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ABSTRACT. Let M be the Shimura variety associated with the group
of spinor similitudes of a quadratic space over Q of signature (n,2).
We prove a conjecture of Bruinier-Kudla-Yang, relating the arithmetic
intersection multiplicities of special divisors and big CM points on M
to the central derivatives of certain L-functions.

As an application of this result, we prove an averaged version of
Colmez’s conjecture on the Faltings heights of CM abelian varieties.
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1. INTRODUCTION

1.1. The average Colmez conjecture. Let E be a CM field of degree 2d
with maximal totally real subfield F'. Let A be an abelian variety over C
of dimension d with complex multiplication by the maximal order O c E
and having CM type ® ¢ Hom(FE,C). In this situation, Colmez [Col93]
has proved that the Faltings height hf**(A) of A depends only on the pair
(E,®), and not on A itself. We denote it by
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Colmez stated in [loc. cit.] a conjectural formula for hlgalt ®) in terms of
the logarithmic derivatives at s = 0 of certain Artin L-functions, constructed
in terms of the purely Galois-theoretic input (£, ®). The precise conjecture
is recalled in §9.1] where the reader may also find our precise normalization
of the Faltings height.

When d =1, so F is a quadratic imaginary field, Colmez’s conjecture is a
form of the famous Chowla-Selberg formula. When E/Q is an abelian exten-
sion, Colmez proved his conjecture in [loc. cit.], up to a rational multiple of
log(2). This extra error term was subsequently removed by Obus [Obul3].
When d = 2, Yang [Yanl3] was able to prove Colmez’s conjecture in many
cases, including the first known cases of non-abelian extensions.

Our first main result, stated in the text as Theorem [9.5.5] is the proof of
an averaged form of Colmez’s conjecture for a fixed E, obtained by averaging
both sides of the conjectural formula over all CM types.

Theorem A.

1 Falt 1 L'(0,x) ‘
— S el St 2 VA __1 2
2d§ (E:2) =75 7(0, x) 5 *los(2m).

Here x : A}, — {%1} is the quadratic Hecke character determined by the
extension E/F, and L(s,x) is the usual L-function without the local factors
at archimedean places. The sum on the left is over all CM types of E, and
Dg and Dp are the discriminants of £ and F', respectively.

Remark 1.1.1. Very shortly after this theorem was announced, Yuan-Zhang
also announced a proof; see [YZ15]. The proofs are very different. The
proof of Yuan-Zhang is based on the Gross-Zagier style results of [YZZ13]
for Shimura curves over totally real fields. Our proof, which is inspired by
the d = 2 case found in [Yanl3|, revolves around the calculation of arith-
metic intersection multiplicities on Shimura varieties of type GSpin(n,2),
and makes essential use of the theory of Borcherds products, as well as
certain Green function calculations of Bruinier-Kudla-Yang [BKY12].

Remark 1.1.2. Tsimerman [Tsil5] has proved that Theorem |A|implies the
André-Oort conjecture for all Siegel (and hence all abelian type) Shimura
varieties.

1.2. GSpin Shimura varieties and special divisors. Let (V,Q) be a
quadratic space over Q of signature (n,2) with n > 1, and let L c V be
a maximal lattice; that is, we assume that Q(L) c Z, but that no lattice
properly containing L has this property. Let LY c V' be the dual lattice of
L with respect to the bilinear form

[2,y] = Q(z +y) - Qz) - Q(y),
and abbreviate Dy = [LY : L] for the discriminant of L.

To this data one can associate a reductive group G = GSpin(V') over Q,
a particular compact open subgroup K c G(Ay), and a hermitian domain

D={zeVg:[z,2]=0,[2,z] <0}/C*
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with an action of G(R) by holomorphic automorphisms. The n-dimensional
complex orbifold
M(C)=GQ)\DxG(Af)/K
is the space of complex points of a smooth algebraic stack M over Q, called
the GSpin Shimura variety. It admits, as we explain in a flat and normal
integral model M over Z, which is smooth after inverting Dy,. For any prime
p > 2 the special fiber Mg, is normal and Cohen-Macaulay.
The Weil representation

wy, - §E2(Z) g Aut(c(SL)

defines an action of the metaplectic double cover SLy(Z) — SLy(Z) on the
space Sy, = C[LY/L] of complex valued functions on L"/L. Associated with
it are, for any half-integer k, several spaces of vector-valued modular forms:
the space of cusp forms Si(wp), the space of weakly holomorphic forms
M (wr), and the space of harmonic weak Maass forms Hy(wy,). There are
similar spaces for the complex-conjugate representation wy. By a theorem
of Bruinier-Funke [BF04], these are related by an exact sequence

3 _
(1.2.1) 0 - MIL%(UJL) ~ Hy_n(wr) = Sy.z (@) 0,

where £ is an explicit conjugate-linear differential operator.
Let ¢, € St be the characteristic function of the coset p € L. Each form
fe Hl_%(wL) has a holomorphic part, which is a formal g-expansion
fr=> c(mp)eu-q"

m>>—00

uelV /L
valued in S7. The sum is over all m € Dilz, but there are only finitely many
nonzero terms with m < 0.

The Shimura variety M comes with a family of effective Cartier divisors
Z(m, p), indexed by positive m € D;'Z and p € LY /L. If the harmonic weak
Maass form f has integral principal part, in the sense that c}(m, w) € Z for
all m <0 and p e LY/L, then we may form the Cartier divisor

Z(f): Z c}(_mvﬂ)'z(mvu)
m>0
uelV /L
on M. A construction of Bruinier [Bru02] endows this divisor with a Green
function ®(f), constructed as a regularized theta lift of f. From this divisor
and its Green function, we obtain a metrized line bundle

Z(f)=(Z(f). 2(f)) € Pic(M).

1.3. The arithmetic Bruinier-Kudla-Yang theorem. We now explain
how to construct certain big CM cycles on GSpin Shimura varieties, as in
[BKY12].

Start with a totally real field F of degree d, and a quadratic space (¥, 2)
over F' of dimension 2 and signature ((0,2),(2,0),...,(2,0)). In other
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words, ¥ is negative definite at one archimedean place, and positive def-
inite at the rest. The even Clifford algebra F = C*(¥) is a CM field of
degree 2d with F' as its maximal totally real subfield.

Now define a quadratic space

(1.3.1) (V.Q) = (¥, Trpjgo 2)

over Q of signature (n,2) = (2d - 2,2), and fix a maximal lattice L c V.
As described above in §1.2] we obtain from this data a GSpin Shimura
variety M — Spec(Q), but now endowed with the additional structure of
a distinguished 0O-cycle. Indeed, the relation induces a morphism
T — G, where T is the torus over Q with points

T(Q)=E"/ker (Nm: F* - Q).

From the morphism 7' - G one can construct a 0-dimensional Shimura
variety Y over E, together with a morphism Y — M of Q-stacks. The image
of this morphism consists of special points (in the sense of Deligne), and are
the big CM points of [BKY12).

In §3.2] we define an integral model Y of Y, regular and flat over O, along
with a morphism Y — M of Z-stacks. Composing the pullback of metrized
line bundles with the arithmetic degree on the arithmetic curve ) defines a
linear functional

Pie(M) - Pie(y) L& R.
We call this linear function arithmetic degree along Y, and denote it by
Z s [2 Y.

To state our second main theorem, we need to introduce one more actor
to our drama. This is a certain Hilbert modular Eisenstein series E(7,s) of
parallel weight 1, valued in the dual representation Sy. Starting from any
f e Hy_y(wp), we may apply the differential operator of to obtain a
vector-valued cusp form

£(f) e Sa(wr),

and then form the Petersson inner product L£(s,£(f)) of £(f) against the
diagonal restriction of F(7,s) to the upper-half plane. This rather mysteri-
ous function inherits analytic continuation and a functional equation from
the Eisenstein series, and the functional equation forces £(s,£(f)) to vanish
at s = 0. Our second main result, stated in the text as Theorem [6.4.2] is a
formula for its derivative.

Theorem B. For any f € Hy_y(wy) with integral principal part, the equality

[2():Y] __£0.£() , a(0.0)-¢(0.0)
deg(C(Y) A(07X) A(07X)

holds up to a Q-linear combination of {log(p) : p | Dead,1.}-
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The unexplained notation in the theorem is as follows: Dyqq 7 is the
product of certain “bad” primes, depending on the lattice L c¢ V = ¥,
specified in Definition [5.3.3

1
dege(Y) = —_
5= & Ry
is the number of C-points of the F-stack Y, counted with multiplicities;
A(s,x) is the completed L-function of (6.0.1)); and the constant a(0,0) =
ar(0,¢p) is defined in Proposition In fact, a(0,0) is essentially the
derivative at s = 0 of the constant term of E(7,s). By Proposition it
satisfies
a(0,0)  2A’(0,x)
A(O,x)  A0,x)
up to a Q-linear combination of {log(p) : p | Dpad,L }-

A key component of the proof of Theorem [6.4.2] is the Bruinier-Kudla-
Yang [BKY12] calculation of the values of the Green function ®(f) at the
points of Y, which we recall in Theorem [6.3.1] In fact, a form of Theorem
was conjectured in [BKY12] based on these Green function calculations.

The bulk of this paper is devoted to computing the finite intersection
multiplicities that comprise the remaining contributions to the arithmetic
intersection [Z(f) : Y]. More concretely, most of the paper consists of
the calculation of the degrees of the 0-cycles Y x g Z(m, ) on Y, and the
comparision of these degrees with the Fourier coefficients of the derivative
E'(7,0).

The first main new ingredient for the calculation, found in § is the
computation of the deformation theory of certain ‘special’ endomorphisms of
Lubin-Tate formal groups, which, using Breuil-Kisin theory, we are able to
do without any restriction on the ramification degree of the fields involved.
This is a direct generalization of the seminal computations of Gross [Gro86]
for Lubin-Tate groups associated with quadratic extensions of Q.

The second new ingredient is the computation of certain 2-adic Whittaker
functions, which forms the bulk of §

The introduction to each section has some further explanation of its role
in the proof of the main theorem.

(1.3.2)

Remark 1.3.1. The authors’ earlier paper [AGHM17| proves a result similar
to Theorem but for a cycle of small CM points Y — M defined by
the inclusion of a rank 2 torus into GG. In the present work the cycle of
big CM points Y — M is determined by a torus of maximal rank. One
essential difference between these cases is that the big CM points always
have proper intersection (on the whole integral model M) with the special
divisors Z(f). Thus, unlike in [AGHMIT|, we do not have to deal with
improper intersection.

Remark 1.3.2. In the special case of d = 2, results similar to Theorem [B] can
be found in the work of Yang [Yanl3|, and of Yang and the third named
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author [HY12]. Note that when d = 2 we are working on a Shimura variety
of type GSpin(2,2), and this class of Shimura varieties includes the classical
Hilbert modular surfaces.

The paper [Howl12| contains results similar to Theorem but on the
Shimura varieties associated with unitary similitude groups instead of GSpin.
Of course the unitary case is easier, as those Shimura varieties can be real-
ized as moduli spaces of abelian varieties.

1.4. From arithmetic intersection to Colmez’s conjecture. We ex-
plain how to deduce Theorem [A] from Theorem [B] following roughly the
strategy of Yang [Yanl3|. First, we choose the harmonic weak Maass form
f of Theorem [B| so that f is actually weakly holomorphic. In other words,
we assume that

F= % cpmm)en-q™ e My g(wr),

m>>—o00

uelY /L
and so £(f) = 0 by the exact sequence ([1.2.1). Combining Theorem [B| with
(11.3.2)) gives

Z(f): 2A'(0
(1.4.1) DT, 0.0 2200

dege(Y) A(0, x)
where ~;, means equality up to a Q-linear combination of log(p) with p |
Dyaa,r-

The integral model M carries over it a line bundle w called the tautological

bundle, or the line bundle of weight one modular forms. Any g € G(Ay)
determines a uniformization

D %9 (e
of a connected component of the complex fiber of M, and the line bundle w
pulls back to the tautological bundle on D, whose fiber at z is the isotropic
line Cz c V. If we now endow w with the metric ||z][* = —[2,Z], we obtain
a metrized line bundle
@ € Pic(M).

For simplicity, assume that d > 4 (this guarantees that V' contains an
isotropic line; throughout the body of the paper, we only require d > 2).
After possibly replacing f by a positive integer multiple, the theory of
Borcherds products [Bor98|, [Hor14l, [HM15] gives us a rational section W(f)
of the line bundle w®r (%0 satisfying

~log|[[T(F)II* = (f) - c;(0,0) log(4me?),

and satisfying div(U(f)) = Z(f) up to a linear combination of irreducible
components of the special fiber Mp,.
We define a Cartier divisor

&(f) =div(¥(f)) - 2(f),
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on M, supported entirely in characteristic 2, which should be viewed as an
unwanted error term. Endowing this divisor with the trivial Green function,
we obtain a metrized line bundle & (f) € Pic(M) satisfying

(@200 YT = [Z(f) : Y] - ¢f(0,0) log(4me™) - ddege (V) + [E2(f) : V].

If we choose f such that c(0,0) # 0, then combining this with (1.4.1)) and
dividing by ¢£(0,0) leaves

—[G V] +d-log(4me?) ~p, —2A,(0’X) + ! [%(f) 2d

dege(Y) A0, x)  ¢£(0,0) dege(Y)

The pullback to )V of the metrized line bundle & computes the averaged
Faltings heights of abelian varieties with CM by E. More precisely, the cycle
Y carries a canonical metrized line bundle &y with two important properties:
First, we show in Theorem that the arithmetic degree of &y computes
the averaged Faltings height:

1 Falt degy (&)
= S hbat = ==Y L log | Dp| - 2d - log(27).
92 %: (E.9) = qego(v) T 0g | Dr| og(2m)

Second, in Proposition [0.5.1] we prove the approximate equality
[@:Y]  dogy(@»)

N, +log|DF

doge(vV) ~F dege(v) T80T

Putting all this together, we find that

1 Falt 1 L'(0,x) 1 Dg| d

—Spfalt oD DX 2 e | ZE | Dog(2 be(p)]
2d§ ED) =73 Ty 1 %|Dpl " 2 og( 7T)+%: £ (p) log(p)

for some rational numbers bg(p), with bg(p) = 0 for all p + 2Dpeq, .-

The integer Dy,q,1, depends on the choice of auxiliary F-quadratic space
(¥,2) and lattice L, and to show that bg(p) = 0, one only has to find
some choice of the auxiliary data for which p + 2Dy,4 1. We show that for
any prime p the auxiliary data can be chosen so that p + Dy,q 1, and hence
br(p) =0 for all p > 2. This proves Theorem except that we have not
shown that bg(2) = 0.

For this, we embed L in a larger lattice L° that has rank 2d+2, and which
is self-dual at 2. The integral model M® of the Shimura variety associated
with L° is a smooth integral canonical model in the sense of [Kis10].

Using a result of Bruinier [Brul5], we now pick a Borcherds lift U°( f) over
M?, whose divisor intersects ) properly, and which allows us to compute
the height of the canonical bundle @ along ) even at the prime 2. This
enables us to prove that the constant bg(2) does indeed vanish.

1.5. Acknowledgements. The authors thank Jan Bruinier, Pierre Colmez,
Steve Kudla, Jacob Tsimerman, and Tonghai Yang for helpful conversations.
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2. SPECIAL ENDOMORPHISMS OF LUBIN-TATE GROUPS

In this section, we generalize the results of Gross [Gro86] to Lubin-Tate
groups over arbitrary finite extensions K/Q,. Namely, we study the defor-
mation theory of certain ‘special’ endomorphisms of such groups.

This generalization, which appears as Theorem is the basis for the
local intersection theory calculations underlying the proof of our main tech-
nical result, Theorem [6.4.2] To be able to avoid restrictions on the ramifi-
cation index of K, we are compelled to employ the theory of Breuil-Kisin
modules [Kis06]. This allows us to give a uniform treatment of all relevant
cases.

The reader uninterested in the nitty gritty of p-adic Hodge theory, wanting
only to understand the statement of Theorem [2.5.5] can find the relevant

definitions in the first paragraphs of § and

2.1. Breuil-Kisin modules and p-divisible groups. Fix a prime p. Let
Q;lg be an algebraic closure of Q,, and let C, be its completion. Set W =
W(]Fglg) and let Frac(W )8 c C, be the algebraic closure of its fraction field
Frac(W). Let K c Frac(W)®# be a finite extension of Frac(1), and let

Ik = Gal(Frac(W)8/K)

be its absolute Galois group.

Set & = W{|u|], the power series ring over W in the variable u. Fix a
uniformizer w € Ok and let £(u) € W[u] be the associated Eisenstein poly-
nomial satisfying £(0) = p. A Breuil-Kisin module over O (with respect to
w) is a pair (M, po), where M is a finite free S-module and

oo s @ MET] > M[E]

is an isomorphism of &G-modules. Here, ¢ : & - & is the Frobenius lift that
extends the canonical Frobenius automorphism Fr : W — W and satisfies
o(u) =uP.

Usually, the map @gy will be clear from context and we will denote the
Breuil-Kisin module by its underlying G-module 901.

We will write 1 for the Breuil-Kisin module whose underlying G-module
is just & equipped with the canonical identification ¢*& = G&.

By [Kis10], there is a fully faithful tensor functor 9t from the category of
Zy,-lattices in crystalline I' g-representations to the category of Breuil-Kisin
modules over Og. It has various useful properties. To describe them, fix a
crystalline Z,-representation A. Then:

e There is a canonical isomorphism of F-isocrystals over Frac(WW):

(2.1.1) M(A) /uM(A)[p '] = Deris(A) = (A ®z, Bexis)' ¥
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e If we equip ¢*IM(A) with the descending filtration Fil®*¢*9 given
by

Fil'g*M(A) = {2 € 0" M(A) : pan(a) (@) € E(u)'M(A)},
then there is a canonical isomorphism of filtered K-vector spaces

(212) (SD*SJI(A)/E(U)@*W(A))D?_I] i K ®1-71“ac(I/V) Dcris(A)‘

Here, the left hand side is equipped with the filtration induced from
Fil*o*M(A).

Kisin’s functor can be used to classify p-divisible groups over Ok. This
was done by Kisin himself [Kis06] when p > 2, and the case p = 2 was dealt
with by W. Kim [Kim12]. We now present a summary of their results.

We will say that 9T has £-height 1 if the isomorphism gy arises from a
map ¢*9 — 9 whose cokernel is killed by &£ (u).

Let S - Ok be the p-adic completion of the divided power envelope of

the surjection
u—>w

The natural map W[u] - S extends to an embedding & — S, and the
Frobenius lift ¢ : & - G extends continuously to an endomorphism ¢ : .S —
S.

Write FillS c S for the kernel of the map S - Og. If 9 is a Breuil-Kisin
module of £-height 1, and M =S ®, ¢ M, we will set

(2.1.3) Fil'M = {z e M = S®sp* M : (1&pm)(z) € Fil' S®gM c SesM}.

The image of Fil'lM in Og ®s M = Ok ®¢ ©*M is a Og-linear direct
summand, and so equips the ambient space with a two-step descending
filtration.

For any p-divisible group H over a p-adically complete ring R, we will
consider the contravariant Dieudonné F-crystal D(#) associated with H
(see for instance [BBMS82]).

Given any nilpotent thickening R’ - R, whose kernel is equipped with
divided powers, we can evaluate D(H) on R’ to obtain a finite projective
R’-module D(H)(R') (this construction depends on the choice of divided
power structure, which will be specified or evident from context). If R’
admits a Frobenius lift ¢ : R" - R’, then we get a canonical map

¢ : " D(H)(R') > D(H)(R')

obtained from the F-crystal structure on D(H).

An example of a (formal) divided power thickening is any surjection of the
form R’ — R'/pR’, where we equip pR’ with the canonical divided power
structure induced from that on pZ,. Another example is the surjection
S — Ok considered above.

The evaluation on the trivial thickening R — R gives us a projective R-
module D(H)(R) of finite rank equipped with a short exact sequence of
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projective R-modules:
0 — Lie(H)" > D(H)(R) - Lie(H") - 0.
We will set
Fil'D(H)(R) < Lie(H)" c D(H)(R),
and term it the Hodge filtration.

Theorem 2.1.1. For any p-divisible group H over Ok, write H" for its
Cartier dual. Then the functor H — M(T,(H")) is an exact contravariant
equivalence of categories from the category of p-divisible groups over O to
the category of Breuil-Kisin modules of £-height 1. Moreover, if we abbre-

viate

M(H) € M(T,(H)"),

then the functor has the following properties:
(1) The p-equivariant composition

Pom(H)

P IM(H) fup™ M(H) —— M(H) [uM(H)[p™']

Dens(T (1)) S D)W [p ']

maps ©*M(H) [up*IM(H) isomorphically onto D(H)(W'). Here, in
a slight abuse of notation, we write D(H)(W') for the evaluation on
W of the Dieudonné F-crystal associated with the reduction of H

over F3'8,
(2) The filtered isomorphism

oM/ MA ™ B2 K Sppaeqy Ders(Tp(H)”)

= D(H)(Ox) ']
maps @*M(H)/E(u)*M(H) isomorphically onto D(H)(Ok).
(3) There is a canonical p-equivariant isomorphism
S ®p.6 M(H) = D(H)(S)
whose reduction along the map S — O gives the filtration preserving

isomorphism in .

Proof. This follows from [Kisal, Theorem 1.1.6], using the work of Kim [Kim12]
when p = 2. Note that this corrects an error in the statement of [Kis10, The-
orem 1.4.2], which is off by a Tate twist. O

2.2. Lubin-Tate groups. Fix a finite extension E of Q,, and a uniformizer
g € E. Let e(X) € Og[X] be a Lubin-Tate polynomial associated with 7,
so that

e(X)=npX (mod X?),
e(X)=X? (mod 7).
Here, g = #kg is the size of the residue field kg of E.
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Let G = Spf(Og[|X|]) be the unique formal Og-module in one variable
over O with multiplication by 7 given by the polynomial [7g](X) = e(X).
For each n € Zsq, write G[] for the 7j-torsion Op-submodule of G. These
fit into a mg-divisible group G[73 ] over Op.

Assume now that we have an embedding F — K. We obtain a formal Op-
module Go, over Ok and a mg-divisible group G[7% |o,. For simplicity,
we will omit Ok from the subscripts in what follows, and so will be viewing
both G and G[75 | as objects over O.

Let

Trp(G) % lm Gl ] (Frac(W)™5).

n

be the mg-adic Tate module associated with G[w3; ]. This a crystalline Z,-
representation of I'x equipped with an Og-action, making it an Og-module
of rank 1. We will now describe the associated Breuil-Kisin module

M(G) € M(Try (G)")

with its Op-action. This will involve constructing an explicit candidate 9t
for such a module, and then showing that this candidate is indeed isomorphic
to M(G).

Let Ey c E be the maximal unramified subextension, and let Emb(Ej) be
the set of embeddings Fy — Frac(W). Let 1o € Emb(Ey) be the distinguished
element induced by the embedding F — K. The Frobenius automorphism
Fr of W acts on Emb(FEj), and every ¢ e Emb(Ep) is of the form Fri(sg) for
a unique i € {0,1,...,dp — 1}, where dy = [Ep : Qp].

The underlying O g-equivariant G-module for our candidate is

M=68z,0p= D 60,0, 0=,
teEmb(Ep) t

where, for . € Emb(Ep), we have set W, = W ®, 0, Op and &, = W,[|u]].
There is a canonical Og-equivariant identification of &-modules

90*9}( = @SO*GFr_l(L) = @ S, =M.
L L
The & ®z, Og-equivariant isomorphism gy will now arise from a map
o "M =M — M,

for some

Be(&®z, Op)n(6[E']®z, Op) = [] 6&.n&lE7']
teEmb(Ep)

To describe B explicitly, we have to specify each of its components

B e, nG[E T c,[E7.
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Let &,,(u) € W, [u] be the Eisenstein polynomial for w over W, satisfying
E,,(0) =1o(mg), and set

1 otherwise.

8, = {ELO (u) ife=1

From 9)1, we obtain an abstract ‘crystalline’ realization

(2.2.1) M ris def W ®g go*im =W ®z, O = @ w,,

where we view W as an G-algebra via u ~ 0. This also identifes Fr* Mg
with @, W,. Under these identifications, the F-crystal structure on M, is
given by multiplication by the image of 8 under

®1 ®1—0
(G ®Zp Og <p_) (] ®Zp Or i W®Zp Og.

This image is easy to describe: Its (-component is 1 when ¢ # Fr(¢g), while
its Fr(zo)-component is Fr(io(7x)) € Wiy(,)-
Similarly, we obtain an abstract ‘de Rham’ realization

(2.2.2) Myr € Ok ®6 ¢™M,

where we view Ok as an G-algebra via u — w. Write M, for the t-isotypic
component of Myg; this is simply

def
Ok, = Ok ®,0,, OF

viewed as a module over itself.
The recipe in 1D also gives us a direct summand FillMdR c Mgr. This
is an Ok ®z, Og-stable submodule, and so it suffices to specify its ¢-isotypic

component Fil' M, ¢ M, for each ¢. To do this, we first need to describe the
subspace Fil'o*M. By definition, we have

Fillo* O = {z € "M : pop(x) € E(u)M}.
From this, we deduce

{ze6,: &, (u)reE(u)S,} if 1=

2.2.3 Fil'p™m) =
( ) ( ) )L {5(U)GL otherwise.

Reducing mod £(u), we now find

{reM,: £ (w@l)x=0} ifct=1

(2.2.4) Fil' M, = _
0 otherwise.

Clearly, 9t has £-height 1. Therefore, by Theorem there exists a
p-divisible group H over Ok, equipped with an Og-module structure, such
that 9T = M(H ). Moreover, the Og-action on I translates to an Og-action
on H.
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Let T, (#) be the mg-adic Tate module over K associated with H. We
can use the explicit descriptions of M,is and Myr above to obtain a descrip-
tion of the associated E-equivariant, filtered p-module

def
Dcris :e Dcris(Tﬂ'E(H)v)-

The underlying Frac(W)-vector space is
Deris = Meis[p™t] = Frac(W) ®q, E = @ Frac(W),.
L

As before, this description also identifies Fr* D5 with @, Frac(WW),, and
under these identifications, the F-isocrystal structure on Dy, is given simply
by multiplication by m,, on the ¢-factor, and the identity on the remaining
factors.

To complete our description, we need to know the subspace

FﬂlDdR Cc DdR =K ®Frac(W) Dcris'

Let D, ¢ Dgr be the t-isotypic component. This is a rank 1 free module
over K, = K @y W,. Note that we have a quotient map

(2.2.5) Kyo=K®,p FE—~K

induced by the distinguished embedding £ — K. This gives us an idem-
potent projector eg : K,, - K,;, such that 1} identifies egK,, — K.
From (2.2.4), we now have

Fil' Dgr = @Fil'D, c P D,,
L L
where

FilD, epD, 1=y
‘ 0 otherwise.

Proposition 2.2.1. There is a Og-equivariant isomorphism
M(G) > Mm

of Breuil-Kisin modules. In particular, we have Og-equivariant isomor-
phisms

D(G)(W) = Mais,  D(G)(Ok) — Mar
of F'-crystals over W and filtered O -modules, respectively.

Proof. The first assertion of the proposition amounts to showing that we
have an Og-equivariant isomorphism

Tep(H) = Trp(G)

of mp-adic Tate modules over K. In fact, since all Og-lattices in Ty, (G)[p~!]
are simply dilations of T, (G) by powers of 7, it is enough to show that
we have an Og-equivariant isomorphism

Trp (M) = Trp (G071
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To do this, we will show that the admissible filtered ¢-modules associated
with the two representations are Og-equivariantly isomorphic. We have
already computed the admissible p-module D5 associated with T, (H)".
So we have to check that it agrees with that obtained from 7%, (G)". This
follows from [RZ96, Lemma 1.22].

The last assertion follows from the first via , and of Theorem

O

2.3. Special endomorphisms. We will assume that F is equipped with
a non-trivial involution 7. Let F c E be the fixed field of 7. If E/F is
unramified, then we will further assume that the uniformizer g is in fact
a uniformizer in F'. Given a p-adically complete Op-algebra R, a special
endomorphism of Gr will be an element f € End(Gr) such that

f([al(X)) = [7(a)](F (X)),
for any a € Op. Write V(Gg) for the space of special endomorphisms of G.
The following proposition is clear.
Proposition 2.3.1.
(1) The subspace V(Gr) c End(GRr) is Op-stable. If it is non-zero, then
it is a finite free Og-module of rank 1.
(2) For any x1,x2 € V(GR), there exists a unique (x1,x2) € Op such that
z1 0wy = [(21,22)] € Endo, (GrR)-
(3) The pairing (x1,x2) ~ (x1,22) is a Hermitian pairing on V(GR).
It will be useful to have the following notation: Let R be a commutative
ring with a non-trivial involution 7. For any R-module M, we will set:
V(M,7)={f€eEnd(M): f(a-m) =7(a)f(m), for all a € R}.

This is an R-submodule of End(M), where we equip the latter with the R-
module structure obtained from post-composition with scalar multiplication
by R.

The embedding ¢ty € Emb(FE)) induces an embedding kg — IFZlg. Set

V(G) = V(g]pglg)
and
‘/cris(g) = V(Mcrisa T)a

where we view M5 as an O ®z, W-module.
We now have the following easy lemma, whose proof we omit.

Lemma 2.3.2.

(1) Veis(G) is an Og-stable subspace of End(Meyis), which is free of rank
1 over W ®z, Og. Conjugation by @o : Fr* Meyis = Meis induces a
Og ®z, W-linear automorphism

¢ Fr* Veis () [p7'] = Venis(G) [p 7]
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(2) There is a canonical identification

V(G1) = Veris (G) 77

of V(G1) with the p-equivariant elements in Viyis(G).
(3) For x,y € Viis(G), x oy € End(Meis) corresponds to multiplication
by an element (x,y) e W ®z, Op. The assignment

(.’L’,y) = <$7y> eWw ®Zp OE

is a T-Hermitian form on Viis(G), which restricts to the canonical
Opg-valued Hermitian form on V(Gy) from Proposition|2.5.1].

It will be useful to have an explicit description of V¢,i5(G) along with that
of the conjugation action of the semi-linear endomorphism g of Ms. This
is easily deduced from the explicit description of M from .

For each « € Emb(Ep), set V, =W ®, 0, V(Op,7). This is a rank 1 free
module over W,. Using , we now obtain a canonical Opg-equivariant
identification

Vais(9) =W ez, V(Op,7)= @ V.
teEmb(Ep)
This also identifes Fr*Veyis(G) with @,epmb(5,) Ve-
As before, set dy = [Ep : Qp]. Any element of Viis(G) is a tuple of the
form f = (fi)o<i<d,~1 for some a; € VFri(LO), and

0(f)i = mip(fir1) € Vi (oy [0,

for certain n; € Frac(Wg () )-

To pin the 7; down, first consider the case where E is unramified over
F'. In this case, mg is a uniformizer for F' by hypothesis, and hence satisfies
T(mg) = 7. Also, T acts non-trivially on Emb(Ey): If r € Zs is such that
2r = dy, we have, for any ¢ € Emb(FE)),

Fr'(v) =7(¢) o

We can now identify
V.= HomWL(W’T(L)7 WL)7
as W,-modules. Here, we view W, as acting on W, (,) via the isomorphism

W, > () induced by 7.

Now, as seen in ([2.2)), the F-crystal structure on M5 corresponds under
the identification ([2.2.1) to multiplication by the element By € W ®z, Og,

whose tg-isotypic component is 1 ® mg, and whose t-isotypic component for
L # 1o is 1. From this we deduce:
leong ifi=1
ni=41eny ifi=r+l
1 otherwise.
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Using this, we easily obtain the following explicit description of the space
V(G1) € Varis(G).
Proposition 2.3.3. When E/F is unramified, V(G1) ¢ Veis(G) consists
precisely of the elements f = (f;) such that:
o foe VI = V(Op,T);
o fi= Frli((l ®TE)ap), for 1 <i<r;
o fi=Fr'(ag), forr+1<i<2r-1.

In particular, we have an isometry

V(1) () = (V(Op,7),7E( )
[ fo
of Hermitian Og-modules, where, for x,y € V(Og,7), {(z,y) € O is the
element such that x oy € End(Og) is multiplication by (x,y).

Let us now consider the case where F/F is ramified. In this case, 7 fixes
every element in Emb(Ey) and so induces involutions 7 : W, - W, for each ¢ €
Emb(Ep). Once again, as in the ramified case, from the explicit description
of the F-crystal structure on M under the identification , we have
V,=V(W,,7), and also

1® . .
0 = 1®T(7;EE) ifi=1
1 otherwise.

So we obtain:

Proposition 2.3.4. When E/F is ramified, V(G1) € Viis(G) consists pre-
cisely of the elements f = (f;) such that:

o fo eV, satisfies (1®7rE)Frd°(f0) =(1e7(mg))fo;
o fi=(1® E<) -Fr'(fo), fori=1,...,dy—1

(7E)
In particular, the map

w ®Zp V(gl) - ‘/cris(g)

is an isomorphism. Moreover, if v € W is such that (1 ® 7)Frd(y) =

(1®7(mg))y, then we have an isometry

(V(gl)u <’7 >) i (V(OEa T)7 ’YT(V)(? ))
of Hermitian Op-modules defined by f — v~ fo.

2.4. Special endomorphisms with denominators. Let R be a p-adically
complete Opg-algebra. Fix an element € E/Opg, and choose any representa-
tive fi € E for it. If p # 0, the positive integer r(p) = —ord, (jz) depends only
on p; if p =0, set r(u) =0. Let [f1] € wér(“)End(gR) be the corresponding
quasi-isogeny from Gg to itself. Set:

Vu(Gr) ={f € V(Gr)[7E']: f - [fi] € Endo,(Gr)}-

This does not depend on the choice of representative fi.
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Proposition 2.4.1. Suppose that E/F is ramified.

(1) If p =0, then V,(Gr) = V(GR).
(2) If 1 #0, then V. (Goy ) is non-empty if and only if

() < ordp (0 - 1.
in which case it is a torsor under translation by V(Go, /=) Here,
0/ is the relative different of E over F.

(3) If p#2 and p#0, then V,(Goy /o) = D-

Proof. For simplicity, set m = ordg(0g,F)-
The first assertion is clear. Suppose therefore that p # 0, and that we

have f € V,(Go, /=) In the notation of Proposition f corresponds

to a tuple (f;) with f; € V,,[75'] = V(W,,,7)[75 ], where f; = Fr'(fy), and

where fy satisfies:

7(7E)
TE

(2.4.1) Frdo(fo) = fo.

Here, we are identifying 7 with the element 1 ® 7 € W,,,.
Moreover, by hypothesis, fo—[ii] € End(W,,). Now, [f] is invariant under
the action of Fr®. Therefore, (2.4.1)) implies:

(1 - M) < fo = fo—FrP(fo) € V.
TR
This implies
m-1=ordg (1 - m) >r(w).
TE

Hence, we find that V,,(Go, /=) = @ whenever 7(u) >m - 1.

Assume now that r(u) < m —1. To finish the proof of assertion (2), we
have to show that we can always find fy as above satisfying and with
fO - [ﬂ] € End(WLO)' N 5

For this, choose any fo € V,,[75'] such that fo - [fi] lies in End(W,,). We
now have

TE_(fo) - fo = ( ) 1) Fr® (fo) + P (fo - [i]) - (o - [i2))-

7(7E) 7(7E)
Since r(p) <m -1, we see that this belongs to V.
Now, notice that the endomorphism

_TE__.Fydo_id
m(7E)

‘/LO ‘/LO

is surjective: Indeed, mod mg, this is immediate from the fact Fp is alge-
braically closed. A simple lifting argument, using the completeness of W,
now does the rest.

Therefore, there exists f{ € V,, with

"E_R () - fh = LR (fo) - fo.
T(7E) T(7E)
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It is an immediate check that we can now take fo = fo — f3.
Assertion (3) is clear from (2), since, when p#2, m—-1=0.
U

2.5. Deformation theory. Assume now that K is generated over Frac(W)
by the image of 1o : E — Frac(W)*#. Set w = 19(7g); this is a uniformizer
for K. For any k € Zs, set Gy, = goK/wk+1, and for each € DEI/F/OE, set

Vi(Gr) € Vil Gore oty

Let Mgr be the de Rham realization of Go, as in : It is a free
Ok ®z, Og-module of rank 1 equipped with the Ok-linear direct summand
Fil' Mg, described in (2.2.4)).

In the notation of § let

def
Var = V(Mar,7) ¢ Endo, (Mar)
be the space of 7-semilinear endomorphisms of Myg.
Given f1, f2 € Vgr, there is a canonical element (f1, f2) € Ox ®z, O such
that, for every m € Mag, (fio f2)(m) = (f1, f2)-m. Set Var = Var ®0,, DEl/F
Similarly, for each k € Zy1, let Mar 1 = Myr ®0, (’)K/wk be the induced
filtered free module over Ok /w”, and let Varg = V(Mgrk, 7). We have

Vark = Var ®0y Ok [/@**1. Set Var i = Var ®0, Ox /o
For each k € Zs1,

N1 v, k
Obg = Vgr ®OK®ZPOE’1®T(LO) OK/W .

This is a rank 1 free module over O /w”.
Now set Oby, = @w* - Oby: This is a 1-dimensional vector space over IE‘Zlg.

Proposition 2.5.1. For each k € Zs1, there is a canonical map

obgs1 1 Vu(Gr) = Obgyq
with the following properties:

(1) An element f € V,,(Gy) lifts to V,,(Gr+1) if and only if oby.1(f) = 0.
(2) If a € Op, then the diagram

obg1

V.(Gr) Obj41
f”a‘fl Lx»—no(ﬂ—(a))-m
Va~y(gk) obgi1 Obk+1

commutes.

Proof. For any p-adicaly complete Og-algebra R, an element f € V,(Gy) can
be viewed as a T-semilinear homomorphism

f:Gr —»Homy, (0g/p,GrR)

of formal Og-modules over R.
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For each k € Zs1, Ok @’ - O /w" is a divided power thickening, and
so every f € V,(Gi) has a canonical crystalline realizatio

Jie1: MaR k+1 ®05 0p/p > MaR k+1,

which is a 7-semilinear homomorphism of O /w**!

®z, Op-modules, and
thus can be viewed as an element fi,q € ‘V/dR,k+1-

We claim that the map oby.; which takes f € V},(Gj) to the image of fi41
in Obg,1 answers to the requirements of the lemma.

For this, set

a = f-[ii] € Endo, (G).

It is easily checked that f lifts to an element of V},(Gy.1) if and only if a
lifts to Endo,. (Gr+1)-

The crystalline realization of a gives a homomorphism

g1t MR g1 = MaR g+1
of O [w"*! ®z, Op-modules.

By Grothendieck-Messing theory [Mes72]—which applies even when p = 2,
by the theory of Zink [Zin01], because G is connected—a lifts to End(Gg1)
if and only if ap,1 preserves the direct summand FillMdRJgﬂ € MyR k+1-

We now use the explicit description of the filtration from (2.2.4)). Since

Eo(u) = -u+1®mg, we find that, in terms of the natural isotypic decom-
position MyR g+1 = ®, MR k+1,., We have:

{xe Mipgs1,: A®mp-—we )z =0} if =1

Fil' M, =
dR,k+1,0 {O otherwise.

Here, we are using the fact that the cokernel of the map

1®7TE*W®1
MR, MR i,

of Og-modules is free of rank 1 over Ok, and hence the formation of its
kernel is compatible with arbitrary base change.
For this, choose an Ok (,,)-module generator u € Vg  r(,0), and let c €

(QKJ(LO)/(w’”1 ® 1) be such that ¢-u = fry1. The proposition will follow
once we show that f lifts to V,,(G+1) if and only if ¢ maps to 0 under

1®7(to)

Ok ()@ 1) = (Ok /7" ) @1(49),05,, OF Ok ="

Equivalently, if and only if ce (1 7(wg) - w® 1) - OKJ(LO)/(wk*l ®1).
First, suppose that E/F' is unramified. In this case Vg x+1 = fde,;ﬁl, we
can take i =0, and f lifts precisely when we have

Frs1 (Fi' Myg gs1) © Fil' MR g1

Now, we have

. =1 def
U(FlllMdR’kJrl) =Fil MdR,k+1 = {.’L’ € MdR,k+1,T(L0) : (1®T(7TE)—W®1)w = 0}.

1Recall that we are using the contravariant Dieudonné F-crystal.
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Therefore, we must have c- (ﬁlMdR7k+1) = 0, which is precisely equivalent
toce(le7(mg)-we®l).

Suppose now that E/F is ramified, so that 1o = 7(19) € Emb(Ep). In this
case, the homomorphism

Thi10 = 1 ® it MR k41,00 ®0p 0p/F > MaR k41

lifts to the endomorphism a1, € Endo, (Mdr k+1,,)- The proposition now

reduces to the following easy observation: Suppose that fo, € Var is such
that foo —1® i € Endop, (Mgr). Then we have

(foo = 1® ) (Fil' Mar 1) © Fil' Mar 1
if and only if foo,, € (1®T(7rE)—w®1)-f/'dR’L0. O
Suppose that k < e, so that the surjection
Wu]/(u*) == Ok /(")

is a divided power thickening (its kernel is generated by p). Upon evaluating
the crystal D(G) on this thickening, we obtain a free W[u]/(u") ®z, Op-
module Mj, of rank 1. Using the Frobenius lift ¢ on W{u]/(u"*) satisfying
o(u) = uP and the F-crystal structure on D(G), we also obtain a canonical
Wlu]/(u*) ®z, Op-linear map
Pk " My > M.

Let Vi = V(My, 7) be the space of 1® 7-semilinear endomorphisms of the

Wlu]/(u*)®z, Op-module My,. Conjugation by ¢y, induces an isomorphism

er e Vel 1S Velp ]
Set f/k =V, ®o, DZ?I/F'

The Og-module structures on My, V. and f/k equips them with isotypic
decompositions

M =@M, ; V=@ Vi ; Vi = D Vi,

Lemma 2.5.2.

(1) For each k < e, the reduction map Vi — Veis(G) induces an isomor-

phism Vi[p™' 17 = V(G)[p™].
(2) Suppose that k < e and that f € V,(Gy). Set

k . .
feer = L' @ 7(mp)* ™ e W)/ (") 814,05, O
Then obk,1(f) =0 if and only if

Brst Frstrto) € 1@ T(mE)™ ) Vit 1 00)-
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Proof. The first assertion is well-known, and is essentially Dwork’s trick:
Given an element fy € V(G1)[p~'], and any lift f e Vi[p~'], cpi’l(f) €
Vi[p~!] will be the unique @j-invariant lift of f;.

For the second assertion, by multiplying both sides of the condition by

(1®7(mg) —u®1l), we see that it is equivalent to:
(2.5.1) Frtr(o) € 1@ T(TE) —u®1) Vit 1 (10)-

The pre-image Fil'! My, of FillMdR,kH in Mg,1 can be explicitly de-
scribed using (2.2.3) and the canonical isomorphism

P Mag W]/ (") = My
obtained from assertion (3) of Theorem We find:

E(u)e1

Fill Mg = —————
' Pl 1emg-—u®l

: Mk+1,L0 +&(u) - My

Now, W{u]/(u*) - Ox/w" is a divided power thickening, its kernel be-
ing the ideal (p,u*'), and fi.1, by virtue of being characterized by its
pp-invariance, is the evaluation of the crystalline realization of f on this
thickening. Therefore, oby,1(f) vanishes if and only if fk+1 —1® [i preserves
the submodule Fil' My, € Mg,1.

If E/F is unramified, then we can take fi = 0, and the condition translates
to:

£(u)
le7(mg)-u®l

This is easily seen to be equivalent to .

Now, suppose that E/F is ramified. Fix a W,,[u]/(u**!)-module gener-
ator x € Mp,1,,.- Then the image of FillMdR,kH,LO under karLLO -1Qfis
generated by

) fk+1,T(Lo) € 5(u) 'Vk+1,Lo'

E(u)®1
ler(mg)-u®l

E(u)®1l
lemg—-u®l

10 (2) - S(1®f)- .

This lies in Fil' M k+1, if and only if we have
(1@rp-u®l) fri1.,(2)-(107(1E)~uel)(18/)-x € (1&7(TE)~u®1) M1,
Equivalently, if and only if
(1 (75 - 7(75))) frriu () € 1O T(7E) —u® 1) My,
which, as is once again easily verified, is equivalent to (2.5.1]). O

Lemma 2.5.3. For any k € Zs1, suppose that f € V,(Gy) is such that f does
not lift to V,,(Gi+1). Then, for every a € O with ordg(a) =1, a-f € Vo, (Gr)
lifts to Vo (Gre1) but not to Vi, (Gryz).

Proof. It is immediate from Proposition that
obgs1(a- f) = to(r(a))obgs1(f)
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vanishes. Therefore, a- f lifts to V4., (Gr+1). It remains to show that it does
not lift to V4., (Gr+2); that is, we must show that oby.o(a- f) # 0.

Suppose first that k < e, where e = eg is the absolute ramification index
of E, and suppose that obg.o(a- f) = 0. We then claim that obg,1(f) =0
Indeed, this follows easily from assertion (2) of Lemmam and the identity

Brsz=(1®7(7g)) - Brs1  (mod uF*h).
This shows the lemma when & < e.
Now suppose that k > e. Then the map Og — (’)K/w'C is a divided power
thickening. Therefore, f € V,(Gx) has a crystalline realization feis € Var

k+1

whose reduction mod w™" " is the crystalline realization fr,1 € VdR’mL Set

—~7 def
Ob = ‘/dR ®OK®Z OE,1®T(LQ) OK
Then, ODb is a rank 1 finite free Og-module, and, for each i € Zs1, we have
Ole = Ob R0k OK/wﬁl
The hypothesis obk+1( f) # 0 means that that the image of f.s in Ob

does not lie in **1-Ob. In turn, this 1mphes that, the image of (a- f)cris =
(1®a)- feris in Ob does not lie in w’“Q ODb, and thus that obgsa(a-f)#0. O

Define a function
OI“dE : V(gl)@ - Z,
given by two defining properties:
e Ifac E, and f € V(G)g, then
ordg(a- f) =ordg(a) +ordg(f).
e If feV(Gy) is an Og-module generator, then

if £ is unramified over F’;

d
ordp(f) = {ordE(DE/F) if F is ramified over F'.

Lemma 2.5.4. If f € V,(G1) is such that ordg(f) =1, then f does not lift
to Vu(gg)

Proof. Let feis € Varis(G) = Veris(G) ®0p 05 /  be the crystalline realization

of f. Observe that, by Propositions and [2.3.4] the hypothesis ordg(f) =
1 implies:

def

fcris,T(Lo) € (1 ® WE) ’ f/ms(g)\(l ® 7T2E) ’ ‘\}vcris(g)'

Now, one only needs to observe that Ox/w? is either W/p?W or the
ring Falg[ 1/(u?) of dual numbers, and that, in either case, there exists an
isomorphism

Veris(G) ®w O [w* = ViR 2

of Ok /w2 ®z, Op-modules carrying feis to the crystalline lift fo € f/dR,g.
This immediately implies oba(f) # 0, and thus gives us the lemma.
O
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Theorem 2.5.5. Suppose that f € V,,(G1). Then f lifts to V,(Gx) if and
only if ordg(f) > k.

Proof. Immediate from Lemmas and O

3. CM SHIMURA VARIETIES

Our goal in this section is to study a certain zero dimensional Shimura
variety. The proof of the main Theorem will proceed by embedding this
zero dimensional variety into the higher dimensional GSpin Shimura varieties
studied in the next section, and then computing the degree of the special
divisors on the ambient Shimura variety along the resulting arithmetic curve.

As with the GSpin Shimura varieties themselves, the zero dimensional
variety studied here does not admit any obvious moduli interpretation. In-
stead, we have to resort to abstract existence theorems, working consistently
with the various realizations of the putative motives that live over the va-
riety, and exploiting properties arising from the comparison isomorphisms
among them. As a result, the exposition is necessarily somewhat technical.

Now for some notational conventions that will be in force throughout the
section: We will fix a CM field £ with totally real subfield F'. We will also
take Q2 to be the algebraic closure in C of Q and write I'g for the absolute
Galois group Gal(Q#/Q). For any algebraic torus A over Q, we will write
X*(A) (resp. X«(A)) for the I'g-module of characters (resp. cocharacters)
of A.

If 11 : G,, > A is a cocharacter with field of definition F c Q& then its
reflex norm is given by

(A, 1) : RespigGm Hes Resp A M A.
Here, Resp/gA is the Weil restriction of the base change of A over F', Res 11
is the Weil restriction of u, and Nmp/q is the usual norm map.

3.1. A zero dimensional Shimura variety. For any Q-algebra R, abbre-
viate Tr = Resg/gGm. Set

Th =ker(Nm: Tp —» G,y,),

and T = TE/T}. The natural diagonal embedding G,, — Tg induces an
embedding G,,, = T. Set

TSO = ker(NmE/F . TE i TF).
The rule x — 2/T defines a surjection
0:Tg - T,

inducing isomorphisms Tg/TF 35T /G, > T.,. The character groups of
these tori can be described explicitly. If for any number field M/Q we set

Emb(M) = {Embeddings M — Q®8},
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then we have natural identifications

(BL1)  X'(Tp)- @ Z-L,

teEmb(E)

X*(T) = {Z a,[t] € X*(TEg) : a, + az is independent of L}

X*(Tso) = {Z a,[t] € X*(Tg) : a, + az = 0, for all L}

of I'g-modules.

Identify Emb(FE) with the set of embeddings FE — C, and enumerate the
real embeddings F' — R as tg,...,tq-1. We will declare ¢y a distinguished
embedding, and we will fix, once and for all, an extension ¢y € Emb(F) of
this embedding.

Define a cocharacter pg € X.(Tg) by the formula

1 if v = Lo
0 otherwise.

(3.1.2) (1o, [1]) = {

We will also denote the induced cocharacter of T' by pg. The field of defini-
tion for yg is to(E) c Q28 c C. If no confusion can arise, we will identify E
with this subfield of C.

In our situation, the reﬂex norm r(7Tg, o) simplifies considerably: It is

simply the identity Tx o, Tg. In particular, the reflex norm (T, po) : T —
T associated with pg € X, (T) is just the natural surjection from Tg to T.

Let (T, po)e : (Qe®qg E)* - T(Qy) be the evaluation of this map on Q.
We will write (7, o) : EY = T'(Qy) for its restriction to EY. We also have
the adélic version

(T, po)(Ay) : A g — T(Ay).

Fix a compact open subgroup K c T'(Ay). To the triple (T, uo, K) we
can attach a finite étale algebraic stack Yx over F, which we will call a CM
Shimura variety. This is constructed as follows. Consider the composition

r(T,po)(Ay)

T(Ay) - T(Ay)/T(Q)K.

This factors via the global reciprocity map through the abelianization of the
Galois group ' = Gal(Q¥8/E). Therefore, we obtain a homomorphism

r(T, o) : T - T(Ay)/T(Q)K.

Now, suppose that K is neat: This is equivalent to requiring that KnT'(Q)
be torsion—freeE] Then Yy will be a finite étale scheme over E corresponding
to the I'g-set

A% g

)

Yi (Q8) = T(Q)\{uo} x T(Ay)/K,

2For instance, one can take K to be the image of the elements in (Oz ® Z)* that are
congruent to 1 mod 3.
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equipped with the Galois action obtained from the map rx (7T, 1p). More
precisely, there is a natural action of T'(A;)/T(Q)K on Yx(Q*#) obtained
via the right multiplication on T'(A ;) on itself. The action of I'g on Yy (Q#)
is the one induced from that of T'(A;)/T'(Q)K via the map rg (7 yug). For
general K, choose a neat compact open subgroup K’ ¢ K. Then Yy will be
the stack quotient of Yy by the action of the finite group K/K'.

3.2. The integral model. We will now choose a particular maximal com-
pact Ko c T(Ayf). Using the identification

(Qpeg E)*
Tso(@p) = &x’
(Qp ®Q F)
we define Ko 5, to be the subgroup
(Zp 82 0)"
3.2.1 Kopso=———"—"""—cTs(Qy).
( ) 0,p, (Zp ®7 OF)X ( p)

This will be the image of Ky in Ts,(Qp).
The long exact sequence of I'g,-cohomology associated with the short
exact sequence

1—>T}—>TE—>T—>1

gives us a short exact sequence

(Qp ®Q E)X . )
(Qp ®g F)Nm=1 - T(Qp) - §|2(@10/Nrr1(Fp ) = 0.

Here, p varies over the p-adic places of F. Now define Ky, c T(Q,) to be
the largest subgroup mapping to Ko p so € Tso(Qp), and to @y, Z;/Nm(O}p)
under (3.2.2)). It sits in a short exact sequence

(3.2.2) 0-

1 - Z, - Kop— Kopso— 1.

Finally, set Ko =[], Kop-
For any compact open subgroup K c T'(A¢), let Yk be the normalization
of Spec(Op) in Yk (see Definition below). Set Yy = Yk, and Vo = Vi, -

Proposition 3.2.1. Let K c T(Ay¢) be a compact open subgroup. Suppose
that p is a prime such that K, = Koy, and set Og, = Op ®7 Zy. Then
YKk ®0, Op,p is finite étale over Og,. In particular, Yo is a finite étale
algebraic stack over Of.

Proof. By construction, Vg is normal and finite flat over Op. We need to
study the ramification of Y. This is easily done from its explicit description.

Fix a prime q ¢ O lying above a rational prime p. Fix an algebraic
closure Qzlg of Q, and an embedding 7, : Qe o Qzlg such that the closure
of n,(E) c Q¥ is E,. This allows us to identify T Eq = Gal(Q%¢/E,) with a
subgroup of I'g.
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Set

Yiq = Y Xgpec(E) SPec(Ey)
ychl = VK XSpec(Of) SpeC(OE,q);
so that Y 4 is a finite étale algebraic stack over E,. Assume that K is

neat. Then Yy 4 is the finite étale scheme over Ey associated, via the local
reciprocity map, with the composition

X T(T”u())q

Ef ——T(Q) ~ T(Ap)/T(Q)K.

Therefore, the ramification of Y , over E), is controlled by

(T,
ker(OE’q (T.p0)q

T(Qp)/Kp)-

More precisely, the completed étale local ring of Y 4 at any Fglg—valued point
will be the ring of integers in the finite abelian extension of the compositum
W(]Fglg)(’)E,q classified by the above compact open subgroup of OF ,.

From this, we conclude that to show that Vi 4 is finite étale over O 4, it
is enough to show that

7,(71 NO)q(OE,q) c KO,p-

From the definition of r(7 p0), this subgroup is exactly the image of O}, q
under the map Tr(Q,) - T(Qp). It follows easily from the definition of
Ky that it must contain this image. ([

3.3. Automorphic sheaves I. Fix a compact open subgroup K c T'(Ay).
We will now construct some natural sheaves on Y.

First, suppose that we have an algebraic Q-representation N of 7. Then
we obtain a local system of Q-vector spaces

T(Q\ ({no} x N x T(Af)/K)

over Vi (C). If we fix a K-stable lattice N ¢ Na,, we get a local system
Np of Z-vector spaces underlying this local system, where the fiber of Np
over a point [(uo,t)] of Vi (Ay) is tNgn N.

We can also associate with N the vector bundle

Narc = T(Q\ ({0} x Ne x T(Ap)/K)

over Vi (C). Here, we have equipped N¢ with its topological structure as a
C-vector space. There is a canonical isomorphism

O)/K((C) ®z Np > NdR,(C

of vector bundles over Vg (C).
Let vg be the infinite place of ¥ underlying the distinguished embedding
tp. Viathe identification E,, = C obtained from ¢(, we have a homomorphism

7"(,1—‘7/'1'0 )’U()

(3.3.1) C* = E} T(R)
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d

where 7(T', po)y, is as defined in §3.1} This homomorphism equips the T¢-
representation N¢ with a Hodge structure whose Hodge filtration is split
by the cocharacter ug'. Since this Hodge structure is 7'(Q)-equivariant, it
descends to one on the vector bundle Ngr c, and so we obtain a Hodge
filtration Fil*Ngr,c on Ngr,c. Therefore, the tuple

(N, Nar,c, Fil* Nar,c, Oy, (c) ®2 N5 = Narc)

corresponds to a variation of Z-Hodge structures on Vg (C), which we denote
by Nuqg. The assignment of Nyqg to the pair (N, N5) is clearly functorial.

Fix a prime £. Suppose that K, c Ky is a compact open subgroup, and
set K' = K;K*cT(Ay). Then the proof of Proposition shows that the
map of integral models Vg — Vi is finite étale over Og[¢~]. In particular,
the pro-finite Og-scheme

Vel = lim Ve[ 7]
KjcK,

is a pro-finite Galois cover of Yy [¢~!] with Galois group K,. Therefore,

we obtain a functor from continuous ¢-adic representations of K to locally
constant f-adic sheaves on Vg [¢~!] via the contraction product

Ny No= (Ve[7'] x Np) /Ky
The next result is easily checked from the definitions.
Proposition 3.3.1. Suppose that N is a Q-linear algebraic representation

of T' and that Nz c Ny, is a K-stable Z-lattice. Then, for each {, there is a
canonical isomorphism

Zg ® NB i NZglyK((C)
of £-adic local systems on YV (C).

3.4. Abelian schemes. The norm character Nmpg/g : Tr — Q factors
through a homomorphism Nm : T - G,,. Suppose that H is a faithful
Q-representation of T' that admits a T-invariant symplectic pairing

Y :Hx H - Q(Nm)
such that the Hodge structure on H arising from the map (3.3.1)) has weights
(0,-1),(-1,0) and is polarized by .
For any K-stable lattice H5 ¢ Hy, on which ¢ takes values in Z, the as-
sociated variation of Z-Hodge structures Hygg over Vi (C) is the homology

of a polarized abelian scheme over Vi c¢. This abelian scheme is associated
with a map of Shimura varieties

yK,(C - Xr,m,(Ca

where 2r = dimg(H), m? is the discriminant of ¢ restricted to Hs, and
X;m is the Siegel modular scheme over Z parameterizing polarized abelian
varieties of dimension r and degree m. By the theory of canonical models,
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this descends to a map Yx — &,.,,, g over E, and so we obtain a polarized
abelian scheme Ag g - Y.

Proposition 3.4.1. The abelian scheme Ap g extends canonically to an
abelian scheme Ay — Vi . Moreover, for any prime £, the £-adic Tate mod-
ule of Ag, viewed as an (-adic sheaf over Y [0~1] is canonically isomorphic
to HZg-

Proof. For any prime ¢, it is immediate from Proposition[3.3.1]and the theory
of canonical models that the f-adic Tate module of Ap g is canonically
isomorphic to the restriction of Hyz, to Yg. Since this sheaf extends to a
lisse sheaf over Vg [¢71], it follows from the Néron-Ogg-Shafarevich criterion
for good reduction that Ay o extends to an abelian scheme over Vi [¢7!]
for each prime £, and hence to an abelian scheme Ay — Yk, whose f-adic
Tate module is canonically isomorphic to Hz,. ]

We will now give an explicit construction of such a symplectic represen-
tation. Write CM(E) for the set of CM types ® for E; these are the subsets
® c Emb(F) satisfying

®ud =Emb(E).
The total reflex algebra of E is the étale Q-algebra E' equipped with an
isomorphism
Hom(E!, Q%) 5 CM(E)
as sets with I'g-actions. It is easily checked that E' is a product of CM
fields, and is in particular equipped with a canonical complex conjugation
x + T, corresponding to the involution ® + ® on CM(E).

There is a total reflex norm Nm' : T, - Tpy, which factors through an

embedding

(3.4.1) Nmt : T o Thy.

This map can be described explicitly on the level of the associated character
groups. Using the natural identification of I'g-modules of (3.1.1]), along with

X' (Tp)= @ z-[2],
PeCM(E)
it is given by

X' (Nm?) : [@] = P[],

1ed
Write H! for E' viewed as a representation of Ty via multiplication. Via
the map Nm! : 7' — Ty of (3.4.1)), we can consider H! also as a representation
of T.
For ® e CM(FE), write 1 for the corresponding element in

Hom(E!, Q*#) = Hom(E*,C).

Fix a non-zero element ¢ € E! such that, for any ® € CM(E) with ¢9 € ®, we
have 1 (&) € Ryg - .
The following proposition is an easy check from the definitions.
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Proposition 3.4.2. The pairing (z,y) = Trgio(§2y) gives rise to a T'-
equivariant symplectic pairing

¢t HY x H' - Q(Nm)

such that the Hodge structure on H' arising from the map (3.3.1)) has weights
(0,-1),(~1,0) and is polarized by '

3.5. Automorphic sheaves II. Recall from that we have a canonical
functor N = (Nggr,c, Fil* Ngr c) from algebraic Q-representations N of T to
filtered vector bundles over Vg (C). We can interpret this a bit differently.
Given any FE-linear algebraic representation M of E ®g 7', the constant
vector bundle

{po} x Mc xT(Ag)/K

over {uo} xT(Af)/K is T(Q)-equivariant, and so descends to a vector bun-
dle Mygr,c over Vg (C). When restricted to a Q-linear representation N
equipped with the filration Fil®* Ng split by the cocharacter pg, this functor
recovers the filtered vector bundle associated with N.

Proposition 3.5.1. For any E-linear representation M of E®qT, the vec-
tor bundle Mg c has a canonical and functorial descent to a vector bundle
Mgr g over Yi. In particular, for any Q-linear representation N, the fil-
tered vector bundle (Nggr,c, Fil* Ngr,c) has a functorial descent to a filtered
vector bundle (Ngr,q, Fil* Ngr,g) over Yk.

Proof. This is essentially a consequence of Deligne’s theorem showing that
all Hodge cycles on abelian varieties are absolutely Hodge [DMOS82, Ch.
I]; see also [Har85| §3.15]. We sketch a proof here.

Take H to be a faithful Q-representation of 1" as in § so that the
associated variation of Hodge structures Hyqg (associated with some choice
of K-invariant lattice in H4 f) corresponds to a canonical abelian scheme A g
over Vi. We can always find such a representation; see Proposition [3.4.2
The relative first de Rham homology of A over Y gives a canonical descent
of Hyr,c to a vector bundle Hygr g over Y.

Let H® (resp. H?R’Q) be the direct sum of tensor powers of H (resp.
H?R,Q
pointwise stabilizer in GL(H) is T'. By the functoriality of the construction
N +— Npugqg, these tensors give rise to Hodge tensors

{tsarc) c H'(Vko, FI'HS; o).
By Deligne’s theorem, these tensors descend to a collection
{tsaro} c H (Vo Fil'Hg, ).

See [Kis10, Corollary 2.2.2].
Now, the functor on Yx-schemes carrying a Ygi-scheme S to the set of
isomorphisms

) and its dual, and let {¢t3} ¢ H® be a collection of tensors whose

n:Os g H > Hargls
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satisfying 7(1 ® tg) = tg 4r,q@, for all indices § is represented by a T-torsor
Pro — Yix. Moreover, this T-torsor is canonical and does not depend on
the choice of representation H. This can be seen by comparing the torsors
obtained from H and a different representation H’ with the one associated
with the direct sum H @ H'; see the argument in [Har85, p. 177].

The construction of the functor M — Mjyg @ is now simple: We will take
Mgr g to be the contraction product

Mir o def (ProxM)/T,

where T" acts diagonally on Pr g x M.
O

We now want to extend this construction over the integral model Vg . We
will do this using integral p-adic Hodge theory. Let q ¢ Og be a prime lying
above a rational prime p. Fix an algebraic closure Fglg for IF; and also an
algebraic closure Frac(1W )8 of the fraction field Frac(W) of W = W(F?lg).
Choose an embedding Q'8 < Frac(W)® inducing the place q on E = 1o(E).

Let Oy be the completion of Vi at an Falg—valued point y. Write Wy for

the ring of integers in the extension of Frac(WW') generated by the image of
Eq. Let

I, = Gal(Frac(W)™¢/Frac(W;))
be the absolute Galois group of Frac(W;). If Q;lg c Frac(W)*® is the
algebraic closure of Q,, then I; is identified with the inertia subgroup of
g, = Gal(leg/Eq). Fix an embedding of Frac(W,)-algebras Frac(O,) -
Frac(W)®#, and let

r,= Gal(Frac(W)alg/FraC(Oy))

be the absolute Galois group of Frac(O,). Then I'y is a finite index subgroup
of I.

If N, is a continuous p-adic representation of K, we obtain from it a lisse
p-adic sheaf N, over Y, and restricting further to Spec(Frac(O,)) gives us
a continuous representation of I'y, which we will denote by N, .

Proposition 3.5.2. Suppose that N, is a K,-stable Zy-lattice in an alge-
braic Qp-representation N of Tg,. Then the I'y-representation Ap7y[p_1] is
crystalline.

Proof. This is essentially due to Rapoport-Zink [RZ96]. We give some details
of the proof.
Consider the map

(351) Fy > Isb i) Og,q > TE(QP)7

where the isomorphism in the middle is the reciprocity isomorphism of local
class field theory.

Via the map , given any algebraic Q,-linear representation M of
Tg and a K-stable Z,-lattice M, c M, we obtain, in a functorial way,
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a continuous Zjy-linear representation M, of I'y. The associated Q,-linear
representation M), [p~!] does not depend on the choice of the lattice M,,.

In particular, since any representation of T" is naturally a representation
of Tk, we obtain a functor from Q,-linear algebraic representations of 7' to
continuous Q,-representations of I'y. Applying this functor to IV, we obtain
a continuous QQ,-representation of I'y. Using the description of the functor
M, + M, above, as well as of the Q-structure on Yz (Q8) in it is easy
to verify that this representation is precisely N, ,[p~'].

Therefore, to finish the proof, it is enough to show that, for any Q,-
representation N of Tk, Np[p’l] is a crystalline representation of I'y. It
suffices to do this for a single faithful representation of Tr: Indeed, any
other representation will yield a Galois representation that is a subquotient
of tensor powers of the Galois representation associated with the chosen
faithful representation of T'.

We choose our faithful representation to be the tautological representation
Hy of Ty obtained from its multiplication action on the Q-vector space FE.
We have

HO)QP = @ Hovq"
a'lp
where g’ ranges over the p-adic primes of E, and Hy q is simply Ey viewed
as a representation of T g,

By the explicit description of , we find that the associated repre-

sentation of I'y also admits a direct sum decomposition

Ho,[p'] = ElBHo,et,q'[p‘l],
q'lp

where I'y acts on Hy 4 via the reciprocity isomorphism I 5 (’);3’q of local
class field theory, and trivially on Hy et for q #q'.

Therefore, it is enough to show that H 07et7q[p_1] is crystalline. But, by the
construction of the local reciprocity isomorphism using Lubin-Tate theory,
this is simply the rational Tate module T, (Gq)[p™'], where G is the Lubin-
Tate group over Op 4 associated with some choice of uniformizer = € E;. [

Remark 3.5.3. From the proof above, we see that the homomorphism

ry- T(Qp)

giving rise to the functor N, - N, factors through the image of Ej in
T(Qp). Let T c Ty, be the image of Resg, g, Gm. Then, if we set

Kq = Kp N TEq (Qp)a

we actually obtain a functor from K-stable lattices in algebraic Q)-representations
of Ty to continuous I'y-representations on finite free Z,-modules. When re-
stricted to K)-stable lattices in algebraic representations of Ty, this recovers

the functor IV, =» N, , considered above.
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For the next result, we slightly expand the usual notion of an F-crystal
over W: For us, it will be a finite free W-module Jy equipped with an
isomorphism Fr*Jo[p~'] = Jo[p~!] of W-modules. Also a filtered finite free
module over O, is a finite free module J over O, equipped with a filtration
Fil*J by O,-linear direct summands.

Corollary 3.5.4. Let M be an algebraic Q,-representation of Ty, and let
My, ¢ M be a Kq-stable Zy-lattice. Then we can associate with My an F-
crystal Meyisy over W and a filtered finite free Oy-module Mar o, with the
following properties:

(1) The assignments My — Merisy and My, = Mgr o, are functorial in
M,

(2) If My, is the crystalline T'y-representation associated with M, via
Remark[3.5.3, then we have canonical comparison isomorphisms

Beris ®7Z, Mp,y — Beris ®w Mcris,y?
Bar ®7Z, Mp,y — Bgr ®0, Mdpr.

(3) If My, =T,(H)" is the dual of the p-adic Tate module of a p-divisible
group H over Oy, then, in the notation of Theorem we have
canonical isomorphisms

Mcris,y i ]D)(/H)(W)?
MdR,y i D(H)(Oy)

of F'-crystals over W and filtered finite free Oy-modules, respectively.
Under these isomorphisms, the comparison isomorphisms in asser-
tion (2) are carried to the canonical p-adic comparison isomorphisms
for abelian schemes over O,.

Proof. Choose a uniformizer m, € Oy, and let £(u) € W[u] be its associated
monic Eisenstein polynomial. Then, by the theory in §2.I] we obtain a

functor:
def

My = M(M,) = M(Mp,y,)
from Kg-stable lattices in algebraic Q,-representations of Ty to Breuil-Kisin
modules over O, (associated with the uniformizer ).

Reducing ¢*9M(M,) mod u gives us an F-crystal Mc;s, over W. Re-
ducing it mod &£(u) gives us a finite free Oy-module Mg ,. The existence
of the canonical comparison isomorphisms in assertion (2) follows from the
properties of the functor 9 as explained in §

In particular,

Mgr,0, [p~'] = Frac(O,) ®Frac(W) Deris(Mpy)

has a canonical filtration, and we will equip Mg4gr, 0, with the induced fil-
tration.
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The constructions are clearly functorial in M,,, and their compatibility
with Dieudonné theory as stated in assertion (3) follows from Theorem [2.1.1]
O

Proposition 3.5.5. Fiz an algebraic Q-representation N of T and a K-
stable lattice Nz ¢ Np,. Then we can canonically associate with this pair a
filtered vector bundle (Ngr, Fil* Ngr) over Y. Given a prime q c O, we
can also canonically associate with the pair an F-crystal Neyis over Vi g, -
These constructions have the following properties:

(1) They are functorial in the pair (N, Nz).

(2) The restriction of Ngr to Yk is canonically isomorphic to Nqr g as
a filtered vector bundle.

(3) If N = H is as in Proposition with associated abelian scheme
Ag over Vi, then the filtered vector bundle Hygr is canonically iden-
tified with the relative first de Rham homology of Ag. Moreover, the
F-crystal His over YK, 18 canonically isomorphic to the dual of
the Dieudonné F'-crystal associated with the restriction of Ay over
VK F,-

(4) Ify e yK(IF:lg), then the evaluation of Nqr on Spec Oy is canoni-
cally isomorphic, as a filtered free Oy-module, to the filtered module
Nar,0, obtained from Nz, via Corollary[3.5.4

(5) With y as above, the evaluation of Neys on Spf W (Fy), viewed as
a formal divided power thickening of y, is canonically isomorphic to
the F-crystal Neisy, obtained from Ny, via Corollary .

Proof. Fix a representation H of T as in Proposition [3.4.1] and a lattice
Hz c H such that Hy c Hy, is K-stable, giving us an abelian scheme
Apg = YVi. Let Hgr be the first relative de Rham homology of Ag over
Yk . As in the proof of Proposition if we fix tensors {tg} c H®, whose
pointwise stabilizer is 7', we obtain canonical global sections {tgar g} of
FiI’HE, .

We can assume that each tg actually lies in Hg . Then, given a prime
p, the p-adic étale realizations of these invariant tensors give us canonical
global sections {tg,} of H? over Y[p™'].

Fix a prime q c Op lying above p, and a point y ¢ yK(Fglg). Then we
obtain I'y-invariant tensors {tg,,} c Hp .

From Corollary we obtain canonical tensors {tg crisy} ¢ HS. . and

cris,y
® . . .
{tsar,0,} c H dR.y such that the comparison isomorphisms

Bcris ®Zp Hp,y — Bcris ®W(Fq) Hcris,y ; BdR ®Zp Hp,y — BdR ®Oy HdR,Oy

carry 1®1tg,, to 1 ® g crisyy and 1 ® t5 4R 0, , respectively.

By a theorem of Blasius-Wintenberger [Bla94], the restriction of £ qr,0,
to Frac(O,) is precisely the evaluation of the de Rham tensor t54r,g on
Spec Frac(Oy). Therefore, we find that tg qr g extends to a section tg gr of
HE; over V.
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This also shows that, for any K)-stable lattice N, c Ng, in an algebraic
Q-representation IV, there is a canonical isomorphism

NdR,Oy [p_l] > NdR,Q|Spec(FraC(Oy))

of filtered vector spaces. Indeed, as in the proof of Proposition [3.5.1] both
constructions arise from the T-torsor over Frac(O,) parameterizing trivial-
izations Frac(O,) ® H 5 Hgr o, [p~'], which carry 1®t5 to ts.dr,0,, for
each index .

In particular, using the functoriality of the construction N, » Ngr 0,
one deduces that there is a canonical filtered vector bundle Ny 4 over Vg g,
whose restriction to Vg 4 [p~'] is isomorphic to the restriction of Nggr g,
and whose evaluation at Spec Oy, for any point y € yK(F;‘;“g), is the lattice
Nar,0,-

The construction of the functor N, = Ngis proceeds similarly, but we
only give it in the case where Vg 4 is étale over O 4, which will suffice for
our purposes. By a descent argument, we can assume that K is neat, so
that Vg 4 is a scheme over Of g4, and is in fact a disjoint union of schemes
of the form )’ = SpecOpr, where E'/E, is a finite, unramified extension.

Let F' be the residue field of Og/. Fix an embedding F - F&8. This
determines a point y € y'(F;ﬂg). The construction in Corollary gives

us an F-crystal Neyis, over W(F?lg). It is now enough to show that it has
a canonical descent to an F-crystal Ngsp over W (F"), which recovers the
Dieudonné F-crystal of Ay when N = H. This can be deduced from the
functoriality of Kisin’s functor 9. Alternatively, it can also be deduced by
observing that Kisin’s functor is already defined for crystalline Galois rep-
resentations of Gal(Q%%/E'), as is its compatibility with Dieudonné theory
of p-divisible groups, and we can therefore use it to produce F-crystals over
W (F"), and not just over W(F?lg).

It remains to globalize the construction of the de Rham realization. Let D
be the product of the finitely many rational primes at which E is ramified, or
at which we have K, # K ,. Note that T extends to a torus over Z[D™']. We
will denote this extension again by 7. From the construction of the compact
open subgroup Ko, in § we find that, for p + D, K, = Ko, = T(Zy).
Moreover, for each such p, we can choose the tensors {t{g} so that their
stabilizer in GL(Hz,,,) is Tz,

We can now consider the functor on Vg [D™]-schemes carrying S to the
set of isomorphisms

¢:0g ®y Hy — Hygls

of vector bundles over S satisfying £(1®tg) = tg qr, for all indices . Since
T is a reductive group over Z[D™1], it follows from [KisI0, Corollary 1.4.3]
that this functor is represented by a T-torsor Pr over Vi [D™!]. Just as in
the proof of Proposition this functor is independent of the choice of
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data (H, Hyz), and we obtain from it a canonical functor
Nzp-11 = (Narz(p-1], Fil* Ngr z{p-11)

from algebraic representations of 7" on finite free Z[ D~!]-modules to filtered
vector bundles over Vi [D™!], which has properties (2), (3) and (4).

Given an arbitrary K-stable lattice Nz c Ny, by enlarging the set of
primes appearing in the factorization of D if necessary, we can assume
that Nz -1y arises from an algebraic Z[D~']-representation of T, and so
the desired filtered vector bundle (INggr, Fil* Nggr) is canonically determined
outside of the primes dividing D. For a prime q c Op dividing D, it is
determined by the condition that its restriction to Yy 4 is isomorphic to
NdR,CI'

O

To summarize the results of § and of this subsection, from a pair
(N, N3) as in the Proposition above, we have obtained the following real-
izations:

e Nugg in the category of variations of Z-Hodge structures over Y (C);

e Ngyr in the category of filtered vector bundles over Vi;

e For each prime ¢, N, in the category of lisse f-adic sheaves over
Vic['];

e For each prime q ¢ O, Ngis in the category of F-crystals over
VK F,-

For 7 = Hdg,dR, ¢, cris, let End(IN7)g be the endomorphism algebra of
N> in the appropriate isogeny category; this is a finite dimensional algebra
over Q7, where Q2 = Q if 7 = Hdg; Q7 = E if 7 = dR; Q7 = Qp, if 7 = ¢
and Q; = Q, if 7 = cris. This algebra depends only on N and not on the
choice of K-stable lattice N5. Let Aut®(IN7) be the algebraic group over Q-
associated with the group of units in this algebra.

Fix a representation H as in Proposition and a K-stable lattice in
H, and let Ap be the associated abelian scheme over Vi . Let Aut®(Ag) be
the algebraic group over Q obtained as the group of units in the Q-algebra
End(Ap)g.

Proposition 3.5.6.

(1) There is a canonical map of algebraic groups,
9?(]\7) : T@7 — Auto(N?)

functorial in the representation N.
(2) There is a canonical embedding T — Aut®(Ag) whose homological
realizations induce the maps 02(H) for the representation H.

Proof. The simplest way to see this is to use the torus

def

T Tg.
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In complete analogy with the construction of Vg, given a compact open
Kc T(A £), we can associate with it and the cocharacter 1o an arithmetic
curve yK over Op. If the image of K in T(Ay) is contained in K, then we
obtain a finite map
Ve - Vi

of algebraic Op-stacks.

We also obtain realization functors (N, N5) ~ N> over j)}( Here, N is
an algebraic representation of T and Nz cN.

We apply this to the representation Hy and the lattice HO,Z from the

proof of Proposition to obtain sheaves Hj . over 377( Since the E-
action on Hy is T-equivariant, the sheaves just obtained are E-linear objects

in the appropriate isogeny category. We now recover T Q, as the group of
F-equivariant automorphisms

Tg, = AutoE(H[)’?) c Auto(HO’?).

From this, and the fact that Hy is a faithful representation of T, it is not
hard to deduce that this actually gives us a canonical map

T@? - Aut’ (N7)’

for every T-representation N. We obtain the map from assertion (1) by
specializing now to representations of 7 that factor through 7'

As for assertion (2), since abelian varieties over C are a fully faithful
subcategory of Z-Hodge structures, the Betti realization 05 (H) corresponds
to a map

T —> Auto(AHyy((c)).

Since the étale realizations of this map descend over Y, it is easily checked

that the map itself descends:

T — Aut®(Any).
Our desired embedding is just the composition of this one with the inclu-
sion
Aut®(Apy) = Aut’(Ag).
(]

3.6. The standard representation and its realizations. We will now
consider a particular representation of T'. As in the proof of Proposi-
tion [3.5.2] we have the tautological representation Hy of Tg acting on F
via multiplication. Let ¢: E - E be complex conjugation, and in the nota-

tion of set:
Vo=V (Hy,c) ={x eEnd(Hy): z(a-h)=c(a)z(h), for all a € E}.
This is a Tg-subrepresentation of End(Hp) on which the action factors

through T, and in fact through Ts,. We call this the standard represen-
tation of T.
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The ring of integers O c E gives a natural lattice Hy 7 ¢ Hyp, and hence

a lattice
Voz =V (Hoz,c) c Vo.

Fix a prime q ¢ O, an algebraic closure Frac(W)# of Frac(W) (here,
W = W (F2'®)), and an embedding Q}'® < Frac(W )2 inducing the place q
on E = 19(E). Let Q% be the algebraic closure of Q, in Frac(W)%. We
can now view ¢y as an embedding Eq < leg.

Fix a point y € yK(Fﬁlg). We can now describe the F-crystal Vj crisy
quite explicitly. Fix a uniformizer m; € Ey, and let G, be the Lubin-Tate
group over OF 4 associated with this uniformizer. Let

HO,cris,q = D(gq)(W)

be the Dieudonné F-crystal over Frac(W') associated with Gq. The Op -
equivariant structure on Gq induces an O g-equivariant structure on Ho cris,q-
For a prime q' ¢ O lying over p with q’ # q, let

HO,cris,q’ =W ®Qp OE,q’

be the rank 1 W ®q, Ey-module equipped with the constant F-isocrystal
structure arising from the automorphism Fr® 1.

Now, set

HO,cris,y = @ HO,cris,q’-
alp

From the proof of Proposition [3.5.2] we find that this is precisely the crys-
talline realization obtained from the tautological representation Hy of T,
equipped with the standard Opg-stable lattice.

The inclusion Vy = End(Hy) now gives us identifications:

Vo,crisy = V (Ho cris,y, ¢) © End(Ho eris,y ) -
In particular, the decomposition of Hy cisy gives us a decomposition:
V(),cris,y = GB ‘/O,cris,p’a
p'lp
into F-crystals, where p’ ranges over the primes of O lying above p, and
where

‘/O,cris,p’ = V(HO,cris,p’a C) c End(HO,cris,p’)-
Here,
HO,cris,p’ = @ HO,Cris,q’
q’lp’

is an O y-linear F-crystal over W.
Proposition 3.6.1. Let p ¢ Op be the prime lying under q. Then the
following statements are equivalent:

(1) p is not split in F.

(2) The space of p-invariants Viozl

0,cris,p 15 NoN-zero.
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(3) The natural map
Frac(W) ®z, | AR V0, cris,p [Zfl]

0,cris,p

s an isomorphism.
(4) The natural map

Frac(W) ®Zp ‘/W:1 - VE),cris,y [p_l]

0,cris,y

18 an isomorphism.
Proof. If p is split in E, we have:
HO,cris,p = HO,cris,q @ HO,cris,qC-

Moreover, Vo crisp = V (Ho,cris,p, ¢) consists of pairs (21, 22) of Opp-linear
maps
€y - HO,cris,qC g HO,cris,q> z2: HO,cris,q - HO,criS,qC‘

Therefore, the space of @-invariants consists of @-equivariant such pairs.
However, by definition, Hp s e is generated by its ¢-invariants, while
H cis,q, being the Dieudonné F-isocrystal associated with a Lubin-Tate
group, has no non-zero y-invariant elements. Thus we conclude that %‘j’;}sm
has no non-zero elements.

On the other hand, suppose that p is not split in £. Then we can identify
Vo,cris,p = V (Hocris p, ¢) with the space Viis(G,) defined in

In Propositions and we described the structure of p-invariants
in this space explicitly, and in particular showed that they generate the
whole space over Frac(W).

From these considerations, the equivalence of statements (1), (2) and (3)
of the proposition are immediate. The equivalence of these statements with
(4) now follows from the fact that, for q" # q, Hocris,q is generated by its
p-invariants. (]

Fix a representation H as in Proposition and a K-stable lattice in
H, and let Ay be the associated abelian scheme over V.

Proposition 3.6.2. Fiz a prime q ¢ O above a rational prime p and let
p c Of be the prime lying under it. The following equivalences hold:

p is not split in £ < Ap, is supersingular for all y € yK(Fg‘lg);

Proof. Fix a point y € yK(F;ﬂg). By Proposition the Dieudonné F-
isocrystal associated with A, is isomorphic to the F-isocrystal Hers,y-

Now, the slopes of the F-isocrystal Hcrisvy[p‘l] are determined by its
Newton cocharacter

v(H) : D~ Auty,(Heris,y )

where D is the pro-torus over @, with character group Q, and Aut;(Hcris,y)
is the algebraic group of @, obtained as the group of units in the Q,-algebra
Endy,(Heris,y ) of p-equivariant endomorphisms of Herisy [p~1].
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Lemma 3.6.3. For any Q-representation N of T, the Newton cocharacter
v(N) for Ncrisyy[p_l] factors through the map Oc.is(N) : Ty, — Aut;(NcriS,y)
from Proposition|3.5.6,

Proof. The Newton cocharacter is functorial in N. If Hy is the tautological
representation of T, then it is clear from the construction of Hy cis 4 in @
that its slope decomposition is stable under the F ®g Q,-action, and hence
that the slope cocharacter for Hoycrisyy[p_l] factors through the commutant
in Autf;(HcriS’y) of E®g Qp. This is precisely the torus Tg g,. Combining
this with the fact that any Q-representation of 7', when viewed as a repre-
sentation of Tg, appears as a subquotient of a tensor power of Hy, one easily
deduces the lemma. O

Now, we find from that Vo cris,y [p~!] is generated by @-invariants,
and hence that v(Vp) is trivial, if and only if p is not split in E. Since the
quotient Ty, of T" acts faithfully on Vj, this implies in turn that p is not split
in E if and only if v(H) factors through

G =ker(T - Typ).

This is the case if and only if v(H) is constant, and hence if and only if
Apy is supersingular.
U

4. ORTHOGONAL SHIMURA VARIETIES

Let (V,Q) be a quadratic space over Q of signature (n,2), with n > 1.
Fix a maximal lattice L ¢ V', and let LY be the dual lattice. As in the
introduction, the discriminant of L is Dy = [L" : L].

In this section, we lay out the theory of GSpin Shimura varieties associated
with (V;Q) and L. The main references are [Mad16] and [AGHM17|. The
models constructed in these references have to be modified slightly for our
purposes here, and we explain this in § 4.4.

The main notion studied is that of a special endomorphism, which allows
us to give a moduli interpretation for the special divisors considered by
Kudla in [Kud04]. This interpretation is crucial for the degree computations
underlying the proof of Theorem [6.4.2]

4.1. The GSpin Shimura variety. Let C(V') be the Clifford algebra of
(V,Q), with its Z/2Z-grading

C(V)=C*(V)e (V).

Recall from [Mad16] that the spinor similitude group G = GSpin(V) is the
algebraic group over Q with

G(R)={geC*(VR) :gVrg ™" = Vr}
for any Q-algebra R. It sits in an exact sequence

15 Gm—GZE50(V) > 1,
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where gev = gug~!. Let v: G - G,, be the spinor similitude.
The group of real points G(R) acts on the hermitian symmetric domain

(4.1.1) D={zeVg:[2,2]=0,[2,2] <0}/C* cP(V¢)

through the morphism G — SO(V'). There are two connected components
D =D*uD, interchanged by the action of any v € G(R) with v(v) <0.

The pair (G, D) is a Shimura datum. More precisely, given a class z € D,
we can choose a representative z of the form x + iy, where =,y € Vp are
mutually orthogonal vectors satisfying Q(x) = Q(y) = —1. Then we obtain
a homomorphism

h.:S=Resc/rGm —~ Gr

satisfying h.(7) = zy e G(R) c C*(V)g. In this way, we can identify D with
the G(R)-conjugacy class of h, for any z € D. The reflex field of (G, D) is
Q.

Recall that we have fixed a maximal lattice L c¢ V. Define a compact
open subgroup

(4.1.2) K =G(Af)nC(L)* c G(Ay).

Here, we have set I = L. The image of K in SO(V')(Ay) is the discriminant
kernel of L; this is the largest subgroup of the stabilizer of L that acts
trivially on ZV/L.

By the theory of canonical models of Shimura varieties, we obtain an n-
dimensional algebraic stack M over Q, the GSpin Shimura variety associated
with L. Its space of complex points is the n-dimensional complex orbifold

(4.1.3) M(C) = G(Q)\D x G(A)/K.

Proposition 4.1.1. Suppose that one of the following conditions holds:
o n>2;
e Dy is square-free.

Then the complex orbifold M (C) is connected.

Proof. The kernel of v : G — Gy, is the usual spin double cover of SO(V),
and hence is simply connected. Using strong approximation, it follows that
the connected components of M (C) are indexed by Q,\A}/v(K), and so
the claim follows once we prove that v(Ky) = Z; for every prime £. When
Lz, contains a hyperbolic plane, the assertion is clear, so we only need to
consider the case where Vg, is anisotropic of dimension at least 3, and is
such that ¢2 does not divide Dy. In this case, the result can be deduced
from the classification of maximal anisotropic lattices over Zs; see [Shil0
§29.10]. O

Given an algebraic representation G - Aut(N) on a Q-vector space N,
and a K-stable lattice N7 ¢ Ny, we obtain a Z-local system Np on M(C)
whose fiber at a point [(z,g)] € M(C) is identified with N n gNz. The
corresponding vector bundle Ngg ar(c) = On(cy ® Np is equipped with a



FALTINGS HEIGHTS OF ABELIAN VARIETIES 41

filtration Fil® Ngg, as(cy, which at any point [(2,g)] equips the fiber of Np
with the Hodge structure determined by the cocharacter h,. This gives us a
functorial assignment from pairs (N, N5) as above to variations of Z-Hodge
structures over M (C).

Applying this to V' and the lattice LcVy ;» We obtain a canonical variation
of polarized Z-Hodge structures (Vp,Fil*Vig ar(cy). For each point z of
the induced Hodge decomposition of V¢ has

v -cz, v eocz, VO - (cz+C2)t

It follows that FillVdR7 M(c) 18 an isotropic line and FilOVdR M(C) 18 its an-
nihilator with respect to the pairing on Vgg pr(c) induced from that on L.

Let H be the representation of G on C (V') via left multiplication. It is
equipped with a K-stable lattice Hy = C(Z) c Hp,. From this, we obtain
a variation of Z-Hodge structures (Hp, Fil* Hyg ar(c)). This variation has
type (-1,0),(0,-1) and is therefore the homology of a family of complex
tori over M (C). This variation of Z-Hodge structures is polarizable, and so
the family of complex tori in fact arises from an abelian scheme Ac — Mc.
For all this, see [AGHMI17, (2.2)].

By [Mad16), §3], this abelian scheme descends to an abelian scheme A —
M. We call this the Kuga-Satake abelian scheme. 1t is equipped with a right
C(L)-action and a compatible Z/2Z-grading

A=A"xA".

The first relative de Rham homology sheaf of A gives a canonical descent
of Hqrc over M as a filtered vector bundle with an integrable connec-
tion. We denote this descent by Hgg. Using it, and Deligne’s results on
absolute Hodge cycles on abelian varieties, we obtain a canonical tensor
functor from algebraic Q-representations N of G to filtered vector bundles
(INgR, Fil* Ngr ) over M, which descends the already constructed functor to
objects over Mc.

Similarly, if we fix a lattice N3 ¢ Ny, then, for any prime ¢, the f-adic
sheaf Nyc = Z; ® Np over M(C) descends canonically to an /-adic sheaf
Ny over M. When N = H, H, is canonically isomorphic to the /-adic Tate
module of A.

For all this, see [Mad16], (4.15)].

In particular, for 7 = B, £, dR, the G-equivariant embedding V' < End¢ (v (H)
determined by left multiplication gives rise to embeddings of homological re-
alizations

(4.1.4) V2 < Ende) (H?).
For z € V with Q(z) > 0, define a divisor on D by

D(z)={z€D:z L x}.
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As in the work of Borcherds [Bor98], Bruinier [Bru02|, and Kudla [Kud04],
for every m € Qg and p € LY/L we define a complex orbifold

Zm)(©= I N\ U D@).
geG(Q\G(Ap)/K wepig+Lg
Q(z)=m
Here I'y = G(Q) ngKg™', L, c V is the Z-lattice determined by fg =gel,
and
pg=gepeLy/Ly.

By construction Z(m, ©)(C) is the space of complex points of a disjoint
union of GSpin Shimura varieties associated with quadratic spaces of sig-
nature (n —1,2). As such, it has a canonical model Z(m,u) over Q, and
the obvious map Z(m,u)(C) - M(C) descends to a finite and unramified
morphism

(4.1.5) Z(m,u) - M.

Using the complex uniformization, one can check that, étale locally on the
source, is a closed immersion defined by a single equation. Thus
determines an effective Cartier divisor on M, which we call a special
divisor. Via abuse of notation, we will usually refer to Z(m, ) itself as a
special divisor on M.

4.2. Integral models in the self-dual case. In this subsection, we will
fix a prime p such that the lattice L is self-dual over Z(,), and abbreviate

L) = Lz,

The group G,y = GSpin(L(,)) is a reductive model for G over Z,).

The goal is to show that a large part of the results of [Madl6, §4] also
work without the assumption p > 2.

Consider the Kuga-Satake abelian scheme A — M. Its homological real-
izations are the sheaves associated with the representation H of G on C(V)
via left multiplication, and the lattice Hy = C(L) c Hy,.

We can choose a G-invariant symplectic pairing ¢ : H x H - Q(v) such
that induced pairing on the Betti realization Hp is a polarization of varia-
tions of Hodge structures; see [AGHMIT7, (2.2)] for details. This gives rise to
a polarization A on Aj/(c), which descends to a polarization of A over M of
degree m?, where m? is the discriminant of the lattice Hz in the symplectic
space Hy,. In this way, we obtain a map

M — X2n+27m7(@,

which is finite and unramified. Here, X5n+2 ,,, is the moduli stack over Z of

polarized abelian schemes of dimension 2"*? and degree m?.

Definition 4.2.1. Given an algebraic stack X over Z,), and a normal
algebraic stack Y over Q equipped with a finite map jgp : ¥ — Af, the
normalization of X in Y is the finite X-stack j :  — X, characterized by
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the property that j.Oy is the integral closure of Oy in (jig)«Oy. It is also
characterized by the following universal property: given a finite morphism
Z — X with Z a normal algebraic stack, flat over Z,), any map of Xg-stacks
Zgp — Y extends uniquely to a map of X-stacks Z — ).

We now obtain an integral model M, for M over Z, by taking the
normalization of Xn+2,, in M. By construction, the Kuga-Satake abelian
schemes extends to a polarized abelian scheme

A— M-
Theorem 4.2.2. The stack M(p) 15 smooth over Z(p).

Proof. When p > 2, this follows from the main result of [Kis10]. The general
case is shown in [KMI5, Theorem 3.10]. O

Remark 4.2.3. Fix a prime £ # p. Recall from the functor which assigns
a lisse f-adic sheaf Ny, over M to each Ky-stable Z,-lattice N, ¢ Ng, in an
algebraic representation IV of G. This functor extends (necessarily uniquely,
by the normality of M,)) to lisse f-adic sheaves over My, and carries Hy,
to the f-adic Tate module H; of A. Indeed, it is enough to show that the
induced functor to lisse Qs-sheaves over M extends over M(,). As shown
in [Madl6, (4.11),(7.9)], this functor is associated with a canonical étale
G (Q)-torsor over M, which admits an extension over M.

We also have a canonical functor
(4.2.1) N — Ngr

from algebraic Q-representations of G to filtered vector bundles over M
equipped with an integrable connection. The following result is [KMI5]
Proposition 3.7].

Proposition 4.2.4. The functor (4.2.1) on algebraic Q-representations of
G extends canonically to an exact tensor functor

N = Ngr

rom algebraic Z,y-representations N of G,y to filtered vector bundles on
() (p)

./\/l(p) equipped with an integrable connection. When N = H(p), the associated

filtered vector bundle with integrable connection is simply Hagr, the relative

first de Rham homology of A — M.

In particular, from the representation L(,), we obtain an embedding
Var = Ende (1) (Har)
of filtered vector bundles over M, with integrable connections, mapping
onto a local direct summand of its target, and extending its counterpart (4.1.4))
over M.

We now expand our definition of an F-crystal over M,y to mean a
crystal of vector bundles IV over M,y r, equipped with an isomorphism

Fr*N > N
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in the Qp-linear isogeny category associated with the category of crystals
over M) F,-

Write ./T/l\p for the formal completion of M,y along M,y . The relative
first crystalline homology of A over M,y gives an F-crystal Heyis over
M), Whose evaluation on ﬂp is canonically isomorphic to the p-adic
completion of Hggr as a vector bundle with integrable connection.

Proposition 4.2.5. There is a canonical functor N — N¢s from algebraic
Z(p)-representations of G(p) to F'-crystals over M(p)JFp, which recovers H ;i

when applied to H ), and whose evaluation on the formal thickening Mp X
canonically isomorphic to the p-adic completion of Ngr as a vector bundle
with integrable connection.

In particular, there is a canonical F-crystal Vs over M(p)’Fp, whose

evaluation on /T/l\p is canonically isomorphic to the p-adic completion of Var
as a vector bundle with integrable connection. It admits a canonical embed-
ding

Veris = MC(L) (Hcris)

mapping onto a local direct summand of its target, and compatible with the
embeddings of de Rham realizations.

Proof. See Proposition 3.9 of [KM15]. O

4.3. Special endomorphisms in the self-dual case. By Proposition[.2.4]
and Proposition the embedding of G ,)-representations L,y < H )
gives rise to embeddings

(4.3.1) V2 = Endg( 1) (Hv)

for 7= B,¢,dR, cris that map onto local direct summands of their targets.

If 7 = B, let 15 be the locally constant sheaf Z over M(C); if ? = ¢,
let 1, be the lisse (-adic sheaf Z, over M, [¢71]; if 7 = dR, let 14r be
the structure sheaf Oy () equipped with the connection a — da and the
one-step filtration concentrated in degree 0; and, if ? = cris, let 1.5 be the
structure sheaf over (M) r,/Zp)cris, equipped with its natural structure of
an F-crystal.

The quadratic form on L, induces a form on the associated realizations.
More precisely, for any section f of V7, we have

fof=Q(f)-id
under composition in Endepy(H?). Here Q(f) is a section of 1,. The

assignment f — Q(f) is a quadratic form on V7 with values in 1. The
associated bilinear form is non-degenerate when 7 = dR or cris.

Definition 4.3.1. For any M,)-scheme S, we define an endomorphism
v € Endg)(As) to be special if all its homological realizations land in
the images of the embeddings (4.3.1]). More precisely, we require the ¢-adic
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realizations over S[¢"!] to lie in V;, the crystalline realizations over Sg, to
lie in Vs, and the de Rham realizations to lie in Vyg.
We will write V(Ag) for the space of special endomorphisms.

We now study the deformation theory of a special endomorphism z. In
what follows, we will frequently cite results from [Madl6, §5], where there
is a standing assumption that p is odd. However, the proofs there do not
use this assumption, as the reader can easily verify.

Suppose that S = Spec(O), with O a p-adically complete Z,-algebra. It
will be useful to have a notion of special endomorphisms for the p-divisible
group Ag[p*]. We will call an endomorphism x € End¢ () (As[p™]) special
if its crystalline realization lands in the image of the embedding for
? = cris. We will write V(Ag[p™]) for the space of special endomorphisms.

Suppose that we have a surjection @ — O of p-adically complete Zp)-
algebras, whose kernel I admits nilpotent divided powers. Suppose that
we have a map y : Spec(O) — M, and let 7 : Spec(O) — M,y be the
restriction to Spec(O).

Let Hp be the O-module obtained by restricting Hgg to Spec(Q), and
let Vo ¢ End(Hp) be the corresponding realization of Vig, so that Vp
is equipped with its Hodge filtration Fil'Vp, which is a rank 1 projective
module over O. Denote by Hg and Vg the induced modules over 0.

Let x € V(Ag[p*]) be a special endomorphism. The crystalline realization
of x gives us an element x5 € Vio. Pairing against FillV@ induces a linear
functional:

(4.3.2) [Zeris, -] : Fil' Vo - O.

The following two results are shown just as in [Madl16, Proposition 5.16
and Corollary 5.17].

Proposition 4.3.2. The endomorphism x lifts to an element of V (A,[p*])
if and only if the functional (4.3.2)) is identically 0.

Corollary 4.3.3. Suppose that k is an algebraically closed field of charac-
teristic p, that t € M) (k) and that x € V(A¢p™]) is a special endomor-
phism. Let O be the completed étale local ring of M,y w k) at t. There
is a principal ideal (f;) ¢ Oy such that, for any map f: Oy - R to a local
Zpy-algebra R,  lifts to an element in Ende(ry (A [p™]) if and only if f
factors through O/ (f.).

In other words, the deformation space of the endomorphism x within
the formal scheme Spf(O;) is pro-representable, and cut out by a single
equation.

We have to explain how our notion of a special endomorphism relates to
the one defined in [Mad16, §5]. The main difference is that in [loc. cit.] an
endomorphism x € End¢ (1) (As) was defined to be special if it is special in
our present sense at every geometric point of S, which appears to be a less
restrictive definition. It is not, as the following result demonstrates.
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Proposition 4.3.4. Let S be a connected My)-scheme, and suppose that
X € EndC(L) (AS)

is a C(L)-equivariant endomorphism. Then the following statements are
equivalent:

(1) x is special;

(2) For any geometric point s — S, the fiber of x at s is special;

(3) For some geometric point s - S, the fiber of x at s is special.

Proof. If S is a scheme of finite type over Q, then this is clear, since the
conditions can be checked over Sc, where everything follows from the fact
that the Betti realization is locally constant, and determines the étale and
de Rham realizations. The case of an arbitrary scheme over Q follows from
this, as M) is itself of finite type.

If S is an arbitrary Z,)-scheme, then combining this with [Mad16) Lem-
mas 5.9 and 5.13] shows that (2) and (3) are equivalent. To complete the
proof of the proposition, we now need to know that, if = is special at a
point s - S in characteristic p, then the crystalline realization of = lands
in the image of globally over Sg,. This follows from Lemma m
below. ]

Lemma 4.3.5. Let R be a complete local algebra over W with perfect
residue field k. Suppose that we have a point t € ./\/l(p)(R) and an endo-
morphism x € Ende(ry(Ar). Let to € M,y (k) be the induced point, and let
wo € Ende(ry(Ary) be the fiber of x at tg. Then x is special if and only if g
s special.

Proof. Let O, be the complete local ring of M) w ) at to. By Theo-
rem O, is isomorphic to a power series ring over W (k) in n variables.
By Corollary the deformation ring for the endomorphism zg is a quo-
tient Oy 2 = Ot/ (fay) of O, by a principal ideal. Now, by our hypothesis,
xo lifts over R, and so the map O, - R factors through Oy, ,,. In particu-
lar, it suffices to verify the lemma for R = Oy, ;,, and so we can assume that
we have:

W (k) [|u1,- -, unl]

(f) ’

for some element f e W (k)[|u1,...,unl].

The crystalline realization of x is a section of Eﬂ{c( L)(Hcris). We want
to show that it is in fact a section of Vi s. This is equivalent to showing
that its image in MC(L)(HHiS)/V;riS is 0.

Let Dr — R be the p-adic completion of the divided power envelope of R
in W(k)[|ui,...,un|]. In other words, this is the p-adic completion of the
subalgebra:

R:

n

W |, unl] [% ‘ne Zzo] ¢ Frac(W(k)[Jus, .. ., unl]).
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Note that the Frobenius lift
o W(k)[|uty- .. unl] = W(E)[|Jut, ... unl]

defined by u; — uf extends continuously to an endomorphism ¢ : Dp - Dp.
Evaluation along the formal divided power thickening

Spec(Rr,) = Spec(Dr)

establishes an equivalence from the category of crystals over (Spec(RF, )/Zyp)ecris
to the category of finite free Dgr-modules equipped with a topologically
nilpotent integrable connection. Furthermore, this establishes an equiva-
lence between F-crystals and finite free Dgr-modules M equipped with a
topologically nilpotent integrable connection as well as a map p*M[p~1] -
M[p~'] that is parallel for this connection.

Therefore the lemma is now immediate from Lemma below. O

Lemma 4.3.6. Let M be a finite free Dgr-module with a topologically nilpo-
tent integrable connection:

and an isomorphism @*M[p~t] - M[p~'] that is parallel for V. Suppose
that m € MV is a parallel element that goes to 0 under the reduction map
M- M®&p, W. Then m = 0.

Proof. Let U be the rigid analytic space over Frac(W (k)) associated with
the power series ring W (k)[|uq, ..., u,|] via Berthelot’s analytification func-
tor; see [de 95, §7]. This is simply the rigid analytic unit disc. The endo-
morphism ¢ induces a contraction map ¢* : U"® - U™,

Now, there is a rational number 7 € (0,1) such that all elements in Dg
converge in the open disc Uﬁg(rf) c U"8 of radius rs. Let R™ be the
ring of global sections of the structure sheaf on U"8(r #). Then we have an
inclusion Dg ¢ R", and extending scalars along this inclusion gives us an
R"&-module

Ml‘ig — Rrig ®DR M
equipped with an integrable connection and an isomorphism
¢*Mrig i Mrig.
In this situation, the image of the natural map
(Mrig)v=0 N Mrig
generates M'® as an R"8-module. This is just Dwork’s trick; see for in-
stance [Vol03), §3.4, Prop. 4].
Therefore, if a parallel section of M™€ vanishes at a point, then it vanishes

everywhere on U™8(r;), and is hence the zero section. This proves the
lemma. g
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Proposition 4.3.7. Let S be an My)-scheme. For each x € V(Ag), we
have

rox = Q(ac) : idAS € End(As)
for some integer Q(x). The assignment x — Q(x) is a positive definite
quadratic form on V(Ag).

Proof. This is shown as in [Mad16, Lemma 5.12]. O

4.4. Integral model over Z. We will now explain how to construct an
integral model for M over Z. In [AGHMI17], using the results of [Mad16],
we gave a construction that worked over Z[1/2]. This is inadequate for our
current purposes for two reasons: First, of course, it omits the prime 2;
second, at primes p such that p? | Dy, the integral model from [loc. cit.]
excluded points in the special fiber that will be relevant to this article;
see [AGHM17, Remark 2.4.4].

Fix a prime p. Choose an auxiliary quadratic space (V°,Q°) over Q of
signature (n°,2), admitting a maximal lattice L® c V° that is self-dual over
Z(py, and admitting an isometric embedding

(V.Q) = (V*,Q°)
carrying L into L°. Set
A=L*={zel®:[z,L]=0}cL".
Set G° = GSpin(V®), and let D° c P(VZ) be the associated hermitian
domain; then there is a natural embedding of Shimura data
(G.D) > (G°,D°),

giving rise to a finite, unramified map of Shimura varieties M — M°. Here,
M?® is the Shimura variety associated with the maximal lattice L°.
Since L° is self-dual over Z,), M° admits a smooth integral model pr)

over Z). We have the Kuga-Satake abelian scheme A° — M?p) with asso-
ciated de Rham sheaf HJy, as well as the embeddings
Vi* = Ende g0y (H?)
where ? = B, /,dR, cris. For any M?p)-scheme S, we have the subspace
V(A%) C Endc(Lo) (Agv)

of special endomorphisms, whose homological realizations are sections of
vy,

Define M, to be the normalization of pr) in M (see Definition [4.2.1]).
The restriction of Fil! Vi to M, gives us a line bundle w over My, which
extends the line bundle Fil' Vi over the generic fiber M.

Proposition 4.4.1.

(1) The integral model M,y and the line bundle w are independent of
the choice of the auziliary data (V°,Q°) and L°® c V*°.
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(2) The Kuga-Satake abelian scheme A — M extends to an abelian
scheme A — M,y and there is a canonical C(L°)-equivariant graded
isomorphism

(4.4.1) A®cry) C(L°) = A°

of abelian schemes over M.
(3) There is a canonical isometric embedding:

(4.4.2) Ao V(A

(4) M(p) has the following extension property: If E[Q, is a finite ex-
tension, and t € M(E) is a point such that Ay has potentially good
reduction over O, then the map t : Spec(E) - M extends to a map
Spec((’)E) - ./Vl(p).

Proof. Assertion (1) is shown just as in the proof of [AGHMI7, Prop. 2.4.5].

As for assertion (2), first note that, given the existence of the extension
A — My, the fact that C(L°) is free over C(L) gives meaning to A ®c(r)
C(L?) as an abelian scheme over M,,; this is the Serre tensor construction.
We always have the canonical C'(L°)-equivariant graded isomorphism (|4.4.1])
over the generic fiber M; see [AGHMI17, (2.12)]. In particular, as abelian
schemes over M, there is a canonical closed immersion A - A°. Note
that A® — MZ,D) admits a polarization of degree prime to p; indeed, in

the notation of [AGHMI17, § 2.4], arranging for this amounts to choosing an
element 0 € C+(L°)z( ) satisfying * = —=0. That A extends to an abelian
p

scheme over M,y now follows from the argument in [Madbl Prop. 4.2.2].
The argument actually shows the following: As in § let v : HxH - Q(v)
be a G-invariant symplectic pairing giving rise to a polarization on A|yy,
and thus to a finite map M — Xyn+2 ,, g to the generic fiber of a Siegel
moduli space. Then this map extends to a finite map M,) - X2n+27m7z(p)
parameterizing the abelian scheme A - M.

The existence of the isomorphism of abelian schemes over M,
as well as the embedding are now shown exactly as in the proof
of [AGHMI17, Prop. 2.5.1].

Assertion (4) is immediate from the finiteness (hence properness) of the
map M(p) - X2n+27m7Z(p). [l

Given the proposition, we can choose our auxiliary lattice L°® to our con-
venience. We will choose it so that A = L* ¢ L°® has rank at most 2. This
is not strictly necessary, but will make some proofs shorter. Moreover, it is
always possible to make such a choice, as can be easily verified using the
classification of quadratic forms over Q.

Let Z(A) > M,y be the stack such that, for any M ,-scheme S we have

Z(A)(S) = {Isometric embeddings A - V(A%)}.
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The argument from [AGHMIT, Proposition 2.7.4] shows that Z(A) is an
algebraic stack that is finite and unramified over /\/l°p .

The embedding corresponds to a map M,y — Z(A). It is shown
in [Madl16, Lemma 7.1] that this map identifies M with an open and closed
substack of Z(A)q.

Proposition 4.4.2. Let p be an odd prime. Suppose either that p*> + Dy, or
that n > 3. Then Z(A) is normal and flat over Zyy. In particular, the map
M py = Z(A) identifies M,y with an open and closed substack of Z(A).

Proof. Let A — V(A%( A)) be the tautological isometric embedding and let

Adr ‘/dOR|Z(A)
be the coherent subsheaf generated by the de Rham realization of this em-
bedding. As in [Mad16, Lemma 6.16], there is a canonical open substack

ZP(A) c Z(A)

containing Z(A)g, and over which Agg is a local direct summand of V.
It is shown in [Mad16l Corollary 6.22] that, under our hypotheses, ZP"(A)
is a flat, normal Z,)-stack.

When p? + Dy, it is shown in [Mad16, Lemma 6.16] that ZP*(A) = Z(A),
and so the proposition follows in this case. For the remaining cases, we will
need two lemmas.

Lemma 4.4.3. Suppose that n > 2. The stack Z(A) (resp. Z(A)r,) is a
local complete intersection over Z,y (resp. Fp) of relative dimension n.

Proof. Since p > 2, we can find A’ ¢ A and v € (A")* c A such that p?
does not divide the discriminant of A’ and such that, over Zp)y, we have an
orthogonal decomposition

AZ(p) = A,Z(p) 1 (’U)
Then we have a factorization
Z(A) - Z(N) - pr)

into finite and unramified morphisms of Z,)-stacks.

As above, it follows from [Madl6, Corollary 6.22 and Lemma 6.16] that
Z(A") is a faithfully flat regular algebraic stack over Z(,), whose special
fiber is a geometrically normal, local complete intersection algebraic stack
of dimension n+1 > 3.

Fix a point t € Z(A)(F'%). We can also view this as a point ¢ € Z(A’)(F3').
Let Oz (resp. Oz4) be the complete local ring of Z(A") (resp. Z(A)) at
t. Then it is shown in [Madl6, Corollary 5.17] that Oz, is a quotient of
Oz(ary cut out by a single equation.

In particular, this implies that Z(A) is étale locally an effective Cartier
divisor on Z(A’), and is in particular a local complete intersection over Z ).
To show that Z(A), is a local complete intersection stack over [, it now
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suffices to show that it does not contain any irreducible components of the
normal algebraic stack Z(A")g,. But this follows from [Mad16l Prop. 6.17],
which shows that, if n - Z(A")p, is a generic point, then the tautological
map A’ -V (Ay) is an isomorphism. O

Lemma 4.4.4. The codimension of the complement of ZP'(A)r, in Z(A)r,
is at least n—|n°/2].

Proof. By [Madl6, (6.27)], we find that this complement is supported en-
tirely on the supersingular locus

<o, i
M SS c M(p)ﬂp.

(p) 7FP

But, by [HPI5], this locus has dimension at most |n°/2]. This dimension
count can also be deduced using the methods of Ogus from [Ogu01]. From
this the lemma is clear. (]

By our assumption on A, n® < n + 2. Therefore, by Lemma we
see that ZP'(A) is fiberwise dense in Z(A) as soon as n > 3. On the other
hand, Lemma shows that Z(A) is a Cohen-Macaulay stack over Z,.
Therefore, by the normality of ZP'(A) and Serre’s criterion for normality,
we find that Z(A) is itself normal and flat over Z,), as soon as n>3. [

Theorem 4.4.5. Assume one of the following conditions:

o Ly is self-dual;
e pis odd, p> + Dr, and n > 2;
e pis odd and n > 5.

Then M,y r, is a geometrically connected and geometrically normal alge-
braic stack over Fy,.

Proof. By Proposition under our hypotheses, M is a geometrically
connected smooth algebraic stack over Q. Therefore, we only have to show
that M,y has normal geometric fibers. Indeed, as soon as this is known,
it will follow from [Madb, Corollary 4.1.11] that M, r, is geometrically
connected.

If L, is self-dual, then M, is smooth over Z,) by Theorem SO
the theorem is clear under this hypothesis.

If p is odd, to prove the theorem, by Proposition [£.4.2] it is enough to
show that, under the given hypotheses, Z(A) is a normal algebraic stack,
flat over Z,), with normal geometric special fiber. By [Mad16, Corollary
6.22], we find that, under our hypotheses, ZP*(A) has geometrically normal
fibers.

Therefore, by Lemma [£.4.3] and Serre’s criterion for normality, to show
that Z(A)r, is normal, it is enough to show that the complement of ZP"(A)r,
in Z(A)p, has codimension at least 2. When p? + Dy, this is clear, since
ZP'(A) = Z(A).
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For the general case, by Lemma [£.4.4] it suffices to show
ln +2

JSn—2
whenever n > 5. This is an easy verification. O

The construction of M — Spec(Z) now proceeds as in [AGHMI17, § 2.4].
Choose a finite collection of maximal quadratic spaces Ly, L3,..., L, with
the following properties:

e For each i =1,2,...,r, L has signature (n;,2), for n; € Zo;
e For each i, there is an isometric embedding L — L7;
e If, for each i, we denote by D; = DL;> the discriminant of L7, then
ged(Dy,...,Dy) = 1.
It is always possible to find such a collection.

For i=1,2,...,r, let M be the GSpin Shimura variety over Q attached

to Ly. Then M admits a smooth integral model M;Z over Z[D;'].

Let Mz[Di—l] be the normalization of MZZ[Dfl] in M.

(3

[D;1]

Theorem 4.4.6. There is a unique flat, normal algebraic Z-stack M such
that, for each i, the restriction of M over Z[Di_l] is isomorphic to Mz[Dfl].
Moreover:

(1) The Kuga-Satake abelian scheme A — M extends to an abelian
scheme A - M.

(2) The line bundle Fil' Vag over M extends canonically to a line bundle
w over M.

(3) If Ly is self-dual; or if p is odd and p? + Dp; orif p is odd and n >
5, then My, is a geometrically connected and geometrically normal
algebraic stack over .

Proof. This is immediate from Proposition and Theorem O
Suppose now that we have an isometric embedding
(V,Q) = (V°,Q%)
into a quadratic space of signature (n°,2), and a maximal lattice L® c V*°
containing L. Then we have a finite and unramified map of Shimura varieties
M — M?® over Q.

The next result is easily deduced from the construction of our integral
models; see [AGHMI17, Prop. 2.5.1] for details.

Proposition 4.4.7. The map M — M?® extends to a finite map of integral
models M — M?®. Moreover:
(1) If A° - M? is the Kuga-Satake abelian scheme, then there is a
canonical isomorphism

Aoy C(L°) = A®|m

of abelian schemes over M.
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(2) Let w® be the canonical line bundle over M°® from assertion (2) of
Theorem [{.4.6. Then there is a canonical isomorphism

w®m > w
of line bundles over M extending the natural identification
Fil' Vx| = Fil' Vg
over the generic fiber M.

4.5. Special endomorphisms and special divisors over Z. Let S be
a scheme over M. We have already encountered the notion of a special
endomorphism of Ag in at least in the situation where S is a Z)-
scheme, with p + Dp. In [AGHMI17, § 2.6], we gave a definition that worked
without this condition, but since we have somewhat modified our integral
models here, the theory there does not apply directly. We now explain how
to fix this.

Fix a prime p, and set M,y = Mz(p). Choose an auxiliary maximal lattice
L° of signature (n°,2) that is self-dual at p, and which admits an isometric
embedding L < L°. This gives us a finite map of Z,)-stacks

My = M(,).

It will be useful to have a notion of special endomorphisms for the /-
divisible group of A° as ¢ varies over the rational primes. If £ + p, we will

define V(A°[¢*°]s) to be the space of endomorphisms of A°[¢*°]g, whose
¢-adic realizations land in the space V,°. If £ = p, we will define V/(A°[p>]s)
to be the space of endomorphisms of A°[p™]g, whose p-adic realizations
land in the space V, over S [p~!] and whose crystalline realizations land in

Vs over Sg,.

cris
The isomorphism of Kuga-Satake abelian schemes

Aecr) C(L°) = A®|pm,,
induces, for any M,)-scheme S, canonical embeddings
(4.5.1) Ende(ry(As) = Endeze)(AS),
Endezy(As[7]) = Ende(re) (AS[£7]),
for any prime £. We now declare an endomorphism
(4.5.2) v eEnde(ry(As) or zeEnder)(As[f™])

to be special if its image under is a special endomorphism of Ag or
AZ[€>], respectively.
Let
A=L*={zelL®: [x,L] =0}
be the orthogonal complement of L in L°. Then there is a canonical em-

bedding
(453) Ao Endc(Lo)(A})\/[),
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described in the proof of [AGHMIT, Prop. 2.5.1].

Proposition 4.5.1. The notion of x € Ende(r)(As) orz € Ende (1) (As[€7])
being special does not depend on the choice of the auziliary lattice L°.

Proof. As in the proof of [AGHMIT, Lemma 2.6.1], we can reduce to the
case where L is itself self-dual over Z,,).

In this case, we have homological realizations V7 over M), and a com-
muting square of embeddings

Vs

Endg ) (H?)

|

‘/?Q|M(p) - MC(LO) (Hr,;})’./\/l(p) .

of sheaves over M,y mapping onto local direct summands of their targets;
see [AGHM17, Prop. 2.5.1(ii)].

In fact this square is cartesian: Both vertical arrows identify sections of
their domain with those of the target that anti-commute with the homo-
logical realizations of the embedding ; see the argument in [Madl10,
§ 7.3].

From this, we find that = is special with respect to the lattice L°® if
and only if its homological realizations land in V7, and so the notion of
being special is in this case intrinsic to the stack M,), and independent of
choices. ([

If S is now an arbitrary M-scheme, we declare an endomorphism (4.5.2))
to be special if its restriction to SZ(p) is special for every prime p. Write
V(Ag) and V(Ag[¢*°]) for the respective spaces of special endomorphisms.

We will also need certain distinguished subsets V},(Ag) ¢ V(Ag)g param-
eterized by pe LY/L. To define these, we will first define subsets

Vi (As[€7]) e V(As[£7])q

parameterized by py € Zy ® (LY/L).
For this, note that over M (C), as K acts trivially on the quotient L"/L,
we have a canonical isometry

Z® (LY/L) = V|V
of locally constant sheaves. For each prime ¢, this gives an isometry
a2 ® (LY[L) > V' [V

of étale sheaves of abelian groups over M. In fact, this can be extended to
an isometry of sheaves over M[¢71]. By the normality of M, it is enough
to show that the sheaves V, and V" extend to lisse sheaves over M.
This can be deduced using the argument from Remark [1.2.3]
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Fix a prime p, and let S be an M,)-scheme. Then, for any ¢ # p, the
¢-adic realization of a special endomorphism z € V(Ag) is a section of the
submodule V; ¢ Ende ) (Hp).

Now identify V,* with an f-adic subsheaf of V;[£7!]. Any element of the
dual subspace
V(As[e=])" = {y e V(As[= D : [V(As[€™]),y] € Ze} < V(As[£™])g

has a realization x, in V;[¢71], where the pairing [-,-] on V(Ag[¢*]) is the
one induced from composition in End(Ag[¢*]). This allows us to define
Vi (Ag[€°]) c V(Ag[£=])Y
to be the subset of elements « such that x; lies in VY, and maps to g (1®p¢)
in V,Y/V,.
Next, we will define the subset
Vi, (As[p™]) € V(As[p™])”
for p, € Z, ® (LY/L). If S is a Q-scheme, then this can be defined just
as for £ # p. For the general case, choose an auxiliary maximal lattice L°®
that is self-dual over Z, of signature (n°,2), which admits an isometric
embedding L — L°. By Proposition and [AGHMI7, Prop. 2.6.4], this
gives a map of Z-stacks M — M?® along with an isometric embedding

A= V(A5).
Here, A= Lt c L°.
Lemma 4.5.2. For any My)-scheme S, there are canonical isometries
V(As) = At c V(AL)
V(As[p®]) S AL € V(ALB™).
Proof. The first isometry follows from the definitions and the fact that the
subspace
Endg(r)(As) c Endg(re)(A43)

consists precisely of those endomorphisms that anti-commute with A; see
also [AGHMIT7, Prop. 2.5.1]. The second is proven in similar fashion. O

Now, there are canonical isomorphisms
Z,® (L'|L) < Z,® (L°/(L®A)) = Z,® (AY/A).

Therefore, we can canonically view j, as an element of Z, ® (AY/A). More-
over, the inclusions

V(As[p™]) @ A c V(AG[p™]) c (V(As[p™]) @ Az,)” = V(As[p™])" @ Az,
induce an embedding
VAT | VAspE)Y A,

(454) V(As[p‘x’]) 53} AZp V(AS[pDO]) AZP '
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We now set

Vi, (As[p™]) = {x e V(As[p™])" : ([x],pp) is in the image of },
where

V(As[p=])”

IV st

is the class of z.

Proposition 4.5.3. The subset V,,,(As[p™]) ¢ V(As[p™])" just defined
does not depend on the choice of the auxiliary lattice L°. Moreover, if S is
a Q-scheme, then this definition agrees with the one already given above.

Proof. As usual, for the independence statement, we can reduce to the case
where L is itself self-dual over Z,). In this case, i, = 0, and we have to
show that, if z € V(Ag[p™])" is such that ([z],0) is in the image of (4.5.4),
then = must belong to V(Ag[p™]). However, ([2],0) being in the image
of means exactly that = belongs to V(Ag[p™]) and is orthogonal to
Az,. So we are now done by Lemma

We leave the verification of the second assertion to the reader. ([

Now suppose that S is an arbitrary M-scheme, and p is any prime. We
decree that an element of V' (Ag[p*])" belongs to V,,, (As[p*]) if and only
if it does so over SZ(p).

Consider the dual space

V(As)' ={y e V(As)g: [V(As).y] c Z} c V(As)o

of V(Ag) with respect to the bilinear form induced from composition in
End(Ag). For each prime p and each p, € Z, ® (LY/L), let

Vi, (As) c V(Ag)Y

be the subspace of elements mapping into V, (As[p*]). In general, if 1 €
LY /L has p-primary part pu, for each prime p, set

Vi(As) =V, (As) c V(As)”.

The next result is immediate from Proposition and the definitions;
see also [AGHMI7, Prop. 2.6.3].

Proposition 4.5.4. For each x € V(Ag), we have
rox=Q(z) iday € End(Ag)

for some integer Q(x). The assignment x — Q(x) is a positive definite
quadratic form on V(Ag). If x € V,(Ag), then we have the congruence

(4.5.5) Q(z)=Q(p) (mod Z).

Fix a maximal lattice L° of signature (n°,2), equipped with an isometric
embedding L — L°, so that we have the corresponding finite map of algebraic
stacks M — M°®. Set A=L*c L°.
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Proposition 4.5.5. Fiz an M-scheme S — M.

(1) There is a canonical isometric embedding A -V (Ag) and an isom-
etry

(4.5.6) V(As) = At c V(AL).

(2) For every pe L>Y[L® and every (p1,p2) € (n+L°)/(L®A) the map
, tensored with Q, restricts to an injection

Vi (Ag) x (p2 + A) = Vi, (Ag).
(3) The above injections determine a decomposition

Vu(AS) = L] Vi (Ag) x (/,LQ"‘A).
(n1,p2)e(u+Le)/(LOA)
Proof. Assertion (1) is shown just as in Lemma m Everything else is
immediate from this and the definitions. O

Definition 4.5.6. For m € Q.9 and p € LY/L, define the special cycle
Z(m,p) > M as the stack over M with functor of points

(45.7) Z(m,1)(S) = {x € Vi(As) : Q) = m)
for any scheme S — M.

Note that, by (4.5.5)), the stack (4.5.7]) is empty unless the image of m in
Q/Z agrees with Q(u).
For later purposes we also define the stacks Z(0, 1) in exactly the same

way. As the only special endomorphism = with Q(x) = 0 is the zero map,
we have

z(o,u):{il ?fufo

if u=0.

Once again, fix a maximal lattice L° of signature (n°,2), equipped with
an isometric embedding L — L°, so that we have the corresponding finite
map of algebraic stacks M — M°®. Set A = L* ¢ L°. For m € Q9 and
we LOY[L®, write Z°(m,u) - M?® for the stack associated with the pair
(m, u). The following result is immediate from Proposition

Proposition 4.5.7. Fiz u € LY/L°. Then there is an isomorphism of
M-stacks

Z°(m, p) xpe M = L Z(ma, p1) X Ay s

mi+ma=m
(p1:p2)e(ur L)/ (LOA)
where
Ay o ={x € o+ A: Q(x) = ma},
and Z(mi, p1) x Ap, u, denotes the disjoint union of #Anm, ., copies of
Z(ma, p1).



58 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

Proposition 4.5.8. There is a natural isomorphism

Z(m, p)g = Z(m, )
of stacks over M. Moreover:

(1) Suppose that m > 0. Etale locally on the source, Z(m,p) is an
effective Cartier divisor on M.

(2) Suppose also that n > 3. Then Z(m,u) is flat over Z[1/2]. If, in
addition, L9y is self-dual, then Z(m,p) is flat over Z.

Proof. Assertion (1) is deduced from Proposition m exactly as in the
proof of [AGHMI17, Proposition 2.7.4], by reducing to the case where L is
self-dual over Z,) and using Corollary

As for assertion (2), since Z(m, u) is étale locally a divisor on M, it fails
to be flat exactly when its image in M contains an irreducible component
of Mg, for some prime p.

If Ly is self-dual at p, then the argument used in [Mad16, Prop. 5.21]
applies to show that Z(m, u) is flat over Z,).

For the other cases, we can now suppose that p > 2. Choose an auxiliary
maximal lattice L® that is self-dual over Z(,) and an embedding L - L°
as usual. If A = L* ¢ L°, then by Proposition we can identify M,
with a closed and open substack of the stack Z(A) — pr) parameterizing
isometric embeddings A < V(A%).

By Proposition[£.5.7] it suffices to show that, for every m € Q and every u €
LY [L?, the restriction of Z°(m, ) to Z(A) is flat over Z,. Equivalently,
it is enough to show that the image of the map

Z°(m, 1) xpme  Z(M)r, > Z(M)r,

does not contain an irreducible component of its target.

For this, let ZP"(A) c Z(A) be as in the proof of Proposition We
saw there that, under the hypothesis n > 3, ZP"(A) is a fiberwise dense open
substack of Z(A). Therefore, it is enough to show that the image of the
map

2% (m, 1) x e ZP (Mg, > ZP (M),
does not contain an irreducible component of its target.
Note that the p-adic component of p is necessarily trivial, and note also

that ZP*(A)p, is normal and hence generically smooth. Therefore, the de-
sired assertion follows from [Mad16l, Corollary 6.18]. O

4.6. Metrized line bundles. Let Fi : M(C) > M(C) be complex conju-
gation. An arithmetic divisor on M is a pair

Z=(2,0)
consisting of a Cartier divisor Z on M and a Green function ® for Z. This

means that ® is an F.-invariant smooth R-valued function defined on the
complement of Z(C) in M(C), such that if ¥ = 0 is any local equation
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for Z(C), the function ® + log [¥|?> extends smoothly across the singularity
Z(C). A principal arithmetic divisor is an arithmetic divisor of the form

div(¥) = (div(¥),-log |¥[*)
for a rational function ¥ on M. The group of all arithmetic divisors is
denoted Div(M), and its quotient by the subgroup of principal arithmetic
divisors is the arithmetic Chow group cn' (M) of Gillet-Soulé [GS90].
A metrized line bundle on M is a line bundle endowed with a smoothly
varying F.-invariant Hermitian metric on its complex points. The isomor-

phism classes of metrized line bundles form a group Pic(M) under tensor
product. As in [Sou92), II1.4], there is an isomorphism

(4.6.1) Pie(M) 5 CH' (M)
defined by sending a metrized line bundle £ on M to the arithmetic divisor
div(¥) = (div(¥), - log || ¥[*).

for any nonzero rational section ¥ of L.

By assertion (3) of Theorem we obtain a canonical line bundle w
over M. We call this the tautological bundle, or the line bundle of weight
one modular forms. Its fiber at a complex point [(z,g)] € M(C) is identified
with the isotropic line Cz c V. Using this identification, we define the
Petersson metric on the fiber wy(, g by [|2l]> = —[2,Z]. In this way we
obtain the metrized tautological bundle

@ € Pic(M).

4.7. Harmonic weak Maass forms. We recall some generalities about the
Weil representation and vector-valued harmonic forms from [BF04, BKY12,
BY09, Kud03).

Let S(V) be the space of Schwarz functions on V = V ® Ay, and denote
by

SrcS(V)

the (finite dimensional) subspace of functions that are invariant under trans-
lation by L = L ® Z, and supported on LY = LY ® Z. We often identify Sy,
with the space of complex-valued functions on

LV/L 5 LY/L.
In particular, for each p € LY/L there is a corresponding Schwartz function

(4.7.1) €S,

defined as the characteristic function of p + LcV.
Write SLy(A) for the metaplectic double cover of SLo(A). This cover
splits over SLy(Q), yielding a canonical injection

(4.7.2) SLy(Q) = SLy(A).
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Pulling back the cover by the inclusions

SLa(R) — SLa(A), SLa(Af) - SLa(A)
yields double covers

SLo(R) - SLa(R), SLa(Af) — SLa(Af),
and we define SLy(Z) and SLy(Z) by the cartesian diagrams

SLy(Z) — SLa(R) SL2(Z) — SLa(Ay)
SLy(Z) — SLy(R) SLo(Z) — SLa(Ay).

The inclusion (4.7.2) induces an injection SLy(Z) — SL(Z), denoted
5 + 7, defined by demanding that the product
-7 € SLa(R) - SLa(Ay) € SLa(A)
be equal to the image of % under the composition
SLy(Z) - SLo(Z) = SLa(A).

Denote by g : Q\A — C* the unramified character with archimedean
component g, () = ™. The group SL2(Af) acts on S(V) via the Weil
representation w determined by 1), and the restriction of this representation
to SLy(Z) c SLy(Z) leaves invariant the finite dimensional subspace Si.
Denote this representation by

wy, * gﬂz(Z) —> Aut(SL),
and define the complex conjugate representation @y, : SLy(Z) - Aut(S7) by
wr() - e=wr(@) e
If dim(V') is even then wy, and @y, factor through SLy(Z). Note that our wy,

is the representation denoted py, in [Bor98, Bru02, [BF04, BKY12, BYQ9].

Denote by H;_,/>(wr) the space of harmonic weak Maass forms of weight
1 - n/2 for SLy(Z) of representation wy, in the sense of [BY09, §3], and
denote by

Sl—n/Q(wL) c Mifn/g(wL) c Hlfn/Q (wr)

the subspaces of cusp forms and weakly modular forms, respectively. By
a result of Bruinier-Funke [BF04], these spaces are related by an exact se-
quence

3 _
(4.7.3) 00— Mi,n/Q(wL) = Hy_pja(wr) => Sieny2(@r) = 0,

where £ is a certain explicit differential operator.
As in [BY09, (3.4a)], any f € Hy_,5(wr) has a holomorphic part

(o= X cplm)-q™
meD;'Z
m>>—o0
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which is a formal g-expansion with coefficients
ci(m)="Y  cp(m,p)- o, €St
pelV /L
When the principal part
Pp(r) =} cj(-m)-q™.
m>0

is integral, in the sense that c¢j(-m, ) € Z for all m > 0 and p e LY/L, we
define the corresponding special divisor
Z(f) = Z C}(_mau)z(mau)

m>0
uelV /L

on M. There is a natural Green function ®(f) for Z(f), defined as a
regularized theta lift as in [BY09) (4.7)]. See also [Bru02, BF04, BKY12].
In particular, we obtain an arithmetic divisor

(4.7.4) Z(f) = (2(f),9(f)) e CH' (M).
4.8. Borcherds products. Suppose
(4.8.1) f(r)= Z ce(m)-q" e M{_n/Q(wL)
meDilZ
m>>0

is a weakly holomorphic form, so that f = f* and c¢(m) = c}(m)

The following result will be shown in the companion paper [HMI5], gen-
eralizing a result of F. Hormann [Hor14]. Here, we only sketch its proof. For
the applications to Colmez’s conjecture, we will only require the assertion
over primes of good reduction, which is already contained in [Hor14].

Theorem 4.8.1. Suppose that n > 3 and that the principal part Ps(T) is
integral. Then, after replacing f by a multiple kf, for any sufficiently divis-
ible k € Zsq, there exists a rational section V(f) of w®r(00) defined over
Q, such that

®(f) = ~log [T (/)| + ¢7(0,0) log(4me”).
Here v = -TI""(1) is the Euler-Mascheroni constant.
In particular, the canonical isomorphism produces identifications

Q@cf(o,o) _ Jl\v(\lf(f))
= Z(f) - ¢;(0,0) - (0,log(4me")) + E(f),

where (0,log(4mweY)) denotes the trivial divisor endowed with the constant
Green function log(4mwe™), and E(f) = (E([),0) is the divisor

E(f) =div(¥(f)) - Z(f)
endowed with the trivial Green function. Moreover, there is a decomposition

E(f)= ) &)

p|Dr,
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in which the divisor E,(f) is supported on the special fiber Mg, and:

o Ifp is odd and p* + Dy, then E,(f) =0;
o Ifn>5 then E(f) =& f) is supported on Mg, .
o Ifn>5 and Ly is self-dual, then E(f) =0.

Sketch of proof. For any sufficiently divisible k, all the Fourier coefficients
of k- f are integral, and the Borcherds lift of k- f, after a normalization,
descends to a section of w® s (0.0)  Replacing f by this multiple, we take our
desired section W(f) to be this descent of the Borcherds lift. It is known
that the divisor of ¥(f) in M is exactly Z(f)|n; see [Bor98| or [Bru02].
Thus £(f) = X, & (f) is supported in finitely many nonzero characteristics.

Assume that L, is self-dual, or that p is odd and p?> + Dy, or that p
is odd and n > 5. To check that £,(f) = 0, it suffices to show that both
Z(f) and div(¥(f)) are flat over Z,). The flatness of Z(f) follows from
Proposition [4.5.8] For the flatness of div(¥(f)), note that the special fiber
Mg, is irreducible, by Theorem Thus div(W(f)), if not flat, contains
a multiple of the entire special fiber Mp,. Since a theory of integral g¢-
expansions is now available through [Madb], we can use the explicit product
g-expansion of W(f) to check that the support of div(¥(f)) cannot contain
Mg, and hence that div(W¥(f)) is also flat. To be more precise, the Fourier
coefficients in the g-expansion of U ( f) are integral and without a non-trivial
common divisor. Hence, the mod p reduction of such an expansion cannot
vanish identically. The g-expansion principle now implies that the form
U(f) also cannot vanish identically along the special fiber. ]

5. BiIc CM CYCLES ON ORTHOGONAL SHIMURA VARIETIES

As in Section [3] we will fix a CM field E with totally real subfield F'.
We will also take Q% to be the algebraic closure in C of Q and write I'g
for the absolute Galois group Gal(Q*#/Q). We will also fix a distinguished
embedding ¢ : E - Q8.

The goal here is to embed the zero dimensional Shimura variety from
Section [3] into the GSpin Shimura varieties from Section [d] and to study
the interaction between the various ‘motives’ that live over the two spaces.
The main result is Corollary which explains the structure of the space
of special endomorphisms associated with points of the zero dimensional
Shimura variety.

5.1. Hermitian spaces. Let (7, (-,-)) be a rank one Hermitian space over
E that is negative definite at (g, and positive definite at the remaining
archimedean places. The assignment

x> (x,x) = 2(x)

induces a quadratic form 2 : ¥ — F on the underlying F-vector space of
signature

(5.1.1) sig(7) = ((0,2),(2,0),...,(2,0)).
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The Clifford algebra of (¥,2) is a quaternion algebra over F', with a

Z,|27-grading
C)y=C*(¥")eC (V).

The even part C*(¥') is isomorphic to E as an F-algebra. We will fix
an isomorphism E = C*(¥) of F-algebras. Now, the odd part C~(¥) is
identified with the F-vector space ¥'. The action of F on ¥ given by left
multiplication in the Clifford algebra is none other than the given E-module
structure on ¥.

Remark 5.1.1. If we fix any E-module isomorphism ¥ ~ E, there is a unique
& € F* such that the hermitian form on ¥ is identified with the hermitian
form (z,y) = &2y on E. The element £ is negative at ¢y and positive at
L1,--+,td-1, and the isomorphism class of ¥ is uniquely determined by

f € FX/NHIE/F(EX)

Conversely, if we start with any CM field £ with totally real subfield F,
and any & € F* negative at (g and positive at ¢1,...,t4-1, we obtain an
F-quadratic space (¥, 2) = (E,§-Nmg/p) of signature (5.1.1)) as above.

Let x : A}, — {1} be the quadratic character determined by E/F. Keep-
ing the notation of Remark for every place v of F' define the local
mvariant

invy () = xo(€) € {+11.

Thus inv,(¥?) = 1 if and only if £ is a norm from E, and « € F,S is rep-
resented by ¥, if and only if x,(a) = inv,(¥#). The hermitian space ¥ is
uniquely determined by its collection of local invariants, and the product of
the local invariants is 1.

Definition 5.1.2. Suppose that p ¢ O is a prime ideal nonsplit in E. The
nearby hermitian space ¥ is obtained from ¥ by interchanging invariants
at 1o and p. In other words, P is the unique rank one hermitian space over
E with

—inv,(¥) ifve{p,uw}

inv,(?)  otherwise.

inv,(*¥) > {

The (positive definite) hermitian form on ?¥ is denoted P(x1,x2), and the
associated F-quadratic form is P 2(z) =¥(z, z).

5.2. Reflex algebras and Clifford algebras. Associated with (¥, 2) is
the Q-quadratic space

(5.2.1) (V,Q) = (7, Trpgo 2)

of signature (n,2) = (2d - 2,2).
Let E! be the total reflex algebra associated with E. It is an étale Q-

algebra whose associated I'g-set is canonically identified with the set CM(E)
of CM types for E; see §[3.4
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Proposition 5.2.1. The relation determines a distinguished embed-
ding of Q-algebras EV < C* (V).

Proof. The E-action on V =¥ gives us a decomposition

(5.2.2) Voue = @ 7 (1),

teEmb(E)

into one-dimensional Q®8-vector spaces, where ¥ (1) = ¥ ®F, Q*s. By
construction, the quadratic form ) induces a perfect pairing

V(1) x ¥ (1) > Q8.

Therefore, for each embedding ¢; : F - Q%8 i =0,1,...,d -1, Q restricts to
a non-degenerate form on

V=V ®p,, QM.

If ¢ # j then ¥; and ¥ are orthogonal, and so we obtain a Q%8 linear
orthogonal decomposition
d-1

VQalg = @ %
1=0

into two-dimensional non-degenerate quadratic subspaces. In turn, this gives
us a natural I'g-stable commutative subalgebra

d-1
(5.2.3) (§)C+(%) c O (Vgaie),

which descends to a Q-subalgebra B c C* (V).

We claim that there is a canonical isomorphism of Q-algebras E* 5 B
For this, it is enough to show that there is a canonical isomorphism of I'g-
sets:

Homg_a1.(B,Q"8) = CM(E).

But this is clear from the description in (5.2.3)), since, for eachi = 0,1, ..., d-
1, we have canonical isomorphisms of Q*8-algebras with an involution:

E®p, QY 5 CH(Y) ®p,, Q¥ > CH (%).
O

5.3. Morphisms of Shimura varieties. Assume now that d > 1, so that
n=2d-2>0. Write H for C(V'), viewed as a faithful representation of

G = GSpin(V)

via the left multiplication action of C'(V') on itself. Using the inclusion
E' ¢ C(V) of Proposition the group T also acts faithfully on H
via left multiplication. The torus T = Tx/TH can be identified with the
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intersection of G and Ty inside of GL(H). In other words, there is a
cartesian diagram

G GL(H)

in which all arrows are injective. Here, Nm! is the total reflex norm defined

in §3:4

Now, we have canonical identifications
ResggSO(¥) =Ty = T,

of tori over Q. This exhibits T, as a maximal torus in SO(V'), and it also
identifies V' with the standard representation Vy of T'. Moreover, we have a
commutative diagram

1 Gm T— -1, 1
1 G G SO(V) — 1

with exact rows, and all vertical arrows are injective.

Via the decomposition (5.2.2), we obtain a T'(C)-stable line
A ’V(Lo)(c C 7/@.

This line is isotropic with respect to the quadratic form Trp /g o 2, and we
use ((5.2.1)) to view z“™ as a point of the hermitian domain (|4.1.1])
The morphism 7" — G induces a morphism of Shimura data

(5.3.1) (T, {po}) — (G, D)

mapping po to 2" € D.

As in let L ¢ V be a maximal lattice of discriminant Dj. Recall
that the choice of maximal lattice determines a compact open subgroup
K c G(Ay) and a Shimura variety , with a canonical model M —

Spec(Q).

Consider the compact open subgroup Kro = Kon K c T(Ay). In §
we associated with it a zero dimensional Shimura variety Yy, ,, as well as a
normal integral model yKLO over Og. From now on we abbreviate

Y=Yk,

This is an arithmetic curve over O, whose generic fiber we denote by Y —
Spec(FE). By the theory of canonical models, we now obtain a morphism

(5.3.2) Y > M
of Q-stacks, induced by the morphism of Shimura data (5.3.1)).
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Proposition 5.3.1. The map (5.3.2) extends to a map of Z-stacks

y-M
Proof. This follows from Proposition and assertion (4) of Proposi-
tion [L.4.11 O

We will need some information about the compatibility of this map with
constructions of automorphic sheaves. For this, fix a prime q ¢ O lying
above a rational prime p, and an auxiliary quadratic lattice L° of signature
(n°,2), self-dual at p and admitting L as an isometric direct summand. As-
sociated with it is the Shimura variety M*° with a smooth integral canonical
model sz) over Zy and a finite map M,y — pr).

From Propositions 4.2.4] and [4.2.5, we obtain functors N(,) = Ngi and

Ny = NG from G?p) def GSpin(L%(p))—representations to filtered vector
bundles over ./\/l(()p) and F'-crystals over ./\/lf;p, respectively. On the other
hand, any G?p)—representation Ny gives a Q-representation N = N, [p‘l]
of T', and a Ko r-stable lattice Nj = N,y ® Z; ¢ Ng,. Therefore, by Propo-

sition m (or more precisely, its proof), it gives us a filtered vector bundle
Nyr over V() = Y ®0y O (q), and an F-crystal Neis over V.

Proposition 5.3.2. There are canonical isomorphisms

ois|
crislVrg

NdR i’ N§R|y(q) ) Neris i’
of filtered vector bundles and F-crystals, respectively.

We omit the proof of the proposition, which follows immediately from
unwinding the constructions. The main point is that both constructions,
when restricted to the completed étale local ring at a point y € Y(Fy),
recover the functors N, = Ngr, and N, = Ncisy of Corollary
obtained from Kisin’s functor 9t

For any prime p, note that the F-action on V gives us an orthogonal

decomposition:
VQP = @ ‘/3-37
plp
where p ranges over the p-adic places of F', and where we have set V}, =
Fy®p V. For each p | p, set

Ly=L,nV,cV,.
Definition 5.3.3. Call a prime p good for L, or simply good, if the following
conditions hold:
e For every p | p unramified in E, the Z,-lattice L, is O y-stable and
self-dual for the induced Zp-valued quadratic form.
e For every p | p ramified in E, the Zy-lattice L, is maximal for the

induced Z,-valued quadratic form, and there exists an O g-stable
lattice Ay c V,, such that

-1
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Here q ¢ OF is the unique prime above p.

All but finitely many primes are good: Choose any Opg-stable lattice
A c L. Then, for all but finitely many primes p, Az, = Lz, will be self-dual
and hence good.

We will call a prime bad if it is not good, and we let Dy,q be the product of
the bad primes. If we wish to make its dependence on the lattice L explicit,
we will write Dy,q 7, for this quantity.

Lemma 5.3.4. For every p + Dpeq, we have
KL707p = K07p c T(Qp)'
In particular, Y is finite étale over OE[DEald]-

Proof. Note that Ko, contains the subgroup Z of scalars. Therefore, it is
enough to show that the image Ko p so of Ko in T50(Q)) is contained in the
discriminant kernel of Ly . This is easy to see from the explicit description
of Lz, in Definition as well as of Koy s in .

There are two main points: First, Ko, s, preserves all O ,-stable lattices
in Lz,. Second, for any prime p c Op ramified in £ with q ¢ O the prime
above it, if a € Op g, then @ and « are congruent mod dg, /5,

Combining these two facts, if Ay, ¢ Ly is a maximal Op -stable lattice,
then Ky 5o stabilizes A, and acts trivially on DEI /F, Ap/Ay. This implies that
it stabilizes Ly and acts trivially on L, /L,. Since L"/L is a subquotient of

@, Ly /Ly, we find that Kop s, preserves L and acts trivially on LY/L. O

5.4. The space of special endomorphisms.
Proposition 5.4.1. Suppose that y € Y(C). Then V(A,) = 0.

Proof. Let 2™ = ¥ (19)c ¢ Vc be as in §5.3] The proposition amounts to the
statement that there are no positive elements x € V' that are orthogonal to
z“". But if such an z existed, then it would generate the one-dimensional
E-vector space ¥ =V, and, since 2" c ¥ is E-stable, this would imply that
every element of V is orthogonal to z“", which is clearly impossible. O

Recall that V is isomorphic as a T-representation to the standard repre-
sentation Vj = V(Hy, ¢) from If we are viewing V or Vj as an F-module,
we will emphasize this by writing ¥ and %j, instead. There is a canonical
Hermitian form on %#j: For z,y € ¥, we define (x,y)o € E by the relation
xoy = (x,y)o as elements of End(Hp). Under the isomorphism ¥ 5 9%, the
Hermitian form on ¥ induced from 2 is carried to the form &(x,y)o, for
some element ¢ € F' such that (9(£) <0 and ¢j(§) >0, for j > 0.

The lattice Lz c Vi ; is Ko, r-stable, and we have a K -equivariant em-
bedding L7 < End¢(z)(Hz). From this data, and the constructions in §
and § we obtain embeddings

(5.4.1) Vo = Endep) (H?)ly
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of sheaves over ) for 7 = B,£,dR, cris. The images of these embeddings are
local direct summands of their targets when 7 = B, ¢, but not necessarily
when ? = dR, cris. However, we have an embedding

(5.4.2) ‘/;ris,(@ ind _EndC(L) (Hcris)Qb/
in the isogeny category associated with the category of F-crystals over ).

The next result is clear from the definitions and Proposition [5.3.2

Proposition 5.4.2. For any Y-scheme S, and any prime p,

V(As[p™]) € Ende(r) (As[p™])
consists precisely of those endomorphisms whose homological realizations

land in the images of the embedding (5.4.1) for ? = p over S[p~'], and
in the embedding (5.4.2)) for ? = cris over Sg,. In particular,

V(As) c Ende(ry(As)

consists of those endomorphisms whose {-adic realizations over S[{71] land

in the image of the embedding (5.4.1)), and whose crystalline realizations
over S, land in the embedding (5.4.2))

Fix a rational prime p. Let q ¢ O be a prime above p, let p ¢ O be the
prime below g.

Proposition 5.4.3. If p is split in F', then
V(A4y) =V(Ay[p=]) =0
for all y € :)/(IF:lg).
Proof. Indeed, V (A,[p™]) € Varisy[p 117! = 0, by Proposition m O
By Propositionsand for a geometric point y of Y, if V(4,) # 0,

then y must be an F 3 &_valued point with q ¢ Og the unique prime lying

above a prime p c Op that is not split in F.

Until otherwise specified, we will assume from now on that we have fixed
the data of such p,q and y. In this case, by Proposition the abelian
variety A, is supersingular. Therefore, for any prime ¢, the natural map

Z;® End(Ay) - End(A4,[£7]).
is an isomorphism. This implies that, if £ # p, then the natural map
(5.4.3) V(A [L7]) = Viy

is an isomorphism.
Also, if ¢ = p, then the natural map

(5.44) V(A [p*g = Veisy[p ™17

is also an isomorphism. Moreover, by Proposition m Vcris,y[p_l] is gen-
erated by its yp-invariants.

For any 7, since F acts T-equivariantly on V', we have a natural map
E — End(V7)q giving an action of £ on V7 in the appropriate isogeny
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category. In particular, if y is as above, then, via the isomorphisms
and (5.4.4), the space V(A4,[¢>*])g has an E-action, making it a rank 1
module over Qy ®q E. If we want to emphasize this structure, we will write
¥ (Ay[£%])q for this space, and ¥ (A,[£*]) for the lattice V (A,[£*]) within
it.

Recall that there is a natural quadratic form @ on V(A,[¢*°]) induced
from composition in End(A,[¢*]). There is now a unique Hermitian form
(-,-)eon ¥ (Ay[£°])g with associated Q,®q F-quadratic form 2,(x) = (z,z),
such that, for any x, we have:

Q($) = Tr(Qg@QF)/Qz(‘Qé(x))'
Set
V' (Ay[oo]) = IZIV(AyVW])-

Then ¥ (Ay[o0])g has the structure of a Hermitian space over Ay .

Proposition 5.4.4. The Hermitian space ¥ (Ay[oo])q is isometric to ¥ ¥},
where PV is the nearby Hermitian space from Definition .

Proof. For each prime ¢ # p, (5.4.3) shows that ¥ (A,[¢*]) is isometric to
Lz,. This shows that 7 (Ay[co])q is isometric to ¥4, and hence to ¥},
away from the prime p.

Now consider what happens at the prime p. By there is an isometry

Y (Ay[p™])g = Varisyp™' 177,
and there is an orthogonal decomposition
‘/;ris,y [p_l] = @ Vl:p_l]cris,p’7
p'lp
where p’ ranges over the primes in Op lying above p. By the proof of
Proposition for each p’ we have

Vl:p_l]cris,p’ = V(HO,Cris,p’a C) [p_l]-

Under this isomorphism, the Hermitian form on V[p_l]crisyp/ is carried to
the form &(-,-), where (-,-) is the Hermitian form induced from composition
in EDd(HQ’CriS’pI).

If p” # p, there is an isomorphism of F-crystals

Wp’ ®(9F HO — HO,cris,p’a

where the left hand side is equipped with the semi-linear map Fr® @ 1.
Therefore, we obtain an isomorphism

VIp 15y = Fr or %

cris,p’
carrying the Hermitian form on the left hand side to £(-,-)g. This shows that
7 (Ay[oo])q is isometric to ¥, and hence to P¥j, away from the place p.
Finally, if p’ = p, the F-crystal Hp cisp is the Dieudonné F-crystal of a
Lubin-Tate group over O 4 associated with some uniformizer 7 € Ey. If q is
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unramified over F' and 7 is chosen to lie in F},, then Proposition shows
that we have an isomorphism

Vip 2 > E;®r %

cris,p
carrying the Hermitian form on the left hand side to w&(:,-)o.
If q is ramified over F' and 7 is chosen to lie in F},, then Proposition [2.3.3]
shows that we have an isomorphism:
Vip 15, — Es®r %

cris,p

carrying the Hermitian form on the left hand side to v¢(-,-)o, where v = 53,
for some 8 € W satisfying 7 (3) = 78.

In either case, it is easily checked that this establishes an isometry of
VIp1% with P 7, This finishes the proof of the proposition. O

cris,p

Proposition 5.4.5. Suppose that p is not split in E and that q c O is the
unique prime above it. Fix a point y € y(Fglg). Then Ay is a supersingular
abelian variety. Moreover:

(1) V(Ay) #0;

(2) The natural map

(5.4.5) Z o7 V(Ay) — V(Ay[e0])
s an isometry of quadratic spaces over Z.

Proof. It was already observed above that A, being supersingular follows
from Proposition [3.6.2

From Proposition we find that, for any prime ¢, the rank of the
Zg-module V (A, [€*]) is equal to 2d = dim V. Moreover, we can find a finite
extension of IFy over which y, and all the elements of V' (A,[¢*°]) are defined.

This shows that [Mad15, Assumption 6.2] is satisfied, and so our propo-
sition now follows from [loc. cit., Theorem 6.4]. The statement of the cited
result assumed p > 2, but its proof goes through without this assumption. [

Corollary 5.4.6.

(1) For any connected Y-scheme S, V(Ag)q has a canonical structure of
an E-vector space equipped with a positive definite Hermitian form
().

(2) We have V(Ag)g = 0 unless the image of S — Y is supported on a
single special fiber Yy, with q ¢ Op a prime lying over a non-split
prime p c Op.

(3) If S » Y is supported on a single special fiber Vg, as in (2), then
there is an isometry

V(As)g ="V

of Hermitian spaces over E. Here, we have written ¥ (Ag)q for
V(As)q equipped with its additional Hermitian E-vector space struc-
ture.
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Proof. From Proposition we obtain an embedding T - Aut®(Ag),
whose homological realizations are the maps 87 ( H) of [loc. cit.]. This implies
that V(As)q c Ende(z)(As)q is a T-stable subspace.

First assume that S is a geometric point y € y(Flg), where q ¢ O lies
over a non-split prime p ¢ Op. For any £ # p, by , V(Ay)qg, is iso-
morphic as a Tp,-representation to Vg,. It is easy to see that, for each ¢,
the E action on Vp, identifies Eg, with the commutant of Ty, in End(Vg, ).
Therefore, the commutant of 7" in End(V (4,)q) is a commutative Q-algebra
that, for every ¢ # p, is isomorphic to Eg, over Q. As such, this commu-
tant must be the field E. In this way, we obtain an E-action on V(4,)q,
making it a 1-dimensional F-vector space, which is irreducible as a repre-
sentation of 7. In particular, there is a unique Hermitian form (-,-) on it,
which when composed with Trp,q gives the canonical quadratic form on
V(Ay)q, It now follows from the Hasse principle for E-Hermitian spaces,
and Propositions 4.5.4] [5.4.4] and [5.4.5| that we have an isometry

V(Ay)Q Sy

of Hermitian spaces over F.

If S is any Y-scheme with V(Ag) # 0, it follows from Proposition [5.4.1]
that the image of S in Y does not intersect the generic fiber Y, and thus is
supported in finite characteristics. Suppose that s € S (Fjlg) is a geometric
point lying above a point ¥ € y(IF;‘lg). This implies that q lies over a non-
split prime p ¢ Op. Moreover, since ¥ (A, )q is an irreducible representation
of T, the map

V(As)g = 7 (4Aye
must be an isomorphism. In particular, V' (Ag)g has a canonical structure
of a Hermitian space over E, equipped with which it is isomorphic to P¥. It
follows from this that the image of S in ) has to be supported over Vp,. U

6. ARITHMETIC INTERSECTIONS AND DERIVATIVES OF L-FUNCTIONS

In this section, we set up the terminology required to state the main tech-
nical result of this paper, Theorem In particular, following [BKY12],
we discuss the theory of incoherent Eisenstein series and their g-expansion
and recall the main theorem of loc. cit.

Keep E/F and (¥,2) as in Once again define a Q-quadratic space

(V,Q) = (7, Trpjgo 2)

of signature (2d - 2,2) = (n,2), where d = [F : Q]. We will assume that
d>1, so that n > 0.

Let x : A% — {£1} be the quadratic character defined by the CM extension
E/F, and let Dg and Dp be the discriminants of E and F. If we set
Ir(s) = 7~*/?T'(s/2), the completed L-function

DE s/2

(6.0.1) A(s,x) = Dr Tr(s+1)4L(s, x)
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satisfies the function equation A(1-s,x) = A(s,x). Furthermore,
A0 _ L'0.x) 1 @‘ _ dlog(4me?)

where v = -I"(1) is the Euler-Mascheroni constant.

(6.0.2)

6.1. Incoherent Eisenstein series. Recalling the standard additive char-

acter g : Q\A - C* of define
’(/JF . F\AF - C*

by ¢F =g o Trp g

If v is an arichmedean place of F', denote by %, the unique positive definite
rank 2 quadratic space over Fy,. Set Goo = [1yjeo €u- The rank 2 quadratic
space

C =6 xV

over A is incoherent, in the sense that it is not the adelization of any F-

quadratic space. In fact, € is isomorphic to ¥ ®r Ap everywhere locally,

except at the unique archimedean place 1o at which ¥ is negative definite.
To any Schwartz function

oo ® P € S(Coo) ® S(FV) = S(€)

we may associate an incoherent Hilbert modular Eisenstein series via the
process described in [Kud97, [KY10, [Yan05]. Briefly, the construction is as
follows. Denote by I(s,x) the degenerate principal series representation of
SLo(Af) induced from the character x|-|* on the subgroup B c SLy of upper
triangular matrices. Thus I(s, x) consists of all smooth functions ®(g, s) on
SL2(AF) satisfying the transformation law

o((* 1) as) = vl ot

As in §4.7) the Weil representation wy (determined by the character ¢r)
defines an action of SLy(Ap) on S(%), and the function

®(g,0) = wg(9) (oo ® ) (0)

lies in the induced representation (0, x). It extends uniquely to a standard
section ®(g,s) of I(s,x), which determines an Eisenstein series

(6.1.1) E(g,s,®) = > ®(vg,s)
yeB(F)\SLa(F)

on SLa(Ap). Asin [Kud97, Theorem 2.2}, the incoherence of € implies that
E(g,s,®) vanishes identically at s = 0.

Endow Ap with the Haar measure self-dual with respect to v, and give
F\AFp the quotient measure. For every « € F' define the Whittaker function

(6.1.2) Walg, s, ®) = fAF ®(wn(b)g, s) - vr(-ab) db,
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where w = (; 7') and n(b) = (*?%). The Eisenstein series 1) has a

Fourier expansion

E(g,5.®) =) Ea(g,s,®)
ael

in which the coefficient
Ealg:5.0)= [ B(n(b)g.5,®)-vr(-ab)db
F\Ap
is related to the Whittaker function by

Walg,s, @) ifa#0

(613) Ea(g’s’q)):{@(g78)+W0(g,3,(I)) if a=0.

The degenerate principal series decomposes (s, x) = ®,1,(s, xv), where
the tensor product is over all places of F'. There is an obvious factorization
® = P, ® Py into archimedean and nonarchimedean parts, which induces a
corresponding factorization

Wa(97 S? (P) = Wa,oo(goo) 87 q)oo) : Wa,f(gf) 87 q)f)

of the integral (6.1.2). In practice there will be a further factorization ¢ =
®ppp € S(7') over the rational primes, and hence a factorization

Wa(g,8,0) = Wa,00(goos S Do) * | [ Wap(gps S5 0p)
p

of Whittaker functions. When the component ¢, admits a further factor-
ization ) = ®p|,¢pp so does

Wa,p(gpa S, ‘Pp) = H Wa,p(gpv S, ‘Pp)'
plp

From now on we will always take the archimedean component ¢ of our
Schwartz function to be the Gaussian distribution

o = B0, € Q S(E))
v|oo
defined by ¢! (z) = e2™2v(®) (2, is the quadratic form on %,.) By [KY10,
Lemma 4.1] the resulting Eisenstein series (6.1.1)) has parallel weight 1. As
the archimedean component will remain fixed, the section ® is determined
by ¢ € S(¥), and we will often write

E(g,s, ) = E(g,s,®).

6.2. A formal g-expansion. As in the previous section, fix a Schwartz
function ¢ € S(¥), and let E(g, s, p) be the corresponding incoherent weight
1 Eisenstein series on SLa(Af).

For any 7 € H% let g- € SLa(Ap) be the matrix with archimedean compo-

nents
1wy UZ.I/Q
9ri = 1 Ui_l /2 )
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and take all finite components to be the identity matrix. Here

ﬂ=(u0,...,ud_1), {52(1}0,...,’0(1_1)
are the real and imaginary parts of 7. Exactly as in [BKY12] (4.4)], define
a classical weight 1 Hilbert modular Eisenstein series

1
E(7,s,p) =
( ) NG

where N () = vo---v4-1. Its derivative at s = 0 has the Fourier expansion

1
: Z E;(g.;,(),cp)

AV N(ﬁ) aeF
As in [Kud97, KY13], for any a € F* define the difference set
Diff () = {places v of F : %, does not represent a}.

‘E(Q;,S,QO),

3

E'(7,0,¢) =

Usually a will be totally positive, in which case
Diff («) = {primes p c Op : ¥, does not represent o}
= {primes p c Op : xp() #invy(¥)}.
Remark 6.2.1. Note that Diff («) is a finite set of odd cardinality, and any
place v € Diff () is nonsplit in E. If p c Op is a finite place, then Diff (a) =

{p} if and only if « is represented by the nearby hermitian space ¥ of
Definition [(.1.2

All parts of the following proposition follow from the statement and proof
of [BKY12, Proposition 4.6].

Proposition 6.2.2. For any totally positive a € F' we have

1 , ar(a,9)
CEl(g7,0,) = TP
\/N(T)) (g 90)

A0, x)
for some constant ap(a, ) independent of 7. Furthermore:
(1) If Diff(«)| > 1, then ap(a, ) = 0.
(2) If Diff () = {p}, then
ar (o, @)
A(0,x)
where Q(¢)/Q is the extension obtained by adjoining all values of .

€ Q(p) -log N(p),

Now we study the constant term. Much of the following proposition is
implicit in the statement and proof of [BKY12, Proposition 4.6], but the
relevant part of [loc. cit.] is misstated, and we need more information than
is found there.

Proposition 6.2.3. There is a meromorphic function M(s,¢) such that

621) U852 oy Ny - N(m) 225X  M(s0).

VN (%) A(s+1,x
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If ¢ = ®yp factors over the primes of Op, then so does
M(87 90) = 1—[ MP(Sa 90]3)
p

Each factor My(s,py) is a rational function, with coefficients in Q(pp), in
the variable N (p)?®, and all but finitely many factors are equal to 1. Finally,

1 ’ _ - CLF(O,QD)
\/ﬁ “Eo(97,0,¢) = ¢(0) log N(7) + 20

where the constant ap(0,¢) is defined by the relation

aF(Oa(P) _ A,(()’X) !
A0 =—2¢(0) - A0 - M'(0, ).

Proof. Assume that ¢ = ®,¢, admits a factorization over the finite places of
F', so that there are similar factorizations

@(gvs)znq)v(gvs)’ WO(Q’Sa(I)):HWO,U(g7Sa(I)v)

(6.2.2)

over all places of F'. We define
M(37 ()D) = H MP(Sv (Pp)a
p

where
N(p)/®/2 Ly(s+1,x)
% (7) Ly(s,x)
_N(p) @2 Ly(s+1,x)
 w() Ly(s,x)
Here I € SLa(F}) is the identity matrix, f(p) = ordy(DprDpgyr), where Dp

and Dpgp are the different and relative discriminants of F'/Q and E/F,
respectively, and

(6.2.3) My(s,0p) = Wop(I,s,®p)

- @, (wn(b), s) db.

(6.2.) 29 (F) = xp (=1 invy (7) - e (s ) € {41, 53]
is the local Weil index (relative to ¥r) as in [Yan05]. These satisfy

" TIw(r) =L

Note that for a given ¢, all but finitely many p satisfy M,(s,yp) =1. This
is an easy exercise. Alternatively, as two factorizable Schwartz functions are
equal in all but finitely many components, it suffices to prove the claim for
any one factorizable Schwartz function. This is done below.

Extend ¢ — M(s, ) linearly to all Schwartz functions. Combining the
definition with the calculation

FR(S + 1)d

R N(g)-9)/2
Ta(sr2)l V@)

WO,oo (gﬂ"a S, q)oo) = (_i)d
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of [Yan05), Proposition 2.4], we find

A(s, x)

Wo(gs,s,®) = —N(3)(1=)/2
0(9 S, ) (U) A(S+1,X)

- M(s, ).
Plugging this equality and
B(g7,5) = N(@) DR 0(1,5) = N@) D2 (0)
into the equality
Eo(g7,5,9) = ®(gz,5) + Wo(gz, s, P)
of proves . As the left hand side of vanishes at s = 0,

the functional equation A(1 - s,x) = A(s,x) implies M(0,¢) = ¢(0), and
then follows directly from by taking the derivative.

It only remains to prove the claims concerning the rationality of the local
factors M,(s,py). First we describe M,(s,py) for a specific choice of ¢y.
Fix an isomorphism

(6.2.5) (%, 2p) = (Ep, & - Nump,p,)

with §, € Fi'. If p is either split or ramified in £, we choose this isomorphism
so that &, € O}’p. If p is inert in E, we choose the isomorphism so that
ordy (&) € {0,1}. Now let &, be the characteristic function of Ogp, c Ep = %,.

For this choice of Schwartz function, the calculations of [Yan05] (see also
Corollary below) show that

N(p)™- % if p is inert in F and invy (7)) = -1
1

MP(S’SZP) = {

otherwise.

By the linearity of ¢, = M,(s,¢p), it now suffices to show that when
¢p(0) =0, the function

Ly(5,%) N(p)/ P2
(s + 1.0 w7 Jr, Bn @)

is a polynomial in N(p)* with coefficients in Q(¢p). We assume ¢,(0) =0
in all that follows.

If |b] < 1 then ®,(wn(b),s) is independent of s, by the definition of a
standard section. If |b| > 1 then the factorization

o, ) 2 )

B (un®).5) =y O, (1) o).

As ®,(g,0) is locally constant, this last equality also implies that for all b
outside of some sufficiently large ball p~¢, we have

@y (wn(b), 5) = xp(D)[0] =~ @y (1,0) = X (D[] 12 (0) = 0.

(6.2.6) My (s, 0p) =

shows that
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Using these observations, one can check that (6.2.6)) is a polynomial in N(p)?
by decomposing the integral as a sum of integrals over annuli p¥ \ p¥*! in
the usual way.

For all sufficiently large ¢ we have

1 1
w(¥) [Fp Dy (wn(b),0) db = 0 fp_c P, (wn(b),0)db

=/p_ej%gop(x)@/)pm(be@(x))dwdb
:Awp(w)(A_C¢F7p(b9p(x))db) dz.

The second equality is easily obtained from the explicit formulas [HY12,
(4.2.1)] defining the Weil representation. In the above equalities, Haar mea-
sure on ¥, is normalized as in [HY12, Lemma 4.6.1], so that, for any iso-

morphism (/6.2.5)),
Vol(Op,) = N(p) e (Pr/p)/2N (p)~orde (&)

The Haar measure on F} is chosen to be self-dual with respect to 9 ry, so
that

Vol(p~©) = N(p)®- Vol(Op,) = N(p)© - N(p) o4 (@172,
The inner integral above is

Vol(p~©) if Zy(z) e pC’DRlp

JREEET)

and from this it is clear that the value at s =0 of lies in Q(¢yp).

By the interpolation trick of Rallis, as in [KY10, Lemma 4.2], the calcu-
lation above can be extended to show that the value of lies in Q(¢p)
for any s € Zsg. This shows that has the form R(N(p)®) where
R(T) € C[T] is Q(pp)-valued at infinitely many T € Z, and from this it
follows that R(T) has coefficients in Q(¢gy).

This completes the proof of Proposition [6.2.3 ([

otherwise,

As in [BKY12, Proposition 4.6], define a formal g-expansion
E(F,¢) =ar(0,0) + Y ar(a,p)-q°,
aeFy

where F, c F' is the subset of totally positive elements. Its formal diagonal
restriction is the formal g-expansion

5(7_750) = Z a(m,gp) .qm

meQ
defined by a(0,¢) = ar(0, ), and
(627) a(m790) = Z aF(O[?SO)
ol
Trp/g(a)=m

for all m # 0. In particular a(m,y) =0 if m <0.
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6.3. The Bruinier-Kudla-Yang theorem. Fix a maximal lattice L in
the Q-quadratic space (V, Q). Recalling the Schwartz function ¢, € S(¥") =
S(V) of (4.7.1)), abbreviate

a(m,p) =a(m,¢y), ar(a,p)=ar(o, @)

for any pe LY/L.
Fix also a harmonic weak Maass form f € Hy_4(wy ) with integral principal
part. Let us temporarily denote by

f=¢(f) e Sa(wr)

the image of f under the Bruinier-Funke differential operator of (4.7.3).
Decompose f(7) =¥, fu(7)pu, where the sum is over y € LY/L, and define
a generalized L-function

—_— dudv
L) =M+ 1) [ 8 B 5.0 T35
exactly as in [BKY12l (5.3)]. Here 7 = u +iv € H, and E(7,s,p) is the re-
striction of the Hilbert modular Eisenstein series E(7, s, ) to the diagonally
embedded H — H?. This L-function is an entire function of the variable s,
and vanishes at s = 0.
Abbreviate

o def L T(Q\T(Ay)/KLol
ec()= 2 AT @0 Kol

where Y'(C) is the set of complex points of YV, viewed as an E-stack. If we
set

yr =Yy XSpec(Z) Spec((C),

then
1

yeV>(C) |Aut(y)|
The following theorem is the main result of [BKY12].

=2d-dege(Y).

Theorem 6.3.1 (Bruinier-Kudla-Yang). In the notation above,

LYY L0, 5 o) Gm )
2degc(Y) A0, x) pwelV /L A(0,x) ’

m>0

where ®(f) is the Green function for Z(f) appearing in , and, using
the morphism Y (C) - M(C) induced by (5.5.3), we abbreviate

ooy _ (f.y)
O(f,¥%) = yeyg(@ TRt
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6.4. The arithmetic intersection formula. Exactly as in §4.6] we may
form the group of metrized line bundles Pic(Y) on V.

Let Foo : Y*°(C) —» Y*°(C) be complex conjugation. As ) is flat of
relative dimension 0 over O, all Cartier divisors on ) are supported in
nonzero characteristics. If Z is such a divisor, by a Green function for Z we
mean any Fo-invariant R-valued function ® on Y*°(C). Exactly as in
we define an arithmetic divisor on ) to be a pair

Z=(Z,90)
consisting of a Cartier divisor on Y together with a Green function. The
—1
codimension one arithmetic Chow group CH () is the quotient of the group
of all arithmetic divisors by the subgroup of principal arithmetic divisors
TV () = (div(W), ~log [P2),
for ¥ a nonzero rational function on ). Once again we have an isomorphism
e v =1
Pic(Y) — CH ().
Remark 6.4.1. Any arithmetic divisor (Z,®) decomposes as (Z,0) + (0, D),

and Z can be further decomposed as the difference of two effective Cartier
divisors.

To define the arithmetic degree, as in [GS90), [ KRY 04, KRY06], of an arith-
metic divisor Z as above, we first assume that Z = (Z,0) with Z an effective
Cartier divisor. Then

deg(Z)= Y logN(q) >

4<Og zeZ(F2IE)

length(Oz .)
[Aut(z)|

where Oz, is the étale local ring of Z at z. If Z = (0,®) is purely
archimedean, then

Tz _ 1 O(y)
deg(2) =5 yeyg(c) Aut(y)]
The arithmetic degree extends linearly to all arithmetic divisors, and defines
a homomorphism o
deg : Pic(Y) - R.
We now define a homomorphism
[-:V]: Pic(M) - R,

the arithmetic degree along ), as the composition
Pie(M) — Pie() X5 R,
Theorem 6.4.2. Recall the integer Dyaq = Dyaq.1, defined following Defini-
tion m For any f € Hy_q(wr) with integral principal part, the equality
[2(): D] __£'0.8(f)) , 2(0,0)-¢5(0,0)
degc(Y) A0, x) A0, x)
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holds up to a Q-linear combination of {log(p) :p | Dpad}-

Theorem is the technical core of this paper; its proof will occupy all
of {7 with the completion of the proof appearing in

Remark 6.4.3. By Proposition [5.4.1], the Z-quadratic space of special endo-
morphisms V(A,) is 0 for any complex point y € Y(C). By the very defi-
nition of the special divisors Z(m, u), it follows that the image of ) - M
is disjoint from the support of all Z(m,u), and hence from the support of
Z(f), in the complex fiber. As Y is flat over Z of relative dimension 0, this
implies that the image of ) meets the support of Z(f) properly; i.e. the
intersection has dimension 0, and is supported in finitely many nonzero
characteristics.

7. PROOF OF THE ARITHMETIC INTERSECTION FORMULA

In this section we prove Theorem There are two main computations
that are independent of each other: Proposition and Theorem [7.7.4
The first computes the Fourier coefficients of an incoherent Eisenstein series,
and the second computes the lengths of the local rings of the intersection
between the special divisors on the ambient GSpin Shimura variety with the
zero dimensional Shimura variety from Section [3.1] These combine to give
Theorem which is at the heart of the proof of the main theorem.

7.1. Local Whittaker functions. Let p be a good prime, in the sense of
Definition [5.3.3] and let p ¢ Op be a prime above it. We will assume that p
is not split in Of. Let q ¢ O be the unique prime above p.

Let m(p) and n(p) be the p-adic valuations of the different dp, g, and
relative discriminant Dg, /p, = Nmp, /g, (9g,/r, ), respectively. The integer
n(p) is non-zero if and only if q is ramified over F. Set f(p) = m(p) + n(p);
this is the p-adic valuation of dp, /g, Dg,/F,-

Let e(p) be the absolute ramification index of p. If p # 2, then the only
possible non-zero value for n(p) is 1. If p = 2, then n(p) belongs to the set
{2e(p)+1}u{2i: 0<i<e(p)}.

Since p is good, the quadratic space Ly = L, NV, contains a maximal
Op ¢-stable lattice Ay. Moreover, if p is unramified in F, then this lattice is
itself self-dual and in particular is equal to L.

Fix a uniformizer m, € Opyp. If p is unramified in £, we will also write
for this element, when we view it as a uniformizer for E;. If p is ramified in
E, we assume that 7, has the form Nm(m,) = 7, for a uniformizer m, € E.
Here Nm is the norm from E; to Fj.

We will now explicitly describe the possibilities for A,.

e If p isinert in £, then the self-dual quadratic form on L, is the trace
of an Ey-valued Hermitian form. In this case, Ly = Ay, and we have
an isometry of Hermitian lattices:

(va (331,1732)) ~ (OE,q,Tfp_m(p)Sleg).
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The nearby Hermitian module PL, =PA, is defined by

(PLp,P(21,22)) = (Op gomy " a1 73).

(In other words, the underlying Op q-module is the same, but the
hermitian form is rescaled by 7.)

o If p is ramified in E, with q ¢ O the prime above it, then, for
an appropriate choice of unit 5, € (’)Ifﬂyp, we have an isometry of
Hermitian lattices:

P \L1,22)) = E,q> +7T7m T1T2).
(Ap: {1, 2)) = (Opg Bomy " Vi)
The nearby Hermitian module PA, is defined by

(PAp,P(21,22)) = (O g, -1, " P21 2),

where f_ = 6f8;, and § € 1 + Wg(p)fl(’)g is such that (&) = —1.
(In other words, the underlying Of q-module is the same, but the
hermitian form is rescaled by 9.)

Let ¥ be the nearby Hermitian space as in Definition Then, by
construction, the nearby lattice PA, is a lattice in P%;,. Moreover, again
by construction, we have an identification of Of 4-modules (though not an
isometry)

Fix a coset
A+ Ay cmy" P,

of Ay, and let PA +PA, be the associated coset of PA, obtained from the
identification ([7.1.1]).

Let Moy e S(®)%;) be the characteristic function of M + ®)A,. Here,
and in the sequel, we will use the superscript ® o indifferently denote
objects related to both ¥ and P¥; e.g., S((p)”f/p) means either S(%;) or
SC%).

Write (p)q)g\ € I,(s,x) for the standard section associated with ("), as in
§6.1] with corresponding Whittaker function

Wop(I,s, P®)) = fF p D)X (wn(b), s) - Vi, (~ab) db.
Let I € SLo(F}) be the identity. For convenience, set

Yo (P ) '
N(p)f®)/2

Here, 7, (®) %) is defined by (6.2.4).
The next result follows from [Kud97, Proposition 1.4].

Wi (1,5, @) = Wap(I,s, M),

31f n(p) =1, then we set 1+ 7r,?(p)71(9p7p = O p-
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Proposition 7.1.1. Suppose that a € Fy\ is not represented by (p)“//p. Then
Wap(9p 0, (p)@;\) =0.

Set
| m(p) if p is unramified in F
S = By ™) if p is ramified in E,
and
(7.1.2) Pe, - {W;m(ti:) ?f p %s unrémiﬁ?d in K
B-my if p is ramified in E.

The proofs of the two propositions below are essentially contained in [HY12,
§4.6] and [Yan05]. In particular, see [Yan05, Propositions 2.1, 2.2, and 2.3].

Proposition 7.1.2. Suppose that p is unramified in E.
(1) If ordy(a) < —=m(p), then
Wap(I,s, P@) =0.
(2) If ordy(a) > —m(p), then

1

W(;:,p(]737q)g) = Z (_l)kN(p)_ksv

Lp(s +1,X) gchcordsa)+m(p)
and
Wap(I,5,P®0) = Wap(I,5,®)) - (1+N(p)™).

Proposition 7.1.3. Suppose that p is ramified in E.

(1) If ordy(a) < —m(p), then

Wap(L,s, P @) =0.
(2) If ordy(a) > —m(p), then
W, (1,s, (p)q)g) -1+ Xp((p)gpa)]\f(p)’(ordp(0‘)“"(”)*”("))5.

Now, suppose that p is ramified in E. As above, let 7y € £ be a uni-
formizer, chosen so that Nm(7q) = 7.
For any ay,az,( € F*, write a1 = az (mod () to mean a1 = ap (mod (OFy).
Proposition 7.1.4. Suppose that X ¢ A,.
(1) If p+2, then
(55, P)02) - {1 ifa=®2(®)) (mod M¢,)

0 otherwise.

W*

a7p

(2) Suppose that p=2. Then
az=2()) (modé&) < a=P2(P\) (modPs,).
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Moreowver, me(l,s,(p)@é‘) 1s identically 0 unless these equivalent
congruences hold, and when they hold we have

Wi o (1,8, D00) = 1+ x, (P ga) N (p) (")),

where r(\) € Zsg is the smallest positive integer such that \ € W;T(/\)Ap.
Proof. When p # 2, this computation is contained in [HY12, Proposition
4.6.4]. When p = 2, the result appears to be new. We present a mostly
self-contained proof here that covers both possibilities.

For simplicity, write @, x, ¥ and & for (p)q);}, Xp,> ¥, and &y, respectively.
By a standard argument, we have a decomposition:

Woap(I,5,®) = Woy(I,5,®) + W, ,(I,5,®)",

where
Wep(L,, @)% = [ @(wn())(-ab)d
<
Wep(L,, @) = [ O D0(0(67))b(-ab)ab
>
(1 0 .
Here, n_(b™") = 11 and we have abbreviated ®(g,0) to ®(g).

By the definition of ®, and basic properties of the Weil representation,
for any b € Op,, we have

@(wn(®) =2p(P7) [ 00O 26))dr

:%(@)a,/).¢(b.<p>°@(<m)).ﬁm B(b- P 2(x) +b- O (PN 2)) da

_ %((p)ﬂ//) ap(b- (P)Q((p))\)) ) A)A ¢(b.(p)g($)) dz.

Here, dx is the Haar measure on (p)”i/p that is self-dual with respect to the
pairing

(z1,22) = (Trg, ym, (P (a1, 22))).
We have also used the fact that, for any x € Ay, ®) ()X, ) belongs to D;,i/(@p,
and hence

W(b- PPN z)) =1.
Set sy = M 2(®))\). Using [HY12, Lemma 4.6.1], we then obtain

@(wn(t)) = N(p) 7O (P9 )is3) [ @rx(En)(by)dy

= N (p) 02 (P5)9(bs))

| NEOR S NeYE [ ey
k=-m(p) Fp

= N(p) PPy (D7 )b (bsy).
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The second equality here is deduced by noting
(7.1.3)

Vo _ r—-m(p)/2 if or .
fﬂ_T ) ¢(Cy)dy:{N(p) Vol(Opyp) = N(p) p fordy(¢) > (p)

. 0 otherwise,

and the last by using the following lemma, which is a standard Gauss sum
computation, using the fact that x has conductor n(p).

Lemma 7.1.5. For o€ Fy,

[ N(p) T2y (@) - (x, %) if ordp(@) = ~f(p)
o

0 otherwise.
Therefore, we have
Wap(T, 5, @)1 = N(p) "Dy (@7). [ (s~ a)p)a
Fp

_ {N(p)‘f(p)/2 (@) ifazsy, (mod )

x(y)(ay)dy = {

X
F.p

(7.1.4) .
0 otherwise.

To compute Wy (1, s, ®)>!, we will need

Lemma 7.1.6. Suppose that c € Opy and that k = ordy(c) > 1. For any
integer t € Zs1, set

Uy =1+mOpy.
Set
d(k,\) =2k - (n(p) -r(N)).
Then ®(n_(c)) + 0 only if

n(p) —r(A)
2

<k<n(p)- T(Q/\).

In this case, we have

cls
w(n ()= N[ sy

Vol(Upa V) Ui
In particular, if p # 2, then Wy (1,5, ®)>1 = 0.

Proof. As in [HY12] and [Yan05], this uses the identity n_(c) = —wn(-c)w,
so that

D(n_()) = X(-1)®(wn(-c)w)
=x(-1) "Yp((p)qf/) ﬁ)% P(-c- (p)a@(w))w(w)((p)gp)\)(x)dx
= Jo PP 2@) [ T )y de

Here, we have used the identity v, (® %)% = ¢,(x,¥)? = x(~1).
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For z € W%, set ty(2) = Tr(P(P)\, z)). We compute
—Tr(® = (- —Tr(®
ooy, Ty = (1) [ o))y
= N(p) PP (-t (@)) - char(ny" P Ap) (@),

and hence
(n-(c) = N(p) @2 [
If k> n(p) then
ordy(c- P 2(x)) > k= n(p) - m(p) > -m(p)

iy, Ve P 2() ~ (@) d

for all x € my n(p)Ap. Therefore, under this assumption, we have

() =NG) " [ lta(@) dr =0,

where we have used ([7.1.3)).

Now, suppose that k& <n(p). Note that
- W) -ty(z) =-c- P2+t - PN) + s,

Therefore,
D(n-(c)) = N(p) "/ 2p(c ) - [
Using Lemma 4.6.1 of [HY12], we find

D(n-(c)) = N(p) VOO (e ls). [ (e x(en))i(-ey) dy

= N(p) OOy [ (E(-e) dy.
C S)\+ﬂ'p F,p

Here, for the last identity, we have also used ((7.1.3) combined with the
inequality

—c-®
L A+r, "I, P(-c-W2(x)) dx.

ordp(c) =k <n(p) = f(p) - m(p).
If 2k > n(p) — r(A), then

ordp(c_zs,\) ==2k-m(p)—-r(\) <=f(p).
Therefore, the substitution y ~ (¢ 72sy) "y, combined with the observation
that x(sy) = x(&) gives us

-1
CIJ(n_(c)) = Mc—df]:\)?)) . Ld(kﬁA) X(y)qﬁ(—c_lsky)dy.
» e

Vol(U%
If k>n(p)- @, then d(k,A) > n(p). Since x has conductor n(p), in this
case we get
D(c'sn)

(n-(e)) = e P 20y,
Vol U0y Juf
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which vanishes by ((7.1.3]).
If 2k <n(p) —r(A), then we have

/—25 +ﬂ.—f(P)O X(y)w(_cy) dy = ‘/‘ﬂ_;f(p)OF’p X(y)¢(—cy) dy.

In this case, it is not hard to see, using Lemma that this integral
vanishes, and hence that ®(n_(c)) = 0.
[l

When p # 2, this, combined with ([7.1.4)), finishes the proof of Proposi-
tion Therefore, we now specialize to the case where p = 2. In this
case, we have

PI(PA) = 6.2()),

where 6 € Up, n(p) ', From this, and the condition r(\) < n(p), it follows easily
that the Condltlons

az=2()\) (mod¢), a=2(*)\) (mod ¢)

are equivalent. This shows the first part of assertion (2) of the proposition.
For the second part, observe that Lemma [7.1.6] gives us:

WaplLs, 7 =SNGV [ xOP-07)0(-ab) db,

dp(b)=—k

n— T(/\)

N(p)™*s
Vol(U;iff’*))

where , and the summand indexed by k is equal to

(7.1.5) /U s X [ X Oy (51 - a = sy))db dy.

Now, we have
ordy (m,*sx(1-y)) =k = f(p) > —f(p),
and therefore
ordp(wp_k(sA —a—-5\y)) =-k+ordy(sx(1-y) - )

can equal —f(p) if and only if ord,(a) = k- f(p). So, using Lemma [7.1.5
we see that

L xX@m (s —a = su)db = N O x(=52) - x(y - (1= 55"0)) - en(x: )

F.p

if ordy(a) = k- f(p), and that it vanishes otherwise. Therefore (7.1.5) is
non-zero only if ord,(«) = k - f(p), in which case it is equal to

N(p)ff(xs)/2 .,Yp((p)y/) - N(p)~ks
Vol(U3 ™)

‘[Ud(k,x) X(y(y - (1 - 5;104))) dy.

Here, we have also used the formula for v,(")%) from (6.2.4), combined
with the identity x(sx) = x(€) = invy, (P 7).
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Combining this with (7.1.4]), we obtain

N(p)™* - M(a,N) if sy, (mod¢)
L+ N(p)™* M(a,)\) ifa=z=sy, (mod?¢),
where k = ord,(a) + f(p), and where

T x(w(y - (1-sya))) dy.
Vol(UeMy Juiy™

Now, if a = s (mod &), then ordy(sy'a) = 0, and so k = n(p) - r(N).
Therefore, the proof of the proposition will be completed by the following
lemma:

Lemma 7.1.7. We have
1 difa=sy (mod¢) and (p)“//p represents o
M(a,A\)=:-1 ifa=syx (mod¢) and (p)”f/p does not represent o
0 dfa#sy (modyd).

(7.1.6)  W.,(I,s®)= {

M(a, M) =

Proof. If a = s, (mod &) and ®) ¥, represents «, then we can choose our
coset representative (™ so that

sx=®2(®)) =q.

Therefore, s;la =1, and the formula for M (a, \) reduces to

1 / 2
— x(y”) dy = 1.
Vol(UpaV) JUi™

If = 55 (mod €) is not represented by )%, then Proposition
shows that

M(a,\) =

1+ M(a,\) = W, (1,0,8) =0,
and so M (a,\) = -1.
Now, suppose that o # sy (mod £). Set ¢ =1-sy'a. We have
s = dy= [l x(1-570) dy
P

P

= fUdW) x(1-yQ) dy
F.p

(7.1.7) =x(=¢) fydW) x(y-¢) dy.
Note that |
or _ )0 if k>n(p)-r(N)
d(C) {k —(n(p) =r(N) if k<n(p)-r(N).

Moreover, when k = n(p)—r(X), ordy(¢) is an integer between 0 and r(\)-1.
In particular, we find that we always have

n(p) —1-ordy(¢) > d(k, N).
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Choose 1 € U;(pp)_l such that x(n) = —1. This choice determines a measure
preserving bijection

DY 5 g

by y+ y+ (1-n)¢"'. We now compute
fUd(k,A) x(y - C_l) dy = ‘/d(k)\) x(a(y) - C_l) dy
F, Up

P P

- /UdW) X(y=-n¢") dy
F

P

= - fUd“M) x(nly=¢h dy
F

By

= - fydW) x(y-¢) dy.
F,p

Combining this with (7.1.7) shows that M (a, \) = 0. O
This completes the proof of Proposition O

We now record a few more results that are easy consequences of Proposi-
tions [7.1.2] [7.1.3] and [7.1.4l We omit their proofs.

Proposition 7.1.8. We have

’YP(/V) . LP(va) .
Wop(1,s, CIJ;‘) = {(J]V(p)f(p)/2 To(st10) zj:i : ip
p-

Corollary 7.1.9. Let My(s,¢x) be as in (6.2.3). Then My(s,¢z) is con-
stant. In fact, it is either 1 or 0 depending on whether X is zero or non-zero.

Proposition 7.1.10. Suppose that o € F* is such that Diff (o) = {p}. Set
X(a,\)={z e A+PL,:P2(z) = a c F,}.
(1) If X(a, \) =@, then
W/, o(1,0,®7) = 0.

(2) If X(a, A) #+ @, then Wa,p(I,O,p(I)g‘) # 0. Moreover, in this case, we

have
Wi o(1,0,®5) ¢
2D B) 5 o v,
Wap(1,0,P00) 2
where
-1
INOE Mga)ﬂ if p is unramified in E
’ Ordp(fgla) +n(p) if p is ramified in E.
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7.2. Nearby Schwarz functions. We will keep our notation from the pre-
vious subsection.

If p’ | p is a prime of O not equal to p, set PAy = A, as Hermitian spaces
over Op,. Note that PAy[p~'] is isometric to P#y, and set

Ap= EBAP’7 pAp = EBPAP"
p'lp 'lp

As in , we have a canonical Of p-linear isomorphism (but not an

isometry):

(7.2.1) Ay 5PN, P,
We set )
(P)A]v] - e?(p')—n(%a )((P)Ap,)_
»lp
Note that PA} is not necessarily the dual lattice associated with ¥A,, but
the notation will be convenient.
Suppose that we are given a class
A= ()\p/) € AZ/AP — @ ((p/)—n(P )Ap’/Ap') .
»lp
Observe that the isomorphism (7.2.1]) carries the coset A + A, to a coset
PA+PA, of PA, in PA). We have a further factorization

p)\ + PAp = HpApl +pAp/.

plp
Let Ppy , € S(P#y) be the characteristic function of Py + P Ay We now set
p
Por=Q"ox,,
plp

where pcﬁAp, = papAp,, for p’ # p, and where

_ P if ordg(Ay) > —n(p)
oy, if ordg(Xp

7.2.2 p = P

( ) P2 {O otherwise.

Fix p e LY/L. Associated with this is the characteristic function ¢, €
S(¥) of the coset p+ L. We will now associate with this class a nearby
Schwarz function P, € S(P¥’) as follows. First, we will have a factorization

p(Pu = ®p90,ug € ®S(p7/£) c S(p%)
14 J4

If ¢ + p, then Py, = ¢,, will be the characteristic function of s+ Ly under
the obvious identification

S(*¥) = S(N).
If ¢ = p, we can view p,+ L, as a subset of AIV,, and, as such, it is a disjoint
union

pp+Lpy= || A+A,
Aepp+Lyp
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of cosets of A, in Aj. We now set
(7.2.3) o= Y P Y @,
Aepup+Lyp Aepp+Lyp p'lp

As in the discussion of let I(s,x) be the space of the degenerate prin-
cipal series representation of SLy(Af) induced from x|-|*, and let P BH (g, s)
be the standard section of I(s,x) determined by the Schwartz function

oo ® oy € 5(o0) ® S(PT),
Associated to this and each a € F' is the Whittaker function
Wa(g, s, P 0H) = W oo (goor 5, PV BL) - Wi s (g5, 5, P BH)

admitting a factorization into infinite and finite parts.
We have a decomposition of the finite part

(P)q)? = ®[(p)q)lz € ®ZI[(87 X):

where (p)q)’; € Iy(s,x) is the standard section associated with (p)gow. This
gives us a decomposition of Whittaker functions

Wa, (g5, s, (")@’Jﬁ) = I;[ Wae(ge, s, (p)cb’;).

‘We have

Ap€pp+Lyp

where ), is the characteristic function of A+A,,, and the analogous decompo-
sition for P, from ([7.2.3). Each coset A+ A, admits a further decomposition

A+ A=Ay + Ay,
p'lp

and so we obtain a finer decomposition

(7.2.4) = 2 Qe

Ap€pp+Lp p'|p

where ¢ Ayt is the characteristic function of Ay + Ayr.

7.3. Orbital integrals and Fourier coefficients. Normalize the Haar
measure on

Tso(R) ={se (E®gR)":s5=1}
to have total volume 1, and fix any Haar measure on
Too(Ap) ={se E*:s5=1}.
There is an induced quotient measure on T, (Q)\Ts,(A), and for any com-
pact open subgroup U c T,(Ay) we have
T U
VOI(U) — | SO(Q) N | .
| Tso(Q\Ts0(Af) /U]

VOI(TSO(Q)\Tso(A) )
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Definition 7.3.1. Fix a prime p ¢ Op nonsplit in E, and let Py € S(P¥) be
any Schwartz function on the nearby hermitian space P# =P% ® Ay of
For each o € F* define the orbital integral

1

0 "0) = G TA]) S P15

for any x € ¥ with P(z,z) = ov. If no such z exists we set O(a,P¢) = 0.

Proposition 7.3.2. Fiz an « € F; such that Diff(a) = {p} for a single
prime p c Op. Let q c O be the prime above p. Suppose that p lies above
a good prime p. Then, for any pe LY /L, we have

aF(auu)

A0 ~lp(@) - O(a,"py,) -log N(q),
where y(a) = 0 unless (Pup +¥Ly) N, represents a € ), in which case,
we have

ordp(a)+m(p)+1 I o
ly(a) = 2 if p is unramified in E
ordy(a) + m(p) +n(p) if p is ramified in E.

Proof. The proof proceeds as in [Kud97, Theorem 6.1]. The strategy is to
relate the incoherent Eisenstein series (g, s, ¢, ) to a nearby coherent Eisen-
stein series, whose Fourier coefficients can be computed using the Siegel-Weil
formula. This information is then combined with the computations of local
Whittaker functions in §7.1] to complete the proof.

We begin by repeating the construction of the incoherent Eisenstein series
from §6.1, but we replace the incoherent A p-quadratic space € = Goo x ¥ by
the coherent space

b Xpﬂi/\ip"f/@FAF,

which differs from % only at the place p.
Let ¢, € S(¥P) be the prime-to-p part of ¢,, so that we have

Pu=Pu, ® b € S(1,) ® (7).

By (7.2.4), we have ¢y, = X eu,+L, Pr,» Where @y admits a further
product decomposition

Pr, = H LW ®p S(Yyr).
p'lp
Here, A\, ranges over representatives for cosets of A, in AZ contained in

pp + L. R
Set px = @x, ® ¢ € S(¥). We now have

(7.3.1) ar(@p)= Y ar(o,pn).
Ap€pp+Lp
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Fix A\, € pp+Ly. Choose any Schwarz function P, € S(P¥;). This gives us
a global Schwarz function P € S(P¥") admitting a factorization over primes
p' c Op:
P =&y oy,
where P, is our chosen function and, for p’ # p, we have
Pow =, € S(Wy) = S(H).

If Py is the characteristic function of P, + FA,, then we will write Ppy
for the corresponding element of S(P¥).

Let ®* € I(s,x) (resp. P® € I(s,x)) be the standard section associated
with L ® @y (resp. oL ®@Py). If Pp =Py, we will write P®* for the section
P®, in agreement with the notation used in the local setting of

There is a factorization

I(87 X) = IP(Sa X) ® Ip(sa X)a
into the p-part and prime-to-p-part. Since ) and Py differ only at their
p-components, our two sections d* and P® have the form
PH = (I)g ® (I)(P)7 PO -Pp, @ (ID(p),

for a common section ®®) of I*(s, x).

We now have a coherent Eisenstein series E(g,s,?p) = E(g,s,?®) defined
exactly as in , and associated with the Schwartz function Pe.

Given g,g" € SLo(Afr) which have the same prime-to-p components, we

deduce, using (6.1.3)), the relation

Wam(gp’ S, ‘1’?)
Woup (g{av S, P(I)p)
which is valid for all values of s at which W, ,(gp,s,?®y) is non-zero.

Suppose that g is such that g, = I € SLa(F}) is the identity, and choose
gp and P, such that Wa p(gy,0,P¢y) # 0. Then, using (7.3.2) and Proposi-

tion [7.1.1] we get:

E.l(g,0,®) =

(7.3.2) Eo(g,s,®) = -Euo(g',5,7®),

Wi o(1,0,®5)
WO!,P(Q{J? Ovp(I)P)
In the notation of Proposition this equality implies
CLF(O(,)\) o _ Wc’y,p(Ivov(pg\) Ea(g;a()?pq))

AO) T Wap(g0.7%) T /N(o)

: Ea(gla Ovp(b)'

(7.3.3)

for all 7 € 1.
If « is not represented by P\, +¥ Ay, then assertion (1) of Proposition
now implies
CLF(O&, QDA) =0
AGO,x)
Combining this with shows that ar(a, 1) =0, whenever (Pu,+PL,) N
P¥, does not represent a.
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Now, suppose that « is represented by PA, +¥A,. Then Proposition
implies that we can take g’ = g and Py =Ppy,.

As in the proof of [HY12, Proposition 4.4.1], the Siegel-Weil formula
[KR94] implies

E.(gz,0,7®* 2¢° _
(g S ): q / Z p(p)\(sfla;)ds.
/N (@) Vol(Tso(Q)\Tso(A)) ITeo(@\Tuo(8) 5%

P9(z)=c
The group Ts,(Q) acts simply transitively on the set of all x € P¥ with
P2(x) = a, allowing us to rewrite this equality as
Ea(gﬁ 07 }Jq))\) _
VN (0)
Combining ([7.3.4) with (7.3.3), and using the formulas for
W/, ,(1,0,®))
Wap(1,0,P0p)
from Proposition shows
QF(OZ, 90)\)
(7.3.5) — o = ~l(a) O(a,Ppy) -log N(q).
A(O,x) "

Now, observe that ordy(a) + m(p) + n(p) = 0 whenever n(p) # 0 and
ordg(Ap) = —n(p). Therefore, from the definition of P&y, in (7.2.2), we see

that (7.3.5)) is equivalent to

(7.3.6) 9r( )y (a)-O(a, 32 -log N(q).

A(0, x)
Here, ¢y differs from Py only at p, and we take its factor at p to be Py, .

Now, note that, by (7.2.3),

O(a.Ppu) = 3, O(a,gy)
Ap€pp+Lp

(7.3.4) 2-0(a,Ppy) - ¢°.

and that
O(Oz, p(ﬁ ,\) = 0,
whenever P, +PA, does not represent .

Combining these observations with ([7.3.1]) and ([7.3.6]) completes the proof
of the Proposition. O

7.4. A decomposition of the space of special endomorphisms. Fix
a prime p ¢ Op not split in £, and let q c O be the unique prime above it.
Fix an algebraic closure Fglg for IF, and also an algebraic closure Frac(WW )8
of the fraction field Frac(W') of W = W(F;lg). Choose an embedding Q8 «
Frac(W)¥# inducing the place q on E = 1o(E).
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Let Ly, = L,n¥, c Ly, and let Hy = C(Ly) c C(Lp) = Hp. Let Kro c
T(Af) be the compact open subgroup defined in § and let Ko 1.4 ¢ Ko,1p
be the intersection of Ko 1, with the image of £ under the natural map

E: > (E®q @p)x ->T(Qp).

Then H), c Hg, is a Ko 1 p-stable lattice, and Hy c Hy[p~]is a Korq
stable lattice. Moreover, the natural C'(Ly)-linear map

(7.4.1) Hy ®c(r,) C(Lp) = Hp
h®z—h-z

is a Ko, 1, q-equivariant isomorphism, once we equip C(L,) with the trivial
K07L7q-action.

Fix a point y € Y (Fglg ). Then, by Remark (7.4.1) gives us a crys-

talline Z,-representation Hy , of I'y and a C'(L,)-linear isomorphism
(7.4.2) Hy,y ®c(r,) C(Lp) = Hp,.
The following result is easily deduced from Theorem [2.1.1

Proposition 7.4.1. The I'y-module Hy ,, is canonically isomorphic to the
p-adic Tate module of a C(Ly)-linear p-divisible subgroup

A[poo]p c A[poo“Spec(Oy)‘
Moreover, the natural C(Ly)-linear map of p-divisible groups
APy ®c(r,) C(Lp) = AlP™ llspec(o,)
is an tsomorphism.

In particular, for any O, -scheme S, we obtain a natural map

(7.4.3) Ende(z,)(A[p™]p,s) = Ende(r,) (As[p™]),

and so, in complete analogy with the definitions from §4.5 we define the
space of special endomorphisms

V(A[p*™l,s) c Ender,) (A~ ]p.5)

to consist of those elements that induce special endomorphisms of A[p*]
via (7.4.3)). By definition, this is a subspace of V (Ag[p™]).
The next result is entirely analogous to Lemma

Proposition 7.4.2. Let Lg = Lg c L, be the orthogonal complement to Ly.
Then there is a canonical isometric embedding

Lg g V(A[poo]Spec(Oy))

as a direct summand, such that, for any Oy-scheme S, we have

V(AP©lps) = (L5)" < V(As[p™]).
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Given a class 7 € L, /Ly, we will also need a corresponding subset

(7.4.4) Vu(A[p™lp.s) c V(A[P™]p.s)".

This is once again defined as in We fix an embedding L — L° into
a maximal lattice L°® that is of signature (n°,2) and is self-dual at p. Let
AP c L, be the orthogonal complement of Ly,. Then we have a canonical
isometric embedding

AP = V(A% [p™]s),
whose orthogonal complement is V/(A[p*],.s). Hence we get a map
V(AP A
V(A[p=lps) — Av
The subset now consists of elements = such that the pair
([z],m) € ‘;(A[pz]p’s)v o
(A[p=lps) AP
is in the image of V/(Ag[p™]). Here, we have used the natural isomorphisms
APV . Ly L
A T L+ A L

V(As[p™]) -

to view 7 as an element of A/t—pv
The following proposition is now immediate from the definitons and is
analogous to assertion (3) of Proposition [4.5.5]

Proposition 7.4.3. For any p, € L;/Lp, we have a canonical decomposi-
tions

Vi, (As[p™]) = L Vi (A[p™Jp,5) x (2 + L),
(p1,p2)e(pp+Lp) [ (Ly®LPP)

where we are viewing

fip + Ly c L_J\J/ Ly”

Lyo L) L, L}
7.5. Lubin-Tate and Kuga-Satake. Let p c O and q c O be as above.
For the rest of this section, we will assume that p lies above a good prime p.
Therefore, we have

-1 _ AV
where Ay ¢ 7} is an Op g-stable lattice.
Fix a point y € :)J(Ffl”lg). Fix also a uniformizer g € Ey, and let G, be the

Lubin-Tate formal O q-module over O, associated with this uniformizer.
If p is unramified in E, we will assume that we have chosen 7y = 7, to be a

uniformizer for Fj,. Otherwise, we will set m, = Nm(7g) € F,. As in we
will set

m(p) = ordq(DF/Q).
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As in for any Oy-scheme S, and for each \ € DE{/F})/OE@, we have a
canonical subset

Va(Gq,5) € End(Gy.5)q

of special endomorphisms (with denominators) of Gy 5. Fix an Op g-linear
identification Ay = Of 4, so that we can identify

Ay ) Opq '
In particular, for any A € AJ/Ayp, we have a corresponding set Vx(Gq,s) of
special endomorphisms of G;. Under this identification, the Hermitian form

on Ap is carried to the form
(1, 22) = {1

on Opq, for some & € F) satisfying ordy (&) = -m(p).
Since we have identified A, /A, with Da/Fp/OE,q, for A € AJ/Ay, we can
speak of the space V(G,) of special endomorphisms of the Lubin-Tate group

Gq-
For pe Ly /Ly, set

Vu(gq,y) = |_| V/\(gq,Oy/ﬂ'qu)u
Aep+Ly

where A\ varies over the classes in A, /A, such that A+ AJ lies in pu + Ly.

Proposition 7.5.1. There exists an Egy-linear isomorphism

V(Ay [Poo]p)Q = V(gq,y)Q

carrying the Hermitian form on the left hand side to &, times that on the
right, and such that, for each u € Lg/Lp, it induces a bijection

V,u(Ay[poo]P) > V,u(gqay)-

Proof. Using Remark we can associate with Ay an Of q-linear con-
tinuous representation Ay e, of the absolute Galois group I'y of Frac(O,).
This representation can be identified with the space Vet = V(Hopet,C)
of O g-semilinear endomorphisms of the Tate module Hyy ¢ of the Lubin-
Tate group G4. Moreover, its crystalline realization Ay sy can be identified
with the space Vj p cris,y = V (Ho p,cris,y, ¢) of Op q-semilinear endomorphisms
of the F-crystal Hyp cris,y obtained from the Dieudonné F'-crystal associated
with G.

These identifications carries the Hermitian form on Ay e (resp. Ay crisy)
to &, times the natural Hermitian form on Vg, (resp. Vi cris,y). Therefore,
we now obtain an Ej-linear isomorphism

V(Ay [poo]P)Q = ‘/pﬁ::rils,y[p_l] = A;f;iis,y[p_l] - ‘/Os,ap:,iris,y[p_l] = V(gq,y)(@

carrying the Hermitiian form on the left to §,-times that on the very right.
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It remains to show that it carries V,,(A,[p*>]y) onto V,(Gqy). For this,
we will need a little preparation. Consider the Breuil-Kisin module 9t(A;)
associated with Ay, and the uniformizer ;. We have an Op 4-linear
identification

M(Ap) = V(M(Hop), c)
of Breuil-Kisin modules.

Lemma 7.5.2. There is canonical, p-equivariant isomorphism

AY . IM(AY)

S®y — > ———
TAy M(A)
of &-modules, where the left hand side is equipped with the constant p-semi-
linear endomorphism ¢ ® 1. It induces a p-equivariant isomorphism
LY . ML
)
Ly DM(Ly)

Proof. If p is unramified in O, then A; = Ay, and there is nothing to show.
Suppose therefore that p is ramified in Op. We have & ®z, O q-linear
isomorphisms

v -1

A ~ aE /F
7.5.1 S ey - S5 6e; —*
(7.5.0) o S,
and

m(AV) o~ aE'I/F
7.5.2 P25 9 90, V(OM(Hy,),c).
As in §2.2] we have identifications

(7.5.3) m(H(),p) = Qﬁ(TﬂE(Qq)) =6 ®7, OE,q

as 6®z,0p -modules carrying the the p-semilinear endomorphism of M(Hy p)
to the endomorphism (¢ ®1), where 8 has the following description: First,
let Ey o c Ey be the maximal unramified subextension. For each embedding
n: Eqo <= Frac(W), we obtain a finite W-algebra W, = Og4 ®0p, 41 w.
There is a disinguished embedding 79 induced from the distinguishéd em-
bedding ¢y of Ey into Frac(W)s.

We now have

8= (ﬁn) € HG w Wﬂ =6 ®7, OE’q,
n
where (3, = 1, if n # 1o, and B,, = u —no(7y)-
From (7.5.3)), we now obtain an identification
(7.5.4) V(m(H07p), C) =6 ®z, OE,q

carrying the ¢-semilinear endomorphism on the left hand side to the endo-
morphism a(p ® 1), where

a:(aﬁ)€H6®WWﬁ:6®2qu
n
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u-n0(7q)
u-no(mq)

with oy, = 1, for n # 1o, and o), = . Since Tq — Tq € g, /F,, We have

a=1 (mod OEq/Fp).

Therefore, tensoring (|7 with 9} o/ F /OE.q, and using (7.5.1) and (7.5.2)),

gives us the 1somorphlsm Whose existence is asserted in the proposition.
We leave it to the reader to check that this isomorphism is independent

of all our choices. O

Now, base-changing along ¢ : & - & the isomorphism from Lemma
and then reducing it mod u, we obtain a canonical isomorphism

LV . VY.

- p,cris,y

n:W ey -

r Lp ‘/;J cris,y
Lemma 7.5.3. The subset V,(Ay[p™]y) ¢ V(Ay[p™]y)q consists of those
elements x whose crystalline realization Xeis € Vi crisy [P~ 1 lies in VV

,cris,y?
and such that
Lcris = 77(1 ® N) (mOd V;J,cris,y)
Proof. Choose an auxiliary lattice L°, self-dual at p, and isometric embed-
ding L - L°, giving us the auxiliary Kuga-Satake abelian variety Aj over
Falg
q -
Let L;’p c L, be the orthogonal complement of Ly. Choose a lift fi € L;,’
of u, and an element i € L;’p’v such that

hAA Y P,
(i, i*) e Ly c Ly ® Ly*".
Then, by definition, giving an element of V},(A,[p™],) amounts to specifying
z e V(Ay[p™]y)" such that
(2, 7) € V(A [p7]p)" @ L
lies in the image of V (A;[p™]).
Since we have a canonical isometric embedding

W ez, L°F >V,

cris,y

mapping into the orthogonal complement of V, cris , we obtain an inclusion

(7.5.5) Vaisy = Voerisy ® (W ®z, LOPY).

cris,y

Let @eris € Vi erisy[P” 17 be the crystalline realization of x, and let T €

V:;lsy be the crystalline realization of (z,). Then it is clear from the

definitions that @eis actually lies in V', . and that (7.5.5) maps @g;,
to (Zcris, #F). From this, one deduces that @cys must map into n(1 ® u) €
%Ycris,y/wvcrisvy’ O

Tracing through the definition of V,,(G, ), it is not hard to show that it
has the same description as that of V,,(A,[p*],) given to us by Lemma

This finishes the proof of the proposition.
O
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7.6. Special zero cycles. For any scheme S over ), by Corollary
the space V(Ag)qg has a canonical structure of an E-vector space equipped
with a positive definite Hermitian form (,-) such that, for any = € V/(Ag)q,

Q(r) =z oz =Trp((z,z)).

Write ¥ (Ag)qg for V(Ag)g equipped with this additional structure. For
any pe LY/L, let ¥,,(Ag) denote the space V,,(Ag) viewed as a subspace of
VY (As)g

Suppose that o € F* and p € LY/L. Define a moduli problem Zp(a, u)
over ) such that, for any Y-scheme S, we have

Zp(a, 1) (S) = {z e Y (As) : (z,2) = a}.

Since (-,-) is positive definite, Zp(«, ) is empty unless « € F, is totally
positive.

From the definitions, we now find that there is a canonical decomposition
of Y-stacks

(7.6.1) VxmZmyp)= || Zr(a,p).

acF,
Trp/g(a)=m
Proposition 7.6.1. Suppose that a € Fy and pe€ LY|L. Then Zp(a,p) is
non-empty only if Diff (o) consists of a single prime p. In this case, Zp (v, i)
is 0-dimensional, and is supported at the unique prime q c O above p.

Proof. To begin, Proposition implies that the intersection of Zp(a, 1)
with Y is empty. Therefore, Zr(a, 1) is always either empty or 0-dimensional.
If z ¢ Zp(a,u)(ﬂ?:lg) for some prime q c Og, let y € y(F;‘lg) be the point
below it. By the definition of Zp(a, 1) the E-hermitian space ¥ (Ay)q rep-
resents . In particular, 7' (A4,) # 0, and so Propositionimplies that the
prime p ¢ O below q is nonsplit in Og. Moreover, Corollary implies
that the nearby hermitian space ¥ represents o. This shows Diff («) = {p},
by Remark and everything follows easily. O

Set
Vi(Ay[oo]) = I;I Vi, (Ay[€7]) € V(Ay[oo])q.

When viewed as a subset of the Hermitian space ¥'(Ay[o0])q, we will denote
this set by 7, (Ay[0]).

Proposition 7.6.2. Suppose that y € y(Fﬁlg). Then the Ay p-linear isom-
etry

¥ (Ayleo])g =¥
of Proposition can be chosen so that, for each p € LY|L the charac-

teristic function of the image of V,,(Ay[o0]) in P s the nearby Schwarz
function Py, defined in (7.2.3)).
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Proof. The only non-trivial point is to show that the E,-linear isometry
V(Ay[p" Do =

can be chosen so that, for every p, € LIV, /Ly, it identifies the characteristic
function of V,,, (A,[p*°]) with the Schwarz function P, .

For this, first note that the sublattice L, c L, transfers to a sublattice
PL, cPL,, as do its cosets in L; . Moreover, we have a canonical decompo-
sition

pp+ Ly = | ] (g1 + Ly) x (2 + LB).
(1,p2)e(pp+Lp)/(Lp®LP)
Given this and Proposition [7.4.3] it is enough to show that we can find
an Ej-linear isometry
V(Ay[p=lp)a =%
such that, for every pu; e L;’ /Ly, it carries the characteristic function of
Vi (Ay[p™]p) to the Schwarz function Pe,,.
By Proposition we have an Ey-linear isomorphism

V(Ay[poo])la = V(gq,y)(@
carrying V,,, (Ay[p™]p) to

|_| V/\(gq,y)-

Aepy+Ly

Here, A runs over the cosets of A, in A that are contained in ju + Ly,
and we define V)(Gq,y) via an identification Ay, = O 4, which induces an
identification A, /A, = D;qu/Fp/Oqu‘

By Proposition Va(Gqy) is empty whenever ordq(A) < —n(p) + 1.
Therefore, we see that it is enough to construct an Eg-linear isometry

(V(gq,y)Q7 <'7 )) i (ECHBxlE?)
such that, for every \ a_Elq/F,,/OE,q with ordq(A) > —n(p), the isometry
carries V\(Gqy) to A+ Opq. Here, 8 =7, = Nm(7q) if p is inert in E, and
B e O}X;,yp is such that x,(8) = -1 if p is ramified in F.

Such an isometry can be constructed using Propositions [2.3.3] and 2.3.4]
O

Recall the embedding 7" — Aut®(A) from Proposition whose homo-

logical realizations induce maps

9?(H) : TQ? — Auto(H?)

over ), which in turn give us maps
0:(V) i To, » Aut®(V2).
In particular, for each prime ¢, we obtain a canonical map

00 T, ~ Aut(¥ (A[£])q),
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and thus a map
0 0, : Tu, - Aut(¥(A[oo])q).
Lemma 7.6.3. The group T'(Ay)/T(Q)K o acts simply transitively on the

set of isomorphism classes in y(Fglg), and every point

y € V(F5')

has automorphism group Aut(y) = T(Q) n K. Moreover, for every t €

T(Ay) thereis a canonical isometry of Ay p-hermitian spaces ¥ (Agy[oo])g >
YV (Ayloo])q identifying

Vu(Aryloo]) = 6(8) 71 ¥ (Ay[eo])
as subsets of ¥ (Ay[oo])q.

Proof. By Proposition Y®o, OF,) is finite étale over O . Therefore,
the reduction map

Y(Frac(W)™#) - Y(Fe)

is an equivalence of groupoids. Furthermore, the map Y(Q¥#&) — Y (Frac(W)22)
is also an equivalence of groupoids. Therefore, the first assertion follows from
the fact that T'(A;)/T(Q) K o acts simply transitively on the set of isomor-
phism classes in J(Q%#) with isotropy group T(Q) n K. This can be
checked from the explicit description of the generic fiber Y in

The rest of the lemma follows easily from the definitions. O

Proposition 7.6.4. Fizx an o € F, such that Diff («) = {p}. We have

1
A N deg(C(Y) : O(aapgolt%
sezp (g A

Proof. The proof follows the same strategy as [How12, Theorem 3.5.3]. Pick
any base point yq € ))(Iﬁ‘fl”lg), and an isomorphism

Y (Ayoloo])g P77
as in Proposition [7.6.2] This identifies the characteristic function of
7/,U(Ayo [oo]) c ﬂi/(Ayo [OOD ®7 Af

with the Schwartz function P, € S(°¥) defined in
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Using Lemma we compute

1 1

DN yeewrn ESED DD DRy verwn
sezp(aaeys) AU V) Tl [Aut(y))

1

teT(Q\T (A )/ K10 265 (Aryy ) |Aut(t - yo)|

(z,2)=c0

1
S S S P (0)).
IT(Q) 0 Kol serondthsy/ics.ower (ap)ea

(z,2)=c
Next use the fact that
T(Q)/ker(0) > Tso(Q) = {s € E* : 55 =1}

acts simply transitively on the set of x € ¥ (A4,,) ® Q with (z,z) = a. By
picking one such x, we compute
5> 1 1
s PN T Risliy G
Y
_ degc(Y) f Po,u(st) ds,
Vol(Tiso(Q)\Tio(A)) ITuo(ay)

as desired. O

P (0(t't)x)

7.7. Deformation theory. Fix an « € F, such that Diff(a) = {p} for a
single prime p ¢ Op. Let g ¢ Og be the unique prime above p. Assume that
the rational prime p below p is good for L.

Suppose that y € y(F;lg). For any integer k € Zyy and any € Ly /Ly, set

Ak:[poo] = AOy/ﬂ"’;Oy [poo]’ gq,k = gq7(’)y/ﬂ-§(’)y) and
Va(A[p™]) = V(Ao jer0, 1)
Viu(Ax[p™]p) = Vu(Aoy/wgfoy [P 1p) Vi(Gar) = Vu(gq,oy/wgoy)-

Consider the 1-dimension Ej-vector space V(Ay[p*]y)g. By Proposi-
tion [7.5.1] it can be identified with the Eq-vector space V(Gqy)o-

Proposition 7.7.1. For every k, the above identification induces an equality
Vi(Ak[p™ o) = Vi(Ga.r)

Proof. We will prove this by induction on k. When k = 1, this follows from
Proposition It remains to show that the assertion holds for k + 1
whenever it holds for k.

Consider the de Rham realization Ay g4r, 0, associated with the Kq-representation
Ay. Tt is the reduction mod €(u) of the &-module ¢*M(A,), and is naturally
a filtered O,-submodule of Vdﬁa,oy‘

Lemma 7.7.2. We have FillAde,@y = Fill‘{i‘}{7oy.
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Proof. That the assertion holds after inverting p is immediate from the
construction. Therefore, it is enough to show that both FillAp7dR,oy and
FﬂlV:ﬁ)L@y have the same image in A;,dR,Oy' Since FﬂlV(fR’Oy is a direct
o . L Y
summand of VdR’Oy, it actually suffices to show that its image in Ap’ dR,0,

is contained in Ay 4r,0,-
Set

Fil'g* (V) = {z € 0" M(V,)) : () € E(u)M(V)}.

Then, using assertion of Theorem [2.1.1] it can be checked that the image
of Fillcp*fm(V;) in Vi o, is precisely FﬂLV(ﬁLOy.

Now, given an element of Fil' Vi o, choose a lift z € Fillcp*i)ﬁ(V]f). If
x' € o*M(A) is the image of z, then we find

p(a") € E(u)M(A).
But then Lemma implies that
a' e " M(Ay) + E(u)e ™ M(A,)

and hence that its image in A;7dR7Oy lies in Ay qr,0,
O

Write V(ﬁ%’k (resp. Ay dRr.k» A;dR’k) for the reduction of Vd‘)R@y (resp.
Ade,Oy, Ap,dR,(’)y) mod 7T§.

Now, choose x € V,,(Ax[p™]y), and let 211 be the corresponding element
of V,,(Gq,x)- To finish the proof of the proposition, it remains to show that
x lifts to V,,(Ag+1[p™]p) if and only if xpy lifts to an element of V,,(Gq x+1)-

Consider z° = (z,f1) € V(A?Dy/ﬂﬁoy). Let x;s € ViR 1 be the crys-
talline realization of x°. By Proposition [4.3.2] and Lemma [7.7.2] z° lifts
to V(Az’)y/wgﬁloy)’ and hence z lifts to V,,(Ag+1[p™]p), if and only if the

functional

[a:grisa 77] : Ap,dR,k+1 d Oy/ﬂ-g‘*—lo:y

lies in the annihilator of FﬂlAp,deH.
We claim that this annihilator is

.10 def
FiAY greer = ker(Ay arpin = Ay aroist ®0,@2,08,q,1970 Oy).
Indeed, it is enough to check that the annihilator of FillAde’oy in A;’ dR,0,
is
kef(A;,dR,oy - A;\J/,dR,Oy ®0,87,05,q,1870 Oy),

which can be checked after inverting p, where it is easily verified.

Now, by Proposition zyr has a crystalline realization xpr s €
AERJCH, and lifts to V,,(Gqx+1) if and only if 2y cris lies in FilOA;/’deH.

To finish, it now suffices to observe that

(7.7.1) T cris = [Torisr —] € A;Z,dR,ku-
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For this, let .S be the p-adic completion of the divided power envelope of the

o w9 (7q)
surjection W[u] ———= Oy, and set

M(AY) € o m(AY) @ 5.
The ¢-module structure on M (A, )[E (u)™1] gives us an isomorphism
oo MNP = M(A).

Moreover, by a variation of Dwork’s trick (see [Bre97, 6.2.1.1]), the re-
duction map

MAND P> MA@ W= Ay iy 7]

p,CI‘iS,y
\%
p,cris,y
talline realization of x viewed as an element of V,(Ay[p™],), and let g €

M(A;j)[p’l] be its unique @-invariant lift.
If k < e, then the image of & in M(A;J/)[p’l] ®s W[u]/(uF*1) actually
lies in

induces a bijection on p-invariant elements. Let xg € A be the crys-

E+1
M(Ay) ®s Wu]/(u")
and, by virtue of its p-invariance, is necessarily the crystalline realization of

both z and zpy along the divided power thickening W[u]/(u**1) L),
(’)y/ﬂé“Oy.

If k£ > e, then, once again by virtue of its p-invariance, &g is the crys-
talline realization of both x and xpr along the divided power thickening
S -0, /7r§(9y.

From these observations, the required identity easily follows. [

Define a function
ordg : V(Ay[p™]p)o — Z,
given by two defining properties:
e Ifae Ey, and x € V(Ay[p™]p), then

ordg(a-z) = ordg(a) + ordg(x).

o If x € V(Gyy) is an Op,-module generator, then

1, if q is unramified over F’;
ordg(z) =
Our definition of the function ord, is justified by the following result.

Proposition 7.7.3. Suppose that ji € L,y /Ly, and that x € V,(Ay[p™]p).
Then x lifts to V,,(Ax[p™]p) if and only if ordq(x) > k.

Proof. This is immediate from Proposition and Theorem [2.5.5 O
Theorem 7.7.4. At any point z € Zp(a,,u)(Faalg) we have

length (Ozp(ap).) = bp(e),
where £y() is defined as in Proposition [7.3.4

n(p) =ordg(dg/r), if q is ramified over F'.
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Proof. The point z corresponds to a point y € )}(Fglg) equipped with a
special endomorphism z € V,(4,) satisfying (z,z) = a. By Serre-Tate
theory its deformation theory is governed by the induced endomorphism
xp €V, (Ay[p™]). By Proposition there is a unique pair

fip + Ly CL_,\J/@LE’V

Ly+Lb L, L}’

(11, p2) €

together with a unique xy, € V,,, (Ay[p™]y) and v € g + L}, such that
I'p = I'p + .
Moreover, ordy () = ord, ({zy, zp)).

Also, by the same proposition, the deformation theory of z, is governed
by that of x,. More precisely, z, lifts to V,, (Ax[p*]) if and only if x, lifts
to V, (Ax[p*>]p). By Proposition this is equivalent to the condition
ordg(zp) > k.

Therefore, to finish, we must show:

(7.7.2) ordg(zp) = fp(a).

Now, note that the Hermitian form on V(A,[p*],)q is &-times the natural
Hermitian form (-,-)yr on V(Gqy)g, and that ord, (&) = -m(p).
Moreover, using Propositions [2.3.3| and we find that, if zg € V(Gg,y)

is an Op ¢-module generator, then

1=-1+2-ordq(zo), if qis unramified over F;

d =
ordy ({0, zo)r) {O =-n(p) +ordq(zo), if qis ramified over F'.

Combining all this, we find that ord,(«) is equal to

-m(p) - 1+2-ordg(zp), if g is unramified over F;

d =
ordp ((zp, zp)) {—m(p) —-n(p) +ordq(zy), if q is ramified over F.

Comparing this with the formulas for ¢,(«) in Proposition gives
us ([7.7.2)) and hence the theorem. O

7.8. Calculation of arithmetic degrees: the end of the proof of
Theorem [6.4.2]

Theorem 7.8.1. Suppose ave F, and p€ LY|L. Assume that Diff (o) = {p}
consists of a single prime of O, which lies above a rational prime p that is
good for L. If we denote by

Z\F(aa ,U’) € I/)I\C()))
the divisor Zp(a,u) on Y endowed with the trivial Green function, then
deg(Zr(a, p)) __ar(a,p)
dege (V) A0, X)
Proof. Combine Propositions [7.3.2] and [7.6.4] with Theorem [7.7.4] O
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Given a,b € R, we will write a ~;, b to mean that a — b is a Q-linear
combination of {log(p) : p | Dpad,r}-

Proposition 7.8.2. We have
a(0,0) 2A7(0, x)
NL —_——.
A(0, x) A0, x)

If n#0, then

a(0,p)

A(0,x)
Proof. Let ¢ = ¢, so that we have a factorization ¢ = ®p,, over the rational
primes, and

(7.8.1) a0.0) _ar(0.9) _ g

A0, x)  A0,x)
by Proposition [6.2.3
Fix a prime p, and suppose that we have ¢, = }’; ¢;, where each ¢; admits
a factoring ¢; = ®,,¢ip over primes p ¢ Op above p. Then, for each 4, by
Proposition we obtain a factoring

MP(S’ ‘Pi) = H MP(5> SDi,p),
plp

where, for any p | p, M, (s, p;p) is a rational function in N(p)®. Therefore,
My (0, ;) is a rational number, and M, (0, ;) is a rational multiple of
log N (p).

Moreover, if p is a good prime, then, by (7.2.4]), we can choose our de-
composition to be

A'(0, x)
A(0,x)

- M,(()?SO)'

SOM;) = ® @)\p )
Ap€pp+Lp

where )\, ranges over representative of cosets of A, in A contained in i+ L.
By Corollary My (s, py,) is constant, and hence M, (0, ¢, ) = 0, for
all primes p | p, It now follows that M'(0, ) is a Q-linear combination of
log(p) with p | Dpag-
The identity ([7.8.1]) now gives us the proposition. O
Proof of Theorem [6.4.3. Recalling that
Z(f): Z Z C}(_m,ﬂ)z(maﬂ)v
m>0 pelV/L
the stack decomposition
Zmp)xm Y= | Zr(ap)

aeF,
Trpyg(a)=m

of (7.6.1)) implies

ZU): Y] O™ 5y y SEER@m)

dege(Y) — 2dege(Y) eV /L ek, dege(Y)
m>0 TrF/@(a):m
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For any a € F, and any p € LY/L we have

(7.8.2) deg(Zp(a,p)) . _aF(a,u).

degc(Y) A(0,x)
Indeed, if |Diff ()] > 1 then Propositions [6.2.2 and |7.6.1] imply that both
sides of vanish. If Diff(«) = {p} then let p be the rational prime
below p. If p + Dpyq then the relation (7.8.2) follows from Theorem 7.8.1% If
P | Dpag then both sides of ((7.8.2)) are ~ 0 by Propositions and [7.6.1

Combining ([7.8.2)) and (6.2.7) shows that
Tog(Zr(a ) a(m,p)

L — )
a§*x degc(Y) A(0,x)
Trpg(a)=m

and so

[Z(H):Y] (£, Y) 5 a(m, ) - cp(m, )
R, - .
dege(Y) 2degc(Y) pelY | L A0, x)
m>0
Comparing with Theorem and using the approximate identity a(0, 1) ~f,
0 from Proposition for 1 # 0, shows that
[Z2():Y] _£0.8(h) , *(0,0)-¢}(0,0)
N — ;

as desired. ([l

8. THE HEIGHT OF THE TAUTOLOGICAL BUNDLE

For applications to the computations of heights of line bundles, and to
Colmez’s conjecture, it will be useful to have a results more general than
Theorem [6.4.2] involving restrictions of Borcherds products from larger
GSpin Shimura varieties. In these section, we pursue such generalizations,
which are mostly of a formal nature, given what has come before.

8.1. Enlarging the Shimura variety. Suppose that we have a quadratic
space (V°,Q°) of signature (n°,2), a maximal lattice L® c V° of discrimi-
nant Dre = [L®Y : L°], and an isometric embedding

(V,Q) = (V°,Q°).
satisfying L c L°. Define a positive definite Z-quadratic space

A={zel®:21L}
of rank n® - 2d + 2, so that L @ A c L° with finite index, and V° =V @ Ag.

From this data, we obtain maps of Z-stacks
VM- M,

where M and M?° are the integral models for the orthogonal Shimura va-
rieties associated with the lattices L and L°, respectively, and ) = Vg, , is
the stack appearing in Proposition
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8.2. The archimedean contribution. From the Z-quadratic space A we
may form the representation wp of SLa(Z) on the finite dimensional subspace

Sh C S(KQ)

of C-valued functions on AY/A, exactly as in §4.7, and the contragredient
representation wy on the C-linear dual SY.
The theta series

Oa(T) =S pa(m)q" e Mo, (@)
has Fourier coefficients pp(m) € S} defined by

pa(m, o)=Y o(x)

zeAV

for any ¢ € Sx. Letting ¢, denote the characteristic function of e AY/A,
we often write pa(m, 1) = pa(m, ¢,).

Given a pair (p1,p2) € (LY/L)® (AY/A) and a e L*Y/L°® we write, by
abuse of notation, p1 + po = 4 to mean that the map

(LY/L)e (A'/A) » (LY @ AY)/L°
induced by the inclusions
LeAcL®cL® cL' oA
takes (u1,p2) — p.

Proposition 8.2.1. Fiz any weakly holomorphic modular form f € Mian/Q (wre)

with integral principal part, and let ®°(f) be the corresponding Green func-
tion on M°, as in §4.7. If we set

y==Yy XSpec(Z) Spec((C),
and define ®°(f,Y*) as in Theorem|[6.3.1], then

O°(f, V) a(ma, p1)pa(ma, p2)
= Z Cf(_mall) Z .
2degC(Y) peLV [L° mi+ma=m A0, x)
meQ Hit+p2=p

Proof. The isomorphism
S(V*) = 8(V) @ S(Ry),

together with the tautological pairing between S (KQ) and its dual, induce
a map

S(V°)e S(Ag)Y - S(V).
As L@ A c L°, this restricts to a map Sre ® S{ - Sp,, which we call tensor

contraction, and denote by 1 ® 2 = 1 © Ya.
There is an induced map on spaces of weakly holomorphic forms

Mi(wre) ® Mi(w)) - M.p(wr)
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for any half-integers k and ¢. In particular, f — f ® ¥, defines a linear map

Mi,%(wZ) - Mé—d(WL)-

In terms of g-expansions,

(foia)(m)= > > creon(m,p)eu-q"

m>»—oo e [V/L

where

(82.1)  cron,(myp)= ) > cp(ma, o+ pg) - pa(ma, p2).
mi+me=m  p9eAV/A
u+pgel®Y [LeA

The essential observation is this: If we pull back the Green function ®°( f)
for the divisor Z°(f)(C) on M°(C) via the map M(C) - M°(C), we
obtain the Green function ®(f ®4,) for the divisor Z(f©9,)(C) on M(C).
This is clear from the factorization [BY09, (4.16)] of Siegel theta functions,
and the construction of the Green functions as regularized theta lifts as in
[BKY12, BY09).

As Y*(C) » M°(C) factors through M(C), we find

Q°(f, V) P(f O, V)
2dege(Y)  2dege(Y)

We may apply the result of Bruinier-Kudla-Yang, as stated in Theorem
directly to the right hand side. This gives

O°(f,Y7) _ > a(ma, p1) - crog, (=m1, p)
2dege(Y) p1elY /L A(0,x)

m1€Q

a(ma, p1)pa(me, p2)
=T Z cf(ms, p) Z
uel®V /L p1tp2=p A(()’X)
mi+mo+ms=0
where the second equality follows from (8.2.1]). O

8.3. An extended arithmetic intersection formula. Fix any weakly
holomorphic modular form f € Mi—no /Q(wLo) with integral principal part.
Let
Zo(f): Z Z Cf(_muu)'zo(mnu’)a
m>0 uELQ*V/LQ

be the corresponding divisor on M?®, and denote by
~ o —1
Z°(f)=(2°(f),®°(f)) e CH (M°)

the corresponding arithmetic divisor.

In what follows we will frequently demand that f satisfy the following hy-
pothesis with respect to the quadratic submodule L ¢ L® and its orthogonal
complement A = L* ¢ L°.
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Hypothesis 8.3.1. If m > 0, and if there an element x € D73 A with Q(z) =
m, then c¢(—m, p) =0 for all pe L*Y/L°.

Lemma 8.3.2. If the image of Y(C) - M°(C) intersects the support of
Z°(m,p)(C), then there is an x € DA with Q(z) = m. Therefore, if
Hypothesis holds, then Z°(f) intersects Y properly.

Proof. Suppose that the image of (C) intersects the support of Z¢(m, u)(C).
By Corollary this implies that there exist m1,ms € Qs with mq+msg =

m and
oV

L \% \%
e (/L) e (/)

such that Y(C) intersects the support of Z(m1, 1) x A, i, Where

Apyin = {x € o + A: Q(x) = ma}.

By Proposition for any point y € Y/ (C) we must have V(A4,) = 0. Thus
the only way that y can meet Z(my,p1) is if mq = 0 and pg = 0. It now
follows that there exists x € A, ,,, with

(,u17/i2) €

o,V

0 R
(7#2)6L®A7

and from this we deduce that there exists z € D74 A with Q(z) = m.
The second assertion is clear from the first. O

Proposition 8.3.3. Under Hypothesis we have:
[Z°(): )]
VA eh0,0)
dege(V)
Proof. Corollary gives us, for each pair (m, u), a decomposition
Z°(myp) xpe M= || Z(ma, 1) x Ay s

mi1+ma=m
p1tp2=p

of stacks over M. Moreover, if cf(—m, 1) # 0 then Hypothesis implies
that all terms with m; = 0 are empty. Therefore, we obtain a decomposition

Z°(Hlm= > cplma,p) Y palma,p2)Z(ma, p)
;LELO’\//L(> H1t+pU2=H1
m1+m2+m3=0
m3<0
m1>0

of divisors on M.
By Lemma the image of ) - M intersects Z°(f) properly, and so,
as in the proof of Theorem m (see especially , we deduce

[Z°(f): V] °(f,9%) _ a(ma, p1)pa(ma, p2)
doge(V) " 2degc(V) e U2 T R0y

mi+ma+m3=0
m3<0,m1>0

Combining with Proposition [8.2.1] completes the proof. O
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Suppose now that n® > 3. Denote by
@ e Pic(M), @° e Pic(M®)
the metrized tautological bundles on M and M*® of By Theorem [4.8.1]
after replacing f by a multiple if necessary, we have the equality

(8.3.1) ¢r(0,0)-@° = Z°(f) - ¢(0,0) - (0,log(4me”)) + E°(f),

where £°(f) = (£°(f),0) is empty if L{y) is self-dual and n > 5, and is

otherwise supported on the union of special fibers Mg, for p? + Dy, as well
as M, if L(9) is not self-dual.

Theorem 8.3.4. We have
@ 2N 1 E°(f):
@] | 2O o 1[0
degc(Y) A0, x) cr(0,0) dege(Y)
Proof. Combine Propositions and with (8.3.1]), and observe that

the restriction of @® to M is canonically isomorphic to &; see Proposi-
tion 4.4.7 O

9. COLMEZ’S CONJECTURE

In this section we prove Theorem [A] following the argument that was
explained in § of the introduction.

9.1. The statement of the conjecture. In this subsection only, E is an
arbitrary CM algebra. Recall that Q% is the algebraic closure of Q in C.
The group I'g = Gal(Q*8/Q) acts on the set of all CM types of E in the
usual way: 0o ® = {oo¢p:p e ®}. For each ® let Stab(®) c I'g be its
stabilizer.

Definition 9.1.1. Let c € I'g be complex conjugation. Write C MO for the
space of locally constant functions a : I'g - Q that are constant on conjugacy
classes and are such that the quantity

(9.1.1) a(co) +a(o)
is independent of o € I'p. This notion does not depend on the choice of c.

Every function a € CM° decomposes uniquely as a finite linear combina-

tion
a=Y a(n) 1
n
of Artin characters. For each Artin character n let

1
L(S,n) = 1;[ det (]_ _p_sn(FI'pNUIP)

be the usual Artin L-function, where p is a prime of Q¥ above p, and U is
the space of the representation 7.
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The independence from o of the quantity (9.1.1)) implies that any nontriv-
ial Artin character n with mg ¢y(n) # 0 must be totally odd, in the sense
that n(c) = -n(id), and therefore L(0,7) # 0. We now set:

Z(0,a) = - Z (n )(LL(([? 77)) bg;f”))

where f, is the Artin conductor of 7.
Following Colmez, we will now construct a particular function a?E ) in

CM" from the CM type (E,®). First, define a locally constant function on
I'p by the formula:

ap,e)(0) =[®nood.
The average

1
(9.1.2) a? = (B rod
()~ [T Stab(®)] ,.p, gt:ab(@) (o)
is constant on conjugacy classes of I'gp, and depends only on the I'g-orbit of
®. Moreover,
a(()E,cp)(U) + a?E,@)(CU) = |®|

is independent of o, and so a(()Eé)(a) belongs to CM?, as desired.
Remark 9.1.2. If E is a CM field, E is a CM field containing F, and
® = {7 e Hom(E,Q"®) : @l € @}
is the lifted CM type, then
[E: E]- a(E ) = a(Eé).
Definition 9.1.3. The Colmez height of the pair (E,®) is
h?}?c}) Z(O G(E <1>))

Suppose A is an abelian variety over Q*# of dimension 2dim(A) = [E : Q],
and admitting complex multiplication of type (E,®). Choose a model of A
over a number field k ¢ Q¥ large enough that the Néron model 7 : A —
Spec(Oy) has everywhere good reduction. Pick a nonzero rational section s
of the line bundle

dim(A .
F*QA/O(k ) ¢ Pic(Og),

and define

hFalt( A )

[k:. U,HC g'fa(C)

and 1
hl;alt(A78) _ Q] pCZOk ordy(s) - logN(p).




FALTINGS HEIGHTS OF ABELIAN VARIETIES 113

Definition 9.1.4. The Faltings height of A is
R (A) = (A, s) + 2 (A, 5)

It is independent of the field k, the choice of model of A over k, and the
choice of section s.

Theorem 9.1.5 (Colmez). If A has complex multiplication by the maximal
order O c E, the Faltings height

a. def a.
Wiy = h™(A)

depends only on the pair (E,®), and not on the choice of A. Moreover,
there is a unique linear map ht : CM® - R such that, for any pair (E,®),
we have

W) = ht(a(p,))-
Proof. This is [Col93, Théoreme 0.3]. O

Conjecture 9.1.6 (Colmez). For any a € CM°, we have ht(a) = Z(0,a).
In particular, taking a = a((]E@), for any CM pair (E,®) we have

al Col
h(Be) = E.a):

9.2. The reflex CM type. For the remainder of §9 we fix a CM field £
of degree [F : Q] = 2d, and a distinguished embedding ¢y : E - C. Denote
by F' the maximal totally real subfield of F.

Recall from the total reflex algebra E' associated with E: This is a
finite étale Q-algebra equipped with a canonical I'g-equivariant identifica-
tion

Homealg(Euv Qalg) = CM(E)7
where CM(F) is the I'g-set consisting of all CM types of E.
The embedding ¢y determines a subset

{CM types of E containing ¢y} c CM(FE).
This corresponds to a subset ®f ¢ Hom(E!, Q*8) = CM(E), called the total
reflex CM type. The pair (E¥, ®%) is the total reflex pair.
The relation between the total reflex pair and the classical notion of reflex

pairs is given by the following proposition, which is immediate from the
definitions.

Proposition 9.2.1. There exist representatives ®1,...,®,, € CM(E) for
the Tg-orbits in CM(E) satisfying the following condition: If for each pair
(E, @), (E],®!) is its reflex CM pair, then there is an isomorphism of Q-

algebras E! 5 [1; E!, such that the natural bijection
Hom(E',Q"¢) 5 Hom(FE],Q¥8) u---uHom(E! ,Q¥#)

identifies ®% = &) u---u®! . In particular, E* is a CM algebra and ®* is a
CM type.
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9.3. The average over CM types.

Proposition 9.3.1. Recall the completed L-function . The Colmez
height satisfies

1 Col 1 L'(0,x) 1 ’
~Sh el it 2 __1 9
2d§ (E2) =75 7(0, x) 3 ' 1os(2m)
1 A'(0,x) 3
.24 T 16 Y
2 A(O’ ) 4Og( 776)7

where the sum on the left hand side is over all CM types of E.

Proof. Recall that we have fixed an embedding 1o : E - Q8. If we let
I'r c I'g be the subgroup that acts as the identity on ¢o(F") c Q™2 and view
the nontrivial character x : Gal(E/F) — {£1} as a character of I'p, then

1 1
(9.3.1) 5.0 Z{)ja?m) =472 (1 + Emdﬁg(x))

where 1 is the trivial character on I'p. Indeed, if we normalize the Haar

measure on I'g to have total volume 1, and define a function 1 : I'g — Z by
201 if 5oy =1

P(o) =40 if cory=19

292 otherwise,

then an elementary calculation shows that the values of both sides of (9.3.1))
at 0 € I'g are equal to

_/F@ w(T_IUT) dr.

Using this, the first equality in the proposition follows from the calculation

Loen L L[, CO) K0 1
51 2. ) - [d {00) L<o,x>+51°g(flnd¥?;<x>)]

d 1L(0,x) 1
- L log(2n) - =X 2 oo (IDp| - Ngjo (0
9 og(27) 2 L(0,x) 4 og(| F E/Q( E/F))
1 L 1
__.M__. ‘ ‘__log(gﬂ)
2 L(0,x) 4 °|Dgp
and the second equality follows from (6.0.2]). O

Proposition 9.3.2. The total reflex pair (E', ®) satisfies

1
0 0
A(pr o) = [E:Q] Z{; A(E,®)

where the sum is over all CM types of E.
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Proof. Let E c Q& be a finite Galois extension of Q large enough to contain
all embeddlngs E — Q%2 In particular, each E!c E. Use 1y to regard E as
a subfield of E. For each 1<i <k let

&;, ®) c Gal(E/Q) = Hom(E, Q™®)
be the lifts of ®; and @], respectively, so that o € ®; if and only if 07! €

5; An easy exercise shows that a? (B8 = (()E@), and hence Remark [9.1.2

implies
[E:E] a{pe) = [E: E]-a(p.q,:
It follows that
[E;:Q] o 1

a(()E{ )= T MER) T T Z a((]ETo<1>-)a
o [E:Q] w0 [B:Q] relo/Stab(®;)

and summing over ¢ proves the claim. ([

Corollary 9.3.3. The total reflex pair (EY, ®) satisfies

1
hFalﬂt NE z F%lt<I> )
(2D~ E:Q] eCM(E) (B0

Proof. Combine Theorem and Proposition [9.3.2 [l

9.4. Faltings heights and Arakelov heights. Recall the torus T = T/ T}m
and the arithmetic curve

Vo = Spec(Opg)
from §3.2| defined by the compact open subgroup Ky ¢ T'(Ay). In
and §3.5 given an algebraic representation N of the torus 7', and a Kp-
stable lattice Nz ¢ Ny, we constructed various homological realizations N>
over ), functorially associated With the pair (N, N3).

Let H! be as in PI‘OpOSlthn The subring Opy c EY gives us a lattice
H% c H' stable under the multlphcatlon action of Ogy. The associated Z-
lattice H%. Therefore, from the pair (H, H%), we obtain an abelian scheme
A" - )y, whose homological realizations are the sheaves associated with the
pair. By construction, at any point y € Yy(C), Auy is an abelian variety with
CM by Og and of CM type ®F.

Define

i dim(A)
QF = W*QAﬂ/yo .

At any complex point y € Y5°(C) we endow the fiber

770 dim(A")
Qﬂy_H(Ag,Q%/(C )

sl =] [, sn
AL(C)

with the Faltings metric
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and so obtain the metrized Hodge bundle
0 e ().
The Betti realization of A gives us a local system
Hj; c Hj;® Oyyc) = Hip v, )

which determines a local system of Z-modules det(H}) c det(H} RYo (C)) of
rank 1.

We define the volume metric on det(HYz) by declaring that ||e||* = 1 for
any local generator e of det(HJ). At any complex point y € Yp(C) the dual
volume metric on

o im(Af
det(Hbp,)" > Haa™ M (AbC)

is just integration of top degree C'*° forms:

Il =1 f, 7l

This gives a second metrized line bundle
det(HJg) € Pic(D).

We will need a third metrized line bundle @y. This will be defined as
follows. Consider the representation Vo = V(FE,¢) of Tg on the space of E-
semilinear endomorphisms of E. This representation factors through 7' (and
in fact through Ty, = Tg/TF) and has a natural lattice Ly = V(Opg,¢) such
that Lo = L, 7 is stable under Ky. The natural E-linear structure on Vj is

invariant under 7. Therefore, from the pair (Vp, Lo), we obtain a de Rham
realization V) gr over ), equipped with an action of Og, making it a locally
free sheaf of rank 1 over Oy, ®z Op. This realization is equipped with a
canonical Opg-stable filtration Fil*V} gr by local direct summands extending
the one over Yy = ) g obtained from Proposition Moreover, the degree
1 summand
wy < Fil' Vo ar

is a line bundle over ).

Composition in End(E) induces a canonical, T-invariant Hermitian form
(-,-)o on V) determined by the property

(zoy)(a) = (z,y)o-a,
for any x,y € Vg and a € E. From this, we obtain a Q-valued quadratic form
Qo = Trgjg({w, 7)o)
with associated bilinear form [z,y]o on V.
Just as in § for every y € Y*°(C), this form equips wqy = FillVO,dey
with the Hermitian form ||2||3 = -[2,Z]o, and thus equips wp with the struc-

ture of a metrized line bundle, which will denote by @j.
There is a natural T-equivariant embedding

(9.4.1) Vo = End(H")



FALTINGS HEIGHTS OF ABELIAN VARIETIES 117

defined as follows: We have

I'g
Hﬁ:E“:( %) @alg&,pE) :

teEmb(F’)

Here, the action of I'g on the tensor product is the obvious one compatible
with permutation of the indexing set Emb(F)ﬁ
For each e Emb(F"), we have an embedding

Q¥ e, rVo=V(Q"&,rE,c)cEnd(Q* e, rE).

The Lie algebra tensor product of these embeddings gives us a I'g-equivariant
embedding

Q"8 ®g Vo = B(Q™¢ ®, r Vo) = End (® Q'8 ®, F E) )

L L

so that z € V) acts on Q8 ®Q E! via:

d-1
2(ap® a1 ® - ®ag_1) = Z ag® - ®a;—1 ®x(a;) ® aq_1-
i=0
Here, tg,t1,...,tq-1 : F = R are the real embeddings of F', and for each 1,

a; € @alg ®;, F E.

The descent of this action over QQ gives us ((9.4.1]).

Now, it is clear that this embedding induces a Kj-stable inclusion Zo >
End(l"-l%)7 and thus gives us a map of de Rham realizations

Voar — End(HlR)

allowing us to view sections of Vj qr as endomorphisms of H, ﬁR.
The action of wg on H, (“m induces a map

wo ®0y,, grﬁillﬂgf{ - FﬂochiR
of vector bundles over ), and taking determinants yields a map
2d-1 -1 10
of line bundles over Oy,. Set
10 —2d-1 -1 ®-1
(9.4.3) &£ = det(Fil HgR) ®w ®0y, det(ngHHﬁR) .

Then (9.4.2)) gives us a canonical section of .2 over )y, and thus an effective
divisor A on Yy. Write A = (A, 0) for the associated arithmetic divisor.

Proposition 9.4.1. We have
deg(A)
degc(Y0)

4In other words, E' is the tensor induction of the F-algebra E to an algebra over Q.

= 2% og | Dyl
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This is the key technical result of this subsection, and its proof will be
given further below. For now, we deduce from it the following theorem,
which gives the precise relation between the degree of @y, and the average
of the Faltings heights of abelian varieties with CM by Op.

Theorem 9.4.2. We have the identity

Lgprae 1 des(@) 1
20 5 (B2 4 dege(Yy) 4

Proof. By Corollary we have

Fal Fal
Z{):h(E,tcb) = 2d’h(ENt7<I>ﬂ)'

1
log|Dp| + 5d-log(27r).

Observing that, for every y € Yp(C), the abelian variety A?uJ has CM by
O with CM type ®# and using Theorem we obtain

deg(ﬁn) Fal
=92d-h alt — hFalt ]
degc(Yp) (B, 1) %: (E,2)

Consider the short exact sequence

0 Fil’H}g » Hlg - grpf Hlig > 0

(9.4.4)

of vector bundles over )j. Taking determinants, we obtain an isomorphism
(9.4.5) det(HlR) > 2 ® w?zd_l ® det(grpn Hig)®?,
where .Z is as in (9.4.3). If A is as in Proposition then, using the

canonical isomorphism
det(grim Hlg)® ™' — QF,
it is easy to check that gives us an identity
det(HlR) = A + 29715, - 2. Q!

in Pic())).
Combining this with Proposition [9.4.1) and (9.4.4)) shows
1 ae\g(&&(HcﬂlR))
24+1 degq(Yp)

1 1 deg(@p) 1
— Npfalt = 2RO T oe D el -
21 2" B0 = oge(vy) * 1B I1PF

Therefore, we will be done once we verify the identity
deg(det(H{r))

degc(Y0)
But this is easily done using Lemma below. ([

= 2%d - log(27).

Lemma 9.4.3. Let E' be a number field and let A be an abelian scheme
over Ogr. Suppose that the top degree cohomology Hgg(A/(’)E/) of A is a
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free module of rank 1 over Og:. Fiz an embedding E' — C, and an O -
module generator e € H2 (A/Op), and let n(e) be a degree 2d C™ form on
A(C) that represents this generator over C. We then have:

/A((C) n(e)

Proof. As explained in [DMOS82, Ch. I, §1, p. 22], there is a canonical
Opr-linear trace map

_ (zﬂ)fdim(A).

TI‘dR : Hgg{(A/OEI) - E,,

which, over C, corresponds to the linear functional

1
e (27r7)dim A /A((C) K

on top degree C*° forms on A(C).
So, to prove the lemma, it is enough to show that Trqgr maps isomorphi-
cally onto O ¢ E'. Indeed, this would imply that

c 2 - _dim(A)OX/.
Sy 10 € 2) 5
For this, note that Tryg is equal to the composition:
= Tr
Hi(AJOp) =~ HY(A QYy0,,) — Op,

where the first isomorphism arises from the degeneration of the Hodge-to-de
Rham spectral sequence for A, and the second is the trace isomorphism from
Grothendieck-Serre duality. ([l

We now begin our preparations for the proof of Proposition[9.4.1] Suppose
that we have inclusions of complete discrete valuation rings A ¢ B c C with
perfect residue fields, with Frac(B) finite over Frac(A). Suppose that the set
Hom(B, () of local A-algebra homomorphisms has the maximum possible
size [Frac(B) : Frac(A)]H

Fix a subset T c Hom(B, ('), and consider the map of C-algebras:

oY C®y4B— H C
ol
c®br (c-o(b))s.

Set KK(T) = ker py. If T¢=Hom(B,C)\Y, then the inclusion
K(T)+K(Y)>Cwo®s B

of C-modules is an isomorphism after tensoring with Frac(C'). Therefore,
its cokernel has finite length as a C-module. Denote this cokernel by C(T).
Fix a uniformizer g € B. Let By c B be the maximal étale A-subalgebra.
Let 054 ¢ B be the different, and let Dp5/4 = Nmp/4(0p/4) ¢ A be the
discriminant ideal for B over A.

5In other words, the étale Frac(A)-algebra Frac(B) splits over Frac(C).
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Lemma 9.4.4. We have:

lengthe:(C(1)) = 3 - 3 lenath(C/(r(mp) - /(1))

7,7'eY
T+T!

b5 D length(C/(o(ms) - 0'(75))) - 3 -length(C/Dp40).

o,0lexC
o+o’

Proof. By a standard reduction, we can assume that A = By, so that B is
totally ramified over A. First consider the cokernel C;(T) of the natural
embedding

K(Y) o e@)s I1c
oeYe

We claim that

(9.4.6) ny (Y)Y lengthC(Cl(T)):%- S length(C/(r(np) - 7'(x5)))-

This can be verified using induction on the size of Y, after proving (via
a separate inductive argument) that C(Y) ¢ C ®p A is the principal ideal
generated by the element

fTZ H(1®7TB—T(7TB)®1)EC®BA.
TeY
We also claim that the inclusion
C®y B~ H C
ceHom(B,C)
has cokernel of length % ‘length(C/®p/4C). This follows by observing that
ngl/ 4 1s the dual lattice to B under the canonical non-degenerate trace pair-
ing (7,y) = Trpja(x,y) on Frac(B), and that [Tyerom(B,c) C is a self-dual

lattice in Frac(C') ® 4 B under the induced C-bilinear pairing.
The lemma now follows by noting that

ogerflom C
lengthe (C(T)) = n1 (T) + 1 (T¢) — lengthe (M) _

C®sB
U

Let K be a finite étale Qp-algebra, and let P c Frac(WW)®8 be a finite
Galois extension of Frac(W) that receives all maps n : K < leg' Let
C(T'g,,C) (resp. CO(FQP,(C)) be the space of continuous (resp. continuous,
conjugation-invariant) C-valued functions on I'g, .

C%(T'g,,C) has a basis given by characters of irreducible finite dimensional
complex representations of I'g,. There is a unique linear functional

H;D : CO(FQZH(C) - C’



FALTINGS HEIGHTS OF ABELIAN VARIETIES 121

which associates with every finite dimensional irreducible character y the
integer p,(x) = log, fp(x), where f,(x) is the Artin conductor of x and log,
is the base-p logarithm.

Since T'g, is compact, averaging with respect to the Haar measure of
measure 1 gives us a canonical section f — f9 of the inclusion

CO(FQp’ (C) g C(FQp7 C)’

and so permits us to lift 11, to a measure on I'g,: wy(f) e 1 (£2).
With any subset T ¢ Hom(K, P), we can associate the function

a(K,T) IFQP - 7
o~ |TnooT|.

Let M be a finite free Op ®7, Ox-module of rank 1. For T c Hom(kK, P),
set

K(T) = ker (op &7, O W, Op) ,
neY

and set (M, Y) =K(Y)- M. Let C(M,T) be the cokernel of the inclusion
K(M,T)+K(M,Y) > M

of Op-modules.
It will be useful later to have another description of this cokernel. Set

Q(M,T) = coker(KC(M,Y) > M).
Then C(M,Y) is also the cokernel of the natural inclusion
K(M,Y) > Q(M,T).

Proposition 9.4.5. Let ep be the absolute ramification index of P. Then

1
lengthe,C(M,T) = —5er (pCackry) + p(ackrey)) -

Proof. If K =T]; K; is the decomposition of K into a product of field exten-
sions of Q,, and

Yi =7 nHom(K;,Q%¢),
for each i, then we have a(()KVT) =, a(()Ki,Ti)' Moreover, if M; = M ®0,, Ok,

then we have
C(M,T)=PC(M;, ;).

Therefore, without loss of generality, we can assume that K is a field. To
compute the right hand side of the asserted identity, for each pair 7,7’ €
Hom(K, P), consider the function a,,s € I'g, given by

1, ifo(n) =7
anat (7) = {0, otherwise.



122 F. ANDREATTA, E. Z. GOREN, B. HOWARD, K. MADAPUSI PERA

Fix a uniformizer ng for K. Let Ko c¢ K be the maximal unramified
subextension. By Lemme 1.2.4 of [Col93] and the remark following Prop.
1.2.6 of loc. cit., we have

(9.4.7)
—-ordo, (10 g, ) OP), if n=n';
pp(any) =1 -5ordo, (k) =0 (7)), if 1l = 1'|K, and 0 #7';
0, otherwise.

Moreover, the following identity is easily verified:

(9.4.8) ART) T UK T) = Y, G+ D Gyt )L gy
n,n'eYT n,m'exe n:K—P
n#n’ n#n’

Now, observe that we are in the situation of Lemma with A = Z,,
B = Ok and C' = Op, and the computation there gives us an explicit formula
for the left hand side of the desired identity. Comparing this with | -
and (9.4.7) completes the proof of the Proposition.

Proof of Proposition[9.4.1. Fix a prime q ¢ O above a rational prime p,
and also a point y € yo(E?lg). Let O, be the completed étale local ring
of Vo at y. Set W = W(FZ'®). Fix an algebraic closure Frac(W) 8 of
Frac(W), and an embedding Q& < Frac(W)»# inducing the place q on
E c Q¥ embedded via t9. This identifies O, with the ring of integers in
the extension of Frac(WW') generated by the image of E.

Restricting the line bundle .Z over Spec O, gives us a free O,-module .Z),
of rank 1, equipped with a canonical section s, : O, - .Z,,. We claim that
we have

(9.4.9) length(.Z, /im(sy)) = 27 - ordq (d5/g)-

Assuming this for all q and y, we find

L length (%, /im(sy))
deg(A)= ) logN(q) ), |Au5(/ )| )
qcOg yeo(F2'8) Y
=242 37 |log N(q) -ordq(@psg) - Y0 :
qcoE yGy()(]F:lg) |Aut(y)|
1
it Y —)( Y, log N(q)-ordg(dp @))
(yeyo(c) Al ) B, Y

= 9d-1 -dege(Yp) - log | Dp|.

Here, in the third identity, as in the proof of Lemma we have used the
finite étaleness of ) over Op.
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It remains to show (9.4.9). Note that complex conjugation induces an
involution ¢ on the set I'g,-set Hom(E,, Q3'%). Set

CM(E,) = {®, c Hom(E}, Q%®) : &, uc(Py) = Hom(E,, Q4%)}.
Let E} be the étale Qp-algebra associated with the I'g,-set CM(E,). There
is an obvious surjection of I'g,-sets
CM(FE) - CM(E,)
inducing an inclusion E’g > EIﬂ, =t ®qg Q, of étale Q)-algebras. Associated
with ¢ : Eq > Q;lg are the subsets
= {®y € OM(E,) ¢ 19 € Bp} 5 By = {By € OM(Ey) : 1 € By},
and we have
= {} B} > Q35 gy e ).
Now, let Ty c Tg, be as in Remark [3.5.3] Viewed as a representation

of Ty, Hg = Ht ®g Qp admits the Ty-stable subspace Hg corresponding to

the subspace Eg c Ezﬂ). Moreover, we have a canonical lattice Hg z, © Hﬁ
corresponding to OE,Q c Eg. This is stable under Ko q = KonT(Qy), and we
have a natural Ko g-equivariant isomorphism of O B} -modules:

HI

9,7 ﬁ OEli — HZ

If Hﬁ dR,0, is the de Rham realization of H, ”Z obtained from Corol-
lary [3:5.4] then we obtain an isomorphism
Haro, ®0y Ony = Hipo,
of filtered O, ®z, O B} -modules.
Fix a Oy-module generator fy € Filt Vb,dr,0,, and view it as a map
-1 10
ngﬂHglR,oy - Fil chm,oy-
We find from the construction that this arises via a change of scalars from
OE,! to Opy of a map
| 10
Jop: gTFﬂHpﬁ,dR,oy - Fil H]E,dR,(’)y
Let P c Frac(W)®8 be a Galois extension of Frac(W) containing O,
which receives all maps Eg - leg. Then
def
M = H, 4r,0, ®0, Op

is a finite free Op ®z, OEg—module of rank 1. One can now check that, in
the notation preceding Proposition |9.4.5, we have

Fil' Hy ar,0, ®0, Op = K(M,®}) ; grii Hy a0, ®0, Op = Q(M,3}).
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Therefore, we have

(9.4.10)
1
length(L, /im(s,)) = CPJED 2% . ordp,, (det(fop))
od—dy Q(M, )
= — . |length —lengthy, ,C(M, ®!) |.
(PJEY) engthe, f07p(Q(M,5E,)) engthp,C(M, ®y)

Here, e(P/Eq) is the ramification index of P over Ey, and d, = [F} : Q,].
Now, set N = Vhar,0, ®0, Op: this is a free module of rank 1 over
Op ®z, OE;:’ Set

Y., = Hom(Ey, Q3%)\{eo}-
Then we have
Fil'Vy ar,0, ®0, Op = K(N,Y,,).
Moreover, the action of any generator of Q(N,T,,) induces an isomorphism
Q(M, B}) > Q(M, Bl)

of Op-modules. Therefore, we have

(M, @})

F

Fop(Q(M, 2,))

Arguing as in Propositions [0.3.2] and we see that
1 r
0 _ odp-2 L. Lo
Uy o)) = 2% (1 + 0 ImdFFp (Xp)) ,

where x; is the (possibly trivial) quadratic character of F}, associated with
E,/F,. From this and Proposition one easily deduces that we have

(9.4.12) lengthy ,C(M, @g) =e(P/Eg)- 9%=2. (2-0rdq(0g/g) —ordq(0p/g))-
A similar, but much easier computation shows

(9.4.13) lengthy ,C(N,Y,,) = —ep - pup(a(Ep, Tyy)) = e(P/Eq) -ordq(0g/q)-
Combining (9.4.10)), (9.4.11)), (9.4.12)) and (9.4.13]) now yields (9.4.9) and

hence the proposition.

(9.4.11) length,, =2%"" . lengthy ,C(N, T,,).

P

(]
9.5. The averaged Colmez conjecture. As in Remark [5.1.1] choose any
& € F* negative at 19 and positive at ¢1,...,t4-1. This defines a rank two

quadratic space
(7,2)=(E,§ Nmpr)
over F', and we set
(V,Q) = (7, Trpjgo 2)
as in . Fix any maximal lattice L ¢ V, and and let Dy,q,1 be the
product of all the bad primes with respect to L (see Definition .
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Recall the integral model M — Spec(Z) of the GSpin Shimura variety
associated with L, as well as the finite cover ) — )y associated with the
level subgroup Kr, o and equipped with a map Y - M. We also had the
metrized line bundle & on M from Over ), this line bundle arises
from the Hodge filtration on the vector bundle Vyr obtained as the de Rham
realization of the pair (V, ).

Let (V°,Q°) be a quadratic space of signature (n°,2) with n > 3, and
suppose that we have an isometric embedding

(V.Q) = (V*,Q°)
and a maximal lattice L® ¢ V' with L ¢ L°. This corresponds to a map M —
M? of integral models over Z for the associated GSpin Shimura varieties.

Suppose that f € M. 1!—n° /2 (wre) has integral Fourier coefficients and nonzero
constant term c7(0,0). Let Z°(f) be the corresponding divisor on M°, and
assume that Hypothesis [8.3.1] is satisfied. After replacing f by a multiple if
necessary, we obtain the vertical metrized line bundle £°(f) = (£°(f),0) on
M?® as in Theorem [8.3.4l

As before, we will write a ~, b for two real numbers a, b if a—b is a rational
linear combination of log(p) with p | Dyq,r.-

Proposition 9.5.1. We have

1 Falt 1 Col 1 [é'\o(f) : y]
=S -—=>h N '
5 %: (E®) ™ 5d ; (B,.®) “L 4c¢(0,0) dege(Y)

Proof. Given Theorems and and Proposition [9.3.1], we only have

to show:
(9.5.1) (@ : V] - degy (@) - log |Dp| ~1, 0.

For this, note that, via the construction in Proposition the sheaves
Var and Vj qr are both associated with the standard T-representation V' =
Vo, but correspond to different Ko r-stable lattices in Vj,. The first is asso-
ciated with the lattice I, and the second with the lattice Lo. In particular,
since the restrictions of these bundles to the generic fiber does not depend
on the Ky r-stable lattice, there is a canonical isomorphism

(9.5.2) wly = woly

of line bundles over Y. At each point y € Voo (C) lying above a place ¢ : F' —
R, this isomorphism carries the metric || ||, on wy to |¢(£)[|-times the metric

I+ {lo,y-
Therefore, it is enough to show that (9.5.2) induces an isomorphism

2 a1
Wy, .1~ €9rj0 ®0r wWoly(p;1, )

of line bundles over ) [Dl;ald, e
This is a statement that can be checked over the complete étale local rings
of y[Dg;M]. So let q c O be a prime lying above a prime p + Dy,q 1, and
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suppose that we have y € y(IFng). Let p ¢ O be the prime induced from
q. By the definition of Dyuq,r, Ly = L, 0V}, contains a maximal Of p-stable
quadratic lattice Ap,. We then must have

(9.5.3) Ap = 0% g, Loy

Let O, be the complete local ring of ) at y. As explained in Remark[3.5.3}
from Ay and Ly, we obtain de Rham realization A, 4r,0, and V, qr,0, over
Oy; these are filtered vector bundles over O,.

Choose an isometric embedding L — L° with L°® of signature (n°,2) and
self-dual over Z,. The inclusions Ay < L, < L give embeddings

Apar,0, = Viro,
of free Oy-modules.
It now follows from Lemma [T.7.2] that the inclusion
1
woy n Ap,dR,Oy - wa = Fll V;ﬁ{,Oy

is an isomorphism.
Therefore, (9.5.3]) shows that the isomorphism ((9.5.2)) induces an isomor-
phism
wo, — 5(0}1/@1, ®0, w0,0,)
of line bundles over O,, finishing the proof of the Proposition.

Proposition 9.5.2. We can find another choice of auxiliary data
(7/,7 o@,) = (E7 5’ : NmE/F)
and a mazimal lattice L' ¢ V' such that gcd(Dypad, 1, Dbad,r7) = 1.
Proof. Tt is sufficient to show that, given any finite set of rational primes S,
we can find ¢ and L’ such that no prime in S divides Dyqq 1.
To make this more concrete, suppose that we given an ideal a ¢ Op and

¢’ e F satisfying 1o(§') < 0 and ¢;(¢") > 0 for j > 0. For a prime p, we will
declare the pair to be good at p if

def
A, = (a, Trgo(&¢'Nmg,p)) ®2 Zy
is an Op-stable quadratic Z-lattice in (E, Trg/({'Nmpg/p)) ®g Qp, which
is self-dual over all primes p | p that are unramified in F, and which satisfies
-1
A;/ c? FolFy Ay
when p is ramfified in F and q ¢ Op is the unique prime above it. Here, we

have set Ap = Ap ®0,., OFp-

Lemma 9.5.3. Suppose that (a,&") is good at all pe S. Then there exists a
mazimal lattice
L'cV'=(E, Trpq(¢ - Nmg/p))

that is good at all primes pe S.
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Proof. For any prime p € S, and any prime p c Op lying above such p, write
7y V(ép for the p-isotypic part of V(ép, and fix a maximal lattice Ly c 7}
containing Ay. Now, take L' c V' to be any maximal lattice such that, for
every pe€ S, L’Zp contains @y, Ly, O

It now remains to find a pair (a,&’) that is good at all primes in S.

Given a pair (a,£’) as above, one can check that the pair is good at p
if and only if for all primes p ¢ Op lying above p, p is relatively prime to
¢'Nmp,p(a)dr g

Write C1"(F') for the narrow class group of F and CI(E) for the class
group of E. The norm map induces a map

(9.5.4) CI(E) - CI*(F)

This map is surjective if and only if E/F is ramified at some finite prime.
Indeed, via class field theory, the surjectivity of is equivalent to the
assertion that the narrow class field of F' does not contain F.

Suppose that E/F is unramified at all finite places. In this case, the
quadratic character xp/p can be viewed as a character

XE/F* CI'(F) - {+1},

whose kernel is exactly the image of (9.5.4). We now interrupt the proof
for:

Lemma 9.5.4. When E/F is unramified at all finite places, d =0 (mod 2).
Moreover, we have

Xe/F(0F/Q) = (-1)".

Proof. Treating xg/p as an idéle class character, consider its infinite part
XE/F,00- Since E is a totally imaginary extension of F', Xg/p o is the product
of the sign characters over all infinite places of F'. Since x g/ is unramified
at all finite places, for any unit o € O}, we have

XE/F.00 () = Xpyp()Xpr (@) = 1.

Applying this to the case a = -1 shows that (-1)? = 1, and so d must be
even.

The final assertion is an improvement by Armitage [Arm67, Theorem 3]
of a classical result of Hecke. (|

We return to the proof of Proposition Choose an arbitrary £ € O
with ¢9(&o) <0 and ¢;(§p) >0 for j > 0. Consider the ideal

b= 500}7/@ C OF

Assume either that E/F is ramified at some finite prime, or that E/F
is unramified and d = 2 (mod 4). Under either assumption, we claim that
there exists an ideal a c O and a totally positive element 1 € F* such that

nNHlE/FCl = b_l.
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In other words, the class of b in C1*(F) is in the image of (9.5.4).
If E/F is ramified, then this is immediate from the surjectivity of ((9.5.4)).
If E/F is unramified, then b = {pd /g, and by (9.5.4)), we have:

d
Xg/r(b) = (-1)=*h

Therefore, when d =2 (mod 4), b is in the image of (9.5.4)), and the claim
follows.

Now, it is easily checked that, with &' = n&y, (a,&’) is good at all primes
.

It remains to consider the case where E/F is unramified and d = 0
(mod 4). In this case, xg/r(0p/g) = 1 by Lemma Therefore, we
can find an a ¢ O and totally positive n € F* such that

n-Nmpgr(a) = D;“l/(@'

Now, given a totally positive 5 € F, the pair (a,8n&y) is good at a all
primes in S if and only if 8¢y is not divisible by any p € S. Such a 3 can
always be found by weak approximation. O

Theorem 9.5.5. We have
31 S HGEe) = 30 2Bl
Proof. Combining Propositions [9.5.1] and we find that we have
31 St~ 30 £ {8y = Sbro) los(r)

where we can compute bg(p) as follows: Choose auxiliary data (¥, 2) and
a maximal lattice L ¢ V such that p + Dy,qr. Also choose an auxiliary
quadratic space (V°,Q°) of signature (n°,2) with n® > 3, as well as a
maximal lattice L® ¢ V® containing L. Choose a weakly holomorphic form

f(r)="> cp(m)-q"e Mi_g(wm)

m>>—oo

with integral principal part and ¢;(0,0) # 0, and satisfying Hypothesis [8.3.1]
Then, after replacing f by a suitable multiple, we have:

1 &)Y
(9.5.5) be(p) log(p) = :
; 4c5(0,0) dege(Y)
Therefore, it is enough to show that, for each prime p, we can choose L°
and f such that £°(f) does not intersect Mg .
It is an easy exercise, given the classification of quadratic forms over Q,
to find L° such that n® = 2d, and such that L¢ | is self-dual, and such that

(p)
L embeds isometricaly in L°. Now, the orthogonal complement

A=L'cL®
is a rank 2 positive definite lattice over Z. Any rational prime not split
in the discriminant field of A will fail to be represented by Ag. Therefore,
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by Theorem below, we can find a weakly modular form f as above
such that cg(m) # 0 only if m is not represented by Ag. In particular,
Hypothesis is satisfied, and, since pr) is self-dual, by Theorem
E°(f) does not intersect Mg, as desired.

We note again that the proof only used knowledge of the divisor of the

Borcherds lift of f at primes where L° is self-dual, which is contained
in [Horld], and not the full strength of Theorem [4.8.1] O

The proof above used the following consequence of a result of Bruinier [Brul5l,
Theorem 1.1], which we state here for the reader’s convenience.

Theorem 9.5.6 (Bruinier). Let L be a quadratic lattice of signature (n,2)
withn > 2. If S is any infinite subset of square-free positive elements oszlZ
represented by LY, there is a weakly holomorphic form f € Mi,n/g(wL) such
that

(1) cj(m,p) €Z for all m and p,

(2) ¢(0,0) #0,
(3) if m>0 and m ¢S, then cy(-m,p) =0 for all pe LY/L.
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