ASSIGNMENT 3 - NUMBER THEORY, WINTER 2009

Submit by Monday, February 2, 16:00 (use the designated mailbox in Burnside Hall, 10^{th} floor).

Solve the following questions:

(11) Let R be the set of all functions $f : \mathbb{N}^+ \to \mathbb{C}$, namely R is the set of arithmetic functions. Prove that R is a commutative ring under the following operations of addition and multiplication:

$$(f+g)(n) = f(n) + g(n),$$

$$(f*g)(n) = \sum_{d|n} f(d)g(n/d).$$

Its zero is the function that is identically zero and its identity is the function e defined in class. (12) Find all integers n such that:

- (a) $\varphi(n) = n/2;$
- (b) $\varphi(n) = \varphi(2n);$
- (c) $\varphi(n) = 4;$
- (d) $\varphi(n) = 12.$

If you have installed PARI on your laptop, or have access to some other mathematical software, it wouldn't hurt to experiment. For example, in PARI you might want to run

```
for(n=1, 100, if(eulerphi(n)==n/2,print(n),))
```

```
for(n=1, 100, if(eulerphi(n)==eulerphi(2*n),print(n),))
```

- (13) For each of the following statements give a proof or a counterexample:
 - (a) If (m, n) = 1 then $(\varphi(m), \varphi(n)) = 1$;
 - (b) If n is composite¹ then $(n, \varphi(n)) > 1$;
 - (c) If the same primes divide n and m then $n\varphi(m) = m\varphi(n)$.

The honors students need also to submit the following problems.

D. Prove that a multiplicative function $f \in R$ is a unit.

One says that a function $f \in R$ is completely multiplicative if f is multiplicative and in addition $f(p^{\alpha}) = f(p)^{\alpha}$ for every prime p and $\alpha \in \mathbb{N}^+$. Equivalently, f(mn) = f(m)f(n) for any m, n. Prove that the inverse, relative to Dirichlet multiplication, of a completely multiplicative function f is given by

$$f^{-1}(n) = \mu(n)f(n).$$

Give an example of a completely multiplicative function f such that f^{-1} is not completely multiplicative. (To put this in perspective: one can prove that the inverse of a multiplicative function is multiplicative.)

E. Find $\limsup_n \frac{\varphi(n)}{n}$ and $\liminf_n \frac{\varphi(n)}{n}$.

You may use the statement (to be proved later) $\sum_p \frac{1}{p} = \infty$, where the sum is over all primes.

¹That means n > 1 and is not prime.