Introduction to Borcherds Forms
Montreal-Toronto Workshop in Number Theory

September 3, 2010
Main Goal

Extend theta lift to construct (meromorphic) modular forms on Sh. var. associated to $O(p,2)$ with amazing properties (explicit divisors, product formulas, etc.)
Let

- (V, q) - rational quadratic space of signature $(p, 2)$. Denote the associated bilinear form by $<,>$, i.e $q(x) = 1/2 < x, x >$
- $H = GSpin(V)$
- $\mathbb{D} = \{\text{oriented negative-definite planes in } V(\mathbb{R})\} = \text{Herm. symm. domain attached to } H$ (of complex dimension p)
Let

- \((V, q)\) - rational quadratic space of signature \((p, 2)\). Denote the associated bilinear form by \(\langle, \rangle\), i.e. \(q(x) = 1/2 \langle x, x \rangle\).
- \(H = GSpin(V)\)
- \(\mathcal{D} = \{\text{oriented negative-definite planes in } V(\mathbb{R})\} = \text{Herm. symm. domain attached to } H \text{ (of complex dimension } p)\)

For any \(K\) a c.o.s of \(H(\mathbb{A}_f)\), we have the Shimura variety

\[
X_K = H(\mathbb{Q}) \backslash (\mathcal{D} \times H(\mathbb{A}_f)/K)
\]

which has a (canonical) model defined over \(\mathbb{Q}\).
For a vector $x \in V(\mathbb{Q})$, $q(x) > 0$, let

- $D_x = \{ z \in D \mid z \perp x \} \subset D$
- $H_x = GSpin(x^\perp) \subset H$

For any $h \in H(\mathbb{A}_f)$, the map

\[H_x(\mathbb{Q}) \backslash D_x \times H_x(\mathbb{A}_f)/(hKh^{-1} \cap H_x(\mathbb{A}_f)) \to X_K \]

\[[z, g] \mapsto [z, gh] \]

defines a divisor on X_K, which we denote by $Z(x, h)$.
We’ll want to take certain linear combinations of these divisors as well. Take

- L - an even integral lattice in V
- $L^\vee = \{ x \in V(\mathbb{Q}) \mid < x, L > \subset \mathbb{Z} \}$ the dual lattice
- Fix a set of representatives $\{x_\mu\}$ of L^\vee / L
- From now on, we assume K stabilizes all the adelic cosets $x_\mu + \hat{L}$, where $\hat{L} = L \otimes \hat{\mathbb{Z}}$,

We’ll want to take certain linear combinations of these divisors as well. Take

- L - an even integral lattice in V
- $L^\vee = \{ x \in V(\mathbb{Q}) \mid \langle x, L \rangle \subset \mathbb{Z} \}$ the dual lattice
- Fix a set of representatives $\{x_\mu\}$ of L^\vee/L
- From now on, we assume K stabilizes all the adelic cosets $x_\mu + \widehat{L}$, where $\widehat{L} = L \otimes \hat{\mathbb{Z}}$,

For $m \in \mathbb{Q}$, $m > 0$, and $\mu \in L^\vee/L$, suppose there is an $x_0 \in V$ with $q(x_0) = m$. Can write

$$\left\{ x \in x_\mu + \widehat{L} \mid q(x) = m \right\} = \coprod_r K \xi_r^{-1} x_0$$

for some finite collection of elements ξ_1, \ldots, ξ_n of $H(\mathbb{A}_f)$.

Definition

Define

\[Z(m, \mu) = \sum_r \chi_\mu(\xi_r^{-1} x_0) Z(x_0, \xi_r), \]

where \(\chi_\mu \) is the characteristic function of the adelic coset \(x_\mu + \hat{L} \), and \(Z(m, \mu) = 0 \) if there is no rational vector of length \(m \).
Definition

Define

\[Z(m, \mu) = \sum_r \chi_\mu(\xi_r^{-1}x_0)Z(x_0, \xi_r), \]

where \(\chi_\mu \) is the characteristic function of the adelic coset \(x_\mu + \hat{L} \), and \(Z(m, \mu) = 0 \) if there is no rational vector of length \(m \).

Remarks:

1. Definition is independent of \(x_0 \) and choice of \(\xi_r \)'s
2. As \(K \) varies, get a compatible system of cycles, so can actually define the cycle \(Z(m, \mu) \) on full Shimura variety \(Sh(G, \mathbb{D}) \).
3. If \(X_K \) is connected, then

\[Z(m, \mu) = \sum_x pr(D_x), \]

where the sum is over rational vectors of norm \(m \) in the coset \(x_\mu + L \), modulo the action of \(\Gamma = H(\mathbb{Q}) \cap K \), and \(pr : \mathbb{D}^+ \to \Gamma \backslash \mathbb{D}^+ \simeq X_K \) is the projection.
Example: for $N \in \mathbb{Z}$, let

- $V = \{ A \in M_2(\mathbb{Q}) | A = {}^t A \}$
- $q(A) = N \det(A)$, so signature is $(1, 2)$, and $H = GL_2$.
- $L = \left\{ \begin{pmatrix} c/N & b \\ b/2N & a \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}$
- $L^\vee = \left\{ \begin{pmatrix} c/N & b/2N \\ b/2N & a \end{pmatrix} \right\}$, and $L^\vee/L \cong \mathbb{Z}/2N \mathbb{Z}$
- $K_p = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}_p) \mid c \in N \mathbb{Z}_p \right\}$, and $K = \prod K_p$
Example: for \(N \in \mathbb{Z} \), let

- \(V = \{ A \in M_2(\mathbb{Q}) \mid A = ^t A \} \)
- \(q(A) = N \det(A) \), so signature is \((1, 2)\), and \(H = GL_2 \).
- \(L = \left\{ \begin{pmatrix} c/N & b \\ b & a \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\} \)
- \(L^\vee = \left\{ \begin{pmatrix} c/N & b/2N \\ b/2N & a \end{pmatrix} \right\} \), and \(L^\vee / L \simeq \mathbb{Z} / 2N \mathbb{Z} \)
- \(K_p = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}_p) \mid c \in N \mathbb{Z}_p \right\} \), and \(K = \prod K_p \)

Have \(X_K \simeq Y_0(N) = \Gamma_0(N) \backslash \mathbb{H} \) after identifying \(\mathbb{H} \simeq \mathbb{D}^+ \) via the map

\[
\tau \mapsto \text{span}_\mathbb{R} \left(\text{Re} \left(\begin{pmatrix} \tau^2 & \tau \\ \tau & 1 \end{pmatrix} \right), \text{Im} \left(\begin{pmatrix} \tau^2 & \tau \\ \tau & 1 \end{pmatrix} \right) \right)
\]
For $x = \begin{pmatrix} c/N & b/2N \\ b/2N & a \end{pmatrix} \in L^\vee$, have

$$\tau \in \mathbb{D}_x \iff Na\tau^2 + b\tau + c = 0.$$
For \(x = \begin{pmatrix} c/N & b/2N \\ b/2N & a \end{pmatrix} \in L^\vee \), have

\[\tau \in \mathbb{D}_x \iff Na\tau^2 + b\tau + c = 0. \]

So for \(m \in \mathbb{Q}_{>0} \), and \(\mu \in \mathbb{Z}/2N\mathbb{Z} \), have

\[Z(m, \mu) = \sum [\tau] \]

where the sum is over the images in \(Y_0(N) \) of \(\tau \in \mathbb{H} \) satisfying

\[A\tau^2 + B\tau + C = 0 \]

with

\[N | A, \quad B \equiv \mu \mod 2N, \quad B^2 - 4AC = 4Nm \]

ie. \(Z(m, \mu) = P_{4Nm, \mu} \) is a Heegner divisor in the terminology of Gross-Kohnen-Zagier.
Vector-valued modular forms

Want to extend the theta integral to a larger class of functions:

- Let $S(V(\mathbb{A}_f))$ be the space of (\mathbb{C}-valued) Schwartz functions on $V(\mathbb{A}_f)$, and let S_L be the subspace spanned by the indicator functions χ_μ of $x_\mu + \hat{L}$.
Want to extend the theta integral to a larger class of functions:

- Let $S(V(\mathbb{A}_f))$ be the space of (\mathbb{C}-valued) Schwartz functions on $V(\mathbb{A}_f)$, and let S_L be the subspace spanned by the indicator functions χ_μ of $x_\mu + \hat{L}$.

- There is an action of the metaplectic group $Mp_2(\mathbb{Z})$ on $S(V(\mathbb{A}_f))$, via the Weil representation, which restricts to a representation on S_L, denoted by ρ_L.
For $k \in (1/2) \mathbb{Z}$, let M_{k, ρ_L} be the space of holomorphic functions $F : \mathbb{H} \rightarrow S_L$ such that

1. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \varphi(\tau) \in Mp_2(\mathbb{Z})$, where $\varphi(\tau)^2 = c\tau + d$, have the transformation law

$$F \left(\frac{a\tau + b}{c\tau + d} \right) = \varphi(\tau)^{2k} \rho_L(\gamma) F(\tau)$$

2. F is meromorphic at cusps
In terms of the basis elements χ_μ, have Fourier expansion at ∞:

$$F(\tau) = \sum_{\mu \in L^\vee / L} \sum_{m \in \mathbb{Q}} c_\mu(m) \, e(m\tau) \, \chi_\mu$$

where $c_\mu(m) = 0$ for $m << 0$ (meromorphic condition), $c_\mu(m) = 0$ for $m \notin q(x_\mu) + \mathbb{Z}$, and $e(x) = e^{2\pi ix}$.
The theta kernel

Let

- $G = Mp_2$ metaplectic group
- $(\omega, S(V(\mathbb{A}))) = \text{Weil representation (on Schwartz functions)}$
The theta kernel

Let

- $G = Mp_2$ metaplectic group
- $(\omega, S(V(\mathbb{A}))) = \text{Weil representation (on Schwartz functions)}$

Define the theta kernel (for $g \in G(\mathbb{A}), h \in H(\mathbb{A}), \phi \in S(V(\mathbb{A}))$)

$$\theta(g, h)(\phi) = \sum_{x \in V(\mathbb{Q})} \omega(g)\phi(h^{-1}x)$$
For $z \in \mathbb{D}$, define a positive definite quadratic form

$$q_z(x) = |q(pr_z(x))| + q(pr_z\perp(x))$$

where $pr_z(x)$ is the projection of x onto z, and let

$$\phi_z^\infty(x) = e^{-\pi q_z(x)}, \quad \phi_z^\infty \in S(V(\mathbb{R}))$$
For $z \in \mathbb{D}$, define a positive definite quadratic form

$$q_z(x) = |q(pr_z(x))| + q(pr_{z\perp}(x))$$

where $pr_z(x)$ is the projection of x onto z, and let

$$\phi_z^\infty(x) = e^{-\pi q_z(x)}, \quad \phi_z^\infty \in S(V(\mathbb{R}))$$

Think of the theta kernel as a map

$$\theta : \mathbb{H} \times \mathbb{D} \times H(\mathbb{A}_f) \to S(V(\mathbb{A}_f))^*$$

by setting

$$\theta(\tau, z, h)(\phi) = v^{1-p/2} \theta(g_\tau, h)(\phi_z^\infty \otimes \phi)$$

$$= v^{1-p/2} \sum_{x \in V(\mathbb{Q})} \phi(h^{-1}x) \cdot (\omega(g_\tau)\phi_z^\infty)(x)$$
Restrict $\theta(\tau, z; h)$ to a functional in $(S_L)^*$. Then for fixed z and h, the function

$$\theta(\cdot, z; h) : \mathbb{H} \to (S_L)^*$$

transforms like a modular form of weight $k = p/2 - 1$ for the dual representation (ρ_L^*, S_L^*)!
Restrict \(\theta(\tau, z; h) \) to a functional in \((SL)^*\). Then for fixed \(z \) and \(h \), the function

\[
\theta(\cdot, z; h) : \mathbb{H} \to (SL)^*
\]

transforms like a modular form of weight \(k = p/2 - 1 \) for the dual representation \((\rho_L^*, S_L^*)\)!

Hence, for \(F \in M_{-k, \rho_L} \), the pairing

\[
(F(\tau), \theta(\tau, z, h))
\]

is \(\Gamma = SL_2(\mathbb{Z}) \)-invariant.
As before, consider the θ-integral:

$$\Theta_F(z, h) = \int_{\Gamma \backslash \mathbb{H}} (F(\tau), \theta(\tau, z; h)) \, v^{-2} \, du \, dv$$

This should be a function on X_K (ie. a function on $\mathbb{D} \times H(\mathbb{A}_f)$ invariant under $H(\mathbb{Q})$ and K), but...
As before, consider the θ-integral:

$$
\Theta_F(z, h) = \int_{\Gamma\backslash H} (F(\tau), \theta(\tau, z; h)) \, v^{-2} \, du \, dv
$$

This should be a function on X_K (ie. a function on $\mathbb{D} \times \mathcal{H}(A_f)$ invariant under $H(\mathbb{Q})$ and K), but...

Problem: doesn’t converge!
As before, consider the θ-integral:

$$\Theta_F(z, h) = \int_{\Gamma \backslash \mathbb{H}} (F(\tau), \theta(\tau, z; h)) \, v^{-2} \, du \, dv$$

This should be a function on X_K (ie. a function on $\mathbb{D} \times H(A_f)$ invariant under $H(\mathbb{Q})$ and K), but...

- Problem: doesn’t converge!

- Solution:

$$\Theta^*_F(z, h) = \int_{\Gamma \backslash \mathbb{H}} (F(\tau), \theta(\tau, z; h)) \, v^{-2} \, du \, dv$$

(the regularized integral)
Define regularized integral by introducing a complex parameter s.
Define regularized integral by introducing a complex parameter s.

- Fact: For $\Re(s)$ sufficiently large,

$$I(s) = \int_{\Gamma \setminus \mathbb{H}} (F(\tau), \theta(\tau, z; h)) \ n^{-2-s} \ du \ dv$$

defines a holomorphic function in s.

- $I(s)$ can be meromorphically continued to all of \mathbb{C}.
Define regularized integral by introducing a complex parameter s.

- **Fact**: For $\text{Re}(s)$ sufficiently large,

$$I(s) = \int_{\Gamma \setminus \mathbb{H}} (F(\tau), \theta(\tau, z; h)) \, \nu^{-2-s} \, du \, dv$$

defines a holomorphic function in s.

- $I(s)$ can be meromorphically continued to all of \mathbb{C}.

Definition

Define the regularized integral $\Theta_F^\bullet(z, h)$ to be the constant term of the Laurent series expansion of $I(s)$ at $s = 0$.
Theorem (Borcherds (1998))

Given $F \in M_{1-p/2, \rho_L}$, such that

$$c_\mu(m) \in \mathbb{Z} \quad \text{for } m < 0$$

there is a function Ψ_F on $\mathbb{D} \times H(\mathbb{A}_f)$ such that

1. Ψ_F is a meromorphic modular form of weight $c_0(0)/2$ (with respect to a multiplier system of finite order)
Theorem (Borcherds (1998))

Given F ∈ M_{1-p/2,ρ_L}, such that

\[c_\mu(m) \in \mathbb{Z} \quad \text{for } m < 0 \]

*there is a function } \Psi_F \text{ on } \mathbb{D} \times H(A_f) \text{ such that } \Psi_F \text{ is a meromorphic modular form of weight } c_0(0)/2 \text{ (with respect to a multiplier system of finite order)} *

1. \[\Psi_F \text{ is a meromorphic modular form of weight } c_0(0)/2 \text{ (with respect to a multiplier system of finite order)} \]

2. \[\text{div}(\Psi_F^2) = \sum_{\mu \in \mathbb{L}^\vee/L} \sum_{m > 0} c_\mu(-m) Z(m, \mu) \]
Theorem (Borcherds (1998))

Given $F \in M_{1-p/2,\rho_L}$, such that

$$c_\mu(m) \in \mathbb{Z} \quad \text{for } m < 0$$

there is a function Ψ_F on $\mathbb{D} \times H(A_f)$ such that

1. Ψ_F is a meromorphic modular form of weight $c_0(0)/2$ (with respect to a multiplier system of finite order)

2. $\text{div}(\Psi_F^2) = \sum_{\mu \in L^\vee / L} \sum_{m > 0} c_\mu(-m) \ Z(m, \mu)$

3. In the neighbourhood of a cusp, Ψ_F has a product expansion

$$\Psi_F(z, h) = C \ e(\langle z, \rho(W) \rangle) \prod_{\mu, \xi} (1 - e(\langle z_f, \xi \rangle))^{c_\mu(-q(\xi))} \chi_\mu(h^{-1} \xi)$$
Idea of Proof

Evaluate the regularized integral to get explicit expressions for the Fourier expansion of Θ^*_{F}, and $\text{div}(\Theta^*_{F})$, in terms of Fourier expansion of F. Then use a bit of complex analysis to show that there exists a function Ψ_{F} such that

$$2 \log |\Psi_{F}(z, h)|^2 = -\Theta^*_{F}(z, f) - c_0(0) \left(\log |y|^2 + \text{const.} \right)$$

Deduce rest of theorem from this.
Some of your favourite functions are Borcherds forms

Example: Let

\[F(\tau) = \sum_{n > 0, n \text{ odd}} \sigma_1(n)q^n = \sum_{n > 0, n \text{ odd}} \sum_{d | n} dq^n \]

\[\theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2} = 1 + 2q + 2q^4 + \ldots \]

\[f_0(\tau) = F(\tau)\theta(\tau) \left(\theta(\tau)^4 - 2F(\tau) \right) \left(\theta(\tau)^4 - 16F(\tau) \right) \frac{E_6(4\tau)}{\Delta(4\tau)} + 56\theta(\tau) \]

\[= q^{-3} - 248q + 26752q^4 + \ldots \]

The function \(f_0 \) is modular of weight 1/2 for \(\Gamma_0(4) \), and satisfies the "plus space" condition.
Let

\[J_d(\tau) = \prod_{\sigma} (j(\tau) - j(\sigma)) \in M_0(\Gamma), \]

where the product is taken over the set of imaginary quadratic numbers of discriminant \(d < 0 \), modulo \(\Gamma = SL_2(\mathbb{Z}) \).
Let

\[J_d(\tau) = \prod_{\sigma} (j(\tau) - j(\sigma)) \in M_0(\Gamma), \]

where the product is taken over the set of imaginary quadratic numbers of discriminant \(d < 0 \), modulo \(\Gamma = SL_2(\mathbb{Z}) \).

Borcherds shows how to explicitly find input functions \(G \) such that \(\Psi_G = J_d \), by taking products of \(\theta(\tau), f_0(\tau) \) and \(j(4\tau) \), in a way that one can read off a product formula for \(J_d \) in terms of the Fourier coefficients of these functions.
Let

\[J_d(\tau) = \prod_{\sigma} (j(\tau) - j(\sigma)) \in M_0(\Gamma), \]

where the product is taken over the set of imaginary quadratic numbers of discriminant \(d < 0 \), modulo \(\Gamma = SL_2(\mathbb{Z}) \).

Borcherds shows how to explicitly find input functions \(G \) such that \(\Psi_G = J_d \), by taking products of \(\theta(\tau) \), \(f_0(\tau) \) and \(j(4\tau) \), in a way that one can read off a product formula for \(J_d \) in terms of the Fourier coefficients of these functions.

eg. for \(d = -3 \), take \(3f_0 \). Product formula gives

\[j(\tau) = \Psi_G(\tau) = q^{-1} \prod_{n>0} (1-q^n)^{c(n^2)} = q^{-1}(1-q)^{744}(1-q^2)^{80256} \ldots \]

(see Borcherds’ 1995 Inventiones paper)
Extending Gross-Kohnen-Zagier

Theorem (Borcherds (1999))

Let \mathcal{M}_k be the bundle of modular forms of weight k on X_K, and c_1 be the first Chern class map $c_1 : \text{Pic}(X_K) \to CH^1(X_K)$. The formal series

$$A(\tau) = c_1(\mathcal{M}_{-1})\chi_0^* + \sum_{\mu \in L^\vee/L} \sum_{m > 0} Z(m, \mu) q^m \chi_\mu^*$$

is a holomorphic modular form of weight $1 + p/2$ for ρ_L^* with coefficients in $CH^1(X_K)_Q$ (i.e. for any linear functional $\lambda \in CH^1(X_K)_Q^*$, the formal sum

$$\lambda \left(c_1(\mathcal{M}_{-1}) \right) \chi_0^* + \sum \lambda(Z(m, \mu)) q^m \chi_\mu$$

is the q-expansion of a holomorphic modular form.)
Proof

There is a pairing

$$M_{-k, \rho_L} \times \left\{ \text{appropriate subspace of } S_L^*[q^{1/h}] \right\} \to \mathbb{C}$$

$$\left(\sum c_\mu(m)q^m\chi_\mu, \sum_{\mu,n \geq 0} b_\mu(n)q^n\chi_\mu^* \right) \mapsto \sum_\mu \sum_{m \leq 0} c_\mu(m)b_\mu(-m)$$

Under this pairing,

$$(M_{-k, \rho_L})^\perp = S_{2+k, \rho_L^*} = \text{hol. mod. forms} \quad \text{(Serre duality)}$$
Proof

There is a pairing

\[M_{-k, \rho_L} \times \left\{ \text{appropriate subspace of } S_L^*[[q^{1/h}]] \right\} \rightarrow \mathbb{C} \]

\[\left(\sum c_\mu(m)q^m \chi_\mu, \sum b_\mu(n)q^n \chi_\mu^* \right) \mapsto \sum \sum c_\mu(m)b_\mu(-m) \]

Under this pairing,

\[(M_{-k, \rho_L})^\perp = S_{2+k, \rho_L}^* = \text{hol. mod. forms} \quad \text{(Serre duality)} \]

For any \(f = \sum c_\mu(m)q^m \chi_\mu \), the Borcherds form \(\Psi_f^2 \) is a rational section of \(\mathcal{M}_{c_0(0)} \) (up to torsion in \(Pic \)), hence

\[\sum_{m<0} c_\mu(m)Z(-m, \mu) = \text{div}(\Psi_f^2) = c_0(0)c_1(M_1) \in CH^1(X_K) \]
Proof

Hence for any $\lambda \in CH^1(X)_\mathbb{Q}^*$, and $f = \sum c_\mu(m)q^m \chi_\mu \in M_{-k, \rho_L}$, have

$$(f, \lambda(A)) = \lambda \left(c_0(0)c_1(M_{-1}) + \sum c_\mu(m)Z(-m, \mu) \right)$$

$$= \lambda \left(c_1(M_{-c_0(0)}) + c_1(M_{c_0(0)}) \right) = \lambda(0) = 0$$
Proof

Hence for any $\lambda \in CH^1(X)_Q^*$, and $f = \sum c_\mu(m)q^m \chi_\mu \in M_{-k, \rho_L}$, have

$$(f, \lambda(A)) = \lambda \left(c_0(0)c_1(M_{-1}) + \sum c_\mu(m)Z(-m, \mu) \right)$$

$$= \lambda \left(c_1(M_{-c_0(0)}) + c_1(M_{c_0(0)}) \right) = \lambda(0) = 0$$

Thus $\lambda(A)$ is a hol. mod. form, as required.
Version 2: Let $Heeg(X_K)$ be the free abelian group generated by symbols $Z(m, \mu)$ and $Z(0, 0)$. Let $PHeeg(X_K)$ be the subgroup generated by elements

$$cZ(0, 0) + div(\Psi_f^2),$$

where Ψ_f is a Borcherds form on X_K of weight $c/2$ for some input function f. Let $HeegDiv = Heeg(X_K)/PHeeg(X_K)$.
Theorem (Borcherds, generalizing GKZ)

The formal power series

\[A(\tau) = Z(0, 0) \chi_0^* + \sum_{\mu, m > 0} Z(m, \mu) q^m \chi_\mu^* \]

is a holomorphic modular form of weight $1 + p/2$ for ρ_L^* with coefficients in HeegDiv (ie. for any linear functional $\lambda \in \text{HeegDiv}^*$, the formal sum

\[\lambda(Z(0, 0)) \chi_0^* + \sum \lambda(Z(m, \mu)) q^m \chi_\mu \]

is the q-expansion of a hol. mod. form.)
Proof

There is a pairing

\[M_{-k,\rho_L} \times \left\{ \text{appropriate subspace of } S_L^*[[q^{1/h}]] \right\} \to \mathbb{C} \]

\[
\left(\sum_{\mu,n \geq 0} c_\mu(m) q^m \chi_\mu, \sum_{\mu,n \geq 0} b_\mu(n) q^n \chi^*_\mu \right) \mapsto \sum_{\mu} \sum_{m \leq 0} c_\mu(m) b_\mu(-m)
\]

Under this pairing,

\[
(M_{-k,\rho_L})^\perp = S_{2+k,\rho_L^*} = \text{hol. mod. forms} \quad \text{(Serre duality)}
\]
Proof

There is a pairing

\[M_{-k, \rho_L} \times \left\{ \text{appropriate subspace of } S_L^*[[q^{1/h}]] \right\} \rightarrow \mathbb{C} \]

\[
\left(\sum c_\mu(m) q^m \chi_\mu, \sum_{\mu, n \geq 0} b_\mu(n) q^n \chi_\mu^* \right) \mapsto \sum_{\mu} \sum_{m \leq 0} c_\mu(m) b_\mu(-m)
\]

Under this pairing,

\[(M_{-k, \rho_L})^\perp = S_{2+k, \rho_L^*} = \text{hol. mod. forms} \quad \text{(Serre duality)} \]

Now for any \(f = \sum c_\mu(m) q^m \chi_\mu \in M_{-k, \rho_L} \), and \(\lambda \in \text{HeegDiv}^* \), have

\[
(f, \lambda(A)) = c_0(0) \lambda(Z(0, 0)) + \sum_{\mu} \sum_{m < 0} c_\mu(m) \lambda(Z(-m, \mu))
\]

\[
= \lambda \left(c_0(0) Z(0, 0) + \text{div}(\Psi_f^2) \right) = 0
\]