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Notation

The derived group G der, the adjoint group G ad and the centre Z of a
reductive algebraic group G fit into exact sequences:

1 −→ G der −→ G
ν−→ T −→ 1

1 −→ Z −→ G
ad−→ G ad −→ 1 .

The connected component of the identity of G (R) with respect to the
real topology is denoted G (R)+.

We identify algebraic groups with the functors they define. For
example, the restriction of scalars S = ResC\RGm is defined by

S = (−⊗R C)× .

Base-change is denoted by a subscript: VR = V ⊗Q R.
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Shimura Datum

Definition
A Shimura datum is a pair (G ,X ) consisting of a reductive algebraic
group G over Q and a G (R)-conjugacy class X of homomorphisms
h : S→ GR satisfying, for every h ∈ X :

· (SV1) Ad ◦ h : S→ GL(Lie(GR)) defines a Hodge structure on
Lie(GR) of type {(−1, 1), (0, 0), (1,−1)};

· (SV2) ad h(i) is a Cartan involution on G ad;

· (SV3) G ad has no Q-factor on which the projection of h is trivial.

These axioms ensure that X = G (R)/K∞, where K∞ is the stabilizer of
some h ∈ X , is a finite disjoint union of hermitian symmetric domains.



The Weight Homomorphism

Recall, the inclusion R ⊂ C defines a morphism

Gm/R = (−⊗R R)× → S = (−⊗R C)× .

For every h : S→ GR, (SV1) implies that h(R×) ∈ Z (R) since h(R×)
acts (trivially) on Lie(G )C through the characters z/z , 1, z/z and
ker Ad = Z . Therefore, h|Gm = h′|Gm for all h, h′ ∈ X since h and h′

are conjugate.

Definition
The homomorphism wX = h−1|Gm : Gm → GR, for any h ∈ X , is the
weight homomorphism of the Shimura datum (G ,X ).



Theorem of Baily and Borel

Theorem
Let D(Γ) = Γ\D be the quotient of a hermitian symmetric domain by a
torsion free arithmetic subgroup Γ of Hol(D)+. Then D(Γ) has a
canonical realization as a zariski-open subset of a projective algebraic
variety D(Γ)∗. In particular, it has a canonical structure as a
quasi-projective complex algebraic variety.

Essentially, there are enough automorphic forms on D(Γ) which allow
us to embed it in projective space.



Double Coset Space of a Shimura Datum

For every compact open subgroup K ⊂ G (Af ), let

Sh(G ,X )K = G (Q)\X × G (Af )/K .

In fact

Sh(G ,X )K = G (Q)+\X + × G (Af )/K =
∐
g∈C

Γg\X +

where

◦ G (Q)+ = ad−1(G ad(R)+) ∩ G (Q)

◦ C is a set of representatives of G (Q)+\G (Af )/K

◦ Γg is the image in G ad(R)+ of gKg−1 ∩ G (Q)+

◦ X + is a connected component of X .



Shimura Varieties

Definition
The Shimura variety associated to the Shimura datum (G ,X ) is the
inverse system

Sh(G ,X ) = lim←−
K

Sh(G ,X )K .

The theorem of Baily and Borel implies that Sh(G ,X )K is an algebraic
variety (when K is sufficiently small so that the arithmetic subgroups Γg

of G ad(R)+ are torsion free). Moreover, for K ⊂ K ′, the natural map

Sh(G ,X )K → Sh(G ,X )K ′

is algebraic. A Shimura variety is actually an inverse limit of complex
quasi-projective varieties.



Connected Components

Theorem
Let (G ,X ) be a Shimura datum with such that G der is simply
connected. Then, for K ∈ G (Af ) sufficiently small, there is an
isomorphism

π0(Sh(G ,X )K) ∼= T (Q)†\T (Af )/ν(K ) .

where

T (R)† = Im(Z (R)→ T (R)) and T (Q)† = T (Q) ∩ T (R)† .



The G (Af )-action on Sh(G ,X )

Each g ∈ G (Af ) defines a map, for every K , of algebraic varieties

g : Sh(G ,X )K → Sh(G ,X )g−1Kg : [x , h] 7→ [x , hg ]

and so there is a right action of G (Af ) on Sh(G ,X ).

Furthermore, since there is an action of G (Af ) on the entire inverse
system, we have an action on the `-adic cohomology

H i(Sh(G ,X ),Q`) := lim−→
K

H i
ét(Sh(G ,X )K ,Q`) .

The variety Sh(G ,X ) has a model over a number field and so the
cohomology has a Galois action as well. Thus the cohomology of
Shimura varieties is a natural setting in which to compare automorphic
and Galois representations as in the Langlands correspondence.



Constructing h’s via R-algebra homomorphisms

How can we write down a homomorphism of affine group schemes
h : S→ GR?

It’s easy if G = (−⊗Q A)× for some algebra A over Q such that we
can define a homomorphism of R-algebras h : C ↪→ AR.

For such a G and h, we can define

h : S = (−⊗R C)× → GR = (−⊗R AR)× .

The magic here is that we can define an h simply by choosing the
image of i in AR. The R-linearity of h and the functoriality of (−)×

take care of everything else.



Modular Curves

Consider GL2 /R = (−⊗R M2(R))×. Choose some g ∈ M2(R) such
that g 2 = −1 and define a homomorphism of R-algebras

h : C→ M2(R) : i 7→ g .

Then h defines a morphism of algebraic groups

h : S→ GL2 /R .

To determine the stabilizer of h, we need only consider the centralizer

of g . For g =

[
0 −1
1 0

]
, we have

CentGL2(R)(g) = R× SO2(R)

and the conjugacy class of h is X = C\R.



Modular Curves (continued)

Let N =
∏
p

pnp and define the compact open subgroup

K (N) =
∏
p|N

(1 + pnpM2(Zp))
∏
p -N

GL2(Zp) .

The modular curve Y1(N) is a connected component of
Sh(GL2,X )K (N).

Further, the group of connected components is

π0(Sh(GL2,X )K (N)) = Q×\A×f /det(K (N)) = (Z/NZ)× .



Quaternionic Shimura Curves

Let B be an indefinite quaternion algebra over Q (ie. BR = M2(R))
and let G = (−⊗Q B)×.

The previous construction applies and although the hermitian
symmetric domain is the same as for GL2, the Shimura varieties are
very different since the quotients are by arithmetic subgroups of B×

(which are quite different than those of GL2(R)).



Symplectic Groups

Let (V , ψ) be a symplectic space (ie. V is a vector space over Q
equipped with an alternating bilinear form ψ). Define the algebraic
group GSp(V , ψ) over Q by

GSp(V , ψ)(R) =

{
g ∈ GL(VR) :

ψ(gu, gv) = ν(g)ψ(u, v)
with ν(g) ∈ R× for all u, v ∈ VR

}
for all Q-algebras R .

Let J ∈ End(VR) such that J2 = −1, ψ(Ju, Jv) = ψ(u, v) for all
u, v ∈ VR and ψ(u, Jv) is positive definite.

Define a map of R-algebras

h : C→ End(VR) : i 7→ J

and note that ψ((a + Jb)u, (a + Jb)v) = (a2 + b2)ψ(u, v) for all
a, b ∈ R.



Symplectic Groups (continued)

The map of R-algebras defines an algebraic map

h : S→ GSp(V , ψ)R

and a Shimura datum (GSp(V , ψ),X ).

Each conjugate of J by an element of GSpin(V , ψ)(R) defines a
complex structure on VR. In fact,

X =

{
complex structures J onVR such that ψ(Ju, Jv) = ψ(u, v)

and ψ(u, Jv) is either positive or negative definite

}
which is a hermitian symmetric domain of complex dimension
g(g + 1)/2 where 2g is the dimension of V .

In fact, a choice of a symplectic basis of V implies X + = Hg where

Hg = {Z ∈ Mg(C) : Z t = Z and im(Z ) > 0}

is the Siegel space of genus g .



Siegel Modular Varieties

Definition
The Siegel modular variety attached to (V , ψ) is the Shimura variety
Sh(GSp(V , ψ),X ).

The Siegel modular varieties are important because they are moduli
spaces of abelian varieties with extra structure.
In particular, for every K ⊂ G (Af ), consider the set MK of triples
(A,±s, ηK ) where

◦ A is an abelian variety over C;

◦ s is an alternating form on H1(A,Q) such that s or −s is a
polarization on H1(A,Q);

◦ η is an isomorphism V (Af )→ Vf (A) sending ψ to a multiple of s
by an element of A×f .

Theorem
For every compact open subgroup K ⊂ G (Af ), there is a bijection

Sh(GSp(V , ψ),X )K = MK/ ∼= .



Orthogonal Groups

We want to study Shimura varieties defined by orthogonal groups
however these are not simply connected. The spin groups are the
simply connected covers of orthogonal groups.

Let (V , q) be a rational quadratic space of signature (p, 2). Denote the
associated bilinear form by 〈 , 〉 so that q(x) = 1

2〈x , x〉. The Clifford
algebra of (V , q) is

Cl(V , q) =
⊕
n≥0

V⊗n/(v ⊗ v − q(v) · 1; v ∈ V )

and has a Z/2-grading, Cl(V , q) = Cl0(V , q)⊕ Cl1(V , q), according to
the parity of the tensors. Note V ↪→ Cl1(V , q).

There is an anti-involution on Cl(V , q) defined by

(v1 ⊗ · · · ⊗ vr)
∗ = (−1)rvr ⊗ · · · ⊗ v1

This defines a norm, called the spinor norm, on Cl(V , q), Nm(x) = x∗x .



Orthogonal Groups (continued)

Define the algebraic group GSpin(V , q) over Q by

GSpin(V , q)(R) = {x ∈ Cl0(V , q))⊗R : Nm(x) ∈ R× and xVx∗ ⊂ V }

for any Q-algebra R .

There is an natural map

ρ : GSpin(V , q)→ GO(V , q) : x 7→ (v 7→ α(x) · v · x∗)

where α(v1 ⊗ · · · ⊗ vr) = (−1)rv1 ⊗ · · · ⊗ vr . (It is an easy exercise to
see that ρ(x) preserves q up to a scalar). The point is that the derived
group Spin(V , q) is simply connected.



Orthogonal Groups (continued)

The condition on the signature of (V , q) implies that there are two
orthogonal vectors e1, e2 ∈ VR with q(e1) = q(e2) = −1.

Let j = e1e2 ∈ Cl0(V , q)R and we see that j2 = −1, j∗ = −j and
a + jb ∈ GSpin(V , q) for all a, b ∈ R. Notice that the order matters:
e1e2 6= e2e1 since Cl(V , q) is not commutative.

Finally, we have our homomorphism of R-algebras with (anti-)involution

h : C→ Cl0(V , q)R : i 7→ j

which defines an algebraic map

h : S→ GSpin(V , q)R .



Orthogonal Groups (continued)

The elements e1, e2 ∈ VR (and the order of their indices) define an
oriented negative-definite 2-plane in VR. Elements of GSpin(V , q)(R)
act transitively on

X = {oriented negative-definite 2-planes in VR}

which is a hermitian symmetric domain of complex dimension p.


