Dieudonné modules and *p*-divisible groups

Patrick Walls

University of Toronto

April 18, 2013

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 ろく⊙

M. DEMAZURE. *Lectures on p-divisible groups*. Lecture Notes in Mathematics 302, Springer, 1972.

M. DEMAZURE and P. GABRIEL. *Groupes Algébriques*. North Holland Pub. Co., 1970.

A. GROTHENDIECK. *Groupes de Barsotti-Tate et cristaux de Dieudonné*. Les Presses de l'Université de Montréal, 1974.

Y. MANIN. The theory of commutative formal groups over fields of finite characteristic. Russian Math. Sur. 18, 1963.

J. TATE. *p-divisible groups*. Proceedings of a Conference on Local Fields, Springer, 1967.

Notation

Our notation for certain categories:

(Ab) - abelian groups
(*R*-Alg) - *R*-algebras
(*R*-Mod) - left *R*-modules
(Mod-*R*) - right *R*-modules
(Sch/*R*) - schemes over Spec *R*(GrSch/*R*) - (commutative) group schemes over Spec *R*

Common group schemes:

$$\begin{split} & \mathbb{G}_{a/R} : (R-\mathrm{Alg}) \longrightarrow (\mathrm{Ab}) : A \mapsto (A, +) \\ & \mathbb{G}_{m/R} : (R-\mathrm{Alg}) \longrightarrow (\mathrm{Ab}) : A \mapsto (A^{\times}, \times) \\ & \mu_{n/R} = \ker(\mathbb{G}_{m/R} \longrightarrow \mathbb{G}_{m/R} : x \mapsto x^n) \\ & \underline{(\mathbb{Z}/n\mathbb{Z})}_R : (R-\mathrm{Alg}) \longrightarrow (\mathrm{Ab}) : A \mapsto (\mathbb{Z}/n\mathbb{Z})^{\pi_0(\operatorname{Spec} A)} \end{split}$$

Witt Rings

The Witt ring scheme is denoted

$$\mathbb{W}:(\mathsf{Rings})\longrightarrow(\mathsf{Rings})$$

and the Witt scheme of length n is denoted \mathbb{W}_n .

For example,

$$\mathbb{W}(\mathbb{F}_p) \cong \mathbb{Z}_p$$

 $\mathbb{W}(\mathbb{F}_{p^n}) \cong \mathbb{Z}_{p^n}$
 $\mathbb{W}(\overline{\mathbb{F}}_p) \cong \widehat{\mathbb{Z}_p^{n}}$
 $\mathbb{W}_n(\mathbb{F}_p) = \mathbb{Z}/p^n\mathbb{Z}$

Outline

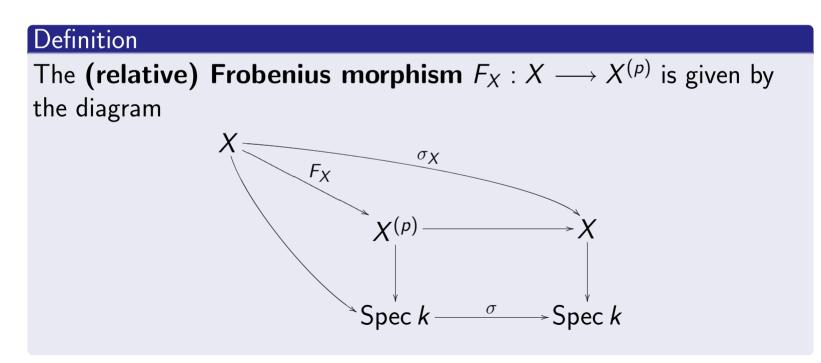
- Let k be a perfect field of characteristic p with Witt ring W = W(k).
 - **1** Every group scheme G over k has a Frobenius morphism F_G
 - 2 By Cartier duality, G also has the Vershiebung morphism V_G
 - 3 The category of finite group schemes over k decomposes according to the action of F_G and V_G
 - G → M(G) = lim_n Hom(G, W_n) is an equivalence between the category of finite group schemes over k killed by some power of V and a full subcategory of Dieudonné modules.
 - The construction extends to an equivalence between the category of finite *p*-torsion group schemes over *k* and the category of Dieudonné modules of finite length.
 - p-divisible groups are limits of finite p-torsion group schemes and so the equivalence of the category of p-divisible groups onto the category of Dieudonné modules over k is

$$\varinjlim_i G_i \leftrightarrow \varprojlim_i M(G_i)$$

The (Relative) Frobenius F_X

The Frobenius map $\sigma : k \to k : x \mapsto x^p$ defines a map on Spec k and, given any scheme X over Spec k, let $X^{(p)} = X \times_{\text{Spec } k, \sigma} \text{Spec } k$.

The absolute Frobenius map σ_X on X is the identity on the toplogical space X and on the structure sheaf is $\mathscr{O}_X \to \mathscr{O}_X : f \mapsto f^p$.



The (Relative) Frobenius F_X

The Frobenius morphism commutes with fiber products therefore, if G is a group scheme over k, then $G^{(p)}$ has the structure of a group scheme and the Frobenius $F_G : G \longrightarrow G^{(p)}$ is a homomorphism of group schemes over k.

For example, if $G = \mathbb{G}_{a/k}$ is the additive group scheme over k then $(\mathbb{G}_{a/k})^{(p)} = \mathbb{G}_{a/k}$ and the Frobenius F acts on R-points by

$$F(R): \mathbb{G}_a(R) \longrightarrow \mathbb{G}_a(R): x \mapsto x^p$$

for all k-algebras R. In fact, we have the following result:

Proposition

End($\mathbb{G}_{a/k}$) is isomorphic to the noncommutative k-algebra $k\{F\}$ generated by F with $F\lambda = \lambda^p F$ for all $\lambda \in k$.

Exploring the endomorphism ring $k\{F\}$ of $\mathbb{G}_{a/k}$ gives rise to subgroups of $\mathbb{G}_{a/k}$.

Consider $F \in \text{End}(\mathbb{G}_{a/k})$ and ker $F \subset \mathbb{G}_{a/k}$. This subgroup is denoted $\alpha_{p/k}$ and its *R*-points are given by

$$\alpha_{p/k}(R) = \{x \in R : x^p = 0\}$$
, for all k-algebras R.

Since $\alpha_{p/k} = \operatorname{Spec} k[T]/(T^p)$, this is a connected group scheme.

Subgroups of $\mathbb{G}_{a/k}$

Consider $F - 1 \in \text{End}(\mathbb{G}_{a/k})$ and $H = \text{ker}(F - 1) \subset \mathbb{G}_{a/k}$. The *R*-points of *H* are

$$H(R) = \{x \in R : x^{p} = x\}$$

for all k-algebras R. This is an étale group scheme since

$$H = \operatorname{Spec} k[T] / (T^{p} - T)$$

= Spec k[T] / $\prod_{\lambda \in \mathbb{F}_{p}} (T - \lambda)$
 $\cong \prod_{\lambda \in \mathbb{Z}/p\mathbb{Z}} \operatorname{Spec} k$
 $\cong (\mathbb{Z}/p\mathbb{Z})_{k}$.

Theorem

Let k be a perfect field of characteristic p and let G be a finite group scheme over k. Then there is a canonical split exact sequence

$$1 \longrightarrow G_c \longrightarrow G \longrightarrow G_e \longrightarrow 1$$

where G_c is connected and G_e is étale. In particular, there is an isomorphism

$$G \cong G_c \times G_e$$

For example, the subgroup $H = \ker(F^2 - F) \subset \mathbb{G}_{a/k}$ has the decomposition

$$H \cong \alpha_{p/k} \times \underline{(\mathbb{Z}/p\mathbb{Z})}_k$$

since $F^2 - F = F(F - 1)$.

Definition

Let G be a finite group scheme over k. The **Cartier dual of** G is the finite group scheme $G^{\vee} = \underline{Hom}(G, \mathbb{G}_m)$.

In other words, G^{\vee} is the group scheme defined functorially by

$$G^{\vee}: (k-\operatorname{Alg}) \longrightarrow (\operatorname{Ab}): R \mapsto \operatorname{Hom}_{(\operatorname{GrSch}/R)}(G_R, \mathbb{G}_{m/R})$$

and is represented by the finite k-algebra $A^{\vee} = \operatorname{Hom}_k(A, k)$ where multiplication in the ring A^{\vee} is defined as the dual of the map $\Delta : A \to A \otimes_k A$ coming from the group operation $m : G \times G \to G$.

Furthermore, Cartier duality satisfies

$$\left(G^{ee}
ight)^{ee} \cong G \hspace{0.2cm} ext{and} \hspace{0.2cm} \left(G^{ee}
ight)^{(p)} \cong \left(G^{(p)}
ight)^{ee}$$

Definition

Let G be a finite group scheme over k. The **Verschiebung** morphism V_G of G is the Cartier dual of the Frobenius $F_{G^{\vee}}$ on G^{\vee}

$$F_{G^{\vee}}: G^{\vee} \longrightarrow (G^{\vee})^{(p)} = (G^{(p)})^{\vee} \quad \rightsquigarrow \quad V_G: G^{(p)} \longrightarrow G$$

Theorem

If G is a finite group scheme over k, then

$$V_G \circ F_G = p \cdot \operatorname{Id}_G$$
 and $F_G \circ V_G = p \cdot \operatorname{Id}_{G^{(p)}}$.

In fact, for any affine commutative group scheme G over k, one can define a morphism V_G satisfying the relations above.

Examples of Cartier Duality

Cartier duality and the Verschiebung operator for the basic finite groups over k are

therefore we may distinguish the basic finite group schemes over k by the operators F and V

G	F_G	V_G
α_{p}	0	0
$\mathbb{Z}/p\mathbb{Z}$	isom.	0
μ_{p}	0	isom.
$\mathbb{Z}/\ell\mathbb{Z}$	isom.	isom.
μ_ℓ	isom.	isom.

Decomposing Finite Group Schemes over k

The category of finite group schemes over k can be decomposed further by applying the étale-connected dichotomy to Cartier duality ...

Definition

If G^{\vee} is étale, we say G is **multiplicative**.

If G^{\vee} is connected, we say G is **unitpotent**.

Theorem

Theorem

The category of finite group schemes over k decomposes into a product of subcategories

 $(\operatorname{Fem}/k) \times (\operatorname{Feu}/k) \times (\operatorname{Fcm}/k) \times (\operatorname{Fcu}/k)$

where the four subcategories are

(Fem/k) - étale-multiplicative
 (Feu/k) - étale-unipotent
 (Fcm/k) - connected-multiplicative
 (Fcu/k) - connected-unipotent

For example, $\alpha_{p/k} \in (\operatorname{Fcu}/k)$, $(\mathbb{Z}/p\mathbb{Z})_k \in (\operatorname{Feu}/k)$, $\mu_{p/k} \in (\operatorname{Fcm}/k)$ and $(\mathbb{Z}/\ell\mathbb{Z})_k$, $\mu_{\ell/k} \in (\operatorname{Fem}/k)$ (for $\ell \neq p$). Let \mathscr{C} be an additive category. For any object $X \in ob\mathscr{C}$, the set of endomorphisms $\operatorname{Hom}_{\mathscr{C}}(X, X) = \operatorname{End}(X)$ of X forms a ring R and we get a (covariant) functor

$$h_X: \mathscr{C} \longrightarrow (\mathsf{Mod}\text{-}R): A \mapsto \mathsf{Hom}_{\mathscr{C}}(X, A)$$

as well as a (contravariant) functor

$$h_X^o: \mathscr{C}^{\mathsf{opp}} \longrightarrow (R\operatorname{\mathsf{-Mod}}): A \mapsto \operatorname{\mathsf{Hom}}_{\mathscr{C}}(A, X)$$
.

This translates the study of the category \mathscr{C} into *R*-linear algebra!

However, in general, this functor loses a lot of information. The challenge is then to find the right kind of object to capture as much information as possible.

In Search of Equivalence: Affine Unipotent Groups

Is there a finite group scheme G over k such that the functor h_G^o defines an equivalence of categories?

No, but we can can look at the subcategory of unipotent group schemes and consider the filtration by the subcategories \mathscr{A}_n where $V^n = 0$.

Theorem

The category (UAC/k) of affine unipotent commutative group schemes over k is the limit of subcategories

$$(\mathrm{UAC}/k) = \varinjlim_n \mathscr{A}_n$$
.

The idea is then to build an equivalence for all finite unipotent group schemes by establishing equivalences for each \mathcal{A}_n .

The Witt Group Scheme W_n of Length n

The Witt scheme W_n of length n is an affine scheme (of finite type but *not* finite) such that the Frobenius morphism F and Vershiebung morphisms are in fact endomorphisms

$$F: \mathbb{W}_n \longrightarrow \mathbb{W}_n : (a_1, a_2, \ldots, a_n) \mapsto (a_1^p, a_2^p, \ldots, a_n^p)$$

 $V: \mathbb{W}_n \longrightarrow \mathbb{W}_n : (a_1, a_2, \ldots, a_n) \mapsto (0, a_1, a_2, \ldots, a_{n-1})$

Clearly, \mathbb{W}_n is an object in the category \mathscr{A}_n of affine groups killed by V^n , but more importantly ...

Theorem

The Witt group scheme \mathbb{W}_n of length n is an injective cogenerator in \mathscr{A}_n . In other words, the functor

$$h^{0}_{\mathbb{W}_{n}}:\mathscr{A}_{n}\longrightarrow (\operatorname{End}(\mathbb{W}_{n})\operatorname{-Mod}): G\mapsto \operatorname{Hom}_{\mathscr{A}_{n}}(G,\mathbb{W}_{n})$$

is exact and faithful.

The Frobenius F acts on \mathbb{W}_n by

$$F: \mathbb{W}_n \longrightarrow \mathbb{W}_n : (a_1, a_2, \ldots, a_n) \mapsto (a_1^p, a_2^p, \ldots, a_n^p)$$

the Vershiebung operator is the shift

$$V: \mathbb{W}_n \longrightarrow \mathbb{W}_n : (a_1, a_2, \ldots, a_n) \mapsto (0, a_1, a_2, \ldots, a_{n-1})$$

and the Witt ring W of k acts on W_n by the composition of rings

$$W = W(k) \longrightarrow W(k)/p^n W(k) \cong \mathbb{W}_n(k) \longrightarrow \mathbb{W}_n(R)$$

for all k-algebras R. This describes the endomorphisms of \mathbb{W}_n .

The Endomorphism Ring of W_n

Definition

The Dieudonné ring \mathscr{D}_k is the noncommutative ring over W generated by F and V subject to the relations

$$F\lambda=\lambda^{(p)}F$$
 and $V\lambda^{(p)}=\lambda V$ for all $\lambda\in W$.

where $\lambda \mapsto \lambda^{(p)}$ is the Frobenius automorphism of W (corresponding to $x \mapsto x^p$ on k).

The Dieudonné ring packages together the endomorphisms of the Witt schemes \mathbb{W}_n and since we obviously have V^n acting by zero on \mathbb{W}_n we have the following result.

Proposition

$$\mathscr{D}_k/\mathscr{D}_kV^n\cong \operatorname{End}(\mathbb{W}_n)$$

Theorem

The functor

$$h^0_{\mathbb{W}_n}: \mathscr{A}_n \longrightarrow (\mathscr{D}_k\operatorname{\mathsf{-Mod}}): G \mapsto M(G) = \operatorname{\mathsf{Hom}}_{\mathscr{A}_n}(G, \mathbb{W}_n)$$

defines an (anti)equivalence between the category of unipotent affine commutative group schemes over k such that $V^n = 0$ and the subcategory of \mathscr{D}_k -modules such that $V^n = 0$.

We would like to piece these equivalences together to obtain an equivalence for all unipotent groups. We define

$$\underbrace{\mathbb{W}}: \mathbb{W}_1 \xrightarrow{T} \mathbb{W}_2 \xrightarrow{T} \mathbb{W}_3 \xrightarrow{T} \cdots$$

where $T : \mathbb{W}_n \longrightarrow \mathbb{W}_{n+1} : (a_1, a_2, \dots, a_n) \mapsto (0, a_1, \dots, a_{n-1}).$

The Action of W on W_n Revisited

The Witt ring W of k acts on \mathbb{W}_n by the composition of rings

$$W = W(k) \longrightarrow W(k)/p^n W(k) \cong \mathbb{W}_n(k) \longrightarrow \mathbb{W}_n(R)$$

for all k-algebras R. However, this does not commute with the shift maps defining the limit

$$\underline{\mathbb{W}}: \mathbb{W}_1 \xrightarrow{T} \mathbb{W}_2 \xrightarrow{T} \mathbb{W}_3 \xrightarrow{T} \cdots$$

We define the twisted action of W on W_n by

$$\lambda * w = \lambda^{(1-p)} w$$

and this extends to an action of W on the limit $\underline{\mathbb{W}}$.

Proposition

$$\varprojlim_n \mathscr{D}_k / \mathscr{D}_k V^n \cong \mathsf{End}(\mathbb{W})$$

Theorem

The functor

$$M: (\mathsf{UAC}/k) \longrightarrow (\mathscr{D}_k\operatorname{\mathsf{-Mod}}): G \mapsto M(G) = \varinjlim_n \mathsf{Hom}(G, \mathbb{W}_n)$$

defines an (anti)equivalence between the category of all unipotent affine commutative group schemes over k and the category of all \mathcal{D}_k -modules of V-torsion.

Furthermore, G is finite if and only if M(G) has finite W-length, and

 $G \in (Fcu/k) \Leftrightarrow F$ is nilpotent on M(G) $G \in (Feu/k) \Leftrightarrow F$ is bijective on M(G)

Extending the Construction to (Fcm/k)

The construction $G \mapsto \underline{\lim}_n \operatorname{Hom}(G, \underline{\mathbb{W}})$ applies only to unipotent groups but we want to apply it to all *p*-torsion groups. To include the category (Fcm/k) of connected-multiplicative groups, we apply Cartier duality $G \mapsto G^{\vee}$ and then apply the functor *M*. However, this is *covariant* and we want something contravariant.

For any \mathscr{D}_k -module M, let $M^* = \operatorname{Hom}_W(M, W_\infty)$ where

$$W_{\infty} = \underline{\mathbb{W}}(k) : \mathbb{W}_1(k) \xrightarrow{T} \mathbb{W}_2(k) \xrightarrow{T} \mathbb{W}_3(k) \xrightarrow{T} \cdots$$

If $f \in M^*$, then $(Ff)(m) = f(Vm)^{(p)}$ and $(Vf)(m) = f(Fm)^{(p^{-1})}$.

The functor $M \mapsto M^*$ is a duality on the category of \mathscr{D}_k -modules with finite W-length. For $G \in (Fcm/k)$, define its Dieudonné module by

$$M(G) = M(G^{\vee})^*$$

Equivalence for *p*-Torsion Finite Group Schemes

If G is a finite p-torsion group scheme over k then $G = G_u \times G_m$ where G_u is unipotent and G_m is multiplicative and we define

$$M(G)=M(G_u)\oplus M(G_m^ee)^*$$
 .

Theorem (Dieudonné)

$$M: (p-\operatorname{fin}/k) \longrightarrow (\mathscr{D}_k\operatorname{-Mod}): G \mapsto M(G)$$

defines an (anti)equivalence between the category of finite p-torsion group schemes over k and the category of all \mathcal{D}_k -modules of finite W-length. Furthermore,

 $\begin{array}{rcl}G \text{ is } \acute{e}tale & \Leftrightarrow & F \text{ is bijective on } M(G)\\G \text{ is connected } & \Leftrightarrow & F \text{ is nilpotent on } M(G)\\G \text{ is multiplicative } & \Leftrightarrow & V \text{ is bijective on } M(G)\\G \text{ is unipotent } & \Leftrightarrow & V \text{ is nilpotent on } M(G)\end{array}$

The Dieudonné modules of the basic finite group schemes over k are

$$\begin{split} M(\alpha_{p/k}) &= \mathscr{D}_k / (\mathscr{D}_k F + \mathscr{D}_k V) \\ M(\alpha_{p^n/k}) &= \mathscr{D}_k / (\mathscr{D}_k F^n + \mathscr{D}_k V) \ , \ \alpha_{p^n} = \ker F_{\mathbb{G}_{a/k}}^n \\ M(\underline{(\mathbb{Z}/p\mathbb{Z})}_k) &= \mathscr{D}_k / (\mathscr{D}_k (F-1) + \mathscr{D}_k V) \end{split}$$

 $M(\mu_{p/k}) = M((\underline{\mathbb{Z}/p\mathbb{Z}})_k)^* = \mathscr{D}_k/(\mathscr{D}_kF + \mathscr{D}_k(V-1))$

$$M(\mathbb{W}_{2,2}) = \mathscr{D}_k / (\mathscr{D}_k F^2 + \mathscr{D}_k V^2)$$

Equivalently, we can describe a Dieudonné module M as a W-module equipped with a σ -linear map $F : M \to M$ and σ^{-1} -linear map $V : M \to M$ (where σ is the Frobenius automorphism of W).

For example,

$$M(lpha_{p/k})=k$$
 with $F=0$ and $V=0$
 $M(({\mathbb Z}/p{\mathbb Z})_k)=k$ with $F=\sigma$ and $V=0$
 $M(\mu_{p/k})=k$ with $F=0$ and $V=\sigma^{-1}$

Definition

A *p*-divisible group (or Barsotti-Tate group) over *k* of height *h* is an inductive system

$$G = (G_n, i_n) : G_0 \xrightarrow{i_0} G_1 \xrightarrow{i_1} G_2 \xrightarrow{i_2} G_3 \xrightarrow{i_3} \cdots$$

such that, for each $n \ge 0$,

• G_n is a finite group scheme over k of order p^{nh}

2 the sequence

$$1 \longrightarrow G_n \xrightarrow{i_n} G_{n+1} \xrightarrow{p^n} G_{n+1}$$

is exact (in other words, G_n is isomorphic to ker($G_{n+1} \xrightarrow{p^n} G_{n+1}$) via the morphism i_n).

Equivalence of Categories

Theorem

The functor

$$\varinjlim_n G_n \mapsto \varprojlim_n M(G_n)$$

defines an (anti)equivalence between the category of p-divisible groups over k and the category of triples (M, F, V) where

- M is a free W-module of finite rank
- **2** $F: M \longrightarrow M$ is a σ -linear map
- **3** $V: M \longrightarrow M$ is a σ^{-1} -linear map

•
$$VF = FV = p$$

Furthermore,

1
$$ht(G) = rank_W(M(G))$$

- 3 $M(G_K) \cong M(G) \otimes_{W(k)} W(K)$ for any perfect extension K.