Hilbert modular forms and cohomology

Shervin Shahrokhi Tehrani

University of Toronto

April 9th, 2011
Notations

- F is totally real quadratic field extension.
- \mathcal{O}_F is the ring of integers of F.
- α is a fractional ideal of \mathcal{O}_F.
- $\text{Cl}(F)$ is the ideal class group of F.
- $\text{Cl}(F)^+$ is the narrow ideal class group of F.
- \mathbb{H} is upper half plane.
- $\mathbb{P}^1(F) = F \cup \{\infty\}$.
- $e(\omega) = e^{2\pi i \omega}$.
- If $M \subseteq F$ is a \mathbb{Z}-module of rank 2, then

 $$M^\vee = \{ \lambda \in F; \text{tr}(\mu \lambda) \in \mathbb{Z}, \forall \mu \in M \}$$

- The $\mathbb{A} = \mathbb{A}_\infty \mathbb{A}_f$ is adelic ring over F where \mathbb{A}_f is finite part of \mathbb{A}.
Notations

- F is totally real quadratic field extension.
- \mathcal{O}_F is the ring of integers of F.
- α is a fractional ideal of \mathcal{O}_F.
- $\text{Cl}(F)$ is the ideal class group of F.
- $\text{Cl}(F)^+$ is the narrow ideal class group of F.
- \mathbb{H} is upper half plane.
- $\mathbb{P}^1(F) = F \cup \{\infty\}$.
- $e(\omega) = e^{2\pi i \omega}$.
- If $M \subseteq F$ is a \mathbb{Z}-module of rank 2, then

\[M^\vee = \{ \lambda \in F; \text{tr}(\mu \lambda) \in \mathbb{Z}, \forall \mu \in M \} \]

- The $\mathbb{A} = \mathbb{A}_\infty \mathbb{A}_f$ is adelic ring over F where \mathbb{A}_f is finite part of \mathbb{A}.

Shervin Shahrokhi Tehrani
Hilbert modular forms and cohomology
Notations

- \(F \) is totally real quadratic field extension.
- \(\mathcal{O}_F \) is the ring of integers of \(F \).
- \(\alpha \) is a fractional ideal of \(\mathcal{O}_F \).
- \(\text{Cl}(F) \) is the ideal class group of \(F \).
- \(\text{Cl}(F)^+ \) is the narrow ideal class group of \(F \).
- \(\mathbb{H} \) is upper half plane.
- \(\mathbb{P}^1(F) = F \cup \{ \infty \} \).
- \(e(\omega) = e^{2\pi i \omega} \).
- If \(M \subseteq F \) is a \(\mathbb{Z} \)-module of rank 2, then

\[
M^\vee = \{ \lambda \in F; \text{tr}(\mu \lambda) \in \mathbb{Z}, \forall \mu \in M \}
\]

- The \(\mathbb{A} = \mathbb{A}_\infty \mathbb{A}_f \) is adelic ring over \(F \) where \(\mathbb{A}_f \) is finite part of \(\mathbb{A} \).
Let F be a real quadratic field.

$$SL_2(F) \hookrightarrow SL_2(\mathbb{R}) \times SL_2(\mathbb{R}).$$

$SL_2(F)$ acts on $\mathbb{H} \times \mathbb{H}$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left(z_1, z_2 \right) = \left(\frac{az_1 + b}{cz_1 + d}, \frac{a'z_2 + b'}{c'z_2 + d'} \right)$$

Definition

$$\Gamma(\mathcal{O}_F \oplus a) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(F); a, d \in \mathcal{O}_F, b \in a^{-1}, c \in a \right\}$$
Hilbert Modular Group

Let F be a real quadratic field.

$$SL_2(F) \hookrightarrow SL_2(\mathbb{R}) \times SL_2(\mathbb{R}).$$

$SL_2(F)$ acts on $\mathbb{H} \times \mathbb{H}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z_1, z_2) = \begin{pmatrix} az_1 + b & a'z_2 + b' \\ cz_1 + d' & c'z_2 + d' \end{pmatrix}$$

Definition

$$\Gamma(\mathcal{O}_F \oplus a) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(F); a, d \in \mathcal{O}_F, b \in a^{-1}, c \in a \right\}$$
Hilbert Modular Group

Let F be a real quadratic field.

$$\text{SL}_2(F) \hookrightarrow \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}).$$

$\text{SL}_2(F)$ acts on $\mathbb{H} \times \mathbb{H}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z_1, z_2) = \begin{pmatrix} az_1 + b & a'z_2 + b' \\ cz_1 + d' & c'z_2 + d' \end{pmatrix}$$

Definition

$$\Gamma(\mathcal{O}_F \oplus a) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(F); a, d \in \mathcal{O}_F, b \in a^{-1}, c \in a \right\}$$
Hilbert Modular Group

Definition

The Hilbert full modular group is

$$\Gamma_F = \Gamma(\mathcal{O}_F \oplus \mathcal{O}_F) = \text{SL}_2(\mathcal{O}_F)$$

Definition

Any subgroup of $\text{SL}_2(F)$ which is commensurable with Γ_F is called an arithmetic subgroup.

Let Γ be an arithmetic subgroup. It acts properly discontinuous on \mathbb{H}^2, i.e., if $W \subseteq \mathbb{H}^2$ is compact, then $\{\gamma \in \Gamma; \gamma W \cap W \neq \emptyset\}$ is finite.
Hilbert Modular Group

Definition

The Hilbert full modular group is

\[
\Gamma_F = \Gamma(\mathcal{O}_F \oplus \mathcal{O}_F) = SL_2(\mathcal{O}_F)
\]

Definition

Any subgroup of \(SL_2(F)\) which is commensurable with \(\Gamma_F\) is called an arithmetic subgroup.

Let \(\Gamma\) be an arithmetic subgroup. It acts properly discontinuous on \(\mathbb{H}^2\), i.e., if \(W \subseteq \mathbb{H}^2\) is compact, then \(\{\gamma \in \Gamma; \gamma W \cap W \neq \emptyset\}\) is finite.
Hilbert Modular Group

Definition

The Hilbert full modular group is

\[\Gamma_F = \Gamma(\mathcal{O}_F \oplus \mathcal{O}_F) = \text{SL}_2(\mathcal{O}_F) \]

Definition

Any subgroup of \(\text{SL}_2(F) \) which is commensurable with \(\Gamma_F \) is called an arithmetic subgroup.

Let \(\Gamma \) be an arithmetic subgroup. It acts properly discontinuous on \(\mathbb{H}^2 \), i.e., if \(W \subset \mathbb{H}^2 \) is compact, then \(\{ \gamma \in \Gamma; \gamma W \cap W \neq \emptyset \} \) is finite.
Hilbert Modular Group

Definition

The Hilbert full modular group is

$$\Gamma_F = \Gamma(O_F \oplus O_F) = SL_2(O_F)$$

Definition

Any subgroup of $SL_2(F)$ which is commensurable with Γ_F is called an arithmetic subgroup.

Let Γ be an arithmetic subgroup. It acts properly discontinuous on \mathbb{H}^2, i.e., if $W \subseteq \mathbb{H}^2$ is compact, then \(\{ \gamma \in \Gamma; \gamma W \cap W \neq \emptyset \} \) is finite.
Modular Surfaces

Definition

The space

$$X'_\Gamma = \Gamma \backslash \mathbb{H}^2$$

is the modular surface.
Elliptic fixed points

The stabilizer of \(a \in \mathbb{H}^2 \)

\[\Gamma_a = \{ \gamma \in \Gamma; \gamma a = a \} \]

is finite subgroup of \(\Gamma \).

Definition

\(a \) is called elliptic fixed point if

\[\overline{\Gamma_a} = \Gamma_a / \{ \pm 1 \} \]

is not trivial.

Proposition

There are finite number of elliptic fixed points, and these are only singularities of \(X_\Gamma \).
Elliptic fixed points

The stabilizer of $a \in \mathbb{H}^2$

$$\Gamma_a = \{ \gamma \in \Gamma; \gamma a = a \}$$

is finite subgroup of Γ.

Definition

a is called elliptic fixed point if

$$\overline{\Gamma_a} = \Gamma_a / \{ \pm 1 \}$$

is not trivial.

Proposition

There are finite number of elliptic fixed points, and these are only singularities of X'_Γ.
Elliptic fixed points

The stabilizer of \(a \in \mathbb{H}^2 \)

\[\Gamma_a = \{ \gamma \in \Gamma; \gamma a = a \} \]

is finite subgroup of \(\Gamma \).

Definition

\(a \) is called elliptic fixed point if

\[\overline{\Gamma_a} = \Gamma_a / \{ \pm 1 \} \]

is not trivial.

Proposition

There are finite number of elliptic fixed points, and these are only singularities of \(X'_\Gamma \).
Cusp points

The X'_{Γ} is not compact in general, therefore, there are points at infinity.

$SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\left(\frac{\alpha}{\beta} \right) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.
$$

Definition

Γ-classes of $\mathbb{P}^1(F)$ are called cusp points of X'_{Γ}.
Cusp points

The X'_Γ is not compact in general, therefore, there are points at infinity. $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.$$

Definition

Γ-classes of $\mathbb{P}^1(F)$ are called cusp points of X'_Γ.

Shervin Shahrokhi Tehrani
Hilbert modular forms and cohomology
Cusp points

The X'_Γ is not compact in general, therefore, there are points at infinity. $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}.$$

Definition

Γ-classes of $\mathbb{P}^1(F)$ are called cusp points of X'_Γ.
Cusp points

The X'_Γ is not compact in general, therefore, there are points at infinity. $SL_2(F)$ acts on $\mathbb{P}^1(F)$ by

$$ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) (\alpha, \beta) = \frac{a\alpha + b\beta}{c\alpha + d\beta}. $$

Definition

Γ-classes of $\mathbb{P}^1(F)$ are called cusp points of X'_Γ.
Cusp points

Theorem

The map

\[\varphi : \Gamma_F \backslash \mathbb{P}^1(F) \to \text{Cl}(F) \]

\[(\alpha : \beta) \mapsto \alpha \mathcal{O}_F + \beta \mathcal{O}_F \]

is bijective.

Corollary

The number of cusp points of \(X'_{\Gamma_F} \) is the class number of \(F \).
Cusp points

Theorem

The map
\[
\varphi : \Gamma_F \backslash \mathbb{P}^1(F) \longrightarrow \text{Cl}(F)
\]
\[
(\alpha : \beta) \longrightarrow \alpha \mathcal{O}_F + \beta \mathcal{O}_F
\]
is bijective.

Corollary

The number of cusp points of \(X'_F\) is the class number of \(F\).
Let $G = R_{F/Q} \text{GL}_2(F)$ be reductive algebraic group over \mathbb{Q}. Therefore,

$$G(\mathbb{R}) = \text{GL}_2(\mathbb{R})^2$$

$$K_\infty = \text{SO}(2).\mathbb{R}_{>0} \times \text{SO}(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm \times \mathbb{H}^\pm$.
Let $G = R_{F/Q} \text{GL}_2(F)$ be reductive algebraic group over \mathbb{Q}. Therefore,

$$G(\mathbb{R}) = \text{GL}_2(\mathbb{R})^2$$

$$K_\infty = \text{SO}(2).\mathbb{R}_{>0} \times \text{SO}(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm \times \mathbb{H}^\pm$.
Adelic version

Let $G = R_{F/Q}GL_2(F)$ be reductive algebraic group over \mathbb{Q}. Therefore,

$$G(\mathbb{R}) = GL_2(\mathbb{R})^2$$

$$K_\infty = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm \times \mathbb{H}^\pm$.
Adelic version

Let $G = \mathbb{R}_{F/\mathbb{Q}} GL_2(F)$ be reductive algebraic group over \mathbb{Q}. Therefore,

$$G(\mathbb{R}) = GL_2(\mathbb{R})^2$$

$$K_\infty = SO(2).\mathbb{R}_{>0} \times SO(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm \times \mathbb{H}^\pm$.
Let $G = R_{F/Q} \text{GL}_2(F)$ be reductive algebraic group over \mathbb{Q}. Therefore,

$$G(\mathbb{R}) = \text{GL}_2(\mathbb{R})^2$$

$$K_\infty = \text{SO}(2).\mathbb{R}_{>0} \times \text{SO}(2).\mathbb{R}_{>0}$$

The quotient $G(\mathbb{R})/K_\infty$ is homeomorphic with $\mathbb{H}^\pm \times \mathbb{H}^\pm$.
Let K_f be compact open subgroup of $G_f = G(\mathbb{A}_f)$. Using Strong Approximation Theorem, we have

Theorem

There is an identification

$$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_f = \bigcup_{j=1}^{m} \Gamma_j \backslash \mathbb{H}^2$$

with $\Gamma_j = g_j G(\mathbb{R})^0 K_f g_j^{-1} \cap G(\mathbb{Q})$.

Shervin Shahrokhi Tehrani
Hilbert modular forms and cohomology
Let K_f be compact open subgroup of $G_f = G(\mathbb{A}_f)$. Using Strong Approximation Theorem, we have

Theorem

There is an identification

$$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_f = \bigcup_{j=1}^{m} \Gamma_j \backslash \mathbb{H}^2$$

with $\Gamma_j = g_j G(\mathbb{R})^0 K_f g_j^{-1} \cap G(\mathbb{Q})$.

Shervin Shahrokhi Tehrani

Hilbert modular forms and cohomology
Let K_f be compact open subgroup of $G_f = G(\mathbb{A}_f)$. Using Strong Approximation Theorem, we have

Theorem

There is an identification

$$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_f = \bigcup_{j=1}^{m} \Gamma_j \backslash \mathbb{H}^2$$

with $\Gamma_j = g_j G(\mathbb{R})^0 K_f g_j^{-1} \cap G(\mathbb{Q})$.
If $K_0 = \prod_{\nu \in S_f} \text{GL}_2(\mathcal{O}_{\mathcal{F}_\nu})$, then

Corollary

$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_0$ can be identified with $\bigcup_a \Gamma(\mathcal{O}_{\mathcal{F}} \oplus a) \backslash \mathbb{H}^2$, where a runs over a complete set of representatives of $\text{Cl}(F)^+$.
If $K_0 = \prod_{\nu \in S_f} \text{GL}_2(\mathcal{O}_{F_{\nu}})$, then

Corollary

$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{\infty} K_0$ can be identified with $\bigcup_{a} \Gamma(\mathcal{O}_F \oplus a) \backslash \mathbb{H}^2$, where a runs over a complete set of representatives of $\text{Cl}(F)^{+}$.
Further properties

- There is fundamental domain for action of Γ on \mathbb{H}^2 in terms of Siegel domains.
- The form $\omega = \omega_1 \wedge \omega_2$ where

 $$\omega_1 = \frac{1}{2\pi} \frac{dx_1 \wedge dy_1}{y_1^2}, \quad \omega_2 = \frac{1}{2\pi} \frac{dx_2 \wedge dy_2}{y_2^2}$$

 is volume form on X'_{Γ}.
There is fundamental domain for action of Γ on \mathbb{H}^2 in terms of Siegel domains.

The form $\omega = \omega_1 \wedge \omega_2$ where

$$\omega_1 = \frac{1}{2\pi} \frac{dx_1 \wedge dy_1}{y_1^2}, \omega_2 = \frac{1}{2\pi} \frac{dx_2 \wedge dy_2}{y_2^2}$$

is volume form on $X_{\Gamma'}$.
Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. Let

$$X_\Gamma = \Gamma \backslash (\mathbb{H}^2)^*$$

then we have

Theorem (Baily-Borel)

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma \backslash (\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.
Compactification

We have

\[\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R}) \]

Let

\[(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F) \]

The group \(\Gamma \) acts on \((\mathbb{H}^2)^*\). Let

\[X_\Gamma = \Gamma \backslash (\mathbb{H}^2)^* \]

then we have

Theorem (Baily-Borel)

On \((\mathbb{H}^2)^\) there is unique topology such that the \(\Gamma \backslash (\mathbb{H}^2)^* \) with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \(\mathcal{O}_{X_\Gamma} \) on \(X_\Gamma \) such that \((X_\Gamma, \mathcal{O}_{X_\Gamma})\) is complex normal space.*
Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$\left(\mathbb{H}^2 \right)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $\left(\mathbb{H}^2 \right)^*$. Let

$$X_\Gamma = \Gamma \backslash \left(\mathbb{H}^2 \right)^*$$

then we have

Theorem (Baily-Borel)

On $\left(\mathbb{H}^2 \right)^*$ there is unique topology such that the $\Gamma \backslash \left(\mathbb{H}^2 \right)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.
Compactification

We have

$$\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R})$$

Let

$$(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F)$$

The group Γ acts on $(\mathbb{H}^2)^*$. Let

$$X_\Gamma = \Gamma \backslash (\mathbb{H}^2)^*$$

then we have

Theorem (Baily-Borel)

On $(\mathbb{H}^2)^*$ there is unique topology such that the $\Gamma \backslash (\mathbb{H}^2)^*$ with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \mathcal{O}_{X_Γ} on X_Γ such that $(X_\Gamma, \mathcal{O}_{X_\Gamma})$ is complex normal space.
We have
\[\mathbb{P}^1(F) \hookrightarrow \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{R}) \]

Let
\[(\mathbb{H}^2)^* = \mathbb{H}^2 \cup \mathbb{P}^1(F) \]

The group \(\Gamma \) acts on \((\mathbb{H}^2)^* \). Let
\[X_\Gamma = \Gamma \backslash (\mathbb{H}^2)^* \]

then we have

Theorem (Baily-Borel)

On \((\mathbb{H}^2)^* \) there is unique topology such that the \(\Gamma \backslash (\mathbb{H}^2)^* \) with quotient topology is a compact Hausdorff space. Moreover, there is a sheaf of functions \(\mathcal{O}_{X_\Gamma} \) on \(X_\Gamma \) such that \((X_\Gamma, \mathcal{O}_{X_\Gamma}) \) is complex normal space.
Remark: Using the line bundle of modular forms (in sufficiently large weights) on X_{Γ}, gives an embedding into projective space, therefore, X_{Γ} is projective algebraic variety and X'_{Γ} is quasi-projective.
There is smooth compactification of X'_Γ using Toroidal Theory. Therefore, we can resolve the singularities at boundary of Baily-Borel compactification.

Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

- $X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_\mathbb{Q})/K_f K_\infty$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps.
- Y_{K_f} be the minimal resolution of all singularities.
There is smooth compactification of X'_Γ using Toroidal Theory. Therefore, we can resolve the singularities at boundary of Baily-Borel compactification.

Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

- $X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}})/K_f K_\infty$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps.
- Y_{K_f} be the minimal resolution of all singularities.
There is smooth compactification of X_{Γ}' using Toroidal Theory. Therefore, we can resolve the singularities at boundary of Baily-Borel compactification.

Also, by using the theory of Hironaka, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

- $X_{K_f}' = G(\mathbb{Q}) \backslash G(\mathbb{A}_\mathbb{Q})/K_f K_\infty$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps.
- Y_{K_f} be the minimal resolution of all singularities.
Toroidal compactification and de singularization

- There is smooth compactification of X'_{Γ} using **Toroidal Theory**. Therefore, we can resolve the singularities at boundary of **Baily-Borel** compactification.
- Also, by using the theory of **Hironaka**, we are able to resolve the singularities caused by Elliptic fixed points.

We are going to use the adelic version and fix following spaces:

- $X'_{K_f} = G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathbb{Q}})/K_f K_{\infty}$
- X_{K_f} is its Baily-Borel compactification.
- Z_{K_f} be the minimal resolution of the cusps.
- Y_{K_f} be the minimal resolution of all singularities.
Definition

A holomorphic function \(f : \mathbb{H}^2 \to \mathbb{C} \) is called \textbf{Hilbert modular forms} of weight \(k = (k_1, k_2) \in \mathbb{Z}^2 \) on \(\Gamma \) if for all \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \) one has

\[
 f(\gamma z) = (cz_1 + d)^{k_1} (c'z_2 + d')^{k_2} f(z).
\]

If \(k = k_1 = k_2 \) then \(k \) is called the weight of \(f \).
Hilbert modular forms

Definition

A holomorphic function $f : \mathbb{H}^2 \rightarrow \mathbb{C}$ is called **Hilbert modular forms** of weight $k = (k_1, k_2) \in \mathbb{Z}^2$ on Γ if for all

$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ one has

$$f(\gamma z) = (cz_1 + d)^{k_1} (c'z_2 + d')^{k_2} f(z).$$

- If $k = k_1 = k_2$ then k is called the weight of f.
If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z}-module of rank 2, such that

$$f(z + \mu) = f(z) \quad \forall \mu \in M,$$

and

$$f(z) = \sum_{\nu \in M^\vee} a_{\nu} e(\text{tr}(\nu z)) \quad \text{where}$$

$$a_{\nu} = \frac{1}{\text{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\text{tr}(\nu z)) \, dx_1 \, dx_2.$$

In contrast to the one dimensional case, we have
If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z}-module of rank 2, such that

$$f(z + \mu) = f(z) \quad \forall \mu \in M,$$

and

$$f = \sum_{\nu \in M^\vee} a_\nu e(\text{tr}(\nu z))$$

where

$$a_\nu = \frac{1}{\text{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\text{tr}(\nu z)) \, dx_1 \, dx_2.$$

In contrast to the one dimensional case, we have...
Fourier expansion

If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z}-module of rank 2, such that

$$f(z + \mu) = f(z) \quad \forall \mu \in M, \quad \text{and}$$

$$f = \sum_{\nu \in M^\vee} a_\nu e(tr(\nu z)) \quad \text{where}$$

$$a_\nu = \frac{1}{\text{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z)e(-tr(\nu z))\,dx_1\,dx_2.$$
If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:
There is $M \subset F$, \mathbb{Z}-module of rank 2, such that

$$f(z + \mu) = f(z) \quad \forall \mu \in M, \quad \text{and}$$

$$f = \sum_{\nu \in M^\vee} a_{\nu} e(\text{tr}(\nu z)) \quad \text{where}$$

$$a_{\nu} = \frac{1}{\text{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\text{tr}(\nu z))\,dx_1\,dx_2.$$
If f is Hilbert modular form then it has Fourier expansion at the cusp ∞ as:

There is $M \subset F$, \mathbb{Z}-module of rank 2, such that

$$f(z + \mu) = f(z) \quad \forall \mu \in M,$$

and

$$f = \sum_{\nu \in M^\vee} a_{\nu} e(\text{tr}(\nu z)) \quad \text{where}$$

$$a_{\nu} = \frac{1}{\text{vol}(\mathbb{R}/M)} \int_{\mathbb{R}^2/M} f(z) e(-\text{tr}(\nu z)) \, dx_1 \, dx_2.$$

In contrast to the one dimensional case, we have
Theorem (Koecher principle)

Let $f : \mathbb{H}^2 \to \mathbb{C}$ Hilbert modular form, then

$$a_\nu \neq 0 \quad \text{implies} \quad \nu = 0 \quad \text{or} \quad \nu \gg 0.$$

We denote the space of all Hilbert modular forms of weight k by M_k. This has an interpretation as global section of line bundles over modular surface, and by using sheaf cohomology, M_k is finite dimensional.

Definition

A Hilbert modular form is called cusp form if it vanishes at all cusps of Γ. S_k is the space of all cusp forms of weight k.
Hilbert modular forms

Theorem (Koecher principle)

Let \(f : \mathbb{H}^2 \rightarrow \mathbb{C} \) be a Hilbert modular form, then

\[
a_\nu \neq 0 \quad \text{implies} \quad \nu = 0 \quad \text{or} \quad \nu \gg 0.
\]

We denote the space of all Hilbert modular forms of weight \(k \) by \(M_k \). This has an interpretation as global section of line bundles over modular surface, and by using sheaf cohomology, \(M_k \) is **finite dimensional**.

Definition

A Hilbert modular form is called **cusp form** if it vanishes at all cusps of \(\Gamma \). \(S_k \) is the space of all cusp forms of weight \(k \).
Theorem (Koecher principle)

Let \(f : \mathbb{H}^2 \rightarrow \mathbb{C} \) Hilbert modular form, then

\[a_\nu \neq 0 \quad \text{implies} \quad \nu = 0 \quad \text{or} \quad \nu \gg 0. \]

We denote the space of all Hilbert modular forms of weight \(k \) by \(M_k \). This has an interpretation as global section of line bundles over modular surface, and by using sheaf cohomology, \(M_k \) is \textbf{finite dimensional}.

Definition

A Hilbert modular form is called \textbf{cusp form} if it vanishes at all cusps of \(\Gamma \). \(S_k \) is the space of all cusp forms of weight \(k \).
Non-vanishing conditions

Theorem

Let f be Hilbert modular form of weight $k = (k_1, k_2)$ for Γ. The f vanishes identically unless k_1, k_2 are both positive or $k_1 = k_2 = 0$. In latter case f is constant.

Corollary

If $\pi : Z_{K_f} \longrightarrow X_{K_f}$ is the natural map, then any holomorphic 1-form on Z_{K_f} vanishes identically, i.e

$$H^1(Z_{K_f}, O_{K_f}) = 0$$
Non-vanishing conditions

Theorem

Let f be Hilbert modular form of weight $k = (k_1, k_2)$ for Γ. The f vanishes identically unless k_1, k_2 are both positive or $k_1 = k_2 = 0$. In latter case f is constant.

Corollary

If $\pi : Z_{K_f} \rightarrow X_{K_f}$ is the natural map, then any holomorphic 1-form on Z_{K_f} vanishes identically, i.e

$$H^1(Z_{K_f}, \mathcal{O}_{K_f}) = 0$$
Non-vanishing conditions

Theorem

Let f be Hilbert modular form of weight $k = (k_1, k_2)$ for Γ. The f vanishes identically unless k_1, k_2 are both positive or $k_1 = k_2 = 0$. In latter case f is constant.

Corollary

If $\pi : Z_{K_f} \to X_{K_f}$ is the natural map, then any holomorphic 1-form on Z_{K_f} vanishes identically, i.e

$$H^1(Z_{K_f}, O_{K_f}) = 0$$
Proof.

Let ω be 1-form, and η be pullback on regular points of X_{kf}. We have

$$\eta = f_1(z)dz_1 + f_2(z)dz_2$$

where f_1, f_2 are Hilbert modular form of weight $(2, 0)$, and $(0, 2)$. Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{kf}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.
Non-vanishing conditions

Proof.

Let \(\omega \) be 1-form, and \(\eta \) be pullback on regular points of \(X_{k_f} \). We have

\[
\eta = f_1(z)dz_1 + f_2(z)dz_2
\]

where \(f_1, f_2 \) are Hilbert modular form of weight \((2, 0) \), and \((0, 2) \). Using last theorem, we can say \(\eta \) vanishes. Therefore, \(\omega \) is zero.

Remark: Using Hodge theory we can show \(H^1(Z_{k_f}, \mathbb{C}) \) vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.
Non-vanishing conditions

Proof.
Let ω be 1-form, and η be pullback on regular points of X_{k_f}. We have
\[\eta = f_1(z)dz_1 + f_2(z)dz_2 \]
where f_1, f_2 are Hilbert modular form of weight $(2,0)$, and $(0,2)$. Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{k_f}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.
Proof.

Let ω be 1-form, and η be pullback on regular points of X_{k_f}. We have

$$\eta = f_1(z)dz_1 + f_2(z)dz_2$$

where f_1, f_2 are Hilbert modular form of weight $(2, 0)$, and $(0, 2)$. Using last theorem, we can say η vanishes. Therefore, ω is zero.

Remark: Using Hodge theory we can show $H^1(Z_{k_f}, \mathbb{C})$ vanishes. This means that the interesting part of cohomology of Hilbert modular surfaces is in degree 2.
We are looking at $H^2(Z_{\Gamma}, \mathbb{Q})$. Using Poincaré duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \to \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_{σ} in the resolving of cusp σ. We have the decomposition

$$H_2(Z_{\Gamma}, \mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma} \right) \oplus \text{Im} \left\{ j_* : H_2(X'_{\Gamma}, \mathbb{Q}) \to H_2(Z_{\Gamma}, \mathbb{Q}) \right\}.$$

where $j : X'_{\Gamma} \to Z_{\Gamma}$.
We are looking at $H^2(Z_\Gamma, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_\Gamma) \times H_2(Z_\Gamma) \longrightarrow \mathbb{Q}.$$

Let E_σ be the subspace of $H_2(Z_\Gamma, \mathbb{Q})$ generated by the classes of the curves S_σ in the resolving of cusp σ. We have the decomposition

$$H_2(Z_\Gamma, \mathbb{Q}) = \left(\bigoplus_{\sigma} E_\sigma \right) \oplus \text{Im} \left\{ j_* : H_2(X'_\Gamma, \mathbb{Q}) \longrightarrow H_2(Z_\Gamma, \mathbb{Q}) \right\}.$$

where $j : X'_\Gamma \longrightarrow Z_\Gamma$.

We are looking at $H^2(Z_\Gamma, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_\Gamma) \times H_2(Z_\Gamma) \longrightarrow \mathbb{Q}.$$

Let E_σ be the subspace of $H_2(Z_\Gamma, \mathbb{Q})$ generated by the classes of the curves S_σ in the resolving of cusp σ.

We have the decomposition

$$H_2(Z_\Gamma, \mathbb{Q}) = \left(\bigoplus_{\sigma} E_\sigma \right) \oplus \text{Im} \left\{ j_* : H_2(X'_\Gamma, \mathbb{Q}) \longrightarrow H_2(Z_\Gamma, \mathbb{Q}) \right\}.$$

where $j : X'_\Gamma \longrightarrow Z_\Gamma$.
We are looking at $H^2(Z_\Gamma, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_\Gamma) \times H_2(Z_\Gamma) \longrightarrow \mathbb{Q}.$$

Let E_σ be the subspace of $H_2(Z_\Gamma, \mathbb{Q})$ generated by the classes of the curves S_σ in the resolving of cusp σ. We have the decomposition

$$H_2(Z_\Gamma, \mathbb{Q}) = \left(\bigoplus_\sigma E_\sigma \right) \oplus \text{Im} \left\{ j_* : H_2(X'_\Gamma, \mathbb{Q}) \longrightarrow H_2(Z_\Gamma, \mathbb{Q}) \right\}.$$

where $j : X'_\Gamma \longrightarrow Z_\Gamma$.
We are looking at $H^2(Z_{\Gamma}, \mathbb{Q})$. Using Poincare duality, we have a non-degenerate pairing

$$H_2(Z_{\Gamma}) \times H_2(Z_{\Gamma}) \longrightarrow \mathbb{Q}.$$

Let E_{σ} be the subspace of $H_2(Z_{\Gamma}, \mathbb{Q})$ generated by the classes of the curves S_σ in the resolving of cusp σ. We have the decomposition

$$H_2(Z_{\Gamma}, \mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma} \right) \oplus \text{Im} \left\{ j_* : H_2(X'_\Gamma, \mathbb{Q}) \longrightarrow H_2(Z_{\Gamma}, \mathbb{Q}) \right\}.$$

where $j : X'_\Gamma \longrightarrow Z_{\Gamma}$.
$H^2(\ -\ , \mathbb{Q})$

By duality for cohomology we have

$$H^2(Z_\Gamma, \mathbb{Q}) = \left(\bigoplus_{\sigma} E^\vee_{\sigma} \right) \oplus \pi^* H^2(X_\Gamma, \mathbb{Q}).$$

where $\pi : Z_\Gamma \longrightarrow X_\Gamma$.

There is an exact sequence

$$0 = H^1(X_\Gamma - X'_{\Gamma}, \mathbb{Q}) \rightarrow H^2_c(X'_{\Gamma}, \mathbb{Q}) \rightarrow H^2(X_\Gamma, \mathbb{Q}) \rightarrow H^2(X_\Gamma - X'_{\Gamma}, \mathbb{Q}) = 0.$$

Proposition

$$H^2(X_\Gamma, \mathbb{Q}) \cong H^2_c(X'_{\Gamma}, \mathbb{Q})$$
By duality for cohomology we have

\[H^2(Z_\Gamma, \mathbb{Q}) = \left(\bigoplus_{\sigma} E_{\sigma}^\vee \right) \oplus \pi^* H^2(X_\Gamma, \mathbb{Q}). \]

where \(\pi : Z_\Gamma \longrightarrow X_\Gamma. \)

There is an exact sequence

\[0 = H^1(X_\Gamma - X'_\Gamma, \mathbb{Q}) \rightarrow H^2_c(X'_\Gamma, \mathbb{Q}) \rightarrow H^2(X_\Gamma, \mathbb{Q}) \rightarrow H^2(X_\Gamma - X'_\Gamma, \mathbb{Q}) = 0. \]

Proposition

\[H^2(X_\Gamma, \mathbb{Q}) \cong H^2_c(X'_\Gamma, \mathbb{Q}) \]
By duality for cohomology we have

\[H^2(Z_\Gamma, \mathbb{Q}) = \left(\bigoplus_{\sigma} E^\vee_{\sigma} \right) \oplus \pi^* H^2(X_\Gamma, \mathbb{Q}). \]

where \(\pi : Z_\Gamma \to X_\Gamma \).

There is an exact sequence

\[0 = H^1(X_\Gamma - X'_\Gamma, \mathbb{Q}) \to H^2_c(X'_\Gamma, \mathbb{Q}) \to H^2(X_\Gamma, \mathbb{Q}) \to H^2(X_\Gamma - X'_\Gamma, \mathbb{Q}) = 0. \]

Proposition

\[H^2(X_\Gamma, \mathbb{Q}) \cong H^2_c(X'_\Gamma, \mathbb{Q}) \]
Mixed Hodge Structure

X'_Γ is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p \in \mathbb{Z}}$ on $H^i(X'_\Gamma, \mathbb{Q}) \otimes \mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k \in \mathbb{Z}}$ on $H^2(X'_\Gamma, \mathbb{Q})$ as
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = 0$ for $k \leq 1$
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = W_{k+1} H^2(X'_\Gamma, \mathbb{Q})$ for $1 \leq k \leq 3$
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = H^2(X'_\Gamma, \mathbb{Q})$ for $k \geq 4$

- **Remark**: There exists a pure hodge structure of weight k on $W_k H^2(X'_\Gamma, \mathbb{Q}) / W_{k-1} H^2(X'_\Gamma, \mathbb{Q})$.
X'_Γ is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p \in \mathbb{Z}}$ on $H^i(X'_\Gamma, \mathbb{Q}) \otimes \mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k \in \mathbb{Z}}$ on $H^2(X'_\Gamma, \mathbb{Q})$ as
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = 0 \quad k \leq 1$
 - $W_2 H^2(X'_\Gamma, \mathbb{Q}) = W_3 H^2(X'_\Gamma, \mathbb{Q}) = j^* H^2(Z_\Gamma, \mathbb{Q})$
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = H^2(X'_\Gamma, \mathbb{Q}) \quad k \geq 4$

- **Remark:** There exists a pure hodge structure of weight k on $W_k H^2(X'_\Gamma, \mathbb{Q})/W_{k-1} H^2(X'_\Gamma, \mathbb{Q})$.

Mixed Hodge Structure
Mixed Hodge Structure

X'_Γ is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p \in \mathbb{Z}}$ on $H^i(X'_\Gamma, \mathbb{Q}) \otimes \mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k \in \mathbb{Z}}$ on $H^2(X'_\Gamma, \mathbb{Q})$ as

 \begin{align*}
 W_k H^2(X'_\Gamma, \mathbb{Q}) &= 0 & k \leq 1 \\
 W_2 H^2(X'_\Gamma, \mathbb{Q}) &= W_3 H^2(X'_\Gamma, \mathbb{Q}) = j^* H^2(Z_\Gamma, \mathbb{Q}) \\
 W_k H^2(X'_\Gamma, \mathbb{Q}) &= H^2(X'_\Gamma, \mathbb{Q}) & k \geq 4
 \end{align*}

Remark: There exists a pure hodge structure of weight k on $W_k H^2(X'_\Gamma, \mathbb{Q}) / W_{k-1} H^2(X'_\Gamma, \mathbb{Q})$.
X'_Γ is quasi-projective algebraic variety, therefore by Deligne Hodge Theory, there is mixed Hodge structure as:

- There is decreasing filtration $\{F_p\}_{p \in \mathbb{Z}}$ on $H^i(X'_\Gamma, \mathbb{Q}) \otimes \mathbb{C}$,
- There is an increasing weight filtration $\{W_k\}_{k \in \mathbb{Z}}$ on $H^2(X'_\Gamma, \mathbb{Q})$ as
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = 0$ for $k \leq 1$
 - $W_2 H^2(X'_\Gamma, \mathbb{Q}) = W_3 H^2(X'_\Gamma, \mathbb{Q}) = j^* H^2(Z_\Gamma, \mathbb{Q})$
 - $W_k H^2(X'_\Gamma, \mathbb{Q}) = H^2(X'_\Gamma, \mathbb{Q})$ for $k \geq 4$

Remark: There exists a pure hodge structure of weight k on $W_k H^2(X'_\Gamma, \mathbb{Q})/W_{k-1} H^2(X'_\Gamma, \mathbb{Q})$.
Pure Hodge Structure

Recall

\[j^* H^2(Z_\Gamma, \mathbb{Q}) = j^* \left(\bigoplus_{\sigma} E_\sigma^\vee \right) \oplus \pi^* H^2(X_\Gamma, \mathbb{Q}) \].

Since \(j^* E_\sigma^\vee = 0 \) for all cusps,

Proposition

There is pure Hodge structure of weight 2 on

\[\mathbb{H}^2(X_\Gamma, \mathbb{C}) := j^* \pi^* H^2(X_\Gamma, \mathbb{C}) \].

Remark: Notice that

\[\mathbb{H}^2(X_\Gamma, \mathbb{Q}) = \text{Im} \{ H^2_c(X'_\Gamma, \mathbb{Q}) \to H^2(X'_\Gamma, \mathbb{Q}) \} \].
Recall

\[j^* H^2(Z_\Gamma, \mathbb{Q}) = j^* \left(\bigoplus_{\sigma} E_\sigma^\vee \right) \oplus \pi^* H^2(X_\Gamma, \mathbb{Q}) \].

Since \(j^* E_\sigma^\vee = 0 \) for all cusps,

Proposition

There is pure Hodge structure of weight 2 on

\[\mathbb{H}^2(X_\Gamma, \mathbb{C}) := j^* \pi^* H^2(X_\Gamma, \mathbb{C}). \]

Remark: Notice that

\[\mathbb{H}^2(X_\Gamma, \mathbb{Q}) = \text{Im}\{ H^2_c(X'_\Gamma, \mathbb{Q}) \rightarrow H^2(X'_\Gamma, \mathbb{Q}) \} \].
Recall

$$j^* H^2(Z_\Gamma, \mathbb{Q}) = j^* \left(\bigoplus_\sigma E^\vee_\sigma \right) \oplus \pi^* H^2(X_\Gamma, \mathbb{Q})$$.

Since $j^* E^\vee_\sigma = 0$ for all cusps,

Proposition

There is pure Hodge structure of weight 2 on

$$\mathbb{H}^2(X_\Gamma, \mathbb{C}) := j^* \pi^* H^2(X_\Gamma, \mathbb{C}).$$

Remark: Notice that

$$\mathbb{H}^2(X_\Gamma, \mathbb{Q}) = \text{Im} \{ H^2_c(X'_\Gamma, \mathbb{Q}) \to H^2(X'_\Gamma, \mathbb{Q}) \}$$
Pure Hodge Structure

Let \(f = (\ldots, f_j, \ldots) \) be Hilbert modular form of weight 2. This defines a 2-form \(\omega_f \) by

\[
\omega_f = (2\pi i)^2 f_j(z) \, dz_1 \wedge dz_2 \quad \text{on} \quad \Gamma_j \backslash \mathbb{H}^2.
\]

Lemma

\[
F^2 \mathbb{H}^2(X_{\Gamma}, \mathbb{C}) = \{ \omega_f : f \in S_2 \}
\]

Let \(\varepsilon_1 = (\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, 1), \varepsilon_2 = (1, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \) acts on \(\mathbb{H}_+ \times \mathbb{H}_+ \) by

\[
\varepsilon_1 : (z_1, z_2) \mapsto (\overline{z}_1, z_2), \quad \varepsilon_1 : (z_1, z_2) \mapsto (z_1, \overline{z}_2)
\]
Let $f = (..., f_j, ...) \in \text{Hilbert modular form of weight 2}$. This defines a 2-form ω_f by

$$\omega_f = (2\pi i)^2 f_j(z) dz_1 \wedge dz_2 \quad \text{on} \quad \Gamma_j \backslash \mathbb{H}^2.$$
Pure Hodge Structure

Let \(f = (..., f_j, ...) \) be Hilbert modular form of weight 2. This defines a 2-form \(\omega_f \) by

\[
\omega_f = (2\pi i)^2 f_j(z) dz_1 \wedge dz_2 \quad \text{on} \quad \Gamma_j \backslash \mathbb{H}^2.
\]

Lemma

\[
F^2_{\mathbb{H}^2}(X_\Gamma, \mathbb{C}) = \{ \omega_f : f \in S_2 \}
\]

Let \(\varepsilon_1 = \left(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, 1 \right), \varepsilon_2 = (1, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \) acts on \(\mathbb{H}^\pm \times \mathbb{H}^\pm \) by

\[
\varepsilon_1 : (z_1, z_2) \mapsto (\overline{z}_1, z_2), \quad \varepsilon_1 : (z_1, z_2) \mapsto (z_1, \overline{z}_2)
\]
Pure Hodge Structure

Let \(f = (\ldots, f_j, \ldots) \) be Hilbert modular form of weight 2. This defines a 2-form \(\omega_f \) by

\[
\omega_f = (2\pi i)^2 f_j(z)dz_1 \wedge dz_2 \quad \text{on} \quad \Gamma_j \backslash \mathbb{H}^2.
\]

Lemma

\[
F^2 \mathbb{H}^2(X_\Gamma, \mathbb{C}) = \{ \omega_f : f \in S_2 \}
\]

Let \(\varepsilon_1 = \left(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, 1 \right), \varepsilon_2 = (1, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \) acts on \(\mathbb{H}^\pm \times \mathbb{H}^\pm \) by

\[
\varepsilon_1 : (z_1, z_2) \mapsto (\overline{z}_1, z_2), \quad \varepsilon_2 : (z_1, z_2) \mapsto (z_1, \overline{z}_2)
\]
Pure Hodge Structure

We define

\[\eta_f = \varepsilon_2^* \omega_f \quad \eta_f' = \varepsilon_1^* \omega_f \]

Theorem

\(H^2(X_\Gamma, \mathbb{C}) \) is direct sum of

1. it is \((2, 0)\)-component \(\{ \omega_f : f \in \mathcal{S}_2 \} \)
2. it is \((0, 2)\)-component \(\{ \overline{\omega}_f : f \in \mathcal{S}_2 \} \)
3. it is \((1, 1)\)-component \(\{ \eta_f + \eta'_g : f, g \in \mathcal{S}_2 \} \oplus W \), where \(W \) is the space generated by the forms \(\omega_1, \omega_2 \) on all components of \(X_\Gamma \).
We define

\[\eta_f = \varepsilon_2^* \omega_f \quad \eta'_f = \varepsilon_1^* \omega_f \]

Theorem

\[H^2(X_\Gamma, \mathbb{C}) \] is direct sum of

1. it is \((2, 0)\)-component \(\{ \omega_f : f \in S_2 \} \)
2. it is \((0, 2)\)-component \(\{ \overline{\omega}_f : f \in S_2 \} \)
3. it is \((1, 1)\)-component \(\{ \eta_f + \eta'_g : f, g \in S_2 \} \oplus W \), where \(W \) is the space generated by the forms \(\omega_1, \omega_2 \) on all components of \(X_\Gamma \).
Pure Hodge Structure

We define

\[\eta_f = \varepsilon_2^* \omega_f \quad \eta'_f = \varepsilon_1^* \omega_f \]

Theorem

\(H^2(X_\Gamma, \mathbb{C}) \) is direct sum of

1. *it is* \((2, 0)\)- component \(\{ \omega_f : f \in S_2 \} \)
2. *it is* \((0, 2)\)- component \(\{ \overline{\omega}_f : f \in S_2 \} \)
3. *it is* \((1, 1)\)-component \(\{ \eta_f + \eta'_g : f, g \in S_2 \} \oplus W \), where \(W \) is the space generated by the forms \(\omega_1, \omega_2 \) on all components of \(X_\Gamma \).
Cuspidal Cohomology

Definition

$H^2_{cusp}(X_\Gamma, \mathbb{C})$ is the orthogonal complement of W in $H^2(X_\Gamma, \mathbb{C})$.
Hecke ring

Let

\[B = G(\mathbb{A}_\mathbb{Q}) \cap \left(G(\mathbb{R})^0 \times \prod_{\nu \in S_f} GL_2(O_{\mathcal{F}_\nu}) \right) \]

and

\[R = G(\mathbb{R})^0 \times K_0 \]

Definition

Let \(H_K \) be the algebra over \(\mathbb{Q} \) generated by

\[T(m) = \sum_b RbR \quad \text{where} \quad \det(b)O_{\mathcal{F}} = m. \]

where \(m \) is an integral ideal.
Hecke ring

Let

\[B = G(\mathbb{A}_\mathbb{Q}) \cap \left(G(\mathbb{R})^0 \times \prod_{\nu \in S_f} GL_2(\mathcal{O}_{F_\nu}) \right) \]

and

\[R = G(\mathbb{R})^0 \times K_0 \]

Definition

Let \(H_K \) be the algebra over \(\mathbb{Q} \) generated by

\[T(m) = \sum_b RbR \quad \text{where} \quad \det(b)\mathcal{O}_F = m. \]

where \(m \) is an integral ideal.
Hecke ring

Let

\[B = G(\mathbb{A}_\mathbb{Q}) \cap \left(G(\mathbb{R})^0 \times \prod_{\nu \in S_f} \text{GL}_2(\mathcal{O}_{\mathcal{F}_\nu}) \right) \]

and

\[R = G(\mathbb{R})^0 \times K_0 \]

Definition

Let \(H_K \) be the algebra over \(\mathbb{Q} \) generated by

\[T(m) = \sum_{b} RbR \quad \text{where} \quad \text{det}(b)\mathcal{O}_{\mathcal{F}} = m. \]

where \(m \) is an integral ideal.
The action of Hecke operators on Modular Forms

Note: There is a version of action of Hecke operators on Modular forms, we are going to use this fact that S_k, i.e. the space of cusp forms has basis of of eigenforms for all Hecke operators and **Multiplicity one principle**, i.e. two eigenforms with same eigenvalue are multiple of each other.
The action of Hecke operators on Cohomology

We have

$$\mathbb{H}^2(X_{K_0}, \mathbb{Q}) = \mathbb{H}^2_{cusp}(X_{K_0}, \mathbb{Q}) \oplus (\mathbb{Q}(-1))^{h^+}.$$

where $\mathbb{Q}(-1)$ is the rational hodge structure of type $(1, 1)$ of $(2\pi i)\mathbb{Q}$.

Recall that $\mathbb{H}^2_{cusp}(X_{K_0}, \mathbb{Q})$ has Hodge decomposition where each term is isomorphic with a space of cusp forms.

Therefore, H_K acts on $\mathbb{H}^2_{cusp}(X_{\Gamma}, \mathbb{C})$ which is compatible with action on modular forms.
The action of Hecke operators on Cohomology

We have

\[H^2(X_{K_0}, \mathbb{Q}) = H^2_{cusp}(X_{K_0}, \mathbb{Q}) \oplus (\mathbb{Q}(-1))^h. \]

where \(\mathbb{Q}(-1) \) is the rational hodge structure of type \((1, 1)\) of \((2\pi i)\mathbb{Q}\).

Recall that \(H^2_{cusp}(X_{K_0}, \mathbb{Q}) \) has Hodge decomposition where each term is isomorphic with a space of cusp forms.

Therefore, \(H_K \) acts on \(H^2_{cusp}(X_{\Gamma}, \mathbb{C}) \) which is compatible with action on modular forms.
The action of Hecke operators on Cohomology

We have

$$\mathbb{H}^2(X_{K_0}, \mathbb{Q}) = \mathbb{H}^2_{cusp}(X_{K_0}, \mathbb{Q}) \oplus (\mathbb{Q}(-1))^h.$$

where $\mathbb{Q}(-1)$ is the rational hodge structure of type $(1, 1)$ of $(2\pi i)\mathbb{Q}$.

Recall that $\mathbb{H}^2_{cusp}(X_{K_0}, \mathbb{Q})$ has Hodge decomposition where each term is isomorphic with a space of cusp forms.

Therefore, H_K acts on $\mathbb{H}^2_{cusp}(X_\Gamma, \mathbb{C})$ which is compatible with action on modular forms.
The action of Hecke operators on $\mathbb{H}^2(X_{\Gamma}, \mathbb{C})$

Theorem

For any $T \in H_K$ we can attach T^*, an endomorphism of $\mathbb{H}^2(X_{K_0}, \mathbb{Q})$ such that preserves the Hodge decomposition, and

$$\int_{T^*c} \omega = \int_c T^*\omega \quad \forall c \in H_2(X'_{K_0}, \mathbb{Q}), \quad \omega \in H^2(X', \mathbb{Q})$$

where T^* is its dual endomorphism on $\mathbb{H}_2(X_{K_0}, \mathbb{Q})$. Also,

$$\langle \omega_1, T^*\omega_2 \rangle = \langle T^*\omega_1, \omega_2 \rangle$$
Decomposition of H_K

Proposition

H_K is a semi-simple finite dimensional algebra over \mathbb{Q}, and S_2 is an $H_K \otimes \mathbb{C}$-module of rank one. Moreover,

$$H_K = \bigoplus k_i$$

where k_i is finite field extension of \mathbb{Q}.

We can choose set of primitive idempotents $\{e_1, e_2, \ldots, e_n\}$ such that $k_i = e_i H_K$.
Decomposition of H_K

Proposition

H_K is a semi-simple finite dimensional algebra over \mathbb{Q}, and S_2 is an $H_K \otimes \mathbb{C}$-module of rank one. Moreover,

$$H_K = \bigoplus k_i$$

where k_i is finite field extension of \mathbb{Q}.

We can choose set of primitive idempotents $\{ e_1, e_2, \ldots, e_n \}$ such that $k_i = e_i H_K$.
Embedding of k_i

If f is normalized eigenform f in $e_i S_2$, then there is embedding

$$\sigma_i : k_i \longrightarrow \mathbb{C}$$

$$t(f) = \sigma_i(t)f$$

therefore, $k_i \otimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{\sigma} \mathbb{C}$.

Using above embedding

$$e_i S_2 = \bigoplus_{\sigma} \mathbb{C}f^\sigma$$

where the f^σ are the normalized eigenforms with $t(f^\sigma) = \sigma(t)f^\sigma$.

- **Remark:** f^σ is called companion of f.

Shervin Shahrokhi Tehrani
Hilbert modular forms and cohomology
Embedding of k_i

If f is normalized eigenform f in $e_i S_2$, then there is embedding

$$\sigma_i : k_i \rightarrow \mathbb{C}$$

$$t(f) = \sigma_i(t)f$$

therefore, $k_i \otimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{\sigma} \mathbb{C}.$

Using above embedding

$$e_i S_2 = \bigoplus_{\sigma} \mathbb{C}f^\sigma$$

where the f^σ are the normalized eigenforms with $t(f^\sigma) = \sigma(t)f^\sigma$.

- *Remark:* f^σ is called companion of f.
Embedding of k_i

If f is normalized eigenform f in $e_i S_2$, then there is embedding

$$\sigma_i : k_i \rightarrow \mathbb{C}$$

$$t(f) = \sigma_i(t)f$$

therefore, $k_i \bigotimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{\sigma} \mathbb{C}$. Using above embedding

$$e_i S_2 = \bigoplus_{\sigma} \mathbb{C}f^\sigma$$

where the f^σ are the normalized eigenforms with $t(f^\sigma) = \sigma(t)f^\sigma$.

- **Remark:** f^σ is called companion of f.
Decomposition of $\mathbb{H}^2_{cusp}(X_{K_0}, \mathbb{Q})$

Let $F = \{f_1, \ldots, f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e. $f_i \in e_i S_2$).

If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f, \mathbb{Q}) := e_f \mathbb{H}^2_{cusp}(X, \mathbb{Q}).$$

Theorem

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{cusp}(X, \mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X, \mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f, \mathbb{Q}).$$
Decomposition of $\mathbb{H}^2_{cusp}(X_{K_0}, \mathbb{Q})$

Let $F = \{f_1, ..., fn\}$ be a set of normalized eigenforms, one for each k_i (i.e $f_i \in e_i S_2$).
If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f, \mathbb{Q}) := e_f \mathbb{H}^2_{cusp}(X, \mathbb{Q}).$$

Theorem

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{cusp}(X, \mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X, \mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f, \mathbb{Q}).$$
Decomposition of $\mathbb{H}_cusp^2(X_{K_0}, \mathbb{Q})$

Let $F = \{f_1, ..., f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e. $f_i \in e_i S_2$).

If $f \in e_i S_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f, \mathbb{Q}) := e_f \mathbb{H}^2_{cusp}(X, \mathbb{Q}).$$

Theorem

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{cusp}(X, \mathbb{Q})$ as

$$\mathbb{H}^2_{cusp}(X, \mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f, \mathbb{Q})$$
Decomposition of $\mathbb{H}^2_{\text{cusp}}(X_{K_0}, \mathbb{Q})$

Let $F = \{f_1, \ldots, f_n\}$ be a set of normalized eigenforms, one for each k_i (i.e $f_i \in e_iS_2$).

If $f \in e_iS_2$ the we shall write $e_i = e_f$ and $k_i = k_f$.

We let

$$H^2(M_f, \mathbb{Q}) := e_f \mathbb{H}^2_{\text{cusp}}(X, \mathbb{Q}).$$

Theorem

There is a decomposition of polarized Hodge structure on $\mathbb{H}^2_{\text{cusp}}(X, \mathbb{Q})$ as

$$\mathbb{H}^2_{\text{cusp}}(X, \mathbb{Q}) = \bigoplus_{f \in F} H^2(M_f, \mathbb{Q}).$$
Further Decomposition of $H^2(M_f, \mathbb{Q})$

Let consider $\varepsilon_1, \varepsilon_2$ as involutions on $\mathbb{H}^2(X, \mathbb{Q})$.

Because the actions of $\varepsilon_1, \varepsilon_2$ commutes with Hecke operators, therefore,

$$H^2(M_f, \mathbb{Q}) = \bigoplus_{s, s' \in \{+, -\}} H^2(M_f, \mathbb{Q})_{ss'}$$

where $\varepsilon_1, \varepsilon_2$ act on $H^2(M_f, \mathbb{Q})_{ss'}$ as $s.Id$ and $s'.Id$ respectively.

Proposition

For every normalized eigenform $f \in S_2$ we have

$$\text{rank}_{k_f} H^2(M_f, \mathbb{Q})_{ss'} = 1.$$
Further Decomposition of $H^2(M_f, \mathbb{Q})$

Let consider $\varepsilon_1, \varepsilon_2$ as involutions on $\mathbb{H}^2(X, \mathbb{Q})$. Because the actions of $\varepsilon_1, \varepsilon_2$ commutes with Hecke operators, therefore,

$$H^2(M_f, \mathbb{Q}) = \bigoplus_{s, s' \in \{+, -\}} H^2(M_f, \mathbb{Q})_{ss'}$$

where $\varepsilon_1, \varepsilon_2$ act on $H^2(M_f, \mathbb{Q})_{ss'}$ as $s.Id$ and $s'.Id$ respectively.

Proposition

For every normalized eigenform $f \in S_2$ we have

$$\text{rank}_{k_f} H^2(M_f, \mathbb{Q})_{ss'} = 1.$$
Further Decomposition of $H^2(M_f, \mathbb{Q})$

Let consider $\varepsilon_1, \varepsilon_2$ as involutions on $\mathbb{H}^2(X, \mathbb{Q})$. Because the actions of $\varepsilon_1, \varepsilon_2$ commutes with Hecke operators, therefore,

$$H^2(M_f, \mathbb{Q}) = \bigoplus_{s, s' \in \{+,-\}} H^2(M_f, \mathbb{Q})_{ss'}$$

where $\varepsilon_1, \varepsilon_2$ act on $H^2(M_f, \mathbb{Q})_{ss'}$ as $s.Id$ and $s'.Id$ respectively.

Proposition

For every normalized eigenform $f \in S_2$ we have

$$\text{rank}_{k_f} H^2(M_f, \mathbb{Q})_{ss'} = 1.$$
Thanks