso(Q)/Tso(A))
∫
Tso(Af )

pϕ(sx)ds

for any x ∈ pV̂ with p⟨x,x⟩ = α. If no such x exists we set O(α, pϕ) = 0.

Proposition 7.3.2. Fix an α ∈ F+ such that Diff(α) = {p} for a single
prime p ⊂ OF . Let q ⊂ OE be the prime above p. Suppose that p lies above
a good prime p. Then, for any µ ∈ L∨/L, we have

aF (α,µ)

Λ(0, χ)
= −`p(α) ⋅O(α, pϕµ) ⋅ logN(q),

where `p(α) = 0 unless (pµp +
pLp) ∩

pVp represents α ∈ F×
p , in which case,

we have

`p(α) =

⎧⎪⎪
⎨
⎪⎪⎩

ordp(α)+m(p)+1
2 if p is unramified in E

ordp(α) +m(p) + n(p) if p is ramified in E.

Proof. The proof proceeds as in [Kud97, Theorem 6.1]. The strategy is to
relate the incoherent Eisenstein series E(g, s,ϕµ) to a nearby coherent Eisen-
stein series, whose Fourier coefficients can be computed using the Siegel-Weil
formula. This information is then combined with the computations of local
Whittaker functions in §7.1 to complete the proof.

We begin by repeating the construction of the incoherent Eisenstein series
from §6.1, but we replace the incoherent AF -quadratic space C = C∞× V̂ by
the coherent space

C∞ × pV̂
≃
Ð→ pV ⊗F AF ,

which differs from C only at the place p.
Let ϕpµ ∈ S(V̂

p) be the prime-to-p part of ϕµ so that we have

ϕµ = ϕµp ⊗ ϕ
p
µ ∈ S(Vp)⊗ S(V̂

p).

By (7.2.4), we have ϕµp = ∑λp∈µp+Lp ϕλp , where ϕλp admits a further
product decomposition

ϕλp =∏
p′∣p

ϕλp′ ∈ ⊗p′S(Vp′).

Here, λp ranges over representatives for cosets of Λp in Λ∨
p contained in

µp +Lp.

Set ϕλ = ϕλp ⊗ ϕ
p
µ ∈ S(V̂ ). We now have

(7.3.1) aF (α,µ) = ∑
λp∈µp+Lp

aF (α,ϕλ).
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Fix λp ∈ µp+Lp. Choose any Schwarz function pϕp ∈ S(
pVp). This gives us

a global Schwarz function pϕ ∈ S(pV ) admitting a factorization over primes
p′ ⊂ OF :

pϕ = ⊗p′
pϕp′ ,

where pϕp is our chosen function and, for p′ ≠ p, we have
pϕp′ = ϕλp′ ∈ S(

pVp′) = S(Vp′).

If pϕp is the characteristic function of pλp +
pΛp, then we will write pϕλ

for the corresponding element of S(pV ).
Let Φλ ∈ I(s,χ) (resp. pΦ ∈ I(s,χ)) be the standard section associated

with ϕ1
∞⊗ϕλ (resp. ϕ1

∞⊗ pϕ). If pϕ = pϕλ, we will write pΦλ for the section
pΦ, in agreement with the notation used in the local setting of §7.1.

There is a factorization

I(s,χ) = Ip(s,χ)⊗ I
p(s,χ),

into the p-part and prime-to-p-part. Since ϕλ and pϕ differ only at their
p-components, our two sections Φλ and pΦ have the form

Φµ = Φµ
p ⊗Φ(p), pΦ = pΦp ⊗Φ(p),

for a common section Φ(p) of Ip(s,χ).
We now have a coherent Eisenstein series E(g, s, pϕ) = E(g, s, pΦ) defined

exactly as in (6.1.1), and associated with the Schwartz function pϕ.
Given g, g′ ∈ SL2(AF ) which have the same prime-to-p components, we

deduce, using (6.1.3), the relation

(7.3.2) Eα(g, s,Φ
λ) =

Wα,p(gp, s,Φ
λ
p)

Wα,p(g′p, s,
pΦp)

⋅Eα(g
′, s, pΦ),

which is valid for all values of s at which Wα,p(g
′
p, s,

pΦp) is non-zero.
Suppose that g is such that gp = I ∈ SL2(Fp) is the identity, and choose

g′p and pϕp such that Wα,p(g
′
p,0,

pϕp) ≠ 0. Then, using (7.3.2) and Proposi-
tion 7.1.1, we get:

E′
α(g,0,Φ

λ) =
W ′
α,p(I,0,Φ

λ
p)

Wα,p(g′p,0,
pΦp)

⋅Eα(g
′,0, pΦ).

In the notation of Proposition 6.2.2, this equality implies

(7.3.3)
aF (α,λ)

Λ(0, χ)
⋅ qα = −

W ′
α,p(I,0,Φ

λ
p)

Wα,p(g′p,0,
pΦp)

⋅
Eα(g

′
τ⃗ ,0,

pΦ)
√
N(v⃗)

.

for all τ⃗ ∈Hd.
If α is not represented by pλp+

pΛp, then assertion (1) of Proposition 7.1.10
now implies

aF (α,ϕλ)

Λ(0, χ)
= 0.

Combining this with (7.3.1) shows that aF (α,µ) = 0, whenever (pµp+
pLp)∩

pVp does not represent α.
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Now, suppose that α is represented by pλp+
pΛp. Then Proposition 7.1.10

implies that we can take g′ = g and pϕp =
pϕλp .

As in the proof of [HY12, Proposition 4.4.1], the Siegel-Weil formula
[KR94] implies

Eα(gτ⃗ ,0,
pΦλ)

√
N(v⃗)

=
2qα

Vol(Tso(Q)/Tso(A))
∫
Tso(Q)/Tso(A)

∑
x∈pV

pQ(x)=α

pϕλ(s
−1
f x)ds.

The group Tso(Q) acts simply transitively on the set of all x ∈ pV with
pQ(x) = α, allowing us to rewrite this equality as

(7.3.4)
Eα(gτ⃗ ,0,

pΦλ)
√
N(v⃗)

= 2 ⋅O(α, pϕλ) ⋅ q
α.

Combining (7.3.4) with (7.3.3), and using the formulas for

W ′
α,p(I,0,Φ

λ
p)

Wα,p(I,0, pΦλ
p)

from Proposition 7.1.10 shows

(7.3.5)
aF (α,ϕλ)

Λ(0, χ)
= −`p(α) ⋅O(α, pϕλ) ⋅ logN(q).

Now, observe that ordp(α) + m(p) + n(p) = 0 whenever n(p) ≠ 0 and
ordq(λp) = −n(p). Therefore, from the definition of pϕ̃λp in (7.2.2), we see
that (7.3.5) is equivalent to

(7.3.6)
aF (α,ϕλ)

Λ(0, χ)
= −`p(α) ⋅O(α, pϕ̃λ) ⋅ logN(q).

Here, pϕ̃λ differs from pϕλ only at p, and we take its factor at p to be pϕ̃λp .
Now, note that, by (7.2.3),

O(α, pϕµ) = ∑
λp∈µp+Lp

O(α, pϕ̃λ)

and that

O(α, pϕ̃λ) = 0,

whenever pλp +
pΛp does not represent α.

Combining these observations with (7.3.1) and (7.3.6) completes the proof
of the Proposition. �

7.4. A decomposition of the space of special endomorphisms. Fix
a prime p ⊂ OF not split in E, and let q ⊂ OE be the unique prime above it.

Fix an algebraic closure Falg
p for Fp and also an algebraic closure Frac(W )alg

of the fraction field Frac(W ) of W =W (Falg
p ). Choose an embedding Qalg ↪

Frac(W )alg inducing the place q on E = ι0(E).
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Let Lp = Lp ∩ Vp ⊂ Lp, and let Hp = C(Lp) ⊂ C(Lp) = Hp. Let KL,0 ⊂
T (Af) be the compact open subgroup defined in § 5.3, and let K0,L,q ⊂K0,L,p

be the intersection of K0,L,p with the image of E×
q under the natural map

E×
q ↪ (E ⊗Q Qp)

× → T (Qp).

Then Hp ⊂ HQp is a K0,L,p-stable lattice, and Hp ⊂ Hp[p
−] is a K0,L,q-

stable lattice. Moreover, the natural C(Lp)-linear map

Hp ⊗C(Lp) C(Lp)→Hp(7.4.1)

h⊗ z ↦ h ⋅ z

is a K0,L,q-equivariant isomorphism, once we equip C(Lp) with the trivial
K0,L,q-action.

Fix a point y ∈ Y(Falg
q ). Then, by Remark 3.5.3, (7.4.1) gives us a crys-

talline Zp-representation Hp,y of Γy and a C(Lp)-linear isomorphism

Hp,y ⊗C(Lp) C(Lp)
≃
Ð→Hp,y.(7.4.2)

The following result is easily deduced from Theorem 2.1.1.

Proposition 7.4.1. The Γy-module Hp,y is canonically isomorphic to the
p-adic Tate module of a C(Lp)-linear p-divisible subgroup

A[p∞]p ⊂ A[p∞]∣Spec(Oy).

Moreover, the natural C(Lp)-linear map of p-divisible groups

A[p∞]p ⊗C(Lp) C(Lp)→ A[p∞]∣Spec(Oy)

is an isomorphism.

In particular, for any Oy-scheme S, we obtain a natural map

(7.4.3) EndC(Lp)(A[p∞]p,S)→ EndC(Lp)(AS[p
∞]),

and so, in complete analogy with the definitions from §4.5, we define the
space of special endomorphisms

V (A[p∞]p,S) ⊂ EndC(Lp)(A[p∞]p,S)

to consist of those elements that induce special endomorphisms of A[p∞]
via (7.4.3). By definition, this is a subspace of V (AS[p

∞]).
The next result is entirely analogous to Lemma 4.5.2.

Proposition 7.4.2. Let Lp
p = L

⊥
p ⊂ Lp be the orthogonal complement to Lp.

Then there is a canonical isometric embedding

Lp
p ↪ V (A[p∞]Spec(Oy))

as a direct summand, such that, for any Oy-scheme S, we have

V (A[p∞]p,S) = (Lp
p)
⊥
⊂ V (AS[p

∞]).
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Given a class η ∈ L∨p /Lp, we will also need a corresponding subset

(7.4.4) Vη(A[p∞]p,S) ⊂ V (A[p∞]p,S)
∨.

This is once again defined as in §4.5: We fix an embedding L ↪ L◇ into
a maximal lattice L◇ that is of signature (n◇,2) and is self-dual at p. Let
Λp ⊂ L◇p be the orthogonal complement of Lp. Then we have a canonical
isometric embedding

Λp ↪ V (A◇[p∞]S),

whose orthogonal complement is V (A[p∞]p,S). Hence we get a map

V (A◇
S[p

∞])→
V (A[p∞]p,S)

∨

V (A[p∞]p,S)
⊕

Λp,∨

Λp
.

The subset (7.4.4) now consists of elements x such that the pair

([x], η) ∈
V (A[p∞]p,S)

∨

V (A[p∞]p,S)
⊕

Λp,∨

Λp

is in the image of V (A◇
S[p

∞]). Here, we have used the natural isomorphisms

Λp,∨

Λp

≃
←Ð

L◇p

Lp +Λp

≃
Ð→

L∨p

Lp

to view η as an element of Λp,∨

Λp .
The following proposition is now immediate from the definitons and is

analogous to assertion (3) of Proposition 4.5.5.

Proposition 7.4.3. For any µp ∈ L
∨
p/Lp, we have a canonical decomposi-

tions

Vµp(AS[p
∞]) = ⊔

(µ1,µ2)∈(µp+Lp)/(Lp⊕L
pp)

Vµ1(A[p∞]p,S) × (µ2 +L
p
p),

where we are viewing

µp +Lp

Lp ⊕L
p
p

⊂
L∨p

Lp
⊕
Lp,∨
p

Lp
p

.

7.5. Lubin-Tate and Kuga-Satake. Let p ⊂ OF and q ⊂ OE be as above.
For the rest of this section, we will assume that p lies above a good prime p.
Therefore, we have

Λp ⊂ Lp ⊊ d−1
Eq/Fp

Λp = Λ∨
p ,

where Λp ⊂ Vp is an OE,q-stable lattice.

Fix a point y ∈ Y(Falg
q ). Fix also a uniformizer πq ∈ Eq, and let Gq be the

Lubin-Tate formal OE,q-module over Oy associated with this uniformizer.
If p is unramified in E, we will assume that we have chosen πq = πp to be a
uniformizer for Fp. Otherwise, we will set πp = Nm(πq) ∈ Fp. As in §7.1, we
will set

m(p) = ordq(dF /Q).
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As in §2.4, for any Oy-scheme S, and for each λ ∈ d−1
Eq/Fp

/OE,q, we have a

canonical subset

Vλ(Gq,S) ⊂ End(Gq,S)Q

of special endomorphisms (with denominators) of Gq,S . Fix an OE,q-linear
identification Λp = OE,q, so that we can identify

Λ∨
p

Λp
=
d−1
Eq/Fp

OE,q
.

In particular, for any λ ∈ Λ∨
p /Λp, we have a corresponding set Vλ(Gq,S) of

special endomorphisms of Gq. Under this identification, the Hermitian form
on Λp is carried to the form

⟨x1, x2⟩ = ξpx1x2

on OE,q, for some ξp ∈ F
×
p satisfying ordp(ξp) = −m(p).

Since we have identified Λ∨
p /Λp with d−1

Eq/Fp
/OE,q, for λ ∈ Λ∨

p /Λp, we can

speak of the space Vλ(Gq) of special endomorphisms of the Lubin-Tate group
Gq.

For µ ∈ L∨p /Lp, set

Vµ(Gq,y) = ⊔
λ∈µ+Lp

Vλ(Gq,Oy/πqOy),

where λ varies over the classes in Λ∨
p /Λp such that λ +Λ∨

p lies in µ +Lp.

Proposition 7.5.1. There exists an Eq-linear isomorphism

V (Ay[p
∞]p)Q

≃
Ð→ V (Gq,y)Q

carrying the Hermitian form on the left hand side to ξp times that on the
right, and such that, for each µ ∈ L∨p /Lp, it induces a bijection

Vµ(Ay[p
∞]p)

≃
Ð→ Vµ(Gq,y).

Proof. Using Remark 3.5.3, we can associate with Λp an OE,q-linear con-
tinuous representation Λp,et,y of the absolute Galois group Γy of Frac(Oy).
This representation can be identified with the space V0,p,et = V (H0,p,et, c)
of OE,q-semilinear endomorphisms of the Tate module H0,p,et of the Lubin-
Tate group Gq. Moreover, its crystalline realization Λp,cris,y can be identified
with the space V0,p,cris,y = V (H0,p,cris,y, c) of OE,q-semilinear endomorphisms
of the F -crystalH0,p,cris,y obtained from the Dieudonné F -crystal associated
with Gq.

These identifications carries the Hermitian form on Λp,et (resp. Λp,cris,y)
to ξp times the natural Hermitian form on V0,p (resp. V0,p,cris,y). Therefore,
we now obtain an Eq-linear isomorphism

V (Ay[p
∞]p)Q = V ϕ=1

p,cris,y[p
−1] = Λϕ=1

p,cris,y[p
−1]

≃
Ð→ V ϕ=1

0,p,cris,y[p
−1] = V (Gq,y)Q

carrying the Hermitiian form on the left to ξp-times that on the very right.
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It remains to show that it carries Vµ(Ay[p
∞]p) onto Vµ(Gq,y). For this,

we will need a little preparation. Consider the Breuil-Kisin module M(Λp)
associated with Λp,et,y and the uniformizer πq. We have an OE,q-linear
identification

M(Λp) = V (M(H0,p), c)

of Breuil-Kisin modules.

Lemma 7.5.2. There is canonical, ϕ-equivariant isomorphism

S⊗Zp
Λ∨
p

Λp

≃
Ð→

M(Λ∨
p )

M(Λp)

of S-modules, where the left hand side is equipped with the constant ϕ-semi-
linear endomorphism ϕ⊗ 1. It induces a ϕ-equivariant isomorphism

S⊗Zp
L∨p

Lp

≃
Ð→

M(L∨p )

M(Lp)
.

Proof. If p is unramified in OE , then Λ∨
p = Λp, and there is nothing to show.

Suppose therefore that p is ramified in OE . We have S ⊗Zp OE,q-linear
isomorphisms

(7.5.1) S⊗Zp
Λ∨
p

Λp

≃
Ð→S⊗Zp

d−1
Eq/Fp

OE,q
,

and

(7.5.2)
M(Λ∨

p )

M(Λp)

≃
Ð→

d−1
Eq/Fp

OE,q
⊗OE,q V (M(H0,p), c).

As in §2.2, we have identifications

(7.5.3) M(H0,p) =M(TπE(Gq)) =S⊗Zp OE,q

as S⊗ZpOE,q-modules carrying the the ϕ-semilinear endomorphism of M(H0,p)
to the endomorphism β(ϕ⊗1), where β has the following description: First,
let Eq,0 ⊂ Eq be the maximal unramified subextension. For each embedding
η ∶ Eq,0 ↪ Frac(W ), we obtain a finite W -algebra Wη = OE,q ⊗OEq,0

,η W .

There is a disinguished embedding η0 induced from the distinguished em-
bedding ι0 of Eq into Frac(W )alg.

We now have

β = (βη) ∈∏
η

S⊗W Wη =S⊗Zp OE,q,

where βη = 1, if η ≠ η0, and βη0 = u − η0(πq).
From (7.5.3), we now obtain an identification

(7.5.4) V (M(H0,p), c) =S⊗Zp OE,q

carrying the ϕ-semilinear endomorphism on the left hand side to the endo-
morphism α(ϕ⊗ 1), where

α = (αη) ∈∏
η

S⊗W Wη =S⊗Zp Eq
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with αη = 1, for η ≠ η0, and αη0 =
u−η0(πq)

u−η0(πq)
. Since πq − πq ∈ dEq/Fp

, we have

α ≡ 1 (mod dEq/Fp
).

Therefore, tensoring (7.5.4) with d−1
Eq/Fp

/OE,q, and using (7.5.1) and (7.5.2),

gives us the isomorphism whose existence is asserted in the proposition.
We leave it to the reader to check that this isomorphism is independent

of all our choices. �

Now, base-changing along ϕ ∶S→S the isomorphism from Lemma 7.5.2
and then reducing it mod u, we obtain a canonical isomorphism

η ∶W ⊗Zp
L∨p

Lp

≃
Ð→
V ∨
p,cris,y

Vp,cris,y
.

Lemma 7.5.3. The subset Vµ(Ay[p
∞]p) ⊂ V (Ay[p

∞]p)Q consists of those
elements x whose crystalline realization xcris ∈ Vp,cris,y[p

−1] lies in V ∨
p,cris,y,

and such that
xcris ≡ η(1⊗ µ) (mod Vp,cris,y)

Proof. Choose an auxiliary lattice L◇, self-dual at p, and isometric embed-
ding L ↪ L◇, giving us the auxiliary Kuga-Satake abelian variety A◇

y over

Falg
q .

Let L◇,pp ⊂ L◇p be the orthogonal complement of Lp. Choose a lift µ̃ ∈ L∨p
of µ, and an element µ̃p ∈ L◇,p,∨p such that

(µ̃, µ̃p) ∈ L◇p ⊂ L
∨
p ⊕L

◇,p,∨
p .

Then, by definition, giving an element of Vµ(Ay[p
∞]p) amounts to specifying

x ∈ V (Ay[p
∞]p)

∨ such that

(x, µ̃p) ∈ V (Ay[p
∞]p)

∨ ⊕L◇,p,∨

lies in the image of V (A◇
y[p

∞]).
Since we have a canonical isometric embedding

W ⊗Zp L
◇,p ↪ V ◇

cris,y

mapping into the orthogonal complement of Vp,cris,y, we obtain an inclusion

(7.5.5) V ◇
cris,y ↪ V

∨
p,cris,y ⊕ (W ⊗Zp L

◇,p,∨).

Let xcris ∈ Vp,cris,y[p
−1] be the crystalline realization of x, and let x◇cris ∈

V ◇
cris,y be the crystalline realization of (x, µ̃). Then it is clear from the

definitions that xcris actually lies in V ∨
p,cris,y, and that (7.5.5) maps x◇cris

to (xcris, µ̃
p). From this, one deduces that xcris must map into η(1 ⊗ u) ∈

V ∨
p,cris,y/Vp,cris,y. �

Tracing through the definition of Vµ(Gq,y), it is not hard to show that it
has the same description as that of Vµ(Ay[p

∞]p) given to us by Lemma 7.5.3.
This finishes the proof of the proposition.

�
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7.6. Special zero cycles. For any scheme S over Y, by Corollary 5.4.6,
the space V (AS)Q has a canonical structure of an E-vector space equipped
with a positive definite Hermitian form ⟨⋅, ⋅⟩ such that, for any x ∈ V (AS)Q,

Q(x) = x ○ x = TrF /Q(⟨x,x⟩).

Write V (AS)Q for V (AS)Q equipped with this additional structure. For
any µ ∈ L∨/L, let Vµ(AS) denote the space Vµ(AS) viewed as a subspace of
V (AS)Q

Suppose that α ∈ F × and µ ∈ L∨/L. Define a moduli problem ZF (α,µ)
over Y such that, for any Y-scheme S, we have

ZF (α,µ)(S) = {x ∈ Vµ(AS) ∶ ⟨x,x⟩ = α}.

Since ⟨⋅, ⋅⟩ is positive definite, ZF (α,µ) is empty unless α ∈ F+ is totally
positive.

From the definitions, we now find that there is a canonical decomposition
of Y-stacks

(7.6.1) Y ×M Z(m,µ) = ⊔
α∈F+

TrF /Q(α)=m

ZF (α,µ).

Proposition 7.6.1. Suppose that α ∈ F+ and µ ∈ L∨/L. Then ZF (α,µ) is
non-empty only if Diff(α) consists of a single prime p. In this case, ZF (α,µ)
is 0-dimensional, and is supported at the unique prime q ⊂ OE above p.

Proof. To begin, Proposition 5.4.1 implies that the intersection of ZF (α,µ)
with Y is empty. Therefore, ZF (α,µ) is always either empty or 0-dimensional.

If z ∈ ZF (α,µ)(Falg
q ) for some prime q ⊂ OE , let y ∈ Y(Falg

q ) be the point
below it. By the definition of ZF (α,µ) the E-hermitian space V (Ay)Q rep-
resents α. In particular, V (Ay) ≠ 0, and so Proposition 5.4.3 implies that the
prime p ⊂ OF below q is nonsplit in OE . Moreover, Corollary 5.4.6 implies
that the nearby hermitian space pV represents α. This shows Diff(α) = {p},
by Remark 6.2.1, and everything follows easily. �

Set

Vµ(Ay[∞]) =∏
`

Vµ`(Ay[`
∞]) ⊂ V (Ay[∞])Q.

When viewed as a subset of the Hermitian space V (Ay[∞])Q, we will denote
this set by Vµ(Ay[∞]).

Proposition 7.6.2. Suppose that y ∈ Y(Falg
q ). Then the Af,E-linear isom-

etry

V (Ay[∞])Q
≃
Ð→ pV

of Proposition 5.4.4 can be chosen so that, for each µ ∈ L∨/L the charac-

teristic function of the image of Vµ(Ay[∞]) in pV̂ is the nearby Schwarz
function pϕµ defined in (7.2.3).
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Proof. The only non-trivial point is to show that the Ep-linear isometry

V (Ay[p
∞])Q

≃
Ð→ pVp

can be chosen so that, for every µp ∈ L
∨
p/Lp, it identifies the characteristic

function of Vµp(Ay[p
∞]) with the Schwarz function pϕµp .

For this, first note that the sublattice Lp ⊂ Lp transfers to a sublattice
pLp ⊂

pLp, as do its cosets in L∨p . Moreover, we have a canonical decompo-
sition

µp +Lp = ⊔
(µ1,µ2)∈(µp+Lp)/(Lp⊕Lp)

(µ1 +Lp) × (µ2 +L
p
p).

Given this and Proposition 7.4.3, it is enough to show that we can find
an Eq-linear isometry

V (Ay[p
∞]p)Q

≃
Ð→ pVp

such that, for every µ1 ∈ L∨p /Lp, it carries the characteristic function of
Vµ1(Ay[p

∞]p) to the Schwarz function pϕµ.
By Proposition 7.5.1, we have an Eq-linear isomorphism

V (Ay[p
∞])p

≃
Ð→ V (Gq,y)Q

carrying Vµ1(Ay[p
∞]p) to

⊔
λ∈µ1+Lp

Vλ(Gq,y).

Here, λ runs over the cosets of Λp in Λ∨
p that are contained in µ1 + Lp,

and we define Vλ(Gq,y) via an identification Λp = OE,q, which induces an
identification Λ∨

p /Λp = d−1
Eq/Fp

/OE,q.

By Proposition 2.4.1, Vλ(Gq,y) is empty whenever ordq(λ) < −n(p) + 1.
Therefore, we see that it is enough to construct an Eq-linear isometry

(V (Gq,y)Q, ⟨⋅, ⋅⟩)
≃
Ð→ (Eq, βx1x2)

such that, for every λ ∈ d−1
Eq/Fp

/OE,q with ordq(λ) > −n(p), the isometry

carries Vλ(Gq,y) to λ +OE,q. Here, β = πp = Nm(πq) if p is inert in E, and
β ∈ O×F,p is such that χp(β) = −1 if p is ramified in E.

Such an isometry can be constructed using Propositions 2.3.3 and 2.3.4.
�

Recall the embedding T ↪ Aut○(A) from Proposition 3.5.6, whose homo-
logical realizations induce maps

θ?(H) ∶ TQ?
→ Aut○(H?)

over Y, which in turn give us maps

θ?(V ) ∶ TQ?
→ Aut○(V?).

In particular, for each prime `, we obtain a canonical map

θ` ∶ TQ` → Aut(V (A[`∞])Q),
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and thus a map

θ
def
= θAf ∶ TAf → Aut(V (A[∞])Q).

Lemma 7.6.3. The group T (Af)/T (Q)KL,0 acts simply transitively on the

set of isomorphism classes in Y(Falg
q ), and every point

y ∈ Y(Falg
q )

has automorphism group Aut(y) = T (Q) ∩ KL,0. Moreover, for every t ∈

T (Af) there is a canonical isometry of Af,E-hermitian spaces V (At⋅y[∞])Q
≃
Ð→

V (Ay[∞])Q identifying

Vµ(At⋅y[∞])
≃
Ð→ θ(t)−1 ⋅ Vµ(Ay[∞])

as subsets of V (Ay[∞])Q.

Proof. By Proposition 5.3.1, Y⊗OEOE,p is finite étale over OE,p. Therefore,
the reduction map

Y(Frac(W )alg)→ Y(Falg
q )

is an equivalence of groupoids. Furthermore, the map Y(Qalg)→ Y(Frac(W )alg)
is also an equivalence of groupoids. Therefore, the first assertion follows from
the fact that T (Af)/T (Q)KL,0 acts simply transitively on the set of isomor-

phism classes in Y(Qalg) with isotropy group T (Q) ∩ KL,0. This can be
checked from the explicit description of the generic fiber Y in §3.1.

The rest of the lemma follows easily from the definitions. �

Proposition 7.6.4. Fix an α ∈ F+ such that Diff(α) = {p}. We have

∑
z∈ZF (α,µ)(Falg

q )

1

∣Aut(z)∣
= degC(Y ) ⋅O(α, pϕµ),

Proof. The proof follows the same strategy as [How12, Theorem 3.5.3]. Pick

any base point y0 ∈ Y(Falg
q ), and an isomorphism

V (Ay0[∞])Q
≃
Ð→ pV̂

as in Proposition 7.6.2. This identifies the characteristic function of

Vµ(Ay0[∞]) ⊂ V (Ay0[∞])⊗Ẑ Af

with the Schwartz function pϕµ ∈ S(
pV̂ ) defined in §7.2.
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Using Lemma 7.6.3, we compute

∑
z∈ZF (α,µ)(Falg

q )

1

∣Aut(z)∣
= ∑
y∈Y(Falg

q )

∑
x∈Vµ(Ay)
⟨x,x⟩=α

1

∣Aut(y)∣

= ∑
t∈T (Q)/T (Af )/KL,0

∑
x∈Vµ(At⋅y0)

⟨x,x⟩=α

1

∣Aut(t ⋅ y0)∣

=
1

∣T (Q) ∩KL,0∣
∑

t∈T (Q)/T (Af )/KL,0
∑

x∈V (Ay0)⊗Q
⟨x,x⟩=α

pϕµ(θ(t)x).

Next use the fact that

T (Q)/ker(θ)
≃
Ð→ Tso(Q) = {s ∈ E× ∶ ss = 1}

acts simply transitively on the set of x ∈ V (Ay0) ⊗ Q with ⟨x,x⟩ = α. By
picking one such x, we compute

∑
z∈ZF (α,µ)(Falg

q )

1

∣Aut(z)∣
=

1

∣T (Q) ∩KL,0∣
∑

t∈T (Q)/T (Af )/KL,0
t′∈T (Q)/ker(θ)

pϕµ(θ(t
′t)x)

=
degC(Y )

Vol(Tso(Q)/Tso(A))
∫
Tso(Af )

pϕµ(sx)ds,

as desired. �

7.7. Deformation theory. Fix an α ∈ F+ such that Diff(α) = {p} for a
single prime p ⊂ OF . Let q ⊂ OE be the unique prime above p. Assume that
the rational prime p below p is good for L.

Suppose that y ∈ Y(Falg
q ). For any integer k ∈ Z≥1 and any µ ∈ L∨p /Lp, set

Ak[p
∞] = AOy/πkqOy[p

∞], Gq,k = Gq,Oy/πkqOy , and

Vµ(Ak[p
∞]) = Vµ(AOy/πkqOy[p

∞])

Vµ(Ak[p
∞]p) = Vµ(AOy/πkqOy[p

∞]p) Vµ(Gq,k) = Vµ(Gq,Oy/πkqOy).

Consider the 1-dimension Eq-vector space V (Ay[p
∞]p)Q. By Proposi-

tion 7.5.1, it can be identified with the Eq-vector space V (Gq,y)Q.

Proposition 7.7.1. For every k, the above identification induces an equality

Vµ(Ak[p
∞]p) = Vµ(Gq,k)

Proof. We will prove this by induction on k. When k = 1, this follows from
Proposition 7.5.1. It remains to show that the assertion holds for k + 1
whenever it holds for k.

Consider the de Rham realization Λp,dR,Oy associated with theKq-representation
Λp. It is the reduction mod E(u) of the S-module ϕ∗M(Λp), and is naturally
a filtered Oy-submodule of V ◇

dR,Oy
.

Lemma 7.7.2. We have Fil1Λp,dR,Oy = Fil1V ◇
dR,Oy

.
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Proof. That the assertion holds after inverting p is immediate from the
construction. Therefore, it is enough to show that both Fil1Λp,dR,Oy and

Fil1V ◇
dR,Oy

have the same image in Λ∨
p,dR,Oy

. Since Fil1V ◇
dR,Oy

is a direct

summand of V ◇
dR,Oy

, it actually suffices to show that its image in Λ∨
p,dR,Oy

is contained in Λp,dR,Oy .
Set

Fil1ϕ∗M(V ◇
p ) = {x ∈ ϕ∗M(V ◇

p ) ∶ ϕ(x) ∈ E(u)M(V ◇
p )}.

Then, using assertion (2) of Theorem 2.1.1, it can be checked that the image
of Fil1ϕ∗M(V ◇

p ) in V ◇
dR,Oy

is precisely Fil1V ◇
dR,Oy

.

Now, given an element of Fil1V ◇
dR,Oy

, choose a lift x ∈ Fil1ϕ∗M(V ◇
p ). If

x′ ∈ ϕ∗M(Λ∨
p ) is the image of x, then we find

ϕ(x′) ∈ E(u)M(Λ∨
p ).

But then Lemma 7.5.2 implies that

x′ ∈ ϕ∗M(Λp) + E(u)ϕ
∗M(Λ∨

p )

and hence that its image in Λ∨
p,dR,Oy

lies in Λp,dR,Oy .

�

Write V ◇
dR,k (resp. Λp,dR,k, Λ∨

p,dR,k) for the reduction of V ◇
dR,Oy

(resp.

Λp,dR,Oy , Λp,dR,Oy) mod πkq .
Now, choose x ∈ Vµ(Ak[p

∞]p), and let xLT be the corresponding element
of Vµ(Gq,k). To finish the proof of the proposition, it remains to show that
x lifts to Vµ(Ak+1[p

∞]p) if and only if xLT lifts to an element of Vµ(Gq,k+1).
Consider x◇ = (x, µ̃) ∈ V (A◇

Oy/πkqOy
). Let x◇cris ∈ V ◇

dR,k+1 be the crys-

talline realization of x◇. By Proposition 4.3.2 and Lemma 7.7.2, x◇ lifts
to V (A◇

Oy/πk+1
q Oy

), and hence x lifts to Vµ(Ak+1[p
∞]p), if and only if the

functional

[x◇cris, ] ∶ Λp,dR,k+1 → Oy/π
k+1
q Oy

lies in the annihilator of Fil1Λp,dR,k+1.
We claim that this annihilator is

Fil0Λ∨
p,dR,k+1

def
= ker(Λ∨

p,dR,k+1 → Λ∨
p,dR,k+1 ⊗Oy⊗ZpOE,q,1⊗ι0 Oy).

Indeed, it is enough to check that the annihilator of Fil1Λp,dR,Oy in Λ∨
p,dR,Oy

is

ker(Λ∨
p,dR,Oy → Λ∨

p,dR,Oy ⊗Oy⊗ZpOE,q,1⊗ι0 Oy),

which can be checked after inverting p, where it is easily verified.
Now, by Proposition 2.5.1, xLT has a crystalline realization xLT,cris ∈

Λ∨
dR,k+1, and lifts to Vµ(Gq,k+1) if and only if xLT,cris lies in Fil0Λ∨

p,dR,k+1.
To finish, it now suffices to observe that

(7.7.1) xLT,cris = [x◇cris, ] ∈ Λ∨
p,dR,k+1.
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For this, let S be the p-adic completion of the divided power envelope of the

surjection W [u]
u↦ι0(πq)
ÐÐÐÐÐ→ Oy, and set

M(Λ∨
p )

def
= ϕ∗M(Λ∨

p )⊗S S.

The ϕ-module structure on M(Λ∨
p )[E(u)

−1] gives us an isomorphism

ϕ ∶ ϕ∗M(Λ∨
p )[p

−1]
≃
Ð→M(Λ∨

p ).

Moreover, by a variation of Dwork’s trick (see [Bre97, 6.2.1.1]), the re-
duction map

M(Λ∨
p )[p

−1]→M(Λ∨
p )[p

−1]⊗S W = Λ∨
p,cris,y[p

−1]

induces a bijection on ϕ-invariant elements. Let x0 ∈ Λ∨
p,cris,y be the crys-

talline realization of x viewed as an element of Vµ(Ay[p
∞]p), and let x̃0 ∈

M(Λ∨
p )[p

−1] be its unique ϕ-invariant lift.

If k < e, then the image of x̃0 in M(Λ∨
p )[p

−1] ⊗S W [u]/(uk+1) actually
lies in

M(Λ∨
p )⊗S W [u]/(uk+1)

and, by virtue of its ϕ-invariance, is necessarily the crystalline realization of

both x and xLT along the divided power thickening W [u]/(uk+1)
u↦ι0(πq)
ÐÐÐÐÐ→

Oy/π
k
qOy.

If k ≥ e, then, once again by virtue of its ϕ-invariance, x̃0 is the crys-
talline realization of both x and xLT along the divided power thickening
S → Oy/π

k
qOy.

From these observations, the required identity (7.7.1) easily follows. �

Define a function
ordq ∶ V (Ay[p

∞]p)Q → Z,
given by two defining properties:

● If a ∈ Eq, and x ∈ V (Ay[p
∞]p), then

ordq(a ⋅ x) = ordq(a) + ordq(x).

● If x ∈ V (Gq,y) is an OEq-module generator, then

ordq(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if q is unramified over F ;

n(p) = ordq(dE/F ), if q is ramified over F .

Our definition of the function ordq is justified by the following result.

Proposition 7.7.3. Suppose that µ ∈ L∨p /Lp, and that x ∈ Vµ(Ay[p
∞]p).

Then x lifts to Vµ(Ak[p
∞]p) if and only if ordq(x) ≥ k.

Proof. This is immediate from Proposition 7.7.1 and Theorem 2.5.5. �

Theorem 7.7.4. At any point z ∈ ZF (α,µ)(Falg
q ) we have

length (OZF (α,µ),z) = `p(α),

where `p(α) is defined as in Proposition 7.3.2.
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Proof. The point z corresponds to a point y ∈ Y(Falg
q ) equipped with a

special endomorphism x ∈ Vµ(Ay) satisfying ⟨x,x⟩ = α. By Serre-Tate
theory its deformation theory is governed by the induced endomorphism
xp ∈ Vµp(Ay[p

∞]). By Proposition 7.4.3, there is a unique pair

(µ1, µ2) ∈
µp +Lp

Lp +L
p
p

⊂
L∨p

Lp
⊕
Lp,∨
p

Lp
p

,

together with a unique xp ∈ Vµ1(Ay[p
∞]p) and v ∈ µ2 +L

p
p, such that

xp = xp + v.

Moreover, ordp(α) = ordp(⟨xp, xp⟩).
Also, by the same proposition, the deformation theory of xp is governed

by that of xp. More precisely, xp lifts to Vµp(Ak[p
∞]) if and only if xp lifts

to Vµ1(Ak[p
∞]p). By Proposition 7.7.3, this is equivalent to the condition

ordq(xp) ≥ k.
Therefore, to finish, we must show:

(7.7.2) ordq(xp) = `p(α).

Now, note that the Hermitian form on V (Ay[p
∞]p)Q is ξp-times the natural

Hermitian form ⟨⋅, ⋅⟩LT on V (Gq,y)Q, and that ordp(ξp) = −m(p).
Moreover, using Propositions 2.3.3 and 2.3.3, we find that, if x0 ∈ V (Gq,y)

is an OE,q-module generator, then

ordp(⟨x0, x0⟩LT) =

⎧⎪⎪
⎨
⎪⎪⎩

1 = −1 + 2 ⋅ ordq(x0), if q is unramified over F ;

0 = −n(p) + ordq(x0), if q is ramified over F .

Combining all this, we find that ordp(α) is equal to

ordp(⟨xp, xp⟩) =

⎧⎪⎪
⎨
⎪⎪⎩

−m(p) − 1 + 2 ⋅ ordq(xp), if q is unramified over F ;

−m(p) − n(p) + ordq(xp), if q is ramified over F .

Comparing this with the formulas for `p(α) in Proposition 7.3.2 gives
us (7.7.2) and hence the theorem. �

7.8. Calculation of arithmetic degrees: the end of the proof of
Theorem 6.4.2.

Theorem 7.8.1. Suppose α ∈ F+ and µ ∈ L∨/L. Assume that Diff(α) = {p}
consists of a single prime of OF , which lies above a rational prime p that is
good for L. If we denote by

ẐF (α,µ) ∈ P̂ic(Y)

the divisor ZF (α,µ) on Y endowed with the trivial Green function, then

d̂eg(ẐF (α,µ))

degC(Y )
= −

aF (α,µ)

Λ(0, χ)
.

Proof. Combine Propositions 7.3.2, and 7.6.4 with Theorem 7.7.4. �
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Given a, b ∈ R, we will write a ≈L b to mean that a − b is a Q-linear
combination of {log(p) ∶ p ∣Dbad,L}.

Proposition 7.8.2. We have

a(0,0)

Λ(0, χ)
≈L −

2Λ′(0, χ)

Λ(0, χ)
.

If µ ≠ 0, then
a(0, µ)

Λ(0, χ)
≈L 0.

Proof. Let ϕ = ϕµ, so that we have a factorization ϕ = ⊗ϕp over the rational
primes, and

(7.8.1)
a(0, µ)

Λ(0, χ)
=
aF (0, ϕ)

Λ(0, χ)
= −2ϕ(0)

Λ′(0, χ)

Λ(0, χ)
−M ′(0, ϕ).

by Proposition 6.2.3.
Fix a prime p, and suppose that we have ϕp = ∑iϕi, where each ϕi admits

a factoring ϕi = ⊗p∣pϕi,p over primes p ⊂ OF above p. Then, for each i, by
Proposition 6.2.3, we obtain a factoring

Mp(s,ϕi) =∏
p∣p

Mp(s,ϕi,p),

where, for any p ∣ p, Mp(s,ϕi,p) is a rational function in N(p)s. Therefore,
Mp(0, ϕi,p) is a rational number, and M ′

p(0, ϕi,p) is a rational multiple of
logN(p).

Moreover, if p is a good prime, then, by (7.2.4), we can choose our de-
composition to be

ϕµp = ⊗
λp∈µp+Lp

ϕλp ,

where λp ranges over representative of cosets of Λp in Λ∨
p contained in µp+Lp.

By Corollary 7.1.9, Mp(s,ϕλp) is constant, and hence M ′
p(0, ϕλp) = 0, for

all primes p ∣ p, It now follows that M ′(0, ϕ) is a Q-linear combination of
log(p) with p ∣Dbad.

The identity (7.8.1) now gives us the proposition. �

Proof of Theorem 6.4.2. Recalling that

Z(f) = ∑
m>0

∑
µ∈L∨/L

c+f (−m,µ)Z(m,µ),

the stack decomposition

Z(m,µ) ×M Y = ⊔
α∈F+

TrF /Q(α)=m

ZF (α,µ)

of (7.6.1) implies

[Ẑ(f) ∶ Y]

degC(Y )
=

Φ(f,Y∞)

2 degC(Y )
+ ∑
µ∈L∨/L
m>0

c+f (m,µ) ∑
α∈F+

TrF /Q(α)=m

d̂eg(ẐF (α,µ))

degC(Y )
.
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For any α ∈ F+ and any µ ∈ L∨/L we have

(7.8.2)
d̂eg(ẐF (α,µ))

degC(Y )
≈L −

aF (α,µ)

Λ(0, χ)
.

Indeed, if ∣Diff(α)∣ > 1 then Propositions 6.2.2 and 7.6.1 imply that both
sides of (7.8.2) vanish. If Diff(α) = {p} then let p be the rational prime
below p. If p ∤Dbad then the relation (7.8.2) follows from Theorem 7.8.1. If
p ∣Dbad then both sides of (7.8.2) are ≈ 0 by Propositions 6.2.2 and 7.6.1.

Combining (7.8.2) and (6.2.7) shows that

∑
α∈F×

TrF /Q(α)=m

d̂eg(ẐF (α,µ))

degC(Y )
≈L −

a(m,µ)

Λ(0, χ)
,

and so
[Ẑ(f) ∶ Y]

degC(Y )
≈L

Φ(f,Y∞)

2 degC(Y )
− ∑
µ∈L∨/L
m>0

a(m,µ) ⋅ c+f (m,µ)

Λ(0, χ)
.

Comparing with Theorem 6.3.1, and using the approximate identity a(0, µ) ≈L
0 from Proposition 7.8.2 for µ /= 0, shows that

[Ẑ(f) ∶ Y]

degC(Y )
≈L −

L′(0, ξ(f))

Λ(0, χ)
+
a(0,0) ⋅ c+f (0,0)

Λ(0, χ)
,

as desired. �

8. The height of the tautological bundle

For applications to the computations of heights of line bundles, and to
Colmez’s conjecture, it will be useful to have a results more general than
Theorem 6.4.2, involving restrictions of Borcherds products from larger
GSpin Shimura varieties. In these section, we pursue such generalizations,
which are mostly of a formal nature, given what has come before.

8.1. Enlarging the Shimura variety. Suppose that we have a quadratic
space (V ◇,Q◇) of signature (n◇,2), a maximal lattice L◇ ⊂ V ◇ of discrimi-
nant DL◇ = [L◇,∨ ∶ L◇], and an isometric embedding

(V,Q)↪ (V ◇,Q◇).

satisfying L ⊂ L◇. Define a positive definite Z-quadratic space

Λ = {x ∈ L◇ ∶ x ⊥ L}

of rank n◇ − 2d + 2, so that L⊕Λ ⊂ L◇ with finite index, and V ◇ = V ⊕ΛQ.
From this data, we obtain maps of Z-stacks

Y →M→M◇,

where M and M◇ are the integral models for the orthogonal Shimura va-
rieties associated with the lattices L and L◇, respectively, and Y = YKL,0 is
the stack appearing in Proposition 5.3.1.
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8.2. The archimedean contribution. From the Z-quadratic space Λ we
may form the representation ωΛ of S̃L2(Z) on the finite dimensional subspace

SΛ ⊂ S(Λ̂Q)

of C-valued functions on Λ∨/Λ, exactly as in §4.7, and the contragredient
representation ω∨Λ on the C-linear dual S∨Λ.

The theta series

ϑΛ(τ) =∑
m

ρΛ(m) ⋅ qm ∈M !
n◇

2
−d+1

(ω∨Λ)

has Fourier coefficients ρΛ(m) ∈ S∨Λ defined by

ρΛ(m,ϕ) = ∑
x∈Λ∨

ϕ(x)

for any ϕ ∈ SΛ. Letting ϕµ denote the characteristic function of µ ∈ Λ∨/Λ,
we often write ρΛ(m,µ) = ρΛ(m,ϕµ).

Given a pair (µ1, µ2) ∈ (L∨/L) ⊕ (Λ∨/Λ) and a µ ∈ L◇,∨/L◇ we write, by
abuse of notation, µ1 + µ2 = µ to mean that the map

(L∨/L)⊕ (Λ∨/Λ)→ (L∨ ⊕Λ∨)/L◇

induced by the inclusions

L⊕Λ ⊂ L◇ ⊂ L◇,∨ ⊂ L∨ ⊕Λ∨

takes (µ1, µ2)↦ µ.

Proposition 8.2.1. Fix any weakly holomorphic modular form f ∈M !
1−n◇/2(ωL◇)

with integral principal part, and let Φ◇(f) be the corresponding Green func-
tion on M◇, as in §4.7. If we set

Y∞ = Y ×Spec(Z) Spec(C),

and define Φ◇(f,Y∞) as in Theorem 6.3.1, then

Φ◇(f,Y∞)

2 degC(Y )
= ∑
µ∈L◇,∨/L◇

m∈Q

cf(−m,µ) ∑
m1+m2=m
µ1+µ2=µ

a(m1, µ1)ρΛ(m2, µ2)

Λ(0, χ)
.

Proof. The isomorphism

S(V̂ ◇)
≃
Ð→ S(V̂ )⊗ S(Λ̂Q),

together with the tautological pairing between S(Λ̂Q) and its dual, induce
a map

S(V̂ ◇)⊗ S(Λ̂Q)
∨ → S(V̂ ).

As L⊕Λ ⊂ L◇, this restricts to a map SL◇ ⊗ S
∨
Λ → SL, which we call tensor

contraction, and denote by ϕ1 ⊗ ϕ2 ↦ ϕ1 ⊙ ϕ2.
There is an induced map on spaces of weakly holomorphic forms

M !
k(ωL◇)⊗M

!
`(ω

∨
Λ)→M !

k+`(ωL)
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for any half-integers k and `. In particular, f ↦ f ⊙ϑΛ defines a linear map

M !

1−n
◇

2

(ω◇L)→M !
2−d(ωL).

In terms of q-expansions,

(f ⊙ ϑΛ)(τ) = ∑
m≫−∞

∑
µ∈L∨/L

cf⊙ϑΛ
(m,µ)ϕµ ⋅ q

m

where

(8.2.1) cf⊙ϑΛ
(m,µ) = ∑

m1+m2=m
∑

µ2∈Λ
∨/Λ

µ+µ2∈L
◇,∨/L⊕Λ

cf(m1, µ + µ2) ⋅ ρΛ(m2, µ2).

The essential observation is this: If we pull back the Green function Φ◇(f)
for the divisor Z◇(f)(C) on M◇(C) via the map M(C) → M◇(C), we
obtain the Green function Φ(f⊙ϑΛ) for the divisor Z(f⊙ϑΛ)(C) onM(C).
This is clear from the factorization [BY09, (4.16)] of Siegel theta functions,
and the construction of the Green functions as regularized theta lifts as in
[BKY12, BY09].

As Y∞(C)→M◇(C) factors through M(C), we find

Φ◇(f,Y∞)

2 degC(Y )
=

Φ(f ⊙ ϑΛ,Y
∞)

2 degC(Y )
.

We may apply the result of Bruinier-Kudla-Yang, as stated in Theorem
6.3.1, directly to the right hand side. This gives

Φ◇(f,Y∞)

2 degC(Y )
= − ∑

µ1∈L
∨/L

m1∈Q

a(m1, µ1) ⋅ cf⊙ϑΛ
(−m1, µ1)

Λ(0, χ)

= − ∑
µ∈L◇,∨/L◇

m1+m2+m3=0

cf(m3, µ) ∑
µ1+µ2=µ

a(m1, µ1)ρΛ(m2, µ2)

Λ(0, χ)

where the second equality follows from (8.2.1). �

8.3. An extended arithmetic intersection formula. Fix any weakly
holomorphic modular form f ∈ M !

1−n◇/2(ωL◇) with integral principal part.

Let

Z◇(f) = ∑
m>0

∑
µ∈L◇,∨/L◇

cf(−m,µ) ⋅Z
◇(m,µ),

be the corresponding divisor on M◇, and denote by

Ẑ◇(f) = (Z◇(f),Φ◇(f)) ∈ ĈH
1
(M◇)

the corresponding arithmetic divisor.
In what follows we will frequently demand that f satisfy the following hy-

pothesis with respect to the quadratic submodule L ⊂ L◇ and its orthogonal
complement Λ = L⊥ ⊂ L◇.
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Hypothesis 8.3.1. If m > 0, and if there an element x ∈D−1
L◇Λ with Q(x) =

m, then cf(−m,µ) = 0 for all µ ∈ L◇,∨/L◇.

Lemma 8.3.2. If the image of Y(C) → M◇(C) intersects the support of
Z◇(m,µ)(C), then there is an x ∈ D−1

L◇Λ with Q(x) = m. Therefore, if
Hypothesis 8.3.1 holds, then Z◇(f) intersects Y properly.

Proof. Suppose that the image of Y(C) intersects the support of Z◇(m,µ)(C).
By Corollary 4.5.7, this implies that there exist m1,m2 ∈ Q≥0 with m1+m2 =
m and

(µ1, µ2) ∈
L◇,∨

L⊕Λ
⊂ (L∨/L)⊕ (Λ∨/Λ)

such that Y(C) intersects the support of Z(m1, µ1) ×Λm2,µ2 , where

Λm2,µ2 = {x ∈ µ2 +Λ ∶ Q(x) =m2}.

By Proposition 5.4.1, for any point y ∈ Y (C) we must have V (Ay) = 0. Thus
the only way that y can meet Z(m1, µ1) is if m1 = 0 and µ1 = 0. It now
follows that there exists x ∈ Λm,µ2 with

(0, µ2) ∈
L◇,∨

L⊕Λ
,

and from this we deduce that there exists x ∈D−1
L◇Λ with Q(x) =m.

The second assertion is clear from the first. �

Proposition 8.3.3. Under Hypothesis 8.3.1, we have:

[Ẑ◇(f) ∶ Y]

degC(Y )
≈L cf(0,0)

a(0,0)

Λ(0, χ)
.

Proof. Corollary 4.5.7 gives us, for each pair (m,µ), a decomposition

Z◇(m,µ) ×M◇M = ⊔
m1+m2=m
µ1+µ2=µ

Z(m1, µ1) ×Λm2,µ2

of stacks over M. Moreover, if cf(−m,µ) ≠ 0 then Hypothesis 8.3.1 implies
that all terms with m1 = 0 are empty. Therefore, we obtain a decomposition

Z◇(f)∣M = ∑
µ∈L◇,∨/L◇

m1+m2+m3=0
m3<0
m1>0

cf(m3, µ) ∑
µ1+µ2=µ

ρΛ(m2, µ2)Z(m1, µ1)

of divisors on M.
By Lemma 8.3.2, the image of Y →M intersects Z◇(f) properly, and so,

as in the proof of Theorem 6.4.2 (see especially §7.8), we deduce

[Ẑ◇(f) ∶ Y]

degC(Y )
≈L

Φ◇(f,Y∞)

2 degC(Y )
− ∑

µ∈L◇,∨/L◇

m1+m2+m3=0
m3<0,m1>0

cf(m3, µ) ∑
µ1+µ2=µ

a(m1, µ1)ρΛ(m2, µ2)

Λ(0, χ)
.

Combining with Proposition 8.2.1 completes the proof. �
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Suppose now that n◇ ≥ 3. Denote by

ω̂ ∈ P̂ic(M), ω̂◇ ∈ P̂ic(M◇)

the metrized tautological bundles onM andM◇ of §4.6. By Theorem 4.8.1,
after replacing f by a multiple if necessary, we have the equality

cf(0,0) ⋅ ω̂
◇ = Ẑ◇(f) − cf(0,0) ⋅ (0, log(4πeγ)) + Ê◇(f),(8.3.1)

where Ê◇(f) = (E◇(f),0) is empty if L◇
(2) is self-dual and n ≥ 5, and is

otherwise supported on the union of special fibersMFp for p2 ∤DL, as well
as MF2 if L(2) is not self-dual.

Theorem 8.3.4. We have

[ω̂ ∶ Y]

degC(Y )
≈L −

2Λ′(0, χ)

Λ(0, χ)
− d ⋅ log(4πeγ) +

1

cf(0,0)

[Ê◇(f) ∶ Y]

degC(Y )
.

Proof. Combine Propositions 8.3.3 and 7.8.2 with (8.3.1), and observe that
the restriction of ω̂◇ to M is canonically isomorphic to ω̂; see Proposi-
tion 4.4.7. �

9. Colmez’s conjecture

In this section we prove Theorem A, following the argument that was
explained in § 1.4 of the introduction.

9.1. The statement of the conjecture. In this subsection only, E is an
arbitrary CM algebra. Recall that Qalg is the algebraic closure of Q in C.
The group ΓQ = Gal(Qalg/Q) acts on the set of all CM types of E in the
usual way: σ ○ Φ = {σ ○ ϕ ∶ ϕ ∈ Φ}. For each Φ let Stab(Φ) ⊂ ΓQ be its
stabilizer.

Definition 9.1.1. Let c ∈ ΓQ be complex conjugation. Write CM0 for the
space of locally constant functions a ∶ ΓQ → Q that are constant on conjugacy
classes and are such that the quantity

(9.1.1) a(cσ) + a(σ)

is independent of σ ∈ ΓQ. This notion does not depend on the choice of c.

Every function a ∈ CM0 decomposes uniquely as a finite linear combina-
tion

a =∑
η

a(η) ⋅ η

of Artin characters. For each Artin character η let

L(s, η) =∏
p

1

det (1 − p−sη(Frp)∣UIp)

be the usual Artin L-function, where p is a prime of Qalg above p, and U is
the space of the representation η.
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The independence from σ of the quantity (9.1.1) implies that any nontriv-
ial Artin character η with m(E,Φ)(η) /= 0 must be totally odd, in the sense
that η(c) = −η(id), and therefore L(0, η) /= 0. We now set:

Z̃(0, a) = −∑
η

a(η)(
L′(0, η)

L(0, η)
+

log(fη)

2
)

where fη is the Artin conductor of η.
Following Colmez, we will now construct a particular function a0

(E,Φ)
in

CM0 from the CM type (E,Φ). First, define a locally constant function on
ΓQ by the formula:

a(E,Φ)(σ) = ∣Φ ∩ σ ○Φ∣.

The average

(9.1.2) a0
(E,Φ) =

1

[ΓQ ∶ Stab(Φ)]
∑

τ∈ΓQ/Stab(Φ)

a(E,τ○Φ)

is constant on conjugacy classes of ΓQ, and depends only on the ΓQ-orbit of
Φ. Moreover,

a0
(E,Φ)(σ) + a

0
(E,Φ)(cσ) = ∣Φ∣

is independent of σ, and so a0
(E,Φ)

(σ) belongs to CM0, as desired.

Remark 9.1.2. If E is a CM field, Ẽ is a CM field containing E, and

Φ̃ = {ϕ̃ ∈ Hom(Ẽ,Qalg) ∶ ϕ̃∣E ∈ Φ}

is the lifted CM type, then

[Ẽ ∶ E] ⋅ a0
(E,Φ) = a

0
(Ẽ,Φ̃)

.

Definition 9.1.3. The Colmez height of the pair (E,Φ) is

hCol
(E,Φ) = Z̃(0, a0

(E,Φ)).

Suppose A is an abelian variety over Qalg of dimension 2dim(A) = [E ∶ Q],
and admitting complex multiplication of type (E,Φ). Choose a model of A
over a number field k ⊂ Qalg large enough that the Néron model π ∶ A →
Spec(Ok) has everywhere good reduction. Pick a nonzero rational section s
of the line bundle

π∗Ω
dim(A)

A/Ok
∈ Pic(Ok),

and define

hFalt
∞ (A, s) =

−1

2[k ∶ Q]
∑

σ∶k→C
log ∣∫

Aσ(C)
sσ ∧ sσ ∣,

and

hFalt
f (A, s) =

1

[k ∶ Q]
∑

p⊂Ok

ordp(s) ⋅ log N(p).
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Definition 9.1.4. The Faltings height of A is

hFalt(A) = hFalt
f (A, s) + hFalt

∞ (A, s)

It is independent of the field k, the choice of model of A over k, and the
choice of section s.

Theorem 9.1.5 (Colmez). If A has complex multiplication by the maximal
order OE ⊂ E, the Faltings height

hFalt
(E,Φ)

def
= hFalt(A)

depends only on the pair (E,Φ), and not on the choice of A. Moreover,
there is a unique linear map ht ∶ CM0 → R such that, for any pair (E,Φ),
we have

hFalt
(E,Φ) = ht(a0

(E,Φ)).

Proof. This is [Col93, Théorème 0.3]. �

Conjecture 9.1.6 (Colmez). For any a ∈ CM0, we have ht(a) = Z̃(0, a).
In particular, taking a = a0

(E,Φ)
, for any CM pair (E,Φ) we have

hFalt
(E,Φ) = h

Col
(E,Φ).

9.2. The reflex CM type. For the remainder of §9 we fix a CM field E
of degree [E ∶ Q] = 2d, and a distinguished embedding ι0 ∶ E → C. Denote
by F the maximal totally real subfield of E.

Recall from §5.2 the total reflex algebra E♯ associated with E: This is a
finite étale Q-algebra equipped with a canonical ΓQ-equivariant identifica-
tion

HomQ−alg(E
♯,Qalg) = CM(E),

where CM(E) is the ΓQ-set consisting of all CM types of E.
The embedding ι0 determines a subset

{CM types of E containing ι0} ⊂ CM(E).

This corresponds to a subset Φ♯ ⊂ Hom(E♯,Qalg) = CM(E), called the total
reflex CM type. The pair (E♯,Φ♯) is the total reflex pair.

The relation between the total reflex pair and the classical notion of reflex
pairs is given by the following proposition, which is immediate from the
definitions.

Proposition 9.2.1. There exist representatives Φ1, . . . ,Φm ∈ CM(E) for
the ΓQ-orbits in CM(E) satisfying the following condition: If for each pair
(E,Φi), (E′

i,Φ
′
i) is its reflex CM pair, then there is an isomorphism of Q-

algebras E♯ ≃
Ð→∏iE

′
i, such that the natural bijection

Hom(E♯,Qalg)
≃
Ð→ Hom(E′

1,Q
alg) ⊔⋯ ⊔Hom(E′

m,Q
alg)

identifies Φ♯ = Φ′
1 ⊔ ⋯ ⊔Φ′

m. In particular, E♯ is a CM algebra and Φ♯ is a
CM type.
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9.3. The average over CM types.

Proposition 9.3.1. Recall the completed L-function (6.0.1). The Colmez
height satisfies

1

2d
∑
Φ

hCol
(E,Φ) = −

1

2
⋅
L′(0, χ)

L(0, χ)
−

1

4
⋅ log ∣

DE

DF
∣ −

d

2
⋅ log(2π)

= −
1

2
⋅
Λ′(0, χ)

Λ(0, χ)
−
d

4
log(16π3eγ),

where the sum on the left hand side is over all CM types of E.

Proof. Recall that we have fixed an embedding ι0 ∶ E → Qalg. If we let
ΓF ⊂ ΓQ be the subgroup that acts as the identity on ι0(F ) ⊂ Qalg, and view
the nontrivial character χ ∶ Gal(E/F )→ {±1} as a character of ΓF , then

(9.3.1)
1

[E ∶ Q]
∑
Φ

a0
(E,Φ) = 2d−2 (1 +

1

d
Ind

ΓQ
ΓF

(χ))

where 1 is the trivial character on ΓQ. Indeed, if we normalize the Haar
measure on ΓQ to have total volume 1, and define a function ψ ∶ ΓQ → Z by

ψ(σ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2d−1 if σ ○ ι0 = ι0

0 if σ ○ ι0 = ι0

2d−2 otherwise,

then an elementary calculation shows that the values of both sides of (9.3.1)
at σ ∈ ΓQ are equal to

∫
ΓQ
ψ(τ−1στ)dτ.

Using this, the first equality in the proposition follows from the calculation

1

2d
∑
Φ

hCol
(E,Φ) = −

1

2
[d ⋅

ζ ′(0)

ζ(0)
+
L′(0, χ)

L(0, χ)
+

1

2
log(f

Ind
ΓQ
ΓF

(χ)
)]

= −
d

2
⋅ log(2π) −

1

2

L′(0, χ)

L(0, χ)
−

1

4
⋅ log(∣DF ∣ ⋅NE/Q(dE/F ))

= −
1

2
⋅
L′(0, χ)

L(0, χ)
−

1

4
⋅ log ∣

DE

DF
∣ −

d

2
⋅ log(2π),

and the second equality follows from (6.0.2). �

Proposition 9.3.2. The total reflex pair (E♯,Φ♯) satisfies

a0
(E♯,Φ♯)

=
1

[E ∶ Q]
∑
Φ

a0
(E,Φ),

where the sum is over all CM types of E.
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Proof. Let Ẽ ⊂ Qalg be a finite Galois extension of Q large enough to contain
all embeddings E → Qalg. In particular, each E′

i ⊂ Ẽ. Use ι0 to regard E as

a subfield of Ẽ. For each 1 ≤ i ≤ k let

Φ̃i, Φ̃
′
i ⊂ Gal(Ẽ/Q) = Hom(Ẽ,Qalg)

be the lifts of Φi and Φ′
i, respectively, so that σ ∈ Φ̃i if and only if σ−1 ∈

Φ̃′
i. An easy exercise shows that a0

(Ẽ,Φ̃′

i)
= a0

(Ẽ,Φ̃i)
, and hence Remark 9.1.2

implies

[Ẽ ∶ E′
i] ⋅ a

0
(E′

i,Φ
′

i)
= [Ẽ ∶ E] ⋅ a0

(E,Φi)
.

It follows that

a0
(E′

i,Φ
′

i)
=

[E′
i ∶ Q]

[E ∶ Q]
⋅ a0

(E,Φi)
=

1

[E ∶ Q]
⋅ ∑
τ∈ΓQ/Stab(Φi)

a0
(E,τ○Φi)

,

and summing over i proves the claim. �

Corollary 9.3.3. The total reflex pair (E♯,Φ♯) satisfies

hFalt
(E♯,Φ♯)

=
1

[E ∶ Q]
∑

Φ∈CM(E)

hFalt
(E,Φ).

Proof. Combine Theorem 9.1.5 and Proposition 9.3.2. �

9.4. Faltings heights and Arakelov heights. Recall the torus T = TE/T
1
F

and the arithmetic curve

Y0 → Spec(OE)

from §3.2 defined by the compact open subgroup K0 ⊂ T (Af). In §3.3
and §3.5, given an algebraic representation N of the torus T , and a K0-
stable lattice NẐ ⊂ NAf , we constructed various homological realizations N?

over Y0, functorially associated with the pair (N,NẐ).

Let H♯ be as in Proposition 3.4.2. The subring OE♯ ⊂ E♯ gives us a lattice

H♯
Z ⊂ H♯ stable under the multiplication action of OE♯ . The associated Ẑ-

lattice H♯

Ẑ. Therefore, from the pair (H♯,H♯

Ẑ), we obtain an abelian scheme

A♯ → Y0, whose homological realizations are the sheaves associated with the
pair. By construction, at any point y ∈ Y0(C), A♯

y is an abelian variety with

CM by OE♯ and of CM type Φ♯.
Define

Ω♯ = π∗Ω
dim(A♯)

A♯/Y0
.

At any complex point y ∈ Y∞0 (C) we endow the fiber

Ω♯
y =H

0(A♯
y,Ω

dim(A♯)

A♯y/C
)

with the Faltings metric

∣∣s∣∣2 = ∣∫
A♯y(C)

s ∧ s ∣,
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and so obtain the metrized Hodge bundle

Ω̂♯ ∈ P̂ic(Y0).

The Betti realization of A♯ gives us a local system

H♯
B ⊂H♯

B ⊗OY0(C) =H
♯
dR,Y0(C),

which determines a local system of Z-modules det(H♯
B) ⊂ det(H♯

dR,Y0(C)
) of

rank 1.
We define the volume metric on det(H♯

dR) by declaring that ∣∣e∣∣2 = 1 for

any local generator e of det(H♯
B). At any complex point y ∈ Y0(C) the dual

volume metric on

det(H♯
dR,y)

∨ ≃
Ð→H

2dim(A♯)
dR (A♯

y/C)

is just integration of top degree C∞ forms:

∣∣η∣∣ = ∣∫
Ay(C)

η ∣.

This gives a second metrized line bundle

d̂et(H♯
dR) ∈ P̂ic(Y0).

We will need a third metrized line bundle ω̂0. This will be defined as
follows. Consider the representation V0 = V (E, c) of TE on the space of E-
semilinear endomorphisms of E. This representation factors through T (and
in fact through Tso = TE/TF ) and has a natural lattice L0 = V (OE , c) such

that L̂0 = L0,Ẑ is stable under K0. The natural E-linear structure on V0 is

invariant under T . Therefore, from the pair (V0, L̂0), we obtain a de Rham
realization V0,dR over Y0, equipped with an action of OE , making it a locally
free sheaf of rank 1 over OY0 ⊗Z OE . This realization is equipped with a
canonical OE-stable filtration Fil●V0,dR by local direct summands extending
the one over Y0 = Y0,Q obtained from Proposition 3.5.1. Moreover, the degree
1 summand

ω0
def
= Fil1V0,dR

is a line bundle over Y0.
Composition in End(E) induces a canonical, T -invariant Hermitian form

⟨⋅, ⋅⟩0 on V0 determined by the property

(x ○ y)(a) = ⟨x, y⟩0 ⋅ a,

for any x, y ∈ V0 and a ∈ E. From this, we obtain a Q-valued quadratic form

Q0 = TrF /Q(⟨x,x⟩0)

with associated bilinear form [x, y]0 on V0.
Just as in § 4.6, for every y ∈ Y∞(C), this form equips ω0,y = Fil1V0,dR,y

with the Hermitian form ∣∣z∣∣20 = −[z, z]0, and thus equips ω0 with the struc-
ture of a metrized line bundle, which will denote by ω̂0.

There is a natural T -equivariant embedding

(9.4.1) V0 ↪ End(H♯)
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defined as follows: We have

H♯ = E♯ =
⎛

⎝
⊗

ι∈Emb(F )

Qalg ⊗ι,F E
⎞

⎠

ΓQ

.

Here, the action of ΓQ on the tensor product is the obvious one compatible
with permutation of the indexing set Emb(F ).4

For each ι ∈ Emb(F ), we have an embedding

Qalg ⊗ι,F V0 = V (Qalg ⊗ι,F E, c) ⊂ End(Qalg ⊗ι,F E).

The Lie algebra tensor product of these embeddings gives us a ΓQ-equivariant
embedding

Qalg ⊗Q V0 =⊕
ι
(Qalg ⊗ι,F V0)↪ End(⊗

ι
Qalg ⊗ι,F E) ,

so that x ∈ V0 acts on Qalg ⊗Q E
♯ via:

x(a0 ⊗ a1 ⊗⋯⊗ ad−1) =
d−1

∑
i=0

a0 ⊗⋯⊗ ai−1 ⊗ x(ai)⊗⋯ad−1.

Here, ι0, ι1, . . . , ιd−1 ∶ F ↪ R are the real embeddings of F , and for each i,
ai ∈ Qalg ⊗ιi,F E.

The descent of this action over Q gives us (9.4.1).

Now, it is clear that this embedding induces a K0-stable inclusion L̂0 ↪
End(H♯

Ẑ), and thus gives us a map of de Rham realizations

V0,dR → End(H♯
dR)

allowing us to view sections of V0,dR as endomorphisms of H♯
dR.

The action of ω0 on H♯
dR induces a map

ω0 ⊗OY0
gr−1

FilH
♯
dR → Fil0H♯

dR

of vector bundles over Y0, and taking determinants yields a map

(9.4.2) ω⊗2d−1

0 ⊗OY0
det(gr−1

FilH
♯
dR)→ det(Fil0H♯

dR)

of line bundles over OY0 . Set

(9.4.3) L = det(Fil0H♯
dR)⊗ω⊗−2d−1

0 ⊗OY0
det(gr−1

FilH
♯
dR)

⊗−1
.

Then (9.4.2) gives us a canonical section of L over Y0, and thus an effective

divisor ∆ on Y0. Write ∆̂ = (∆,0) for the associated arithmetic divisor.

Proposition 9.4.1. We have

d̂eg(∆̂)

degC(Y0)
= 2d−1 log ∣DF ∣.

4In other words, E♯ is the tensor induction of the F -algebra E to an algebra over Q.
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This is the key technical result of this subsection, and its proof will be
given further below. For now, we deduce from it the following theorem,
which gives the precise relation between the degree of ω̂0, and the average
of the Faltings heights of abelian varieties with CM by OE .

Theorem 9.4.2. We have the identity

1

2d
∑
Φ

hFalt
(E,Φ) =

1

4

d̂eg(ω̂0)

degC(Y0)
−

1

4
log ∣DF ∣ +

1

2
d ⋅ log(2π).

Proof. By Corollary 9.3.3, we have

∑
Φ

hFalt
(E,Φ) = 2d ⋅ hFalt

(E♯,Φ♯)
.

Observing that, for every y ∈ Y0(C), the abelian variety A♯
y has CM by

OE♯ with CM type Φ♯, and using Theorem 9.1.5, we obtain

(9.4.4)
d̂eg(Ω̂♯)

degC(Y0)
= 2d ⋅ hFalt

(E♯,Φ♯)
=∑

Φ

hFalt
(E,Φ).

Consider the short exact sequence

0→ Fil0H♯
dR →H

♯
dR → gr−1

FilH
♯
dR → 0

of vector bundles over Y0. Taking determinants, we obtain an isomorphism

(9.4.5) det(H♯
dR)

≃
Ð→L ⊗ω⊗2d−1

0 ⊗ det(gr−1
FilH

♯
dR)⊗2,

where L is as in (9.4.3). If ∆̂ is as in Proposition 9.4.1, then, using the
canonical isomorphism

det(gr−1
FilH

♯
dR)⊗−1 ≃

Ð→Ω♯,

it is easy to check that (9.4.5) gives us an identity

d̂et(H♯
dR) = ∆̂ + 2d−1ω̂0 − 2 ⋅ Ω̂♯

in P̂ic(Y0).
Combining this with Proposition 9.4.1 and (9.4.4) shows

1

2d
∑
Φ

hFalt
(E,Φ) =

1

4

d̂eg(ω̂0)

degC(Y0)
+

1

4
⋅ log ∣DF ∣ −

1

2d+1

d̂eg(d̂et(H♯
dR))

degC(Y0)
.

Therefore, we will be done once we verify the identity

d̂eg(d̂et(H♯
dR))

degC(Y0)
= 2dd ⋅ log(2π).

But this is easily done using Lemma 9.4.3 below. �

Lemma 9.4.3. Let E′ be a number field and let A be an abelian scheme
over OE′. Suppose that the top degree cohomology H2d

dR(A/OE′) of A is a
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free module of rank 1 over OE′. Fix an embedding E′ ↪ C, and an OE′-
module generator e ∈H2d

dR(A/OE′), and let η(e) be a degree 2d C∞ form on
A(C) that represents this generator over C. We then have:

∣∫
A(C)

η(e) ∣ = (2π)−dim(A).

Proof. As explained in [DMOS82, Ch. I, §1, p. 22], there is a canonical
OE′-linear trace map

TrdR ∶H2d
dR(A/OE′)→ E′,

which, over C, corresponds to the linear functional

η ↦
1

(2πi)dimA ∫A(C)
η

on top degree C∞ forms on A(C).
So, to prove the lemma, it is enough to show that TrdR maps isomorphi-

cally onto OE′ ⊂ E′. Indeed, this would imply that

∫
A(C)

η(e) ∈ (2πi)−dim(A)O×E′ .

For this, note that TrdR is equal to the composition:

H2d
dR(A/OE′)

≃
Ð→Hd(A,Ωd

A/OE′
)

Tr
Ð→
≃
OE′ ,

where the first isomorphism arises from the degeneration of the Hodge-to-de
Rham spectral sequence for A, and the second is the trace isomorphism from
Grothendieck-Serre duality. �

We now begin our preparations for the proof of Proposition 9.4.1. Suppose
that we have inclusions of complete discrete valuation rings A ⊂ B ⊂ C with
perfect residue fields, with Frac(B) finite over Frac(A). Suppose that the set
Hom(B,C) of local A-algebra homomorphisms has the maximum possible
size [Frac(B) ∶ Frac(A)].5

Fix a subset Υ ⊂ Hom(B,C), and consider the map of C-algebras:

ϕΥ ∶ C ⊗A B → ∏
σ∈Υ

C

c⊗ b↦ (c ⋅ σ(b))σ.

Set K(Υ) = kerϕΥ. If Υc = Hom(B,C)/Υ, then the inclusion

K(Υ) +K(Υc)↪ C ⊗A B

of C-modules is an isomorphism after tensoring with Frac(C). Therefore,
its cokernel has finite length as a C-module. Denote this cokernel by C(Υ).
Fix a uniformizer πB ∈ B. Let B0 ⊂ B be the maximal étale A-subalgebra.
Let dB/A ⊂ B be the different, and let DB/A = NmB/A(dB/A) ⊂ A be the
discriminant ideal for B over A.

5In other words, the étale Frac(A)-algebra Frac(B) splits over Frac(C).
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Lemma 9.4.4. We have:

lengthC(C(Υ)) =
1

2
⋅ ∑
τ,τ ′∈Υ
τ≠τ ′

length(C/(τ(πB) − τ ′(πB)))

+
1

2
⋅ ∑
σ,σ′∈Υc

σ≠σ′

length(C/(σ(πB) − σ′(πB))) −
1

2
⋅ length(C/DB/AC).

Proof. By a standard reduction, we can assume that A = B0, so that B is
totally ramified over A. First consider the cokernel C1(Υ) of the natural
embedding

K(Υ)
x↦(σ(x))σ
ÐÐÐÐÐÐ→ ∏

σ∈Υc
C.

We claim that

(9.4.6) n1(Υ)
def
= lengthC(C1(Υ)) =

1

2
⋅ ∑
τ,τ ′∈Υ
τ≠τ ′

length(C/(τ(πB) − τ ′(πB))).

This can be verified using induction on the size of Υ, after proving (via
a separate inductive argument) that K(Υ) ⊂ C ⊗B A is the principal ideal
generated by the element

fΥ = ∏
τ∈Υ

(1⊗ πB − τ(πB)⊗ 1) ∈ C ⊗B A.

We also claim that the inclusion

C ⊗A B ↪ ∏
σ∈Hom(B,C)

C

has cokernel of length 1
2 ⋅ length(C/DB/AC). This follows by observing that

d−1
B/A is the dual lattice to B under the canonical non-degenerate trace pair-

ing (x, y) ↦ TrB/A(x, y) on Frac(B), and that ∏σ∈Hom(B,C)C is a self-dual
lattice in Frac(C)⊗A B under the induced C-bilinear pairing.

The lemma now follows by noting that

lengthC(C(Υ)) = n1(Υ) + n1(Υ
c) − lengthC (

∏σ∈Hom(B,C)C

C ⊗A B
) .

�

Let K be a finite étale Qp-algebra, and let P ⊂ Frac(W )alg be a finite

Galois extension of Frac(W ) that receives all maps η ∶ K ↪ Qalg
p . Let

C(ΓQp ,C) (resp. C0(ΓQp ,C)) be the space of continuous (resp. continuous,
conjugation-invariant) C-valued functions on ΓQp .

C0(ΓQp ,C) has a basis given by characters of irreducible finite dimensional
complex representations of ΓQp . There is a unique linear functional

µp ∶ C
0(ΓQp ,C)→ C,
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which associates with every finite dimensional irreducible character χ the
integer µp(χ) = logp fp(χ), where fp(χ) is the Artin conductor of χ and logp
is the base-p logarithm.

Since ΓQp is compact, averaging with respect to the Haar measure of

measure 1 gives us a canonical section f ↦ f0 of the inclusion

C0(ΓQp ,C)↪ C(ΓQp ,C),

and so permits us to lift µp to a measure on ΓQp : µp(f)
def
= µp(f

0).
With any subset Υ ⊂ Hom(K,P ), we can associate the function

a(K,Υ) ∶ ΓQp → Z
σ ↦ ∣Υ ∩ σ ○Υ∣.

Let M be a finite free OP ⊗ZpOK-module of rank 1. For Υ ⊂ Hom(K,P ),
set

K(Υ) = ker
⎛

⎝
OP ⊗Zp OK

x⊗y↦(xη(y))η
ÐÐÐÐÐÐÐÐ→→ ∏

η∈Υ

OP
⎞

⎠
,

and set K(M,Υ) = K(Υ) ⋅M . Let C(M,Υ) be the cokernel of the inclusion

K(M,Υ) +K(M,Υc)↪M

of OP -modules.
It will be useful later to have another description of this cokernel. Set

Q(M,Υ) = coker(K(M,Υc)↪M).

Then C(M,Υ) is also the cokernel of the natural inclusion

K(M,Υ)↪ Q(M,Υ).

Proposition 9.4.5. Let eP be the absolute ramification index of P . Then

lengthOP C(M,Υ) = −
1

2
⋅ eP ⋅ (µp(a(K,Υ)) + µp(a(K,Υc))) .

Proof. If K =∏iKi is the decomposition of K into a product of field exten-
sions of Qp, and

Υi = Υ ∩Hom(Ki,Qalg
p ),

for each i, then we have a0
(K,Υ)

= ∑i a
0
(Ki,Υi)

. Moreover, if Mi =M ⊗OK OKi ,

then we have

C(M,Υ) =⊕
i

C(Mi,Υi).

Therefore, without loss of generality, we can assume that K is a field. To
compute the right hand side of the asserted identity, for each pair η, η′ ∈
Hom(K,P ), consider the function aη,η′ ∈ ΓQp given by

aη,η′(σ) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if σ(η) = η′;

0, otherwise.
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Fix a uniformizer πK for K. Let K0 ⊂ K be the maximal unramified
subextension. By Lemme I.2.4 of [Col93] and the remark following Prop.
I.2.6 of loc. cit., we have
(9.4.7)

µp(aη,η′) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
eP

ordOP (η(dK/Qp)OP ), if η = η′;

− 1
eP

ordOP (η(πK) − η′(πK)), if η∣K0 = η
′∣K0 and η ≠ η′;

0, otherwise.

Moreover, the following identity is easily verified:

(9.4.8) a(K,Υ) + a(K,Υc) = ∑
η,η′∈Υ
η≠η′

aη,η′ + ∑
η,η′∈Υc

η≠η′

aη,η′ + ∑
η∶K→P

aη,η.

Now, observe that we are in the situation of Lemma 9.4.4, with A = Zp,
B = OK and C = OP , and the computation there gives us an explicit formula
for the left hand side of the desired identity. Comparing this with (9.4.8)
and (9.4.7) completes the proof of the Proposition. �

Proof of Proposition 9.4.1. Fix a prime q ⊂ OE above a rational prime p,

and also a point y ∈ Y0(Falg
q ). Let Oy be the completed étale local ring

of Y0 at y. Set W = W (Falg
q ). Fix an algebraic closure Frac(W )alg of

Frac(W ), and an embedding Qalg ↪ Frac(W )alg inducing the place q on
E ⊂ Qalg, embedded via ι0. This identifies Oy with the ring of integers in
the extension of Frac(W ) generated by the image of E.

Restricting the line bundle L over Spec Oy gives us a free Oy-module Ly

of rank 1, equipped with a canonical section sy ∶ Oy → Ly. We claim that
we have

(9.4.9) length(Ly/im(sy)) = 2d−2 ⋅ ordq(dF /Q).

Assuming this for all q and y, we find

d̂eg(∆̂) = ∑
q⊂OE

logN(q) ∑
y∈Y0(Falg

q )

length(Ly/im(sy))

∣Aut(y)∣

= 2d−2
∑

q⊂OE

⎡
⎢
⎢
⎢
⎢
⎢
⎣

logN(q) ⋅ ordq(dF /Q) ⋅ ∑
y∈Y0(Falg

q )

1

∣Aut(y)∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 2d−2 ⋅
⎛

⎝
∑

y∈Y0(C)

1

∣Aut(y)∣

⎞

⎠
⋅
⎛

⎝
∑

q⊂OE

logN(q) ⋅ ordq(dF /Q)
⎞

⎠

= 2d−1 ⋅ degC(Y0) ⋅ log ∣DF ∣.

Here, in the third identity, as in the proof of Lemma 7.6.3, we have used the
finite étaleness of Y0 over OE .
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It remains to show (9.4.9). Note that complex conjugation induces an

involution c on the set ΓQp-set Hom(Ep,Qalg
p ). Set

CM(Ep) = {Φp ⊂ Hom(Ep,Qalg
p ) ∶ Φp ⊔ c(Φp) = Hom(Ep,Qalg

p )}.

Let E♯
p be the étale Qp-algebra associated with the ΓQp-set CM(Ep). There

is an obvious surjection of ΓQp-sets

CM(E)→ CM(Ep)

inducing an inclusion E♯
p ↪ E♯

p = E
♯ ⊗Q Qp of étale Qp-algebras. Associated

with ι0 ∶ Eq ↪ Qalg
p are the subsets

Φ♯
p = {Φp ∈ CM(Ep) ∶ ι0 ∈ Φp} ; Φ

♯

p = {Φp ∈ CM(Ep) ∶ ι0 ∈ Φp},

and we have

Φ♯ = {ι♯ ∶ E♯
p → Qalg

p ∶ ι♯∣E♯

p
∈ Φ♯

p}.

Now, let Tq ⊂ TQp be as in Remark 3.5.3. Viewed as a representation

of Tq, H
♯
p = H

♯ ⊗Q Qp admits the Tq-stable subspace H♯
p corresponding to

the subspace E♯
p ⊂ E♯

p. Moreover, we have a canonical lattice H♯
p,Zp ⊂ H♯

p

corresponding to OE♯

p
⊂ E♯

p. This is stable under K0,q =K0 ∩T (Qp), and we

have a natural K0,q-equivariant isomorphism of OE♯
p
-modules:

H♯
p,Zp ⊗OE♯p

OE♯
p

≃
Ð→H♯

Zp .

If H♯
p,dR,Oy

is the de Rham realization of H♯
p,Zp obtained from Corol-

lary 3.5.4, then we obtain an isomorphism

H♯
p,dR,Oy ⊗OE♯p

OE♯
p

≃
Ð→H♯

dR,Oy

of filtered Oy ⊗Zp OE♯
p
-modules.

Fix a Oy-module generator f0 ∈ Fil1V0,dR,Oy , and view it as a map

gr−1
FilH

♯
dR,Oy → Fil0H♯

dR,Oy .

We find from the construction that this arises via a change of scalars from
OE♯

p
to OE♯

p
of a map

f0,p ∶ gr−1
FilH

♯
p,dR,Oy → Fil0H♯

p,dR,Oy

Let P ⊂ Frac(W )alg be a Galois extension of Frac(W ) containing Oy,

which receives all maps E♯
p → Qalg

p . Then

M
def
= Hp,dR,Oy ⊗Oy OP

is a finite free OP ⊗Zp OE♯

p
-module of rank 1. One can now check that, in

the notation preceding Proposition 9.4.5, we have

Fil0Hp,dR,Oy ⊗Oy OP = K(M,Φ♯
p) ; gr−1

FilHp,dR,Oy ⊗Oy OP = Q(M,Φ
♯

p).
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Therefore, we have

length(Ly/im(sy)) =
1

e(P /Eq)
⋅ 2d−dp ⋅ ordOP (det(f0,p))

(9.4.10)

=
2d−dp

e(P /Eq)
⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

lengthOP

⎛
⎜
⎝

Q(M,Φ♯
p)

f0,p(Q(M,Φ
♯

p))

⎞
⎟
⎠
− lengthOP C(M,Φ♯

p)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, e(P /Eq) is the ramification index of P over Eq, and dp = [Fp ∶ Qp].
Now, set N = V0,dR,Oy ⊗Oy OP : this is a free module of rank 1 over

OP ⊗Zp OEp . Set

Υι0 = Hom(Ep,Qalg
p )/{ι0}.

Then we have
Fil1V0,dR,Oy ⊗Oy OP = K(N,Υι0).

Moreover, the action of any generator of Q(N,Υι0) induces an isomorphism

Q(M,Φ
♯

p)
≃
Ð→ Q(M,Φ♯

p)

of OP -modules. Therefore, we have

(9.4.11) lengthOP

⎛
⎜
⎝

Q(M,Φ♯
p)

f0,p(Q(M,Φ
♯

p))

⎞
⎟
⎠
= 2dp−1 ⋅ lengthOP C(N,Υι0).

Arguing as in Propositions 9.3.2 and 9.3.1, we see that

a0
(E♯

p,Φ
♯

p)
= 2dp−2 (1 +

1

dp
Ind

ΓQp
ΓFp

(χp)) ,

where χp is the (possibly trivial) quadratic character of Fp associated with
Ep/Fp. From this and Proposition 9.4.5, one easily deduces that we have

(9.4.12) lengthOP C(M,Φ♯
p) = e(P /Eq) ⋅ 2

dp−2 ⋅ (2 ⋅ ordq(dE/Q)− ordq(dF /Q)).

A similar, but much easier computation shows

(9.4.13) lengthOP C(N,Υι0) = −eP ⋅ µp(a(Ep,Υι0)) = e(P /Eq) ⋅ ordq(dE/Q).

Combining (9.4.10), (9.4.11), (9.4.12) and (9.4.13) now yields (9.4.9) and
hence the proposition.

�

9.5. The averaged Colmez conjecture. As in Remark 5.1.1, choose any
ξ ∈ F× negative at ι0 and positive at ι1, . . . , ιd−1. This defines a rank two
quadratic space

(V ,Q) = (E, ξ ⋅NmE/F )

over F , and we set
(V,Q) = (V ,TrF /Q ○Q)

as in (5.2.1). Fix any maximal lattice L ⊂ V , and and let Dbad,L be the
product of all the bad primes with respect to L (see Definition 5.3.3).
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Recall the integral model M → Spec(Z) of the GSpin Shimura variety
associated with L, as well as the finite cover Y → Y0 associated with the
level subgroup KL,0 and equipped with a map Y →M. We also had the
metrized line bundle ω̂ on M from §4.6. Over Y, this line bundle arises
from the Hodge filtration on the vector bundle VdR obtained as the de Rham
realization of the pair (V, L̂).

Let (V ◇,Q◇) be a quadratic space of signature (n◇,2) with n ≥ 3, and
suppose that we have an isometric embedding

(V,Q)↪ (V ◇,Q◇)

and a maximal lattice L◇ ⊂ V ◇ with L ⊂ L◇. This corresponds to a mapM→
M◇ of integral models over Z for the associated GSpin Shimura varieties.

Suppose that f ∈M !
1−n◇/2(ωL◇) has integral Fourier coefficients and nonzero

constant term cf(0,0). Let Z◇(f) be the corresponding divisor onM◇, and
assume that Hypothesis 8.3.1 is satisfied. After replacing f by a multiple if
necessary, we obtain the vertical metrized line bundle Ê◇(f) = (E◇(f),0) on
M◇ as in Theorem 8.3.4.

As before, we will write a ≈L b for two real numbers a, b if a−b is a rational
linear combination of log(p) with p ∣Dbad,L.

Proposition 9.5.1. We have

1

2d
∑
Φ

hFalt
(E,Φ) −

1

2d
∑
Φ

hCol
(E,Φ) ≈L

1

4cf(0,0)

[Ê◇(f) ∶ Y]

degC(Y )
.

Proof. Given Theorems 8.3.4 and 9.4.2, and Proposition 9.3.1, we only have
to show:

(9.5.1) [ω̂ ∶ Y] − d̂egY(ω̂0) − log ∣DF ∣ ≈L 0.

For this, note that, via the construction in Proposition 3.5.5, the sheaves
VdR and V0,dR are both associated with the standard T -representation V =
V0, but correspond to different K0,L-stable lattices in VAf . The first is asso-

ciated with the lattice L̂, and the second with the lattice L̂0. In particular,
since the restrictions of these bundles to the generic fiber does not depend
on the K0,L-stable lattice, there is a canonical isomorphism

(9.5.2) ω∣Y
≃
Ð→ ω0∣Y

of line bundles over Y . At each point y ∈ Y∞(C) lying above a place ι ∶ F →
R, this isomorphism carries the metric ∣∣ ⋅ ∣∣y on ωy to ∣ι(ξ)∣-times the metric
∣∣ ⋅ ∣∣0,y.

Therefore, it is enough to show that (9.5.2) induces an isomorphism

ω∣Y[D−1
bad,L

]

≃
Ð→ ξd−1

F /Q ⊗OF ω0∣Y[D−1
bad,L

]

of line bundles over Y[D−1
bad,L].

This is a statement that can be checked over the complete étale local rings
of Y[D−1

bad,L]. So let q ⊂ OE be a prime lying above a prime p ∤Dbad,L, and
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suppose that we have y ∈ Y(Falg
q ). Let p ⊂ OF be the prime induced from

q. By the definition of Dbad,L, Lp = Lp ∩ Vp contains a maximal OE,p-stable
quadratic lattice Λp. We then must have

(9.5.3) Λp = ξd
−1
Fp/QpL0,p.

Let Oy be the complete local ring of Y at y. As explained in Remark 3.5.3,
from Λp and Lp, we obtain de Rham realization Λp,dR,Oy and Vp,dR,Oy over
Oy; these are filtered vector bundles over Oy.

Choose an isometric embedding L↪ L◇ with L◇ of signature (n◇,2) and
self-dual over Zp. The inclusions Λp ↪ Lp ↪ L◇p give embeddings

Λp,dR,Oy ↪ V
◇

dR,Oy

of free Oy-modules.
It now follows from Lemma 7.7.2 that the inclusion

ωOy ∩Λp,dR,Oy ↪ ωOy = Fil1V ◇
dR,Oy

is an isomorphism.
Therefore, (9.5.3) shows that the isomorphism (9.5.2) induces an isomor-

phism

ωOy
≃
Ð→ ξ(d−1

Fp/Qp ⊗OF ω0,Oy)

of line bundles over Oy, finishing the proof of the Proposition.
�

Proposition 9.5.2. We can find another choice of auxiliary data

(V ′,Q′) = (E, ξ′ ⋅NmE/F )

and a maximal lattice L′ ⊂ V ′ such that gcd(Dbad,L,Dbad,L′) = 1.

Proof. It is sufficient to show that, given any finite set of rational primes S,
we can find ξ′ and L′ such that no prime in S divides Dbad,L′ .

To make this more concrete, suppose that we given an ideal a ⊂ OE and
ξ′ ∈ F satisfying ι0(ξ

′) < 0 and ιj(ξ
′) > 0 for j > 0. For a prime p, we will

declare the pair to be good at p if

Λp
def
= (a,TrE/Q(ξ

′NmE/F ))⊗Z Zp
is an OE-stable quadratic Zp-lattice in (E,TrE/Q(ξ

′NmE/F ))⊗Q Qp, which
is self-dual over all primes p ∣ p that are unramified in E, and which satisfies

Λ∨
p ⊂ d−1

Eq/Fp
Λp

when p is ramfified in E and q ⊂ OE is the unique prime above it. Here, we
have set Λp = Λp ⊗OF,p OF,p.

Lemma 9.5.3. Suppose that (a, ξ′) is good at all p ∈ S. Then there exists a
maximal lattice

L′ ⊂ V ′ = (E,TrF /Q(ξ
′ ⋅NmE/F ))

that is good at all primes p ∈ S.
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Proof. For any prime p ∈ S, and any prime p ⊂ OF lying above such p, write
V ′
p ⊂ V ′

Qp for the p-isotypic part of V ′
Qp , and fix a maximal lattice L′p ⊂ V ′

p

containing Λp. Now, take L′ ⊂ V ′ to be any maximal lattice such that, for
every p ∈ S, L′Zp contains ⊕p∣pL

′
p. �

It now remains to find a pair (a, ξ′) that is good at all primes in S.
Given a pair (a, ξ′) as above, one can check that the pair is good at p

if and only if for all primes p ⊂ OF lying above p, p is relatively prime to
ξ′NmE/F (a)dF /Q.

Write Cl+(F ) for the narrow class group of F and Cl(E) for the class
group of E. The norm map induces a map

(9.5.4) Cl(E)→ Cl+(F )

This map is surjective if and only if E/F is ramified at some finite prime.
Indeed, via class field theory, the surjectivity of (9.5.4) is equivalent to the
assertion that the narrow class field of F does not contain E.

Suppose that E/F is unramified at all finite places. In this case, the
quadratic character χE/F can be viewed as a character

χE/F ∶ Cl+(F )→ {±1},

whose kernel is exactly the image of (9.5.4). We now interrupt the proof
for:

Lemma 9.5.4. When E/F is unramified at all finite places, d ≡ 0 (mod 2).
Moreover, we have

χE/F (dF /Q) = (−1)d/2.

Proof. Treating χE/F as an idéle class character, consider its infinite part
χE/F,∞. Since E is a totally imaginary extension of F , χE/F,∞ is the product
of the sign characters over all infinite places of F . Since χE/F is unramified
at all finite places, for any unit α ∈ O×F , we have

χE/F,∞(α) = χE/F (α)χE/F,f(α)
−1 = 1.

Applying this to the case α = −1 shows that (−1)d = 1, and so d must be
even.

The final assertion is an improvement by Armitage [Arm67, Theorem 3]
of a classical result of Hecke. �

We return to the proof of Proposition 9.5.2. Choose an arbitrary ξ0 ∈ OF
with ι0(ξ0) < 0 and ιj(ξ0) > 0 for j > 0. Consider the ideal

b = ξ0dF /Q ⊂ OF .

Assume either that E/F is ramified at some finite prime, or that E/F
is unramified and d ≡ 2 (mod 4). Under either assumption, we claim that
there exists an ideal a ⊂ OE and a totally positive element η ∈ F× such that

ηNmE/F a = b−1.
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In other words, the class of b in Cl+(F ) is in the image of (9.5.4).
If E/F is ramified, then this is immediate from the surjectivity of (9.5.4).
If E/F is unramified, then b = ξ0dF /Q, and by (9.5.4), we have:

χE/F (b) = (−1)
d
2
+1.

Therefore, when d ≡ 2 (mod 4), b is in the image of (9.5.4), and the claim
follows.

Now, it is easily checked that, with ξ′ = ηξ0, (a, ξ′) is good at all primes
p.

It remains to consider the case where E/F is unramified and d ≡ 0
(mod 4). In this case, χE/F (dF /Q) = 1 by Lemma 9.5.4. Therefore, we
can find an a ⊂ OE and totally positive η ∈ F× such that

η ⋅NmE/F (a) = d−1
F /Q.

Now, given a totally positive β ∈ F , the pair (a, βηξ0) is good at a all
primes in S if and only if βξ0 is not divisible by any p ∈ S. Such a β can
always be found by weak approximation. �

Theorem 9.5.5. We have
1

2d
∑
Φ

hFalt
(E,Φ) =

1

2d
∑
Φ

hCol
(E,Φ).

Proof. Combining Propositions 9.5.1 and 9.5.2, we find that we have

1

2d
∑
Φ

hFalt
(E,Φ) −

1

2d
∑
Φ

hCol
(E,Φ) =∑

p

bE(p) log(p),

where we can compute bE(p) as follows: Choose auxiliary data (V ,Q) and
a maximal lattice L ⊂ V such that p ∤ Dbad,L. Also choose an auxiliary
quadratic space (V ◇,Q◇) of signature (n◇,2) with n◇ ≥ 3, as well as a
maximal lattice L◇ ⊂ V ◇ containing L. Choose a weakly holomorphic form

f(τ) = ∑
m≫−∞

cf(m) ⋅ qm ∈M !
1−n

2
(ωL◇)

with integral principal part and cf(0,0) /= 0, and satisfying Hypothesis 8.3.1.
Then, after replacing f by a suitable multiple, we have:

(9.5.5) ∑
p

bE(p) log(p) =
1

4cf(0,0)

[Ê◇(f) ∶ Y]

degC(Y )
.

Therefore, it is enough to show that, for each prime p, we can choose L◇

and f such that E◇(f) does not intersect M◇
Fp .

It is an easy exercise, given the classification of quadratic forms over Q,
to find L◇ such that n◇ = 2d, and such that L◇

(p) is self-dual, and such that

L embeds isometricaly in L◇. Now, the orthogonal complement

Λ = L⊥ ⊂ L◇

is a rank 2 positive definite lattice over Z. Any rational prime not split
in the discriminant field of Λ will fail to be represented by ΛQ. Therefore,
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by Theorem 9.5.6 below, we can find a weakly modular form f as above
such that cf(m) ≠ 0 only if m is not represented by ΛQ. In particular,
Hypothesis 8.3.1 is satisfied, and, since L◇

(p) is self-dual, by Theorem 4.8.1,

E◇(f) does not intersect M◇
Fp , as desired.

We note again that the proof only used knowledge of the divisor of the
Borcherds lift of f at primes where L◇ is self-dual, which is contained
in [Hör14], and not the full strength of Theorem 4.8.1. �

The proof above used the following consequence of a result of Bruinier [Bru15,
Theorem 1.1], which we state here for the reader’s convenience.

Theorem 9.5.6 (Bruinier). Let L be a quadratic lattice of signature (n,2)
with n ≥ 2. If S is any infinite subset of square-free positive elements of D−1

L Z
represented by L∨, there is a weakly holomorphic form f ∈M !

1−n/2(ωL) such

that

(1) c+f (m,µ) ∈ Z for all m and µ,

(2) c+f (0,0) /= 0,

(3) if m > 0 and m ∉ S, then c+f (−m,µ) = 0 for all µ ∈ L∨/L.
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