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22 March 2010



Computer methods

The history of computing modular forms goes back to some of the
earliest days of machine computation for number theory. The first
tables of (modular) elliptic curves over Q appeared in the
proceedings of the Antwerp conference in 1972 and these were
tremendously influential on the development of the subject.

We are here (according to the “brochure”) as part of an effort

to generate challenges and new questions for people
working both on the theoretical and the experimental
side of the subject, as well as [to gather] valuable data
that will be precious in suggesting conjectures or
revealing new lines of enquiry.

As we turn from GL2 over Q to more general settings, experiment
and computation will remain an essential tool.



Modular forms

The group GL+
2 (Q) = {γ ∈ GL2(Q) : det γ > 0} acts on the upper

half-plane H by linear fractional transformations. For N ∈ Z>0, let

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL2(Z) : N | c

}
⊂ SL2(Z).

A cusp form (of weight 2) and level N is a holomorphic function
f : H → C such that

f (γz) = f

(
az + b

cz + d

)
= (cz + d)2f (z)

for all γ ∈ Γ0(N) and such that f vanishes at the cusps. The
finite-dimensional C-vector space of cusp forms of level N is
denoted S2(N).

In this talk, we consider the situation where Q is replaced by a
totally real field.



Hilbert modular forms

Let F be a totally real field with [F : Q] = n and let ZF be its ring
of integers. Let v1, . . . , vn : F → R be the real places of F , and
write vi (x) = xi . For γ ∈ M2(F ) we write γi = vi (γ) ∈ M2(R).

The group GL+
2 (F ) = {γ ∈ GL2(F ) : det γi > 0 for i = 1, . . . , n}

acts on Hn by coordinatewise linear fractional transformations
γz = (γizi )i . For a nonzero ideal N ⊂ ZF , let

Γ0(N) =

{
γ =

(
a b
c d

)
∈ GL+

2 (ZF ) : c ∈ N

}
⊂ GL+

2 (ZF ).

A Hilbert cusp form (of parallel weight 2) and level N is a
holomorphic function f : Hn → C such that

f (γz) = f

(
a1z1 + b1

c1z1 + d1
, . . . ,

anzn + bn

cnzn + dn

)
=

n∏
i=1

(cizi + di )
2

det γi
· f (z)

for all γ ∈ Γ0(N) and such that f vanishes at the cusps.

Let S2(N) denote the space of Hilbert cusp forms of level N.



Hecke modules

The space S2(N) is equipped with an action of pairwise
commuting Hecke operators Tp ∈ End(Sk(N)) for each prime
p - N (arising from correspondences, or an “averaging” operator
over lattices of index p, or from a double coset decomposition), so
in particular S2(N) has a basis of eigenforms.

Each f ∈ S2(N) has a Fourier expansion f (z) =
∑

n anqn where
an ∈ C and q = exp(2πiz). If f is an eigenform, normalized so that
a1 = 1, then Tpf = apf with ap ∈ E ⊂ Q ⊂ C. (The coefficients
an are determined by ap for p | n.)

In this way, the system of Hecke eigenvalues (ap)p for a normalized
eigenform f determine the form f : H → C. These eigenvalues
also determine L(f , s) =

∑∞
n=1 an/ns (defined for Re s > 1) as well

as the `-adic Galois representations Gal(Q/Q)→ GL2(Z`)
associated to f .



Hecke modules, continued

In a similar way, the space S2(N) of Hilbert cusp forms is equipped
with an action of Hecke operators Tp for primes p - N. For a
normalized eigenform f ∈ S2(N) with Hecke eigenvalues ap, we
again have a notion of “q-expansion” (more complicated to write
down), an L-function

L(f , s) =
∑

n

an

Nns

and l-adic Galois representations Gal(F/F )→ GL2(ZF ,l).

For these reasons, the space S2(N) is computed as a Hecke
module: a finite dimensional (C-)vector space equipped with an
action of Hecke operators. The Hecke module is thereby
determined by the corresponding system of Hecke eigenvalues.



Main algorithm

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F and a
nonzero ideal N ⊂ ZF , computes the system of Hecke eigenvalues
for the space S2(N) of Hilbert cusp forms of level N over F .

In other words, there exists an explicit finite procedure which takes
as input the field F and the ideal N ⊂ ZF encoded in bits (in the
usual way), and outputs: a finite set of sequences (ap(f ))p

encoding the Hecke eigenvalues for each cusp form constituent f in
S2(N), where ap(f ) ∈ Ef ⊂ Q.

In joint work with Steve Donnelly, we have computed Hecke data
for hundreds of thousands of forms over totally real fields up to
degree 6.



Example

Let F = Q(
√

5) and N = (17) ⊂ ZF . Then dim S2(17) = 5. There
are 2 Hecke irreducible subspaces of dimensions 1 and 4,
corresponding to newforms f and g .

Np 4 5 9 11

ap(f ) −3 −2 −6 0
ap(g) t2 − 2 t3 − t2 − 5t + 1 −t2 + 2t + 5 −t3 + 4t + 1

Here, the element t ∈ Q satisfies t4 − 6t2 − 2t + 5 = 0, and
E = Q(t) is an S4-field of discriminant 6224. The form f is the
base change from Q to F of the unique form in S2(17),
corresponding to the isogeny class of the modular (elliptic!) curve
X0(17). Using an algorithm of Weinstein, we find that g also arises
as the base change of a cusp form in S2(425).



Geometry

To compute with the space S2(N), one approach is to use the
geometry of the modular curve X0(N) = Γ0(N)\H∗, where H∗
denotes the completed upper half-plane.

A cusp form f ∈ S2(N) corresponds to a holomorphic differential
form f (z) dz on X0(N) and so by the theorem of Eichler-Shimura
arises naturally in the space H1(X0(N),C; cusps)+ where the +
indicates the +-space for complex conjugation.

In a similar way, a Hilbert cusp form f ∈ S2(N) gives rise to a
holomorphic differential n-form f (z1, . . . , zn) dz1 . . . dzn on the
Hilbert modular variety X0(N) = Γ0(N)\H∗n. But now X0(N) has
dimension n and f arises in Hn(X0(N),C; cusps). Yikes!
Computing with higher dimensional varieties (and higher degree
cohomology groups) is not an easy task.



General strategy

Langlands functoriality predicts that S2(N) as a Hecke module
occurs in the cohomology of other “modular” varieties. We use a
principle called the Jacquet-Langlands correspondence, which
allows us to work with varieties of complex dimension 0 or 1 by
considering twisted forms of GL2 over F .

Let B be the quaternion algebra over F which is split at all finite
places and ramified at all or all but one real place according as
n = [F : Q] is even or odd.

The Jacquet-Langlands correspondence is the isomorphism of
Hecke modules

S2(N)
∼−→ SB

2 (N)

where SB
2 (N) denotes the space of quaternionic cusp forms for B

(of weight 2) and level N.

The explicit description of the Hecke module SB
2 (N) varies

accordingly as n is even or odd.



Indefinite method

Suppose first that n = [F : Q] is odd. Then the quaternion algebra
B is split at a unique real place corresponding to
ι∞ : B ↪→ M2(R). We call this the indefinite method, since B is
indefinite, and it is joint work with Matthew Greenberg.

For expositional simplicity, suppose that F has strict class number
1. Then Z×F ,+ = {x ∈ Z×F : xi > 0 for all i} = Z×2

F and hence

GL+
2 (ZF ) = Z×F SL2(ZF ). We further assume B 6∼= M2(Q) for

uniformity of presentation.



Indefinite method

Let O0(N) ⊂ B be an Eichler order of level N let

O0(N)×1 = {γ ∈ O0(N) : nrd(γ) = 1}

and let
Γ0(N) = ι∞(O0(N)×1 ) ⊂ SL2(R).

Then Γ0(N) is a discrete and cocompact subgroup of SL2(R) ; so
X B

0 (N) = Γ0(N)\H is a compact Riemann surface, a Shimura
curve.

A quaternionic cusp form for B is a holomorphic function
f : H → C such that f (γz) = (cz + d)2f (z) for all

γ =

(
a b
c d

)
∈ Γ0(N). (No cusps!)

Putting Jacquet-Langlands together with the Eichler-Shimura
isomorphism, we have

S2(N) ∼= SB
2 (N) ∼= H1(X B

0 (N),C)+.



Example

Let F be the (totally real) cubic field with dF = 1101 = 3 · 367.
Then F = Q(w) with w3 − w2 − 9w + 12 = 0. The field F has
Galois group S3. Here we work with the Shimura curve X = X B

0 (1)
associated to F . The curve X has signature (1; 22, 35).

1



Example

We obtain the following Hecke data:

Np π a(p) #J(Fp)

2 w − 2 0 3
3 w − 3 −3 7
3 w − 1 −1 5
4 w2 + w − 7 −3 8

19 w + 1 −6 26
23 w2 − 2w − 1 6 18
31 2w2 − 19 3 29
31 w2 − 5 0 32
31 3w − 5 4 28

Here, J = JB
0 (1) is the Jacobian of the Shimura curve X .



Example

Using a method of Cremona and Lingham, we find a candidate
elliptic curve A to represent the isogeny class of the Jacobian J:

A : y2 + w(w + 1)xy + (w + 1)y = x3 + w2x2 + a4x + a6

where a4 is equal to

−139671409350296864w 2 − 235681481839938468w + 623672370161912822

and a6 is equal to

110726054056401930182106463w2 + 186839095087977344668356726w − 494423184252818697135532743.

Using the method of Faltings and Serre, we verify that J is indeed
isogeneous to A.



Indefinite method: Hecke operators

Recall we compute with the (Hecke module) H1(X ,C), where
X = X B

0 (N) = Γ\H and Γ = Γ0(N). We have simply

H1(X ,C) = H1(Γ,C) = Hom(Γ,C);

if X has genus g , then Hom(Γ,C) is a vector space of dimension
2g with basis given by the characteristic functions of a set of
generators for Γ/[Γ, Γ].

The space Hom(Γ,C) is equipped with Hecke operators Tp as
follows. Let p ⊂ ZF be a prime with p - N and let kp be its residue
field. For f : Γ→ C, we define

(f | Tp)(γ) =
∑

a∈P1(kp)

f (δa)

where αa for a ∈ P1(kp) are generators of the left O-ideals of norm
p having totally positive reduced norm and

δa = αaγα
−1
γ∗a ∈ Γ.



Indefinite method: computational problems

To compute effectively the systems of Hecke eigenvalues in the
cohomology of a Shimura curve, we need algorithms to:

1. Compute an explicit finite presentation of Γ;

2. Compute a generator (with totally positive reduced norm) of a
left ideal I ⊂ O; and

3. Given δ ∈ Γ, write δ as an explicit word in the generators for
Γ, i.e., solve the word problem in Γ.

Problems 1 and 3 are solved by computing a Dirichlet domain, a
fundamental domain for Γ equipped with a side pairing. A
reduction algorithm is used to solve the word problem. Problem 2
is solved using lattice methods.



Modular symbols

The indefinite method can be viewed as a generalization of the
method of modular symbols used in the classical case Γ = Γ0(N).
There, we have a canonical isomorphism

S2(N) ∼= H1(X0(N),Z)(∼= H1(X0(N),Z))

where S2(N) is the space of cuspidal modular symbols, the space
of paths in H∗ whose endpoints are cusps and which are loops in
X0(N). There is an explicit description of the action of the Hecke
operators on the space S2(N), and the Manin trick (the Euclidean
algorithm) gives a method for writing a modular symbol as a
Z-linear combination of generating symbols γi{0,∞}. This
method has been fruitfully pursued by Cremona, Stein, and others.



Dirichlet modular symbols

The Shimura curves X = X B
0 (N) do not have cusps, and so the

method of modular symbols does not generalize directly. However,
the side pairing of a Dirichlet domain for Γ gives an explicit
characterization of the gluing relations which describe X as a
Riemann surface, hence one obtains a complete description for the
homology group H1(X ,Z).

Paths are now written {v , γv} for v a vertex on a side paired by
γ ∈ G . The analogue of the Manin trick in our context is played
by the solution to the word problem in Γ. And computationally,
these points of view are equivalent.



Definite method

Now suppose that n = [F : Q] is even; the method is due to
Dembélé and Dembélé-Donnelly. For expositional simplicity, we
again suppose F has strict class number 1.

In this case, the quaternion algebra B is ramified at all real places
and so is totally definite. In this case, the Shimura variety
associated to B is zero-dimensional: it consists of a finite set of
points labelled by the (right) O-ideal classes, where O = O0(N).
We write X = ClO for this set and H = #X .

A quaternionic cusp form for B of level N (and parallel weight 2) is
just an element of the space

SB
2 (N) = Map(X ,C)/C ∼= CH−1

where C is the space of constant functions.



Definite method: Brandt matrices

The Hecke operators acting on
⊕

i CIi = Map(ClO,C) are given
by Brandt matrices.

This method goes back to Brandt who was working with theta
series associated to positive definite quaternary quadratic forms
over Z; it was developed further by Eichler, Pizer, and
Hijikata-Pizer-Shemanske, Socrates-Whitehouse, and was
implemented in Magma by Kohel in the case F = Q.



Definite method: Brandt matrices

Choose a set of representatives I1, . . . , IH for ClO, and for
simplicity suppose that nrd(Ii ) = nrd(Ij) = q for all i , j . Let
Oj = OL(Ij) be the left order of Ij and let ej = #(Oj)

×
1 . For a

prime p - qN, let π be a totally positive generator for p, and define
the pth-Brandt matrix for O to be the matrix whose (i , j)th entry
is equal to

1

ej
#{x ∈ I−1

j Ii : nrd(x) = π}.

The Hecke operator Tp then acts by this Brandt matrix on
Map(ClO,C).



Definite method: Brandt matrices

The Brandt matrix is just a compact way of writing down the
adjacency matrix of the graph with vertices X = ClO where there
is an edge (weighted by units) from Ii to each ideal class which
represents an ideal of index Np in Ii .

Here, F = Q(
√

3), N = (11), and p is an ideal of norm 23.



Definite method: computational problems

In addition to basic algorithms for working with quaternion orders
and ideals, to compute Brandt matrices, we need algorithms to:

1. Compute a set of representatives for ClO; and

2. Test if two right O-ideals are isomorphic.

Problems 1 and 2 can be solved using direct enumeration and the
mass formula, joint work with Markus Kirschmer; we use the fact
that Tr nrd : O → Z gives O the structure of a lattice in
B ⊗F R ∼= R4n. These lattice methods were made significantly
more efficient by an idea of Donnelly.



Example: Inner twists

Let F = Q(
√

15) and let N = (5,
√

15). Then there exists a cusp
form of dimension 8 in S2(N) such that no single Hecke eigenvalue
generates the entire field E of Hecke eigenvalues.

Egal = Q(
√

17, i ,
√

2,
√

u)

E = Q(
√

17, i ,
√

u)

iiiiiiii
VVVVVVVV

Q(i ,
√

17)

ooooo
UUUUUUUUUU Q(
√

17,
√

u) Q(
√

17,
√
−u)

hhhhhhhhhh

Q(
√
−17)

PPPPPPP
Q(i) Q(

√
17)

hhhhhhhhhhhhhh

Q

Here, u = (5 +
√

17)/2. (There are also examples of this
phenomenon over Q, and they are related to inner twists.)



The fine print

We have already mentioned that one can compute in higher weight
by modifying the coefficient module appropriately. In fact, it is also
much more efficient in practice, in both the definite and indefinite
case, to work with an induced module for higher level: in this way,
one only ever needs to compute with a maximal order. One can
also work with fields F of arbitrary strict class number: in each
case, then, the Shimura variety naturally decomposes as a
(disjoint) union indexed by the strict class group. One can also
obtain eigenvalues for the Atkin-Lehner operators.

The Jacquet-Langlands correspondence implies that the definite
and indefinite methods overlap when there is a prime p ‖ N: for
then we can consider the quaternion algebra ramified at p and all
(or all but one) real place. Therefore, in many cases we can use
either approach—or both approaches, as a way of verifying the
computation.


