
J. Cryptol. (2009) 22: 93–113
DOI: 10.1007/s00145-007-9002-x

Cryptographic Hash Functions from Expander Graphs

Denis X. Charles and Kristin E. Lauter
Microsoft Research, Redmond, WA 98052, USA klauter@microsoft.com

Eyal Z. Goren
McGill University, Montréal, Canada H3A 2K6

Communicated by Arjen Lenstra

Received 28 July 2006 and revised 1 December 2006
Online publication 15 September 2007

Abstract. We propose constructing provable collision resistant hash functions from
expander graphs in which finding cycles is hard. As examples, we investigate two spe-
cific families of optimal expander graphs for provable collision resistant hash function
constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-
Sarnak and Pizer respectively. When the hash function is constructed from one of
Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over F

p2 with �-
isogenies, � a prime different from p), then collision resistance follows from hardness
of computing isogenies between supersingular elliptic curves. For the LPS graphs, the
underlying hard problem is a representation problem in group theory. Constructing our
hash functions from optimal expander graphs implies that the outputs closely approx-
imate the uniform distribution. This property is useful for arguing that the output is
indistinguishable from random sequences of bits. We estimate the cost per bit to com-
pute these hash functions, and we implement our hash function for several members of
the Pizer and LPS graph families and give actual timings.

Key words. Cryptographic hash functions, Expander graphs, Elliptic curve cryptog-
raphy, Isogenies, Ramanujan graphs, Supersingular elliptic curves.

1. Introduction

With the untimely demise of SHA-1, NIST is soliciting proposals for new cryptographic
hash functions to standardize. The goal is to construct an efficiently computable hash
function which is collision resistant. A hash function is called a provable collision resis-
tant hash function if to compute a collision is to solve some hard mathematical problem
such as factoring or discrete log, for example as in the scheme proposed in [8]. We
propose constructing provable collision resistant hash functions from expander graphs.
Expander graphs are graphs in which the neighbor set of any “not too large” subset of
vertices contains many new vertices. This property of expander graphs leads to other
interesting properties, such as the fact that random walks quickly approximate the uni-
form distribution. In our construction the input to the hash function is used as directions

© International Association for Cryptologic Research 2007

mailto:klauter@microsoft.com

94 D.X. Charles, E.Z. Goren, and K.E. Lauter

for walking around a graph, and the ending vertex is the output of the hash function. Our
construction can be applied to any expander graph, and can be thought of as a proposal
to construct collision-resistant hash functions from any expander graph in which finding
cycles is a hard problem. We give here two families of optimal expander graphs, and in-
vestigate the efficiency and collision resistance properties of these two families. The two
families are the Ramanujan graphs constructed by Pizer and Lubotzky-Phillips-Sarnak
(LPS) respectively. Ramanujan graphs are optimal expander graphs, in a technical sense
(see Section 2), and thus have excellent mixing properties. The rapid mixing property
implies in particular that the output of our hash functions closely approximates the uni-
form distribution, and so to that extent is indistinguishable from random sequences of
bits. For these two families of expander graphs, the collision resistance of the hash
functions follows from arithmetic properties of the graphs’ constructions.

When constructing a hash function from the Ramanujan graph of supersingular el-
liptic curves over Fp2 with �-isogenies, � a prime different from p, as in Pizer [18],
finding collisions is at least as hard as computing isogenies between supersingular el-
liptic curves. This is believed to be a hard problem (see Section 5 below), and the best
algorithm currently known solves the problem in O(

√
p log2 p) time. Thus we propose

to set p to be a 256-bit prime, to get 128 bits of security from the resulting hash func-
tion. To compute the hash function from Pizer’s graph when � = 2 requires roughly
2 log2(p) field multiplications per bit of input to the hash function. This is roughly the
same efficiency as a provable hash based on the ECDLP, and relatively inefficient com-
pared to the provable hash function VSH [8]. Our construction has the advantage that
the output of our hash function is �log2(p)� bits, and efficiency may be improved with
optimizations. We note that the improvements to VSH-DL given in [15] also achieve a
compressed output by sacrificing some performance.

Hash functions from LPS graphs are more efficient to compute than those from
Pizer’s graphs. Applying our construction gives a hash function which is an improve-
ment on those proposed by Zémor and Tillich [25,27], and subsequent extensions. Find-
ing collisions reduces to a group theoretic problem which is also believed to be difficult
(see Section 6). To compute the hash function requires only 7 field multiplications per
bit of input, but the field size may need to be bigger (1024 bit prime p instead of 256
bits, for example), and the output is 3 log2(p) bits. We have implemented this hash
function for primes of varying size and we give unoptimized timings in Section 6.

These hash functions may be too inefficient to be applied in all situations, but would
be appropriate for some protocols where a secure hash function is needed and other
operations are on the same order of magnitude. This is the case, for example, for public
key cryptographic protocols such as DSA or ECDSA or for key derivation functions
(KDFs) used for authenticated key exchange as in NIST’s SP 800-56A. Our proposed
hash functions are appropriate for use in any protocol requiring collision resistance,
pre-image resistance, and indistinguishability from a random string (assuming the input
is at least log2(p) bits). An important property of our hash functions is that the hard
mathematical problem underlying the collision resistance appears to be independent
from other known hard problems such as factoring and ECDLP (elliptic curve discrete
logarithm problem). For the Pizer graph, the hard mathematical problem is finding an
isogeny between two given supersingular elliptic curves, and we explain in Section 5
how this problem is related to the problem of finding lattice vectors of a given norm.

Cryptographic Hash Functions from Expander Graphs 95

For the LPS graphs, the underlying hard problem is a representation problem in group
theory.

2. Background and Definitions

2.1. Hash Functions

A hash function maps bit strings of some finite length to bit strings of some fixed finite
length, and must be easy to compute. We are concerned in this paper with unkeyed hash
functions which are collision resistant. Unkeyed hash functions do not require a secret
key to compute the output. We will define families of hash functions, and use an index
to specify a member of the family.

2.2. Elliptic Curves

Let p be a prime greater than 3 and q a power of p. An elliptic curve E over the field
Fq of q elements can be given by a Weierstrass equation

E: y2 = x3 + ax + b, a, b ∈ Fq,

where the polynomial x3 + ax + b has no repeated roots. One adds a “point at infin-
ity” 0E , which, when the curve is given in projective space as y2z = x3 + axz2 + bz3,
is the point (0 : 1 : 0). There is a group structure on an elliptic curve, given by ratio-
nal functions, such that for every finite extension Fqr the Fqr -rational points of E,
E(Fqr) := {(x, y) :y2 = x3 + ax + b, x, y ∈ Fqr } ∪ {0E}, form an Abelian group for
which 0E is the identity. Given two elliptic curves E1,E2 over Fq , a homomorphism
f :E1 → E2 is a morphism of algebraic curves that sends 0E1 to 0E2 . A non-zero ho-
momorphism is called an isogeny. An isogeny is automatically surjective on points over
the algebraic closure and has a finite kernel. For separable isogenies, the cardinality of
this kernel is called the degree of the isogeny. For example, for any positive integer n,
the multiplication-by-n map [n] :E → E is an isogeny of degree n2. If p does not di-
vide n, then ker[n] ∼= (Z/nZ) × (Z/nZ). In particular, if � 	= p is a prime, there are
precisely � + 1 subgroups of E[�] of order �. Another example of an isogeny is the
Frobenius morphism. Let E/Fq be given by the equation y2 = x3 + ax + b. Denote by
E(p) the elliptic curve given by the equation y2 = x3 + apx + bp. There is a canon-
ical isogeny Frob :E → E(p) given by (x, y)
→ (xp, yp). This isogeny is called the
Frobenius morphism and it has degree p.

The j -invariant of E is the quantity 1728 4a3

4a3+27b2 . Two elliptic curves over Fq are
isomorphic over a finite extension Fqr if and only if they have the same j -invariant.
Given an element j ∈ Fq , there is an elliptic curve E over Fq with j (E) = j . For
example, for j 	= 0,1728 one may take E: y2 = x3 + 3j

1728−j
x + 2j

1728−j
(y2 = x3 + x

if j = 1728 and y2 = x3 + 1 if j = 0).
An elliptic curve E over Fq is called supersingular if for every finite extension Fqr

there are no points in E(Fqr) of order p. The j -invariants of supersingular elliptic
curves are called supersingular j -invariants. They all lie in Fp2 , in particular there are
finitely many such j -invariants. Elliptic curves which are not supersingular are called
ordinary. The property of being supersingular can be recognized from the Weierstrass
equation of the curve [22, Chap. 5, Thm. 4.1] or from its zeta function. For more back-
ground on elliptic curves over finite fields, isogenies, and supersingular elliptic curves,
see [22, Chap. 3,5].

96 D.X. Charles, E.Z. Goren, and K.E. Lauter

2.3. Expander Graphs

Let G = (V ,E) be a graph with vertex set V and edge set E. We will deal with undi-
rected graphs, and say a graph is k-regular if each vertex has k edges incident on it.
A graph with N vertices is an expander graph with expansion constant c > 0 if, for any
subset U ⊂ V of size |U | ≤ N

2 , the boundary �(U) of U (which is all neighbors of U

minus all elements of U) has size |�(U)| ≥ c|U |. It follows from the definition that any
expander graph is connected (see [11] for more background on expander graphs).

There is also an algebraic way to define the expansion property of a graph. The adja-
cency matrix of an undirected graph is symmetric, and therefore all its eigenvalues are
real. For a connected graph, G, the largest eigenvalue is k, and all others are strictly
smaller [11, Lecture 9, Fact 5.6, 5.7]. Order the eigenvalues as follows:

k > μ1 ≥ μ2 ≥ · · · ≥ μN−1.

Then the expansion constant c can be expressed in terms of the eigenvalues as fol-
lows: [2]

c ≥ 2(k − μ1)

3k − 2μ1
.

Therefore, the smaller the eigenvalue μ1, the better the expansion constant. A theorem
of Alon-Boppana says that for an infinite family Xm of connected, k-regular graphs,
with the number of vertices in the graphs tending to infinity, that lim infλ(Xm) ≥
2
√

k − 1, where λ = max{|μ1|, |μN−1|}. This motivates the definition of a Ramanujan
graph.

Definition 1. A k-regular connected graph is a Ramanujan graph if the absolute value
of any eigenvalue is either k or not larger than 2

√
k − 1.

A family of k-regular Ramanujan graphs is optimal with respect to the size of λ.
A random walk on an expander graph mixes very quickly. The endpoint of a ran-

dom walk approximates the uniform distribution after O(log(N)) steps on an expander
graph with N vertices. More quantitatively, define a sequence of random variables
X0,X1, . . . ,X�, where Xi is the label of the vertex at the ith step of a random walk
on an expander graph on N vertices. Then for every δ there is an � = O(log(1/δ)) such
that for every vertex v

∣
∣
∣
∣
Pr[X� = v] − 1

N

∣
∣
∣
∣
< δ.

The constant implied by the O-notation does not depend on the size of the graph. Thus,
the observation made earlier follows, for instance, by setting δ = 1/N2 (see [11, Lec-
ture 10, Thm. 6]).

3. Construction of a Hash Function from an Expander Graph

The use of expander graphs to produce pseudo-random behaviour is well-known to
complexity theorists. The idea here is to use expander graphs to produce hash functions

Cryptographic Hash Functions from Expander Graphs 97

which are collision-resistant. We give two examples of such graphs in the following
sections.

The input to the hash function is used as directions for walking around a graph (with-
out backtracking), and the output of the hash function is the ending vertex of the walk.
For a fixed hash function, the walk starts at a fixed vertex in the given graph. A family
of hash functions can be defined by allowing the starting vertex to vary. We execute a
walk on a k-regular expander graph by converting the input to the hash function to a
base-(k − 1) number whose digits then dictate which edge to take at each step. Starting
at the first vertex, each step of the walk chooses an edge emanating from that vertex to
follow to get to the next vertex. At each step in the walk, the choice of the edge to follow
is determined by the next digit of the (converted) input. We do not allow backtracking
in the walk, so only k − 1 choices for the next edge are allowed at each step.

4. Pizer’s Ramanujan Graphs

We first define the family of graphs [18]. Let p and � be two distinct prime num-
bers. Define the graph G(p,�) to have vertex set, V , the set of isomorphism classes
of supersingular elliptic curves over the finite field Fp2 . We label vertices with their
j -invariants, which can be computed directly from the curve equation and are a priori
elements of Fp2 . The number of vertices of G(p,�) is � p

12� + ε, where ε ∈ {0,1,2}
depending on the congruence class of p modulo 12 ([22, Chap. 5, Thm. 4.1]). Later,
we will impose p ≡ 1 (mod 12), in which case ε = 0. Since there are roughly p/12
distinct j -invariants, we will choose a linear congruential function to map j -invariants
from Fp2 to Fp for the output of the hash function. Thus the output of the hash function
will be just log2(p) bits. We propose to use a graph of cryptographic size p ≈ 2256.

The edge set is as follows: given a supersingular j -invariant, j1, choose an elliptic
curve E1 with j (E1) = j1 in the manner described in the next paragraph and a subgroup
H1 ⊆ E1 of order � 	= p. Connect j1 to j2 := j (E2) where E2 is the elliptic curve
E1/H1. A priori, since there are � + 1 subgroups of order � this gives a directed � + 1-
regular graph. However, if we assume that p ≡ 1 (mod 12), then the graph can be made
into an undirected graph as follows: for each subgroup H1 ⊆ E1 of order �, there is
a canonical choice of subgroup H2 ⊆ E2 (of order �) such that E2/H2 ∼= E1. Thus,
we can identify the edge associated to H1 with the edge associated to H2. The reason
for the assumption p ≡ 1 (mod 12) is that, to say that the subgroup H gives an isogeny
Ei −→ Ej is not precise because you need to choose an identification of Ei/H with Ej ,
and that is not canonical (and the more automorphisms Ej has, the more noncanonical
it is). If we assume that p ≡ 1 (mod 12), then the elliptic curves have no automorphisms
other than ±1. If the non-canonicity is just up to automorphisms ±1, this works because
the dual isogeny to −f is minus the dual isogeny of f .

To implement the hash function, the � + 1 �-torsion subgroups at each node need
to be ordered in a consistent way. One method for ordering them is as follows. At a
node corresponding to j = j (E), the j -invariant of an elliptic curve E, start with a
Weierstrass equation for E in the standard form given in [3, Lemma VIII.3]: Y 2 =
X3 + 3kX + 2k, where k = j

j−1728 (for j = 0,1728, make some canonical choice).
Using this model for the curve, find all the �-torsion of E over some extension field

98 D.X. Charles, E.Z. Goren, and K.E. Lauter

(� should be small for this to be feasible). Next, order the x-coordinates of the points
within each Z/�Z factor using some fixed ordering of the extension field of Fp . Say P

and Q are the smallest points in that ordering in their respective factor. Then order the
groups as in [6, Algorithm 1]: G1 = 〈Q〉 and G1+i = 〈P + (i − 1) ∗ Q〉 for 1 ≤ i ≤ �.
When � = 2, there is a simpler way to order the edges which will be given in Section 4.2
below.

The Ramanujan property of this graph follows from the fact that the adjacency ma-
trix (called the �th Brandt matrix) gives the action of the �th Hecke operator on the
space of weight 2 cusp forms of level p (see [12] for a nice exposition of Brandt ma-
trices and [17] for the application to constructing a basis of modular forms). So the
bound on the eigenvalues follows from the corresponding result for modular forms (the
Ramanujan-Petersson conjecture proven by Eichler and Shimura in this case [9,20]).

4.1. Walking Around the Graph

For C a subgroup of the group of points on an elliptic curve E, Vélu in [24] gives ex-
plicit formulas for determining the equations for the isogeny E → E/C and the Weier-
strass equation of the curve E/C. We give here the formulas when � is an odd prime
(see Section 4.2 for the formulas when � = 2). Let E be given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We define the following two functions in Fq(E). For Q = (x, y) a point on E − {0E},
define

gx(Q) = 3x2 + 2a2x + a4 − a1y,

gy(Q) = −2y − a1x − a3,

and set

t (Q) = 2gx(Q) − a1g
y(Q),

u(Q) = (gy(Q))2,

t =
∑

Q∈(C−{0E})
t (Q),

w =
∑

Q∈(C−{0E})
(u(Q) + x(Q)t (Q)).

Then the curve E/C is given by the equation

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6,

where

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5t, A6 = a6 − (a2
1 + 4a2)t − 7w.

Cryptographic Hash Functions from Expander Graphs 99

From the Weierstrass equation of E/C we can easily determine the j -invariant
of E/C. We apply Vélu’s formulas for subgroups of order �, and it is clear that this
procedure can be done using O(�) elliptic curve operations for each of the �+ 1 groups
of order �.

4.2. Efficiency of Hash Functions from Pizer Graphs when � = 2

Here are the steps to compute the output of the hash function when using supersingular
elliptic curves and 2-isogenies (i.e. � = 2). Since there are 3 edges emanating from each
vertex, and no backtracking is allowed in a walk, there are two choices of which edge
to follow next from each vertex, and this can be determined by 1 bit as follows. Start
at a vertex E1. Subgroups of E1 of order 2 are each given by a single two-torsion point
on the elliptic curve E1 :y2 = f (x). The 3 non-trivial 2-torsion points are Pi = (xi,0),
where the cubic f (x) factors as

(x − x1)(x − x2)(x − x3)

over an extension field. As an example, when computing the isogeny φ which corre-
sponds to taking the quotient by 〈P1〉, both of the other 2-torsion points are mapped to
the same 2-torsion point φ(P2) = φ(P3) on the isogenous elliptic curve, E2. In turn,
the isogeny which corresponds to taking the quotient of E2 by the subgroup gener-
ated by φ(P2) is the dual isogeny φ̂ and leads back to E1. So to choose the next step
from E2, it suffices to choose between the two other 2-torsion subgroups different from
〈φ(P2)〉. An efficient way to determine the 2 new 2-torsion points on E2 is to keep x̃2,
the x-coordinate of φ(P2), and to factor (x − x̃2) out of the new cubic f2(x), leav-
ing a quadratic to be factored. The roots of the quadratic can be ordered according
to some convention, and one bit suffices to choose between them for the next step in
the walk. So if the input bit length is n, then the hash function takes a walk of length
n steps.

Using Vélu’s formulas [24] one calculates that if E is given by y2 = x3 + a4x + a6
and the 2-torsion point Q is (α,0) then the elliptic curve E/〈Q〉 can be given by the
equation

y2 = x3 − (4a4 + 15α2)x + (8a6 − 14α3).

Furthermore, the equation for the isogeny is

(x, y)
→
(

x + (3α2 + a4)

x − α
,y − (3α2 + a4)y

(x − α)2

)

.

Even simpler formulas for 2-isogenies can be found for example in [22, III Exam-
ple 4.5], but the formula given here shows the dependence on the 2-torsion point
Q = (α,0).

So summarizing, each vertex corresponds to an elliptic curve Ei given by an equation
y2 = fi(x), where fi(x) is a cubic. To compute the 2-torsion subgroups at each step,
factor the cubic fi(x). At each step, calculate the 2-torsion by keeping the image of the
other 2-torsion point (not used to quotient by), and then factoring the quadratic. After
ordering, choose which one to quotient by and apply Vélu’s formulas (field operations
in Fp or Fp2).

100 D.X. Charles, E.Z. Goren, and K.E. Lauter

Cost per bit of input to the hash function:

1. Find the 2-torsion:
(a) Apply the isogeny from the previous step to one point: 7 field multiplications.
(b) Factor out the linear factor from the cubic fi(x): one field inversion.
(c) Factor the quadratic by completing the square and taking a square root:

roughly (3/2) log2(p) field multiplications plus a field inversion if p ≡
3 (mod 4). If p 	≡ 3 (mod 4), then one can do this with 2 log2(p) multipli-
cations in a residue ring of Fp[x] (Cippola’s method). The construction of the
residue ring requires logp random bits.

2. Order the 2-torsion.
3. Use Vélu to obtain the equation of the next elliptic curve: 9 field multiplications.

In addition, at the first vertex, the cubic defining the curve must be factored, and at
the last step, computing the j -invariant requires several field multiplications and 1 field
inversion.

An estimate of total cost can be made by estimating a field inversion as 5 field multi-
plications (and as usual not counting field additions). Here we did not distinguish which
field multiplications occur in Fp and which occur in Fp2 , but that is at most a factor of
3 difference. Also, the above is not optimized, so there may be better ways to do some
of the steps. To summarize the efficiency of the hash function under these assumptions:
the cost per bit in terms of field multiplications is roughly 2 log2(p).

4.2.1. Timings for the Hash Function Based on the Pizer Graph

We implemented our hash function to find the actual performance of the hash function.
Our results are given below. For a prime p of 192-bits and � = 2, the time per step of
the walk (which is also the time per input bit) is 3.9 × 10−5 secs. This translates to a
hashing bandwidth of about 25.6 Kbps. For a prime p of 256-bits, the time per input bit
is 7.6 × 10−5 secs or 13.1 Kbps. The implementation was done in C, and the computer
on which the timings were taken was an 64-bit AMD Opteron 252 2.6 Ghz machine.

5. Collision Resistance of Hash Functions from Pizer Graphs

5.1. Definitions and Hard Problems

Definition 2. A hash function h is said to be collision resistant if it is computationally
infeasible to find two distinct inputs, x, y, which hash to the same output h(x) = h(y).
This property is also called strong collision resistance. Computationally infeasible can
be taken to mean that any probabilistic polynomial time algorithm succeeds with negli-
gible probability.

Definition 3. A hash function h is said to be preimage resistant if, given any output
of h (for which a corresponding input is not known), it is computationally infeasible to
find an input, x, which hashes to that output. A hash function with this property is also
called one way.

Cryptographic Hash Functions from Expander Graphs 101

Fix distinct primes p and � and consider the graph G(p,�). For reasons discussed
above, throughout this section assume that p ≡ 1 (mod 12), p is a prime of crypto-
graphic size (at least 256-bits), � is a relatively small prime, and let n denote the length
of the input to the hash function (for example, n = 256). We will relate the collision re-
sistance and preimage resistance properties of the hash function based on this graph to
problems involving finding isogenies between elliptic curves, and then argue why these
problems are hard.

First we show that distinct paths in the graph G(p,�) lead to distinct isogenies.

Proposition 1. Let φ : E → E† be an �-power isogeny produced by traversing a path
in G(p,�) without backtracking. Then φ decomposes (or factors) uniquely as a compo-
sition of �-isogenies. This means that if we have two factorizations of φ as

E = E0

φ1

E1

φ2

E2

φ3 · · ·
φn

En = E†

and

E = E0

φ′
1

E′
1

φ′
2

E′
2

φ′
2 · · ·

φ′
n

En = E†

then for each i, kerφ′
i = kerφi . Consequently, for each i, Ei

∼= E′
i and setting εi : E′

i →
Ei to be an isomorphism, we have φi ◦ εi−1 = εi ◦ φ′

i .

Proof. First we note that if kerφ is cyclic then the factorization of φ into degree
� isogenies is unique. Indeed, factoring φ is equivalent to providing a Jordan-Holder
series for its kernel, which is unique if the kernel is a cyclic group.

Now suppose that the kernel of φ is not cyclic. We claim that in any factorization of
φ as above we have “backtracking”, namely, if φ = φn ◦ φn−1 ◦ · · · ◦ φ1, a composition
of isogenies of degree �, there is an index m, 1 < m ≤ n such that Em−2 ∼= Em, and,
having chosen such an isomorphism, we have φm = εmφ̂m−1, for some εm ∈ Aut(Em).

Indeed, let m be the minimal integer such that φm ◦ φm−1 ◦ · · · ◦ φ1 is not cyclic
and denote this isogeny by 	 . Note that m > 1 and that ψ := φm−1 ◦ · · · ◦ φ1 is
cyclic. The kernel of ψ is thus a cyclic group of E, isomorphic to Z/�m−1

Z, while
the kernel of 	 is a subgroup of E of order �m containing ker(ψ) and not cyclic. It
is therefore isomorphic to Z/�m−1

Z × Z/�Z, where in this isomorphism we can al-
ways assume that ker(ψ) is the first factor Z/�m−1

Z. (By the elementary divisors the-
orem, applied to ker(ψ) ⊂ ker().) It then follows that ker(φm−2 ◦ · · · ◦ φ1) is the
subgroup Z/�m−2

Z contained in the first factor of ker() and so that ker(φm ◦φm−1) ∼=
(Z/�m−1

Z × Z/�Z)/(Z/�m−2
Z × {0}) ∼= Z/�Z × Z/�Z.

We are therefore left with proving the following assertion: Let f : E −→ E′, g :
E′ −→ E′′ be isogenies of degree � such that ker(g ◦ f) ∼= (Z/�Z) × (Z/�Z). Then
E ∼= E′′ and, having chosen such an isomorphism ε : E → E′′, we have g = εf̂ . First,
since ker(g ◦ f) = E[�], the kernel of an endomorphism (namely [�]), it follows that
E′′ ∼= E/E[�] ∼= E and so, again, it is enough to show that ker(g) = ker(f̂), but clearly
ker(g) = E[�]/ker(f) = ker(f̂). �

102 D.X. Charles, E.Z. Goren, and K.E. Lauter

Problem 1. Produce a pair of supersingular elliptic curves over Fp2 , E1 and E2, and
two distinct isogenies of degree �n between them, f1 : E1 → E2, f2 : E1 → E2. In light
of the above proposition, by distinct isogenies we mean isogenies whose kernels have
distinct composition series. In particular, composing an isogeny by an automorphism
produces an equivalent isogeny.

Problem 2. Given E, a supersingular elliptic curve over Fp2 , find an endomorphism
f : E → E of degree �2n that is not any automorphism of E composed with the multi-
plication by �n map.

Notation. For each vertex in the graph G(p,�) represented by the curve Ei (numbered
in any order), let hi denote the hash function defined by letting the vertex corresponding
to Ei be the starting vertex for the walk. The collection of hi form a family of hash
functions. Assume the hash functions hi take input of fixed bit length n0. Let n be the
length of the corresponding paths in the graph. Note that if � = 2, then n = n0.

Theorem 1. Finding a collision in the hash function hi implies a solution to Problem 1
with E1 = Ei , and a solution to Problem 2 with E = Ei .

Proof. Finding a collision for a hash function in this family amounts to finding two
distinct paths between two vertices. For the hash function hi , the first vertex is E1 = Ei .
Since the hash function takes inputs of fixed length n0, the paths must also have the
same length, n. By Proposition 1, finding two distinct paths in the graph from the vertex
E1 = Ei to the vertex E2 allows one to construct two distinct isogenies φ1 : E1 → E2
and φ2 : E1 → E2, φ1 	= φ2, via composition of degree � isogenies, where E1 = Ei and
E2 are supersingular elliptic curves over Fp2 . This shows that finding a collision solves
Problem 1.

Furthermore, the length constraint on the paths implies that degφ1 = degφ2, and
the fact that the edges of the graph are �-isogenies means that the degree of the
two isogenies is �n. Taking the dual of φ2, we get an isogeny φ̂2 : E2 → E1. Now
φ1 ◦ φ̂2 : E1 → E1 is an endomorphism of the elliptic curve E1 of degree �2n. This en-
domorphism cannot be the multiplication by �n map (which also has degree �2n), since
φ2 	= φ1. In other words, a collision also leads to a cycle1 of even length in the graph.
Thus, explicitly finding a collision in this hash function allows one to find two isogenies
of the same �-power degree between a pair of supersingular elliptic curves, and to find
an �2n-degree endomorphism of a given supersingular elliptic curve E = E1 = Ei that
is not the multiplication by �n map. �

It is easy to see from the proof of Theorem 1 that if the attacker is allowed to find col-
lisions between inputs of different lengths, say n and m, then one can solve a variation
of Problem 1 where one is asked to find two isogenies f1 : E1 → E2, and f2 : E1 → E2
of degrees �n and �m.

Problem 3. Given E1 and E2, two supersingular elliptic curves over Fp2 , find an
isogeny f : E1 → E2 of degree �n between them.

1 We use the term cycle rather loosely here, as we allow a cycle to intersect itself.

Cryptographic Hash Functions from Expander Graphs 103

Theorem 2. Finding preimages for the hash function hi implies a solution to Prob-
lem 3 with E1 = Ei .

Proof. Given an output y to the hash function hi , let E2 be a supersingular ellip-
tic curve over Fp2 whose j -invariant corresponds to y. To find an input x, such that
hi(x) = y, is to find a path in the graph of �-isogenies from E1 = Ei to E2. �

Remark 1. Note that a solution to Problem 3 implies a solution to Problem 1. This
follows from the fact that a solver for Problem 3 can be used to solve Problem 1 by
first taking a random walk on the graph with endpoints E1 and E2, and then asking
the Problem 3-solver for another path between them. If the two paths are the same,
repeat. Since the graph is an expander there are many distinct paths between any two
vertices. The first path was chosen at random, and consequently, the probability that the
Problem 3-solver produced the same path is low. Thus with high probability we will get
two distinct paths from E1 to E2 and hence get a solution for Problem 1. In other words
there is a probabilistic polynomial time reduction from Problem 1 to Problem 3.

5.2. On the Converses to Theorems 1 and 2

As observed in Theorem 1, finding a collision implies a solution to Problem 1 and a
solution to Problem 2. In the opposite direction, if a solution to Problem 2 is given in
“factored” form, then it also implies a solution to Problem 1 and the ability to produce
a collision. That is, if a cycle in the graph is found, written in “factored” form as a
sequential list of vertices, it can be used to create two distinct paths between two vertices
by following the cycle in two different directions until the paths meet. The path can be
converted into an isogeny with O(�1+ε log2(p)) amount of work at each step (see [4]).
However, if a solution to Problem 1 or 2 is given as an isogeny or an endomorphism,
specified either by a recipe for evaluation or by its kernel (the size of the subgroup
�n would presumably be too large to make this practical), then it is not clear how to
decompose the isogeny or endomorphism into the path in the graph that would produce
a collision. See the paragraph on factoring isogenies below. Note that the same is true
for the equivalence of Problem 3 with preimage finding. If a solution to Problem 3 is
given in terms of a path in the graph, then it can be used to find preimages.

5.2.1. A Note on Factoring Isogenies

In the last paragraph we encountered the problem of writing an isogeny f : E0 → En of
degree �n as a composition of isogenies φn ◦φn−1 ◦· · ·◦φ1 where degφi = �. One might
be tempted to use Corollary III.4.11 of [22] to solve this problem. The result states that,
for non-constant isogenies φ : E → E1 and f : E → E′ such that φ is separable, f

factors as

for a unique isogeny λ if and only if kerφ ⊆ kerf . For instance, one can use this
criterion to find the first step in the “factorization” of the isogeny as follows: given

104 D.X. Charles, E.Z. Goren, and K.E. Lauter

f : E0 → En, f factors as f ′ ◦φ1 iff kerφ1 ⊆ kerf . This can be checked by taking an �-
torsion point P that generates a subgroup (a candidate for kerφ1) and checking whether
f (P) is the identity in En. Doing this for each of the �+1 possibilities for the subgroup
kerφ1 we can identify the first step of the factorization. A problem arises with this ap-
proach if one carries it to subsequent steps of the factorization. Consider the second step
of this process: one needs to check for each possible isogeny φ2 : E1 → E2, whether
ker(φ2 ◦ φ1) ⊆ kerf . Since deg(φ2 ◦ φ1) = �2, we know that ker(φ2 ◦ φ1) ⊆ E0[�2], the
�2-torsion points on E0. Furthermore, we know that kerφ1 ⊆ ker(φ2 ◦ φ1). Given that
E0[�2] ∼= Z/�2

Z × Z/�2
Z, this means we have to find a P ∈ E0[�2] of exact order �2

such that φ1(P) lies in kerφ2 (again this is tested by checking if f (P) is the identity).
Continuing this way, one would need to find points P in E0[�k] of exact order �k . The
problem is that such points in E0[�k] are defined over large degree extensions of the
field that E0 is defined over. In general, this degree could be as large as �k and the finite
field would have p�k

elements. Thus, even if f is of degree �n where n is O(logp) this
approach becomes infeasible.

Another possible approach is to find the first step in the factorization φ1 as we did
before, so that φ = φ′ ◦ φ1, and then consider the isogeny φ ◦ φ̂1 which we can now
evaluate. Unfortunately, this isogeny is φ′ ◦ [�], where φ′ is a degree �n−1 isogeny. Thus,
to find the factorization inductively one would have to evaluate the map φ ◦ φ̂1 ◦ [1/�].
Inverting the multiplication by � map on the �-torsion points requires one to find the
�2-torsion points on E1. In subsequent steps one would need to find the inverse of the
map [�k] which, again, leads us to the issues raised in the previous paragraph of finding
higher �-power torsion. As a consequence, obtaining a converse to Theorem 1 (turning
a solution to Problem 1 or 2 into a procedure for finding hash collisions) seems unlikely.

5.3. Hardness of the Problems

5.3.1. Hardness of Problem 3 (Preimage Resistance)

Since walks on an optimal expander graph quickly approximate the uniform distribu-
tion, we can argue heuristically that a Pollard-rho type attack on Problem 3 would suc-
ceed in time proportional to the square-root of the graph size, i.e. for the graph G(p,�),
roughly

√
πp/24 times the cost for each step, or O(

√
p log2 p). Such an attack would

not always find a path of the correct length, however. This appears to be the best attack
known on any of these problems.

Problem 3 was introduced in [10], where it was argued that the problem is hard in
both the ordinary and the supersingular cases. In [10], Galbraith gives an algorithm to
find an isogeny between two given ordinary, isogenous elliptic curves which runs in
time O(p3/2 log(p)) assuming the Riemann hypothesis for imaginary quadratic fields.
He notes that a similar algorithm to solve the same problem for supersingular elliptic
curves runs in time O(p log(p)). The ordinary case can also be described in another lan-
guage as solving a discrete log problem in orders of class groups of imaginary quadratic
number fields, which has been well-studied. Although subexponential index calculus
methods apply [13], taking quadratic orders with large discriminant makes the problem
as hard as factoring integers of that size [14]. Note the difference between the ECDLP
situation and here: problems on supersingular elliptic curves are not necessarily easier
than the corresponding problem on ordinary elliptic curves. In fact, for our problem,

Cryptographic Hash Functions from Expander Graphs 105

there is no class group to work in for the supersingular case, and the degree map is
a rank 4 quadratic form (the norm form associated to a maximal order in a definite
quaternion algebra).

5.3.2. Hardness of Problems 1 and 2 (Collision Resistance)

To find a cycle in the graph is to solve Problem 2, so first of all, we will ensure that our
graph has no short cycles (i.e. has large girth). We will put restrictions on the congruence
class of the prime p to ensure that there are no short cycles in the graph as follows.

5.3.3. Translation Into the Language of Quadratic Forms

The problem of finding isogenies can be translated into the language of representation
of numbers by quadratic forms. As explained in the proof of Theorem 1, finding two
distinct isogenies φ1, φ2 between two elliptic curves E1 and E2 of degree �n leads to an
endomorphism of degree �2n of E1 that is not the multiplication by �n map. The degree
map is a rank 4 positive definite quadratic form, which can also be described as the norm
map on a maximal order in a quaternion algebra. The endomorphism ring (over Fp)
of a supersingular elliptic curve is isomorphic to a maximal order in the quaternion
algebra B = Bp,∞ over Q ramified only at p and ∞ [22, Chap. 5, Thm. 3.1]. The
maximal order is a rank 4 Z-lattice. The existence of an endomorphism of degree �2n

implies the existence of a non-trivial representation (i.e. not as the norm of �n) of the
number �2n by the quadratic form that is the norm form on the lattice. Note though, that
the best known algorithms for determining the endomorphism ring of a supersingular
elliptic curve as a maximal order in B are exponential in log(p) [5]. Thus the process
of translating the problem of finding cycles to the language of quadratic forms seems to
be computationally hard in itself.

5.3.4. Ensuring that Gp,� Has No Small Cycles

We can use the machinery introduced above to efficiently find cases where G(p,�) has
no small cycles. By choosing p carefully relative to � we can ensure that there are no
cycles of length less than some bound. A non-trivial cycle of length 2n in the graph of
�-isogenies implies that the norm form of some maximal order in B represents �2n in a
non-trivial way. If the cycle corresponds to an element x of norm �2n then that implies
that the quadratic polynomial X2 − Tr(x)X + Norm(x) is irreducible, and so that p is
ramified or inert in the field defined by the polynomial. To illustrate this, take � = 2 and
n = 1. Then we consider X2 − Tr(x)X + 4. Since b2 − 4ac < 0, the trace must satisfy
Tr(x) ∈ {−3,−2,−1,0,1,2,3}, so the field determined by the polynomial is Q(

√−1),
Q(

√−3), Q(
√−7), or Q(

√−15). One then just needs to make sure p splits in all these
fields, which by quadratic reciprocity is a congruence condition. In addition, we require
that the graph have no self-loops, which adds the condition that p splits in Q(

√−2). So
in this example it is enough that p ≡ 1 (mod 8), p ≡ 1 (mod 3), p ≡ 1 (mod 7), and
p ≡ 1 (mod 5), so if p is congruent to 1 modulo 3 · 8 · 5 · 7 = 840 then there are no
cycles of length 2. This idea can be applied in general to make sure there are no short
cycles in the graph.

106 D.X. Charles, E.Z. Goren, and K.E. Lauter

5.3.5. Choosing an Appropriate Starting Vertex

One can apply the idea in the previous paragraph in a different way to exclude short
cycles by choosing �, p and the starting vertex carefully. We illustrate this by looking
at the case when p ≡ 1 (mod 24). Here we have one maximal order m in Bp,∞ whose
Z-basis is given by (see [17, Proposition 5.2])

1

2
(1 + j),

1

2
(ı + k),

1

q
(j + ak), k,

where ı2 = −1, j2 = −p, q ≡ 3 (mod 4) is a prime such that (
p
q
) = −1 and a is an

integer such that q|(a2p + 1). Let q ≡ 3 (mod 4) be a small prime and then pick
a prime p ≡ 1 (mod 24) such that (

p
q
) = −1. We claim that the graph G(p,�) for

� ≡ 3 (mod 4) cannot have small cycles starting from any vertex representing a su-
persingular elliptic curve with endomorphism ring m. Indeed, a cycle of length 2t

gives rise to an endomorphism x of E whose norm is �2t . This means that if x =
r
2 (1 + j) + s

2 (ı + k) + t
q
(j + ak) + uk (where r, s, t, u ∈ Z), then its quarternionic

norm

N(x) = r2

4
+ s2

4
+ p

(
r

2
+ t

q

)2

+ p

(
s

2
+ ta

q
+ u

)2

= �2t .

Suppose (r
2 + t

q
) = 0 and (s

2 + ta
q

+u) = 0. Then �2t = r2

4 + s2

4 , but since � ≡ 3 (mod 4),
all such endomorphisms are the trivial ones coming from multiplication by �t or ı�t

(recall that ı is an automorphism). Thus, we must have either (r
2 + t

q
) 	= 0 or (s

2 +
ta
q

+u) 	= 0. In either case, N(x) ≥ 1
4q2 p. Thus t � log� p if q is fixed. This means that

there are no non-trivial endomorphisms of degree < 1
4q2 p.

If the graph G(p,�) does not have small cycles then the best known attack is the
Pollard-rho attack which will find a cycle in expected time O(

√
p log2 p). Thus taking

p ≈ 2256 would give roughly 128 bits of security against this attack.

6. LPS Ramanujan Graphs

6.1. Definition of the Graph X�,p

An alternative to using the graph G(p,�) is to use the Lubotzky-Phillips-Sarnak ex-
pander graph [16]. Let � and p be two distinct primes, with � a small prime and p

relatively large. We also assume that p and � are both 1 modulo 4 and � is a quadratic
residue (mod p) (this is the case if �(p−1)/2 ≡ 1 (mod p)). We denote the LPS graph,
with parameters � and p, by X�,p . We define the vertices and edges that make up the
graph X�,p next. The vertices of X�,p are the matrices in PSL(2,Fp), i.e. the invertible
2 × 2 matrices with entries in Fp that have determinant 1 together with the equivalence
relation A = −A for any matrix A.

We describe the edges that make up the graph next. A matrix A is connected to the
matrices gA where the g’s are the following explicitly defined matrices. Let i be an
integer satisfying i2 ≡ −1 (mod p). It follows from the Jacobi formula for the number

Cryptographic Hash Functions from Expander Graphs 107

of representations of an integer as a sum of four squares that there are exactly 8(� + 1)

integer solutions (g0, g1, g2, g3) to the equation

g2
0 + g2

1 + g2
2 + g2

3 = �.

Among these there are exactly � + 1 with g0 > 0 and odd and gj even for j = 1,2,3.
To each such (g0, g1, g2, g3) we associate the matrix

g =
(

g0 + ig1 g2 + ig3
−g2 + ig3 g0 − ig1

)

.

This gives us a set S of �+1 matrices in PGL(2,Fp), but their determinants are squares
modulo p (since � is a quadratic residue modulo p) and hence they lie in the index
2 subgroup of PGL(2,Fp) namely, PSL(2,Fp). If g is in S then so is g−1, since the
inverse (scaled by a square root of �)

g
−1 =

(

g0 − ig1 −g2 − ig3
g2 − ig3 g0 + ig1

)

corresponds to the solution (g0,−g1,−g2,−g3). Furthermore, since � is small, the set
of matrices in S can be found by exhaustive search very quickly. The graph X�,p has
p(p2 − 1)/2 vertices and is � + 1-regular.

The graph X�,p is an example of a Cayley graph. Given a group G and a subset
S ⊆ G, the nodes of a Cayley graph are elements of G, and there is an edge between
x, y ∈ G if x = gy or y = gx for some g ∈ S.

6.1.1. Definition of the Hash Function

Assume that p is of cryptographic size (1024 bits, for example), but that � may be
small. The hash function based on the graph X�,p , denoted H�,p , takes an input x and
executes a walk without backtracking on the graph X�,p and outputs the name of the
last vertex on the walk. In more detail, we first order the generators g in S in any way.
Convert the input of the hash function to a base-� number whose digits then dictate
which edge to take at each step. Starting at any vertex, multiply by an element of S

determined by the first digit of x to get to the next vertex. Subsequent steps of the walk
multiply the previous vertex by an element of S\{g−1} determined by the next digit
of the input, where g was the generator used in the previous step. In this way a walk
without backtracking is performed on the graph. Once the input is exhausted the last ma-
trix computed is output as the output of the hash function. The vertex corresponding to
a 2×2 matrix A can be labelled using the 4-tuple of entries of A or those of −A, depend-
ing on which is lexicographically smaller in the usual ordering of the set {0, . . . , p−1}4.
In fact, 3 of the entries suffice to label it, since the determinant is 1.

6.2. Comparison with the Zémor-Tillich Hash Function

Our construction of a hash function from the graph X�,p is related to a previous con-
struction of Zémor and Tillich. In his original paper [25], Zémor proposed using the
(directed) Cayley graph of SL(2,Fp) with two generators in the set S: A = (1 1

0 1

)

and

108 D.X. Charles, E.Z. Goren, and K.E. Lauter

B = (1 0
1 1

)

. Zémor and Tillich subsequently discovered in [26] that cycles could be
found in the graph using a variant of the Euclidean algorithm to decompose elements
of SL(2,Z) into a product of generators. To avoid these attacks, they proposed in [27]
working in the group SL(2,Fpn), with p = 2 and Cayley graph defined by the gener-
ators A = (

α 1
1 0

)

, B = (
α α+1
1 1

)

, where α is a root of the irreducible polynomial Pn(x)

defining the extension field F2n . Unfortunately, Charnes and Pieprzyk [7] found a choice
of an irreducible polynomial Pn of degree n = 131 such that the matrices A and B had
very small order, and found a very short relation among A and B yielding a cycle in
the graph. Since then, several attempts have been made to fix the Zémor-Tillich hash
function [1,23], but none have focused on using the arithmetic properties of an underly-
ing expander graph. In Section 6.3 below we argue that the hash function based on the
graph X�,p is not susceptible to these attacks.

6.3. Collision Resistance

In this section we show that finding a collision in the hash function defined by the graphs
Xp,� is equivalent to a certain group theoretic problem and give reasons why we believe
this problem to be hard.

Problem 4. Let p and � be two distinct primes congruent to 1 modulo 4 such that �

is a quadratic residue modulo p. Let S = {g1, . . . ,g�+1} be the generators defined in
Section 6.1 for PSL(2,Fp). Find a product (in reduced form)

∏

1≤i≤k

g
ei

σ (i) = 1

such that
∑

i ei is O(logp) (i.e. small compared to p). By reduced form we mean that
gσ(i) 	= g

−1
σ(i+1)

for each i.

We remark that finding such products with very large exponents is not hard. Indeed,
it follows from Lagrange’s theorem that gn = 1 where n = #PSL(2,Fp), but if p is of
cryptographic size, such a long cycle is useless in producing colliding inputs.

Proposition 2. Finding a hash collision in H�,p with inputs of size O(logp) (i.e. small
compared to p) is equivalent to solving Problem 4.

Proof. Suppose x 	= y are two inputs such that H�,p(x) = H�,p(y). This happens if
and only if the products of the generators corresponding to the two inputs satisfy:

∏

1≤i≤r

gσ(i) =
∏

1≤j≤s

gδ(j)

and this yields

∏

1≤i≤r

gσ(i)

⎛

⎝
∏

1≤j≤s

gδ(j)

⎞

⎠

−1

= 1.

Cryptographic Hash Functions from Expander Graphs 109

Since the set S of generators is closed under inverses this yields a relation between the
generators. The reduction of this relation cannot yield the trivial relation since x and
y correspond to two distinct paths in the graph. Moreover, this relation is O(logp) in
length owing to the length of the colliding inputs and thus a collision is equivalent to a
solution to Problem 4. �

6.3.1. Large Girth

The girth of a graph is the length of the smallest cycle in the graph. Proposition 2 says
that finding a hash collision is the same as finding a cycle of length O(logp) in the
graph X�,p . In Sarnak, [19, Section 3.4.1], one finds that the girth, t , is the minimal
integer such that �t is represented over the integers by the quadratic form

g2
0 + 4p2g2

1 + 4p2g2
2 + 4p2g2

3

subject to the condition that at least one of g1, g2, g3 is not zero. The argument there
shows that t ≥ 2 log� p. Thus the girth of the LPS graph is at least 2 log� p. In other
words, any solution to problem 4 involves products of at least 2 log� p generators. Thus
one cannot find short relations of the type which were used to attack the Zémor-Tillich
hash functions. We remark that the girth of the LPS graph is essentially optimal; for
example, it is larger than the girth of a random graph, and in [16, Section 3.3] is claimed
to be the (asymptotically) largest known.

6.3.2. Density Attacks

The attacks on the Zémor-Tillich hash function explained in [26, Section 3] are re-
ferred to as density attacks. By Proposition 2, it suffices to find a (short) product
R = ∏

1≤i≤k gji
, of the generators that yields the identity. As noted in the previous para-

graph finding such an R is as hard as finding a cycle in the graph. The density attack
attempts to find R by lifting the problem to the integers. More precisely, one constructs
lifts g̃i ∈ PSL(2,Z) for each of the matrices gi . Then one attempts to find a matrix Ĩ that
reduces to the identity modulo p and a relation Ĩ = ∏

1≤i≤k g̃ji
. Reducing this equation

modulo p then yields the sought after R. This attack works well for the original scheme
proposed by Zémor [25] because the lifts of the generators generate a large submonoid
of SL(2,Z) and it is easy to express lifts of the identity matrix in terms of these lifted
generators using a variant of the Euclidean algorithm. Two problems arise in trying this
approach for Xp,�: The first is that the lift Ĩ need not lie in the group generated by the
lifts g̃i . For this to happen we need the lifts to generate a sufficiently dense subgroup of
PSL(2,Z) (hence the name “density attack”). Secondly, even if Ĩ belongs to the sub-
group generated by g̃i , finding the product of the generators that yield Ĩ is hard, since
there cannot be a short expression for Ĩ in terms of the generators, due to the girth of
the graph.

6.3.3. Timings for the Hash Function Based on the LPS Graphs

Our implementation of the hash function based on the LPS graph (with � = 5) takes
1.6 × 10−5 seconds per step of the walk for a prime p of 1024-bits. At each step of the
walk log2 � bits of the input are consumed and so this translates to a hashing bandwidth

110 D.X. Charles, E.Z. Goren, and K.E. Lauter

of log2 �

1.6×10−5 ≈ 145 Kbps on an 64-bit AMD Opteron 252 2.6 Ghz machine. One disad-
vantage seems to be that an element of PSL(2,Fp) takes 3 elements of Fp (3 log2(p)

bits) to represent (using that the determinant is 1), and if log2(p) is about 1024, then the
output size is too long. For a 192-bit prime p, one step of the walk requires 1.04 × 10−6

seconds. In terms of bandwidth this is about 2.23 Mbps (again with � = 5). More gen-
erally, one step of the walk on this graph costs 8 field multiplications (or 7 if we use
Strassen’s method), so estimating the time required to do a field multiplication as α

gives a direct estimate of the time required to compute the hash per bit of input as 8α
log2 �

.
One can decrease the computational cost per bit at the expense of storing a larger table
of products of generators for the graph. But, if the table is too large then one will have
to account for the memory access cost in the analysis.

7. Generic Attacks on Expander Graph Based Hash Functions

Our purpose in this section is to explain a certain generic method of attack on the col-
lision resistance property of hash functions constructed out of expander graphs. Let G

be a connected graph and let w = (v0;E1,E2, . . . ,En) be a walk in G, with initial ver-
tex v0 and edges Ei . Let vn denote the vertex where the walk terminates. Let f be an
automorphism of the graph G not equal to the identity. We assume that an adversary A
knows f and that the computation of f on any vertex and edge is efficient. Thus, apply-
ing f , A can easily find f (w) = (f (v0);f (E1), . . . , f (En)). If, on the average, the dis-
tance in G between v and f (v) is small enough then A is likely to find a walk wv0,f (v0)

between v0 and f (v0) and a walk wvn,f (vn) between vn and f (vn) by brute force search.
The walks (wv0,f (v0)|f (w)) and (w|wvn,f (vn))) are two walks of the same length with
the same initial and final vertices. Thus A can find two different inputs to the hash
function hashing to the same value. Alternately, the walk (wv0,f (v0)|f (w)|f (wvn,f (vn)))

represents another input (of different length, usually) hashing to the same value as w.
We call such an attack a generic attack.

One can easily provide examples of good expanders with an involution f such that
the distance between any v and f (v) is one. Indeed, given a good expander graph H =
(VH ,EH) let G = (VG,EG) be its extended double cover: if VH = {v1, . . . , vn} then
VG = {x1, . . . , xn, y1, . . . , yn} and xi, yj are adjacent if i = j , or (vi, vj) ∈ EH . This is
a connected graph with the involution f (xi) = yi .

We next discuss our examples of the supersingular graphs and the LPS graphs and
explain why the generic attack method fails.

7.1. Supersingular Graphs

Let p 	= � be primes, p ≡ 1 (mod 12), and let G = G(p,�) be the supersingular graph
as in Section 4. The only obvious automorphism of G we have is the Frobenius auto-
morphism Fr , sending a supersingular j -invariant j1 to j

p

1 . It also acts on the edges:
if H is a subgroup of order � of a supersingular elliptic curve E1 with j (E1) = j1 then
Fr(H) is a subgroup of order � of E

(p)

1 . The number of fixed points of Fr is the num-
ber of supersingular j -invariants defined over Fp , whose order of magnitude is the class
number of Q(

√−p), which is asymptotically O(p1/2+o(1)) [21]. More generally, we
have the following lemma.

Cryptographic Hash Functions from Expander Graphs 111

Lemma 6. Let i be a non-negative integer. The number α(i) of supersingular
j -invariants such that distG(j, jp) ≤ i is the number of pairs (E,g) consisting of a
supersingular elliptic curve E and an endomorphism g of E of degree p · �j , j ≤ i, up
to isomorphism. Assume that i ≤ log�(p/4). Then

α(i) = �i/2Õ(
√

p).

Proof. Given an isogeny h:E(p) → E of degree �j , j ≤ i, let g = Fr ◦ h be the
endomorphism of E of degree p · deg(g). Conversely, an endomorphism g of order
p�j , j ≤ i can be factored uniquely as a composition, up to automorphisms,

E
Fr−→ E(p) h−→ E,

where the order of h is �j . We note that to give a pair (E,g) is equivalent to giving a
supersingular elliptic curve E and an embedding of the ring Oa,j := Z[x]/(x2 + ax +
p�j) ↪→ End(E). For such an embedding to exist we must have that p does not split in
the quotient field Ka,j of Oa,j and that Ka,j is a quadratic imaginary field. Since we
have x2 + ax + p�j = x(x + a) (mod p), for p not to split we must have p|a, while
the second condition is simply that a2 < 4p�j . Note that, by assumption, 4�j ≤ p, so
this forces a to be zero. Thus, we need to consider pairs consisting a supersingular
elliptic curve and an embedding Oj := O0,j = Z[x]/(x2 +p�j) ↪→ End(E). Each such
embedding extends to an optimal embedding of a unique order of Kj := Q(

√−p�j)

into End(E). We have assumed p ≡ 1 (mod 12), so in particular p ≡ 1 (mod 4). Then
each such order is of the form Os with s ≤ j and s ≡ j (mod 2). It is well known that the
number of such embeddings is the class number of Os and this, in turn, is �s/2Õ(

√
p).

Thus, we get the estimate that α(i) is (
∑i/2

r=0 �(i−2r)/2)Õ(
√

p) = �i/2Õ(
√

p). �

The lemma implies that in order to have the distance between two randomly chosen
supersingular elliptic curves less than i with probability greater than some constant
independent of p and �, one must take i close to the limit posed in the lemma, i.e.
log�(p/4), and this is essentially the diameter of G. This shows that the generic attack
using the Frobenius automorphism fails.

7.2. LPS Graphs

The LPS graphs defined in Section 6 are Cayley graphs. Let C(G,S) be the Cayley
graph of a group G relative to a symmetric set of generators S of G, such that 1G 	∈ S.
The graph C(G,S) is a simple regular connected graph. The group G acts as auto-
morphisms of C(G,S). Given x ∈ G we have an automorphism [x] of C(G,S) such
that [x](g) = xg. Note that if g is connected to gs then [x](g) is connected to [x](gs).
The Cayley graph could have other automorphisms. Indeed, any automorphism φ of G

such that φ(S) = S induces an automorphism of C(G,S). Those, however, will not be
studied here.

Let x 	= 1G. Then [x] has no fixed points. Suppose that for some g ∈ G,
dist(g, [x]g) = n, where the distance is the minimal length of a walk in C(G,S)

starting at g and ending in xg. Thus, there are elements s1, s2, . . . , sn of S such that

112 D.X. Charles, E.Z. Goren, and K.E. Lauter

xg = gs1s2 · · · sn. Then x = gs1s2 · · · sng−1. Assume that also x = hs1s2 · · · snh−1 then
h ∈ gCentG(s1 · · · sn), and vice versa. Note that this condition on h depends only on
the product s1s2 · · · sn and not on the particular choice of elements s1, s2, . . . , sn. We
conclude the following:

�{g ∈ G : dist(g, [x]g) ≤ n} =
∑

{y∈G:1≤dist(1G,y)≤n,x∼y}
�Cent(y),

where we used the notation x ∼ y to indicate that x is conjugate to y. Let xG denote the
conjugacy class of x in G. Since conjugacy is an equivalence relation, we conclude that

�{g ∈ G : dist(g, [x]g) ≤ n} =
∑

{y∈xG:1≤dist(1G,y)≤n}
�Cent(x).

Remark that �xG ·�Cent(x) = �G and so the essential point is how are the lengths of the
elements in xG (relative to the Cayley graph) distributed. This is an interesting question
in general. Here we just note that if G is k regular then there are at most k · (k − 1)n−1

elements whose distance from 1G is not larger than n. In fact, since our interest is in
good expanders, we are justified in assuming a worst case scenario.

We now specialize our considerations to the group PSL2(Fp). The centralizer of a
non-central element in SL2(Fp) is roughly of size p and is at most of size p + 1 (that
element generates a quadratic algebra in M2(Fp) over Fp isomorphic to Fp2,Fp ⊕Fp or
Fp[ε]/(ε2)). Up to a factor of 2, this is also the size of the centralizer in PSL2(Fp). Thus,
for 1 	= x ∈ PSL2(Fp) the number of vertices g such that the distance in the LPS graph
(relative to � and p) between g and [x]g is less than n is at most (p + 1)(� + 1)�n−1 ∼
p�n, while the number of vertices is (p3 − p)/2. We see that in order to have that the
probability of picking an element g such that dist(g, [x]g) ≤ n exceed some constant,
we must choose n to be about 2 log�(p), which is essentially the lower bound one has
on the girth of the LPS graph. Again, we find that the generic attack method fails.

Acknowledgements

The authors thank the anonymous referees for many helpful suggestions to improve the
paper.

References

[1] K.S. Abdukhalikov, C. Kim, On the security of the hashing scheme based on SL2. In Fast Software
Encryption 1998. Lecture Notes Computer Science, vol. 1372 (Springer, Berlin, 1998), pp. 93–102.

[2] N. Alon, Eigenvalues and expanders. Combinatorica 6, 83–98 (1986).
[3] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography. Lond. Math. Soc., Lecture Note Series,

vol. 265 (Cambridge University Press, Cambridge, 1999).
[4] A. Bostan, F. Morain, B. Salvy, E. Schost, Fast algorithms for computing isogenies between elliptic

curves, http://arxiv.org/abs/cs/0609020.
[5] J.M. Cerviño, On the correspondence between supersingular elliptic curves and maximal quaternionic

orders, http://arxiv.org/abs/math/0404538.

http://arxiv.org/abs/cs/0609020
http://arxiv.org/abs/math/0404538

Cryptographic Hash Functions from Expander Graphs 113

[6] D. Charles, K. Lauter, Computing modular polynomials. Lond. Math. Soc. J. Comput. Math. 8, 195–204
(2005).

[7] C. Charnes, J. Pieprzyk, Attacking the SL2 hashing scheme. In Advances in Cryptology—
ASIACRYPT’94, ed. by J. Pieprzyk, R. Safavi-Naini. Lecture Notes in Computer Science, vol. 917
(Springer, Berlin, 1995), pp. 322–330.

[8] S. Contini, A.K. Lenstra, R. Steinfeld, VSH, an efficient and provable collision resistant hash function.
In Eurocrypt 2006. Lecture Notes in Computer Science, vol. 4004 (Springer, Berlin, 2006), pp. 165–
182.

[9] M. Eichler, Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzeta-
funktion. Arch. Math. 5, 355–366 (1954).

[10] S. Galbraith, Constructing isogenies between elliptic curves over finite fields. Lond. Math. Soc. J. Com-
put. Math. 2, 118–138 (1999).

[11] O. Goldreich, Randomized methods in computation, Lecture Notes, http://www.wisdom.weizmann.ac.
il/~oded/rnd-sum.html.

[12] B.H. Gross, Heights and the special values of L-series. In Number Theory, Montreal, Que. 1985. CMS
Conf. Proc., vol. 7 (Am. Math. Soc., Providence, 1987), pp. 115–187.

[13] J.L. Hafner, K.S. McCurley, A rigorous subexponential algorithm for computation of class groups.
J. Am. Math. Soc. 2, 837–850 (1989).

[14] S. Hamdy, B. Möller, Security of cryptosystems based on class groups of imaginary quadratic orders.
In Advances in Cryptology ASIACRYPT 2000, ed by T. Okamoto. Lecture Notes in Computer Science,
vol. 1976 (Springer, Berlin, 2000), pp. 234–247.

[15] A.K. Lenstra, D. Page, M. Stam, Discrete logarithm variants of VSH. In Proceedings Vietcrypt 2006.
Lecture Notes in Computer Science, vol. 4341 (Springer, Berlin, 2006), pp. 229–242.

[16] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs. Combinatorica 8(3), 261–277 (1988).
[17] A.K. Pizer, An algorithm for computing modular forms on �0(N). J. Algebra 64(2), 340–390 (1980).
[18] A.K. Pizer, Ramanujan graphs and Hecke operators. Bull. AMS 23(1) (1990).
[19] P. Sarnak, Some Applications of Modular Forms. Cambridge Tracts in Mathematics, vol. 99 (Cambridge

University Press, Cambridge, 1990).
[20] G. Shimura, Correspondances modulaires et les fonctions zeta de courbes algébriques. J. Math. Soc.

Jpn. 10, 1–28 (1958).
[21] C.L. Siegel, Uber die Classenzahl quadratischer Zahlkorper. Acta Arith. 1, 83–86 (1935).
[22] J.H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106 (Springer,

Berlin, 1986).
[23] R. Steinwandt, M. Grassl, W. Geiselmann, Beth, T., Weaknesses in the SL2(F2n) hashing scheme. In

CRYPTO 2000. Lecture Notes Computer Science, vol. 1880 (Springer, Berlin, 2000), pp. 287–299.
[24] J. Vélu, Isogénies entre courbes elliptiques. C. R. Acad. Sc. Paris 273, 238–241 (1971).
[25] G. Zémor, Hash functions and Cayley graphs. Des. Codes Cryptogr. 4, 381–394 (1994).
[26] G. Zémor, J.-P. Tillich, Group theoretic hash functions. In The First French-Israeli Workshop on Alge-

braic Coding. Lecture Notes in Computer Science, vol. 781 (Springer, Berlin, 1993).
[27] G. Zémor, J.-P. Tillich, Hashing with SL2. In Advances in Cryptology, Crypto’94. Lecture Notes in

Computer Science, vol. 839 (Springer, Berlin, 1994).

http://www.wisdom.weizmann.ac.il/~oded/rnd-sum.html
http://www.wisdom.weizmann.ac.il/~oded/rnd-sum.html

	Cryptographic Hash Functions from Expander Graphs
	Abstract
	Introduction
	Background and Definitions
	Hash Functions
	Elliptic Curves
	Expander Graphs

	Construction of a Hash Function from an Expander Graph
	Pizer's Ramanujan Graphs
	Walking Around the Graph
	Efficiency of Hash Functions from Pizer Graphs when l= 2
	Timings for the Hash Function Based on the Pizer Graph

	Collision Resistance of Hash Functions from Pizer Graphs
	Definitions and Hard Problems
	On the Converses to Theorems 1 and 2
	A Note on Factoring Isogenies

	Hardness of the Problems
	Hardness of Problem 3 (Preimage Resistance)
	Hardness of Problems 1 and 2 (Collision Resistance)
	Translation Into the Language of Quadratic Forms
	Ensuring that Gp,l Has No Small Cycles
	Choosing an Appropriate Starting Vertex

	LPS Ramanujan Graphs
	Definition of the Graph Xl,p
	Definition of the Hash Function

	Comparison with the Zémor-Tillich Hash Function
	Collision Resistance
	Large Girth
	Density Attacks
	Timings for the Hash Function Based on the LPS Graphs

	Generic Attacks on Expander Graph Based Hash Functions
	Supersingular Graphs
	LPS Graphs

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

