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Main Goal

Extend theta lift to construct (meromorphic) modular forms on Sh.
var. associated to O(p, 2) with amazing properties (explicit
divisors, product formulas, etc.)
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Let

(V , q) - rational quadratic space of signature (p, 2). Denote
the associated bilinear form by <,>, i.e q(x) = 1/2 < x , x >

H = GSpin(V )

D = {oriented negative-definite planes in V (R)} = Herm.
symm. domain attached to H (of complex dimension p)

For any K a c.o.s of H(Af ), we have the Shimura variety

XK = H(Q)\ (D×H(Af )/K )

which has a (canonical) model defined over Q.
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For a vector x ∈ V (Q), q(x) > 0, let

Dx = {z ∈ D | z ⊥ x} ⊂ D
Hx = GSpin(x⊥) ⊂ H

For any h ∈ H(Af ), the map

Hx(Q)\Dx ×Hx(Af )/(hKh−1 ∩ Hx(Af ))→ XK

[z , g ] 7→ [z , gh]

defines a divisor on XK , which we denote by Z (x , h).
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We’ll want to take certain linear combinations of these divisors as
well. Take

L - an even integral lattice in V

L∨ = {x ∈ V (Q) | < x , L > ⊂ Z} the dual lattice

Fix a set of representatives {xµ} of L∨/L

From now on, we assume K stabilizes all the adelic cosets
xµ + L̂, where L̂ = L⊗ Ẑ,

For m ∈ Q, m > 0, and µ ∈ L∨/L, suppose there is an x0 ∈ V with
q(x0) = m. Can write{

x ∈ xµ + L̂ | q(x) = m
}

=
∐
r

Kξ−1
r x0

for some finite collection of elements ξ1, . . . , ξn of H(Af ).
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Definition

Define
Z (m, µ) =

∑
r

χµ(ξ−1
r x0)Z (x0, ξr ),

where χµ is the characteristic function of the adelic coset xµ + L̂,
and Z (m, µ) = 0 if there is no rational vector of length m.

Remarks:
1 Definition is independent of x0 and choice of ξr ’s
2 As K varies, get a compatible system of cycles, so can actually

define the cycle Z (m, µ) on full Shimura variety Sh(G ,D).
3 If XK is connected, then

Z (m, µ) =
∑
x

pr(Dx),

where the sum is over rational vectors of norm m in the coset
xµ + L, modulo the action of Γ = H(Q) ∩ K , and
pr : D+ → Γ\D+ ' XK is the projection.
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Example: for N ∈ Z, let

V = {A ∈ M2(Q)|A = tA}
q(A) = N det(A), so signature is (1, 2), and H = GL2.

L =

{(
c/N b

b a

)
| a, b, c ∈ Z

}
L∨ =

{(
c/N b/2N

b/2N a

)}
, and L∨/L ' Z /2N Z

Kp =

{(
a b
c d

)
∈ GL2(Zp) | c ∈ N Zp

}
, and K =

∏
Kp

Have XK ' Y0(N) = Γ0(N)\H after identifying H ' D+ via the
map

τ 7→ spanR

(
Re

(
τ2 τ
τ 1

)
, Im

(
τ2 τ
τ 1

))
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For x =

(
c/N b/2N

b/2N a

)
∈ L∨, have

τ ∈ Dx ⇐⇒ Naτ2 + bτ + c = 0.

So for m ∈ Q>0, and µ ∈ Z /2N Z, have

Z (m, µ) =
∑

[τ ]

where the sum is over the images in Y0(N) of τ ∈ H satisfying

Aτ2 + Bτ + C = 0

with
N|A, B ≡ µ mod 2N, B2 − 4AC = 4Nm

ie. Z (m, µ) = P4Nm,µ is a Heegner divisor in the terminology of
Gross-Kohnen-Zagier.



Setup Extending the θ integral Regularization Borcherds’ Theorem Applications

For x =

(
c/N b/2N

b/2N a

)
∈ L∨, have

τ ∈ Dx ⇐⇒ Naτ2 + bτ + c = 0.

So for m ∈ Q>0, and µ ∈ Z /2N Z, have

Z (m, µ) =
∑

[τ ]

where the sum is over the images in Y0(N) of τ ∈ H satisfying

Aτ2 + Bτ + C = 0

with
N|A, B ≡ µ mod 2N, B2 − 4AC = 4Nm

ie. Z (m, µ) = P4Nm,µ is a Heegner divisor in the terminology of
Gross-Kohnen-Zagier.



Setup Extending the θ integral Regularization Borcherds’ Theorem Applications

Vector-valued modular forms

Want to extend the theta integral to a larger class of functions:

Let S(V (Af )) be the space of (C-valued) Schwartz functions
on V (Af ), and let SL be the subspace spanned by the
indicator functions χµ of xµ + L̂.

There is an action of the metaplectic group Mp2(Z) on
S(V (Af )), via the Weil representation, which restricts to a
representation on SL, denoted by ρL.
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Vector-valued modular forms

For k ∈ (1/2)Z, let Mk,ρL be the space of holomorphic functions
F : H→ SL such that

For γ =

((
a b
c d

)
, ϕ(τ)

)
∈ Mp2(Z), where ϕ(τ)2 = cτ + d ,

have the transformation law

F

(
aτ + b

cτ + d

)
= ϕ(τ)2k ρL(γ)F (τ)

F is meromorphic at cusps
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In terms of the basis elements χµ, have Fourier expansion at ∞:

F (τ) =
∑

µ∈L∨/L

∑
m∈Q

cµ(m) e(mτ) χµ

where cµ(m) = 0 for m << 0 (meromorphic condition), cµ(m) = 0
for m /∈ q(xµ) + Z, and e(x) = e2πix .
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The theta kernel

Let

G = Mp2 metaplectic group

(ω,S(V (A))) = Weil representation (on Schwartz functions)

Define the theta kernel (for g ∈ G (A), h ∈ H(A), φ ∈ S(V (A)) )

θ(g , h)(φ) =
∑

x∈V (Q)

ω(g)φ(h−1x)
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For z ∈ D, define a positive definite quadratic form

qz(x) = |q(prz(x))|+ q(prz⊥(x))

where prz(x) is the projection of x onto z , and let

φ∞z (x) = e−πqz (x), φ∞z ∈ S(V (R))

Think of the theta kernel as a map
θ : H× D×H(Af )→ S(V (Af ))∗ by setting

θ(τ, z , h)(φ) = v 1−p/2 θ(gτ , h)(φ∞z ⊗ φ)

= v 1−p/2
∑

x∈V (Q)

φ(h−1x) · (ω(gτ )φ∞z ) (x)
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Restrict θ(τ, z ; h) to a functional in (SL)∗. Then for fixed z
and h, the function

θ(·, z ; h) : H→ (SL)∗

transforms like a modular form of weight k = p/2− 1 for the
dual representation (ρL

∗, SL
∗)!

Hence, for F ∈ M−k,ρL , the pairing

(F (τ), θ(τ, z , h))

is Γ = SL2(Z)-invariant.
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As before, consider the θ-integral:

ΘF (z , h) =

∫
Γ\H

(F (τ), θ(τ, z ; h)) v−2 du dv

This should be a function on XK (ie. a function on D×H(Af )
invariant under H(Q) and K ), but...

Problem: doesn’t converge!

Solution:

Θ•F (z , h) =

∫ •
Γ\H

(F (τ), θ(τ, z ; h)) v−2 du dv

(the regularized integral)
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Define regularized integral by introducing a complex parameter s.

Fact: For Re(s) sufficiently large,

I (s) =

∫
Γ\H

(F (τ), θ(τ, z ; h)) v−2−s du dv

defines a holomorphic function in s.

I(s) can be meromorphically continued to all of C.

Definition

Define the regularized integral Θ•F (z , h) to be the constant term of
the Laurent series expansion of I (s) at s = 0.
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Theorem (Borcherds (1998))

Given F ∈ M1−p/2,ρL , such that

cµ(m) ∈ Z for m < 0

there is a function ΨF on D×H(Af ) such that

1 ΨF is a meromorphic modular form of weight c0(0)/2 (with
respect to a multiplier system of finite order)

2

div(ΨF
2) =

∑
µ∈L∨/L

∑
m>0

cµ(−m) Z (m, µ)

3 In the neighbourhood of a cusp, ΨF has a product expansion

ΨF (z , h) = C e(< z , ρ(W ) >)
∏
µ,ξ

(1− e(< zf , ξ >))cµ(−q(ξ))χµ(h−1ξ)
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Idea of Proof

Evaluate the regularized integral to get explicit expressions for the
Fourier expansion of Θ•F , and div(Θ•F ), in terms of Fourier
expansion of F . Then use a bit of complex analysis to show that
there exists a function ΨF such that

2 log |ΨF (z , h)|2 = −Θ•F (z , f )− c0(0)
(
log |y |2 + const.

)
Deduce rest of theorem from this.
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Some of your favourite functions are Borcherds forms

Example: Let

F (τ) =
∑

n>0,n odd

σ1(n)qn =
∑

n>0,n odd

∑
d |n

dqn

θ(τ) =
∑
n∈Z

qn2
= 1 + 2q + 2q4 + . . .

f0(τ) = F (τ)θ(τ)
(
θ(τ)4 − 2F (τ)

) (
θ(τ)4 − 16F (τ)

)
E6(4τ)/∆(4τ)

+ 56θ(τ)

= q−3 − 248q + 26752q4 + . . .

The function f0 is modular of weight 1/2 for Γ0(4), and satisfies
the ”plus space” condition.
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Let
Jd(τ) =

∏
σ

(j(τ)− j(σ)) ∈ M0(Γ),

where the product is taken over the set of imaginary quadratic
numbers of discriminant d < 0, modulo Γ = SL2(Z ).

Borcherds shows how to explicitly find input functions G such that
ΨG = Jd , by taking products of θ(τ), f0(τ) and j(4τ), in a way
that one can read off a product formula for Jd in terms of the
Fourier coefficients of these functions.
eg. for d = −3, take 3f0. Product formula gives

j(τ) = ΨG (τ) = q−1
∏
n>0

(1−qn)c(n2) = q−1(1−q)744(1−q2)80256 · · ·

(see Borcherds’ 1995 Inventiones paper)
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Extending Gross-Kohnen-Zagier

Theorem (Borcherds (1999))

Let Mk be the bundle of modular forms of weight k on XK , and
c1 be the first Chern class map c1 : Pic(XK )→ CH1(XK ).
The formal series

A(τ) = c1(M−1)χ∗0 +
∑

µ∈L∨/L

∑
m>0

Z (m, µ) qm χ∗µ

is a holomorphic modular form of weight 1 + p/2 for ρ∗L with
coefficients in CH1(XK )Q (ie. for any linear functional
λ ∈ CH1(XK )∗Q, the formal sum

λ (c1(M−1))χ∗0 +
∑

λ(Z (m, µ))qmχµ

is the q-expansion of a hol. mod. form. )
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Proof

There is a pairing

M−k,ρL ×
{

appropriate subspace of SL
∗[[q1/h]]

}
→ C∑ cµ(m)qmχµ,

∑
µ,n≥0

bµ(n)qnχ∗µ

 7→∑
µ

∑
m≤0

cµ(m)bµ(−m)

Under this pairing,

(M−k,ρL)⊥ = S2+k,ρ∗L
= hol. mod. forms (Serre duality)

For any f =
∑

cµ(m)qmχµ, the Borcherds form Ψ2
f is a rational

section of Mc0(0) (up to torsion in Pic), hence∑
m<0

cµ(m)Z (−m, µ) = div(Ψf
2) = c0(0)c1(M1) ∈ CH1(XK )
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Proof

Hence for any λ ∈ CH1(X )∗Q, and f =
∑

cµ(m)qmχµ ∈ M−k,ρL ,
have

(f , λ(A)) = λ
(

c0(0)c1(M−1) +
∑

cµ(m)Z (−m, µ)
)

= λ
(
c1(M−c0(0)) + c1(Mc0(0))

)
= λ(0) = 0

Thus λ(A) is a hol. mod. form, as required.
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Version 2: Let Heeg(XK ) be the free abelian group generated by
symbols Z (m, µ) and Z (0, 0). Let PHeeg(XK ) be the subgroup
generated by elements

cZ (0, 0) + div(Ψ2
f ),

where Ψf is a Borcherds form on XK of weight c/2 for some input
function f . Let HeegDiv = Heeg(XK )/PHeeg(XK ).
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Theorem (Borcherds, generalizing GKZ)

The formal power series

A(τ) = Z (0, 0)χ∗0 +
∑
µ,m>0

Z (m, µ)qmχ∗µ

is a holomorphic modular form of weight 1 + p/2 for ρ∗L with
coefficients in HeegDiv (ie. for any linear functional
λ ∈ HeegDiv∗, the formal sum

λ(Z (0, 0))χ∗0 +
∑

λ(Z (m, µ))qmχµ

is the q-expansion of a hol. mod. form. )
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Proof

There is a pairing

M−k,ρL ×
{

appropriate subspace of SL
∗[[q1/h]]

}
→ C∑ cµ(m)qmχµ,

∑
µ,n≥0

bµ(n)qnχ∗µ

 7→∑
µ

∑
m≤0

cµ(m)bµ(−m)

Under this pairing,

(M−k,ρL)⊥ = S2+k,ρ∗L
= hol. mod. forms (Serre duality)

Now for any f =
∑

cµ(m)qmχµ ∈ M−k,ρL , and λ ∈ HeegDiv∗,
have

(f , λ(A)) = c0(0)λ(Z (0, 0)) +
∑
µ

∑
m<0

cµ(m)λ(Z (−m, µ))

= λ
(
c0(0)Z (0, 0) + div(Ψ2

f )
)

= 0
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