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Extend theta lift to construct (meromorphic) modular forms on Sh.
var. associated to O(p,2) with amazing properties (explicit
divisors, product formulas, etc.)




Let
e (V,q) - rational quadratic space of signature (p,2). Denote
the associated bilinear form by <, >, i.e g(x) =1/2 < x,x >
e H = GSpin(V)
o D = {oriented negative-definite planes in V(R)} = Herm.
symm. domain attached to H (of complex dimension p)



Let

e (V,q) - rational quadratic space of signature (p,2). Denote
the associated bilinear form by <, >, i.e g(x) =1/2 < x,x >

e H = GSpin(V)
o D = {oriented negative-definite planes in V(R)} = Herm.
symm. domain attached to H (of complex dimension p)

For any K a c.o.s of H(Af), we have the Shimura variety
Xk = HQ)\ (D xH(Ar)/K)

which has a (canonical) model defined over Q.



For a vector x € V(Q), g(x) > 0, let
e D,={zeD |zLx}CD
e H, = GSpin(x+) C H

For any h € H(Af), the map

H(Q)\ Dy x Hy(Af)/(hKh™t N H(Af)) — Xk
[z,8] [z, 8h]

defines a divisor on Xk, which we denote by Z(x, h).



We'll want to take certain linear combinations of these divisors as
well. Take

@ L[ - an even integral lattice in V

o LlV={xeV(Q)]| <x,L>C Z} the dual lattice
o Fix a set of representatives {x,} of LV /L
o

From now on, we assume K stabilizes all the adelic cosets
x, + L, where L = L ® Z,
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@ L[ - an even integral lattice in V

o LlV={xeV(Q)]| <x,L>C Z} the dual lattice
o Fix a set of representatives {x,} of LV /L
o

From now on, we assume K stabilizes all the adelic cosets
x, + L, where L = L ® Z,

For me Q, m> 0, and € LV/L, suppose there is an xg € V with
q(x0) = m. Can write

{xexﬂ+L|q } HK@ X0

for some finite collection of elements &1, ..., &, of H(Af).



Setup

Define
Z(m,p) = qu(ér x0)Z(x0, &),

where y,, is the characteristic function of the adelic coset x, + L,
and Z(m, ) = 0 if there is no rational vector of length m.




Setup

Define
Z(m,p) = qu(ér x0)Z(x0, &),

where y,, is the characteristic function of the adelic coset x, + L,
and Z(m, ) = 0 if there is no rational vector of length m.

Remarks:
@ Definition is independent of xg and choice of £,'s
@ As K varies, get a compatible system of cycles, so can actually
define the cycle Z(m, i) on full Shimura variety Sh(G,D).

@ If Xk is connected, then
p) =Y pr(D

where the sum is over rational vectors of norm m in the coset
x, + L, modulo the action of I' = H(Q) N K, and
pr: Dt — M\ D" ~ Xg is the projection.



Example: for N € Z, let
o V={Ac My(Q)|A="A}
e q(A) = Ndet(A), so signature is (1,2), and H = GL,.

° L:{(CQN S) |a,b,c€Z}

o LV = {(;//2% bf”)}, and LV/L~7/2NZ

° K,,:{(i Z) € GLy(Z,p) | CGNZP},and K =TIk,



Example: for N € Z, let
o V={Ac My(Q)|A="A}
e q(A) = Ndet(A), so signature is (1,2), and H = GL,.

° L:{(CQN S) |a,b,c€Z}

o LV = {(;//2% bf”)}, and LV/L~7/2NZ

° K,,:{(i Z) € GLy(Z,p) | CGNZP},and K =TIk,

Have Xk ~ Yo(N) = Io(N)\H after identifying H ~ DV via the

ma
’ P ™7 im ™ T
T spang (Re( ), -1



_(¢/N b/2N v
Forx—<b/2N ; >€L , have

TeD, <— Nar? + br + ¢ = 0.



_(¢/N b/2N v
Forx—<b/2N ; >€L , have

reD, & Nar?®+ br+c=0.

So for m € Q+¢, and u € Z /2N Z, have

Z(m,p) = [r]
where the sum is over the images in Yo(N) of 7 € H satisfying
A2+ Br+C=0

with
N|A, B=pu mod2N, B?—4AC =4Nm

ie. Z(m, 1) = Panm,y, is a Heegner divisor in the terminology of
Gross-Kohnen-Zagier.



Extending the 6 integral

Vector-valued modular forms

Want to extend the theta integral to a larger class of functions:

o Let S(V(Ar)) be the space of (C-valued) Schwartz functions
on V(Af), and let S; be the subspace spanned by the
indicator functions x,, of x, + L.



Extending the 6 integral

Vector-valued modular forms

Want to extend the theta integral to a larger class of functions:

o Let S(V(Ar)) be the space of (C-valued) Schwartz functions
on V(Af), and let S; be the subspace spanned by the
indicator functions x,, of x, + L.

@ There is an action of the metaplectic group Mpy(Z) on
S(V(Ar)), via the Weil representation, which restricts to a
representation on S;, denoted by p;.



Extending the 6 integral
Vector-valued modular forms

For k € (1/2)Z, let M ,, be the space of holomorphic functions
F:H — S; such that

o For = <(i Z) ,go(r)) € Mps(Z), where o(7)? = cr + d,

have the transformation law

F(IE0) = ot o)

cT+d

@ F is meromorphic at cusps



Extending the 6 integral

In terms of the basis elements ,,, have Fourier expansion at oo:

Fir)= > Y culm) e(mr) X,

peLvy/L meQ

where ¢,(m) = 0 for m << 0 (meromorphic condition), c,(m) =0
for m ¢ q(x,) + Z, and e(x) = ™.
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The theta kernel

Let
@ G = Mp, metaplectic group
o (w,S(V(A))) = WEeil representation (on Schwartz functions)



Extending the 6 integral
The theta kernel

Let

@ G = Mp, metaplectic group

o (w,S(V(A))) = WEeil representation (on Schwartz functions)
Define the theta kernel (for g € G(A),h € H(A),¢ € S(V(A)) )

0(g.h) ()= > w(g)p(h'x)

xeV(Q)



Extending the 6 integral

@ For z € D, define a positive definite quadratic form

q:(x) = la(pr=(x))| + q(pr;+(x))
where pr;(x) is the projection of x onto z, and let

62°(x) = e ™= ¢ e S(V(R))



Extending the 6 integral

e For z € D, define a positive definite quadratic form
q:(x) = la(pr=(x))| + q(pr;+(x))
where pr;(x) is the projection of x onto z, and let

62°(x) = e ™= ¢ e S(V(R))

@ Think of the theta kernel as a map
6 :H xDxH(Af) — S(V(Af))* by setting
0(r, 2, h)(¢) = v'™P/2 O(gr, h)(#3° © 9)

=P () - (w(g)é) ()
xeV(Q)



Extending the 6 integral

@ Restrict §(7, z; h) to a functional in (S.)*. Then for fixed z
and h, the function

0(-,z;h) - H — (S)"

transforms like a modular form of weight k = p/2 — 1 for the
dual representation (p.*, S.*)!



Extending the 6 integral

@ Restrict §(7, z; h) to a functional in (S.)*. Then for fixed z
and h, the function

0(-,z;h) - H — (S)"

transforms like a modular form of weight k = p/2 — 1 for the
dual representation (p.*, S.*)!

@ Hence, for F € M_y ,,, the pairing
(F(7),6(, z, h))

is [ = SLy(Z)-invariant.



Regularization

@ As before, consider the 6-integral:
O (z, h) :/ (F(r), 0(r, z: h)) v2 du dv
M\H

This should be a function on Xk (ie. a function on D x H(Ay)
invariant under H(Q) and K), but...
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Regularization

@ As before, consider the 6-integral:
O (z, h) :/ (F(r), 0(r, z: h)) v2 du dv
M\H

This should be a function on Xk (ie. a function on D x H(Ay)
invariant under H(Q) and K), but...

@ Problem: doesn’t converge!
e Solution:

OF(z,h) = /F\H(F(T),H(T,z; h)) v=2 du dv

(the regularized integral)



Regularization

Define regularized integral by introducing a complex parameter s.



Regularization

Define regularized integral by introducing a complex parameter s.

e Fact: For Re(s) sufficiently large,
I(5)= [ (F()6(rzi) v du
M\H

defines a holomorphic function in s.

@ I(s) can be meromorphically continued to all of C.



Regularization

Define regularized integral by introducing a complex parameter s.

e Fact: For Re(s) sufficiently large,
I(5)= [ (F()6(rzi) v du
M\H

defines a holomorphic function in s.

@ I(s) can be meromorphically continued to all of C.

Definition

Define the regularized integral ©%(z, h) to be the constant term of
the Laurent series expansion of /(s) at s = 0.




Borcherds’ Theorem

Theorem (Borcherds (1998))
Given F € My_, >, such that

cu(m)eZ form <0

there is a function Vg on D x H(Af) such that

@ V£ is a meromorphic modular form of weight cy(0)/2 (with
respect to a multiplier system of finite order)
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Theorem (Borcherds (1998))
Given F € My_, >, such that

cu(m)eZ form <0

there is a function Vg on D x H(Af) such that

@ V£ is a meromorphic modular form of weight cy(0)/2 (with
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© In the neighbourhood of a cusp, V¢ has a product expansion

Ve(z,h) = Ce(< z,p(W) >) [T (1 — e(< zr, € >))* A7)
729




Borcherds’ Theorem

Idea of Proof

Evaluate the regularized integral to get explicit expressions for the
Fourier expansion of ©%, and div(@7_—), in terms of Fourier
expansion of F. Then use a bit of complex analysis to show that
there exists a function Vg such that

2log |We(z, h)|> = —O%(z, f) — co(0) (log |y|* + const.)

Deduce rest of theorem from this.




Applications
Some of your favourite functions are Borcherds forms

Example: Let

F(r) = Z o1(n)q" = Z qu"

n>0,n odd n>0,n odd d|n

Q(T)qu”2=1+2q+2q4+...
nez

fo(T) = F(7)0(7) (0(7’)4 — 2F(T)) (9(7’)4 - 16F(T)) Es(47)/A(47)
+560(1)
=q 3 — 248q + 26752¢" + ...

The function fy is modular of weight 1/2 for 'o(4), and satisfies
the " plus space” condition.



Applications

Let

Ja(m) = ] Gi(r) = i(e)) € Mo(T),

g

where the product is taken over the set of imaginary quadratic
numbers of discriminant d < 0, modulo ' = SL»(Z).



Applications

Let

Ja(r) = [T Gi(7) = j(o)) € Mo(T),
where the product is taken over the set of imaginary quadratic
numbers of discriminant d < 0, modulo ' = SL»(Z).
Borcherds shows how to explicitly find input functions G such that
V¢ = Jg, by taking products of (1), fo(7) and j(47), in a way
that one can read off a product formula for J; in terms of the
Fourier coefficients of these functions.



Applications

Let

Ja(r) = [T Gi(7) = j(o)) € Mo(T),
where the product is taken over the set of imaginary quadratic
numbers of discriminant d < 0, modulo ' = SL»(Z).
Borcherds shows how to explicitly find input functions G such that
V¢ = Jg, by taking products of (1), fo(7) and j(47), in a way
that one can read off a product formula for J; in terms of the
Fourier coefficients of these functions.
eg. for d = —3, take 3fy. Product formula gives

_j(T) — WG(T) — q—l H(l_qn)c(nZ) _ q—l(l_q)744(1_q2)80256 .
n>0

(see Borcherds’ 1995 Inventiones paper)



Applications
Extending Gross-Kohnen-Zagier

Theorem (Borcherds (1999))

Let My be the bundle of modular forms of weight k on Xk, and
c1 be the first Chern class map ci : Pic(Xk) — CH(Xk).
The formal series

Alr)=aMaxg+ Y. Y. Z(mu) 9™ X,

peLY /L m>0

is a holomorphic modular form of weight 1 4 p/2 for pj with
coefficients in CH'(Xk)q (ie. for any linear functional
A€ CHl(XK)(*@, the formal sum

Aer(M-1)) x5 + Y MZ(m, 1))a™ X

is the g-expansion of a hol. mod. form. )




Proof

There is a pairing
M_y, X {appropriate subspace of SL*[[ql/h]]} — C
> cuma™xm Y bu(ma™ | = 303 cu(m)bu(—m)
w,n>0 ©n m<0
Under this pairing,

(/Vl—k,pL)L = So4k,pr = hol. mod. forms (Serre duality)




Proof

There is a pairing

M_y, X {appropriate subspace of SL*[[ql/h]]} — C
> culma™xu > bu(ma™xi | = D> cu(m)bu(—m)
w,n>0 ©n m<0
Under this pairing,
(/Vl—k,pL)L = So4k,pr = hol. mod. forms (Serre duality)

For any f = > ¢,(m)q™x,, the Borcherds form W2 is a rational
section of M gy (up to torsion in Pic), hence

> cu(m)Z(—m, p) = div(V¢®) = co(0)cr(M1) € CH'(Xk)

m<0




Applications

Hence for any A\ € CHl(X)(’é, and f =) c,(m)q"x, € M_yp,,
have

(FAA) = A (@) (M-1) + > cu(m)Z(~m, 1))

A
A (e1(M_g0)) + c1(Mgy(0))) = A(0) =0




Applications

Hence for any A\ € CHl(X)(’é, and f =) c,(m)q"x, € M_yp,,
have

(FAA) = A (@) (M-1) + > cu(m)Z(~m, 1))

(c1(M_gy(0)) + c1(Mgy(0))) = A(0) =0

A
A

Thus A(A) is a hol. mod. form, as required.




Applications

Version 2: Let Heeg(Xk) be the free abelian group generated by
symbols Z(m, i) and Z(0,0). Let PHeeg(Xk) be the subgroup
generated by elements

cZ(0,0) + div(¥?),

where Wy is a Borcherds form on Xk of weight ¢/2 for some input
function f. Let HeegDiv = Heeg(Xk)/PHeeg(Xk).



Applications

Theorem (Borcherds, generalizing GKZ)

The formal power series

A(r) = Z(0,0)x5 + Y Z(m,11)q"x;,
©,m>0

is a holomorphic modular form of weight 1 4 p/2 for pj with
coefficients in HeegDiv (ie. for any linear functional
A € HeegDiv*, the formal sum

MZ(0,0)x5 + Y MZ(m, 1))q"xu

is the g-expansion of a hol. mod. form. )




Proof

There is a pairing

M_yp X {appropriate subspace of SL*[[ql/h]]} — C
D culm)a™ D bu(ma™, | = 3> cu(m)b
w,n>0 © m<0
Under this pairing,

(M_y )" = S2k,p; = hol. mod. forms (Serre duality)




Proof

There is a pairing

M_yp X {appropriate subspace of SL*[[ql/h]]} — C
D culm)a™ D bu(ma™, | = 3> cu(m)b
w,n>0 © m<0
Under this pairing,
(M_y )" = S2k,p; = hol. mod. forms (Serre duality)

Now for any f =3 c,(m)q™x, € M_x,,, and A € HeegDiv*,
have

(F, MA)) = @(0)A(Z(0,0) + D > cu(m)A(Z(=m, u))

u m<0

= ) (0(0)Z(0,0) + div(¥%)) =0
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