
Dieudonné modules and p-divisible groups

Patrick Walls
University of Toronto

April 18, 2013
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Y. MANIN. The theory of commutative formal groups over fields of
finite characteristic. Russian Math. Sur. 18, 1963.

J. TATE. p-divisible groups. Proceedings of a Conference on Local
Fields, Springer, 1967.
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Notation

Our notation for certain categories:

(Ab) - abelian groups

(R-Alg) - R-algebras

(R-Mod) - left R-modules

(Mod-R) - right R-modules

(Sch/R) - schemes over Spec R

(GrSch/R) - (commutative) group schemes over Spec R

Common group schemes:

Ga/R : (R-Alg) −→ (Ab) : A 7→ (A,+)

Gm/R : (R-Alg) −→ (Ab) : A 7→ (A×,×)

µn/R = ker(Gm/R −→ Gm/R : x 7→ xn)

(Z/nZ)
R

: (R-Alg) −→ (Ab) : A 7→ (Z/nZ)π0(Spec A)
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Witt Rings

The Witt ring scheme is denoted

W : (Rings) −→ (Rings)

and the Witt scheme of length n is denoted Wn.

For example,

W(Fp) ∼= Zp

W(Fpn) ∼= Zpn

W(Fp) ∼= Ẑun
p

Wn(Fp) = Z/pnZ
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Outline
Let k be a perfect field of characteristic p with Witt ring W = W(k).

1 Every group scheme G over k has a Frobenius morphism FG

2 By Cartier duality, G also has the Vershiebung morphism VG

3 The category of finite group schemes over k decomposes according
to the action of FG and VG

4 G 7→ M(G ) = lim−→n
Hom(G ,Wn) is an equivalence between the

category of finite group schemes over k killed by some power of V
and a full subcategory of Dieudonné modules.

5 The construction extends to an equivalence between the category
of finite p-torsion group schemes over k and the category of
Dieudonné modules of finite length.

6 p-divisible groups are limits of finite p-torsion group schemes and
so the equivalence of the category of p-divisible groups onto the
category of Dieudonné modules over k is

lim−→
i

Gi ↔ lim←−
i

M(Gi)
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The (Relative) Frobenius FX

The Frobenius map σ : k → k : x 7→ xp defines a map on Spec k and,
given any scheme X over Spec k , let X (p) = X ×Spec k , σ Spec k .

The absolute Frobenius map σX on X is the identity on the toplogical
space X and on the structure sheaf is OX → OX : f 7→ f p.

Definition

The (relative) Frobenius morphism FX : X −→ X (p) is given by
the diagram

X σX

!!

%%

FX

''OOOOOOOOOOOOOOOOOOOOOO

X (p) //

��

X

��

Spec k σ // Spec k
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The (Relative) Frobenius FX

The Frobenius morphism commutes with fiber products therefore, if G
is a group scheme over k , then G (p) has the structure of a group
scheme and the Frobenius FG : G −→ G (p) is a homomorphism of
group schemes over k .

For example, if G = Ga/k is the additive group scheme over k then

(Ga/k)(p) = Ga/k and the Frobenius F acts on R-points by

F (R) : Ga(R) −→ Ga(R) : x 7→ xp

for all k-algebras R . In fact, we have the following result:

Proposition

End(Ga/k) is isomorphic to the noncommutative k-algebra k{F}
generated by F with Fλ = λpF for all λ ∈ k.
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Subgroups of Ga/k

Exploring the endomorphism ring k{F} of Ga/k gives rise to subgroups
of Ga/k .

Consider F ∈ End(Ga/k) and ker F ⊂ Ga/k . This subgroup is denoted
αp/k and its R-points are given by

αp/k(R) = {x ∈ R : xp = 0} , for all k-algebras R .

Since αp/k = Spec k[T ]/(T p), this is a connected group scheme.

Patrick Walls Dieudonné modules and p-divisible groups



Subgroups of Ga/k

Consider F − 1 ∈ End(Ga/k) and H = ker(F − 1) ⊂ Ga/k . The
R-points of H are

H(R) = {x ∈ R : xp = x}

for all k-algebras R . This is an étale group scheme since

H = Spec k[T ]/(T p − T )

= Spec k[T ]/
∏
λ∈Fp

(T − λ)

∼=
∐

λ∈Z/pZ

Spec k

∼= (Z/pZ)
k
.
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Decomposition into étale and connected components

Theorem

Let k be a perfect field of characteristic p and let G be a finite group
scheme over k. Then there is a canonical split exact sequence

1 −→ Gc −→ G −→ Ge −→ 1

where Gc is connected and Ge is étale. In particular, there is an
isomorphism

G ∼= Gc × Ge

For example, the subgroup H = ker(F 2 − F ) ⊂ Ga/k has the
decomposition

H ∼= αp/k × (Z/pZ)
k

since F 2 − F = F (F − 1).
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Cartier Duality

Definition

Let G be a finite group scheme over k . The Cartier dual of G is the
finite group scheme G∨ = Hom(G ,Gm).

In other words, G∨ is the group scheme defined functorially by

G∨ : (k-Alg) −→ (Ab) : R 7→ Hom(GrSch/R)(GR ,Gm/R)

and is represented by the finite k-algebra A∨ = Homk(A, k) where
multiplication in the ring A∨ is defined as the dual of the map
∆ : A→ A⊗k A coming from the group operation m : G × G → G .

Furthermore, Cartier duality satisfies

(G∨)
∨ ∼= G and (G∨)

(p) ∼=
(

G (p)
)∨

.
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The Verschiebung (“Shift”) Morphism VG

Definition

Let G be a finite group scheme over k . The Verschiebung
morphism VG of G is the Cartier dual of the Frobenius FG∨ on G∨

FG∨ : G∨ −→ (G∨)
(p)

=
(

G (p)
)∨

 VG : G (p) −→ G

Theorem

If G is a finite group scheme over k, then

VG ◦ FG = p · IdG and FG ◦ VG = p · IdG (p) .

In fact, for any affine commutative group scheme G over k , one can
define a morphism VG satisfying the relations above.

Patrick Walls Dieudonné modules and p-divisible groups



Examples of Cartier Duality

Cartier duality and the Verschiebung operator for the basic finite groups
over k are

G G∨ FG∨ VG

αp αp Fαp = 0 Vαp = 0
Z/pZ µp Fµp = 0 VZ/pZ = 0
Z/`Z µ` Fµ` = isom. VZ/`Z = isom.

therefore we may distinguish the basic finite group schemes over k by
the operators F and V

G FG VG

αp 0 0
Z/pZ isom. 0
µp 0 isom.

Z/`Z isom. isom.
µ` isom. isom.
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Decomposing Finite Group Schemes over k

The category of finite group schemes over k can be decomposed further
by applying the étale-connected dichotomy to Cartier duality . . .

Definition

If G∨ is étale, we say G is multiplicative.

If G∨ is connected, we say G is unitpotent.

Theorem

G is étale ⇔ FG is an isomorphism
G is connected ⇔ FG is nilpotent

G is multiplicative ⇔ VG is an isomorphism
G is unipotent ⇔ VG is nilpotent
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Decomposing Finite Group Schemes over k

Theorem

The category of finite group schemes over k decomposes into a product
of subcategories

(Fem/k)× (Feu/k)× (Fcm/k)× (Fcu/k)

where the four subcategories are

(Fem/k) - étale-multiplicative

(Feu/k) - étale-unipotent

(Fcm/k) - connected-multiplicative

(Fcu/k) - connected-unipotent

For example, αp/k ∈ (Fcu/k), (Z/pZ)
k
∈ (Feu/k), µp/k ∈ (Fcm/k)

and (Z/`Z)
k
, µ`/k ∈ (Fem/k) (for ` 6= p).
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A General Construction

Let C be an additive category. For any object X ∈ obC , the set of
endomorphisms HomC (X ,X ) = End(X ) of X forms a ring R and we
get a (covariant) functor

hX : C −→ (Mod-R) : A 7→ HomC (X ,A)

as well as a (contravariant) functor

ho
X : C opp −→ (R-Mod) : A 7→ HomC (A,X ) .

This translates the study of the category C into R-linear algebra!

However, in general, this functor loses a lot of information. The
challenge is then to find the right kind of object to capture as much
information as possible.
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In Search of Equivalence: Affine Unipotent Groups

Is there a finite group scheme G over k such that the functor ho
G

defines an equivalence of categories?

No, but we can can look at the subcategory of unipotent group schemes
and consider the filtration by the subcategories An where V n = 0.

Theorem

The category (UAC/k) of affine unipotent commutative group schemes
over k is the limit of subcategories

(UAC/k) = lim−→
n

An .

The idea is then to build an equivalence for all finite unipotent group
schemes by establishing equivalences for each An.
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The Witt Group Scheme Wn of Length n

The Witt scheme Wn of length n is an affine scheme (of finite type but
not finite) such that the Frobenius morphism F and Vershiebung
morphisms are in fact endomorphisms

F : Wn −→Wn : (a1, a2, . . . , an) 7→ (ap
1, ap

2, . . . , ap
n) ,

V : Wn −→Wn : (a1, a2, . . . , an) 7→ (0, a1, a2, . . . , an−1)

Clearly, Wn is an object in the category An of affine groups killed by
V n, but more importantly . . .

Theorem

The Witt group scheme Wn of length n is an injective cogenerator in
An. In other words, the functor

h0
Wn

: An −→ (End(Wn)-Mod) : G 7→ HomAn(G ,Wn)

is exact and faithful.
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The Endomorphism Ring of Wn

The Frobenius F acts on Wn by

F : Wn −→Wn : (a1, a2, . . . , an) 7→ (ap
1, ap

2, . . . , ap
n) ,

the Vershiebung operator is the shift

V : Wn −→Wn : (a1, a2, . . . , an) 7→ (0, a1, a2, . . . , an−1)

and the Witt ring W of k acts on Wn by the composition of rings

W = W (k) −→ W (k)/pnW (k) ∼= Wn(k) −→Wn(R)

for all k-algebras R . This describes the endomorphisms of Wn.
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The Endomorphism Ring of Wn

Definition

The Dieudonné ring Dk is the noncommutative ring over W generated
by F and V subject to the relations

Fλ = λ(p)F and Vλ(p) = λV for all λ ∈ W .

where λ 7→ λ(p) is the Frobenius automorphism of W (corresponding to
x 7→ xp on k).

The Dieudonné ring packages together the endomorphisms of the Witt
schemes Wn and since we obviously have V n acting by zero on Wn we
have the following result.

Proposition

Dk/DkV n ∼= End(Wn)
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An Equivalence for An

Theorem

The functor

h0
Wn

: An −→ (Dk-Mod) : G 7→ M(G ) = HomAn(G ,Wn)

defines an (anti)equivalence between the category of unipotent affine
commutative group schemes over k such that V n = 0 and the
subcategory of Dk-modules such that V n = 0.

We would like to piece these equivalences together to obtain an
equivalence for all unipotent groups. We define

W−→ : W1
T−→W2

T−→W3
T−→ · · ·

where T : Wn −→Wn+1 : (a1, a2, . . . , an) 7→ (0, a1, . . . , an−1).

Patrick Walls Dieudonné modules and p-divisible groups



The Action of W on Wn Revisited

The Witt ring W of k acts on Wn by the composition of rings

W = W (k) −→ W (k)/pnW (k) ∼= Wn(k) −→Wn(R)

for all k-algebras R . However, this does not commute with the shift
maps defining the limit

W−→ : W1
T−→W2

T−→W3
T−→ · · ·

We define the twisted action of W on Wn by

λ ∗ w = λ(1−p)w

and this extends to an action of W on the limit W−→.

Proposition

lim←−
n

Dk/DkV n ∼= End(W−→)
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An Equivalence for (UAC/k)

Theorem

The functor

M : (UAC/k) −→ (Dk-Mod) : G 7→ M(G ) = lim−→
n

Hom(G ,Wn)

defines an (anti)equivalence between the category of all unipotent
affine commutative group schemes over k and the category of all
Dk-modules of V -torsion.

Furthermore, G is finite if and only if M(G ) has finite W -length, and

G ∈ (Fcu/k) ⇔ F is nilpotent on M(G )
G ∈ (Feu/k) ⇔ F is bijective on M(G )
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Extending the Construction to (Fcm/k)

The construction G 7→ lim−→n
Hom(G ,W−→) applies only to unipotent

groups but we want to apply it to all p-torsion groups. To include the
category (Fcm/k) of connected-multiplicative groups, we apply Cartier
duality G 7→ G∨ and then apply the functor M . However, this is
covariant and we want something contravariant.

For any Dk-module M , let M∗ = HomW (M ,W∞) where

W∞ = W−→(k) : W1(k)
T−→W2(k)

T−→W3(k)
T−→ · · ·

If f ∈ M∗, then (Ff )(m) = f (Vm)(p) and (Vf )(m) = f (Fm)(p−1).

The functor M 7→ M∗ is a duality on the category of Dk-modules with
finite W -length. For G ∈ (Fcm/k), define its Dieudonné module by

M(G ) = M(G∨)∗ .
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Equivalence for p-Torsion Finite Group Schemes

If G is a finite p-torsion group scheme over k then G = Gu × Gm where
Gu is unipotent and Gm is multipicative and we define

M(G ) = M(Gu)⊕M(G∨m)∗ .

Theorem (Dieudonné)

M : (p-fin/k) −→ (Dk-Mod) : G 7→ M(G )

defines an (anti)equivalence between the category of finite p-torsion
group schemes over k and the category of all Dk-modules of finite
W -length. Furthermore,

G is étale ⇔ F is bijective on M(G )
G is connected ⇔ F is nilpotent on M(G )

G is multiplicative ⇔ V is bijective on M(G )
G is unipotent ⇔ V is nilpotent on M(G )
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Examples

The Dieudonné modules of the basic finite group schemes over k are

M(αp/k) = Dk/(DkF + DkV )

M(αpn/k) = Dk/(DkF n + DkV ) , αpn = ker F n
Ga/k

M((Z/pZ)
k
) = Dk/(Dk(F − 1) + DkV )

M(µp/k) = M((Z/pZ)k)∗ = Dk/(DkF + Dk(V − 1))

M(W2,2) = Dk/(DkF 2 + DkV 2)
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Examples

Equivalently, we can describe a Dieudonné module M as a W -module
equipped with a σ-linear map F : M → M and σ−1-linear map
V : M → M (where σ is the Frobenius automorphism of W ).

For example,

M(αp/k) = k with F = 0 and V = 0

M((Z/pZ)
k
) = k with F = σ and V = 0

M(µp/k) = k with F = 0 and V = σ−1
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p-Divisible Groups

Definition

A p-divisible group (or Barsotti-Tate group) over k of height
h is an inductive system

G = (Gn, in) : G0
i0−→ G1

i1−→ G2
i2−→ G3

i3−→ · · ·

such that, for each n ≥ 0,
1 Gn is a finite group scheme over k of order pnh

2 the sequence

1 −→ Gn
in−→ Gn+1

pn

−→ Gn+1

is exact (in other words, Gn is isomorphic to ker(Gn+1
pn

−→ Gn+1)
via the morphism in).
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Equivalence of Categories

Theorem
The functor

lim−→
n

Gn 7→ lim←−
n

M(Gn)

defines an (anti)equivalence between the category of p-divisible groups
over k and the category of triples (M , F ,V ) where

1 M is a free W -module of finite rank
2 F : M −→ M is a σ-linear map
3 V : M −→ M is a σ−1-linear map
4 VF = FV = p

Furthermore,
1 ht(G ) = rankW (M(G ))
2 M(G )/pnM(G ) ∼= M(Gn)
3 M(GK) ∼= M(G )⊗W (k) W (K ) for any perfect extension K .
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