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Let k be a field that is finitely generated over

its prime field

eg. k is an algebraic number field or Fp(T1, · · · , Tr).

Let k denote a separable algebraic closure of

k.

Let X denote a smooth projective scheme over

k.

Set X = X ×k k.

Set for ` 6= p = char k,

Hi
`(X) = Hi(X ét,Q`).
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The Tate twist is defined as follows:

Define

Z`(1) = lim µ`n

with the inverse limit defined by the `-th power

map

µ`n+1 ↪→ µ`n

and with the natural G action on `-power roots

of unity.

It is H2,`(P1).

Set for n > 0

Z`(n) = Z`(1)⊗n

and for n < 0, set

Z`(n) = Hom(Z`(−n),Z`).
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Finally, set

Q`(n) = Z`(n) ⊗ Q`.

For any Q` vector space V`, define

V`(n) = V ⊗ Q`(n)

with the accompanying Galois action.

For 0 ≤ j ≤ dimX,

V
j
` (X) = H

2j
` (X)(j)

where the round brackets denote the Tate twist.
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Let Zj(X, k) denote the Q-span of algebraic

subvarieties of codimension j on X which are

defined over k.

Denote by A
j
`(X, k) the image of Zj(X, k) un-

der the `-adic cycle class map.

The Galois group G acts on V
j
` (X) and the

first Tate conjecture is that the map

Q` ⊗ Zj(X, k) −→ V
j
` (X)G

induced by the `-adic cycle class map, is sur-

jective.
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Equivalently, one may ask that the map

Q` ⊗ A
j
`(X, k) −→ V

j
` (X)G

induced by inclusion, is an isomorphism.

Tate made this conjecture in 1965.

Let us denote this conjecture by TCj(X, k).

The Galois action on both sides is compatible

so it suffices to prove the conjecture for large

k.
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It is conjectured that the kernel of the `-adic

cycle class map is independent of `. That is,

the notion of `-adic homological equivalence is

independent of `.

This is known to be true in characteristic zero.

Indeed, if k ⊂ C, Then there is a comparison

theorem that gives an isomorphism

H∗B(X(C),Q(m))⊗ Q` ' H∗et(X ⊗ C,Q`(m))

between the Betti cohomology and the etale

cohomology.



7

Here, Q(m) is the Hodge structure that is of

rank 1, of pure bidegree (−m,−m) and as a

vector space is (2πi)mQ. It is the Betti ana-

logue of the Tate twist.

The space

H∗et(X ⊗ C,Q`(m))

is isomorphic to

H∗et(X ⊗ k,Q`(m)).

Moreover, the cycle class map c` factors through

cB.
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Consider the case j = 1, namely the surjectiv-

ity of

Q` ⊗ Z1(X, k) −→ V 1
` (X)G.

For general X, this case is still open. In partic-

ular, an analogue of Lefschetz’s (1,1) theorem

is not known.

Faltings proved the j = 1 case for Abelian va-

rieties over number fields.

We shall discuss this problem in the context of

Hilbert modular surfaces.
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In general, studying the Tate conjecture for

Shimura varieties is interesting because there is

a natural supply of algebraic cycles (for exam-

ple Shimura subvarieties) and there is a large

algebra of correspondences (Hecke) that can

be used to decompose the cohomology and

relate it to automorphic forms.

We can try to produce algebraic cycles by day

and use properties of automorphic forms to

bound the dimension of Tate cycles by night.

If we are lucky, we will find that the two are

equal and that proves the Tate conjecture.



Let F be a real quadratic field and denote by

OF its ring of integers. The group SL2(OF )

embeds as a discrete subgroup of SL2(R) ×
SL2(R) and thus, acts on two copies of the

upper half plane h×h by fractional linear trans-

formations. We also consider congruence sub-

groups Γ of SL2(OF ). The quotient

YΓ = Γ\(h× h)

is an open Hilbert modular surface.



Let G denote the group ResF/QGL2/F . It is an

algebraic group defined over Q with the prop-

erty that for any Q-algebra A, we have

G(A) = GL2(A⊗Q F ).

It is useful to work adelically: denote by A =

AQ the ring of adeles over Q. Denote by Af
the subring of finite adeles.

From a Γ as above, we can define a compact

open subgroup of G(Af).

Given a compact open subgroup Kf of G(Af)
and K∞ the maximal compact open subgroup

of G(R), set K = KfK∞ and consider

YK = G(Q)\G(A)/K.

In general, this is not connected, but it is de-

fined over Q. The connected components are

permuted by Gal(Q/Q) in a way that is de-

scribed by Shimura’s reciprocity law.



In the case that Γ = SL2(OF ), the number

of cusps is equal to the class number hF of F .

Adding the cusps, gives a singular variety which

we denote XΓ or XK. It is the Baily-Borel com-

pactification and has the structure of a quasi-

projective variety. It has a model defined over

Q.

Following Hirzebruch, there is a canonical smooth

resolution ZΓ or ZK, also defined over Q.

If K is sufficiently “small”, this resolution in-

troduces cycles at the cusps, which from the

point of view of the Tate conjecture are spu-

rious.



Using intersection cohomology, we can work
with the Baily-Borel compactification XΓ and
thus avoid consideration of the cuspidal cycles.

Indeed, we have a Galois equivariant decom-
position

H2
` (Z) = IH2

` (X) ⊕ ⊕Q`(−1).

(From now on, we suppress the K or Γ from
the notation, unless it is explicitly required.)

The algebra of Hecke correspondences T acts
on X and on the cohomology. It decomposes
the cohomology into components indexed by
certain automorphic representations π of GL2/F :

IH2
` (X) = ⊕πIH2

` (π).

The notation IH2
` (π) simply signfies the π com-

ponent.

This decomposition commutes with the action
of Gal(Q/Q).



Inside IH2
` (X), there is a two-dimensional sub-

space coming from the “volume forms”. These

correspond to line bundles on X and the cor-

responding automorphic forms are Eisenstein

series. The complement corresponds to the

contribution from cusp forms.

We can restrict attention to the cuspidal part.



Denote by Eπ the field of Fourier coefficients

of π.

Each piece IH2
` (π) is 4 dimensional over Eπ ⊗

Q`.

Oda conjectures that there is an Abelian va-

riety Aπ defined over F of dimension [Eπ : Q]

such that

IH2
` (π) = H1

` (Aπ) ⊗ H1
` (A

σ
π)

where 1 6= σ ∈ Gal(F/Q).

This conjecture is known in the case π is a

base change from Q (Oda) or if π has complex

multiplication (M and Ramakrishnan).

If the Abelian variety Aπ exists, the Tate con-

jecture would follow (from the known case of

divisors on Abelian varieties (due to Faltings)).

In the CM case, the existence is deduced from

the Tate conjecture.



Harder, Langlands, and Rapaport showed that

as Gal(Q/F )-modules, there is a factorization

IH2
` (π) = V`(π) ⊗ V`(π

σ)

with each factor being 2-dimensional. This

would follow from Oda’s conjecture.

A key step in the proof of the factorization

uses Tate’s theorem, namely that

H2(Gal(Q/F ),Q×` ) = 0.

HLR proved that if π does not have complex

multiplication, then each of these factors are

irreducible and remain irreducible as H-modules

for any open subgroup H of Gal(Q/F ).

Using this, HLR computed the dimension of

the space Ta(π) of Tate cycles in each IH2
` (π).



In particular, suppose that π does not have

complex multiplication (that is, is not the auto-

morphic induction of a representation of GL1).

Then,

Ta(π) = 0

if π is not the lift of a representation of GL2Q.

If it is a lift, then

dim Ta(π) = 1.

If π does have complex multiplication, then

dim Ta(π) = 2.



Some cycles can be constructed by embedding

the modular curve into the Hilbert modular sur-

face. We have

SL2(Z) ↪→ SL2(OF )

and

h ↪→ h × h

giving rise to

SL2(Z)\h ↪→ SL2(OF )\(h× h).

More generally, we can work with a congruence

subgroup. The projection of these cycles to

each π component produces a Tate class in

each IH2(π) for which π is a lift.

Embedding the modular curve inside the Hilbert

modular surface is the geometric analogue of

base change.



In general, we do not know the geometric mean-

ing of functorial lifts (or drops) of automorphic

forms.

The Jacquet-Langlands correspondence between

forms on GL(2) and a quaternion division alge-

bra over Q is known to be geometric because

of Faltings. However, there is no explicit con-

struction of a cycle.

Later, we shall see that we do not know the ge-

ometric analogue of “simultaneous base change”.

Does the Saito-Kurokawa lift have a geometric

meaning? The Tate conjecture predicts that

it should.



Returning to Hilbert modular surfaces, this leaves

the question of the extra cycles in the complex

multiplication case. This case was settled by

Klingenberg and independently by M and Ra-

makrishnan.

Both papers appeared in Inventiones, volume

89, 1987.

We shall describe the latter approach.

It does not proceed by producing new cycles:

it is still an open problem to find these cycles

explicitly.

Rather, it shows that the Tate cycles match

the Hodge cycles and appeals to Lefschetz.



π is of complex multiplication type if and only

if there an imaginary quadratic extension M

(say) of F and a quadratic character χ (say)

of F that defines M , such that

π ' π ⊗ χ.



We consider the twisting correspondence Rχ

introduced and studied in the elliptic case by

Shimura.

In the case of other Shimura curves, it was

studied by Hida.

It was used by Momose and Ribet in their proof

of the Tate conjecture for Jacobians of mod-

ular curves.

In the case of curves, the Rχ can be used to

produce cycles on the Jacobian.

We use it very differently.



On cohomology, Rχ has the effect of twisting

each π by χ.

In particular, if π ' π ⊗ χ, it preserves the π

component.

This operator also acts on the Betti and deR-

ham cohomology. In particular, analyzing its

effect on the deRham cohomology and the

Hodge components, produces a period rela-

tion.

This period relation can be used to construct a

(1,1) cohomology class with rational periods.

Such a class is rational, and so is a Hodge

cycle.



More precisely, the operator Rχ (which is de-

fined as a twisted linear combination of Hecke

operators) acts on IH2(π). This is a 4 di-

mensional space over the field Eπ of Fourier

coefficients.

The Hodge structure has a one dimensional

(2,0) and (0,2) piece and a two dimensional

(1,1) piece. These can be described explicitly

as follows.

Inside the space of π, there is a classical Hilbert

modular form f(z, w) and the (2,0) piece is

generated by ωf = f(z, w)dz ∧ dw.

The other pieces of the Hodge structure can be

obtained by applying certain non-holomorphic

involutions.



By an explicit calculation R(χ) acts as the

Gauss sum g(χ) on the (2,0) and the (0,2)

pieces, and as −g(χ) on the (1,1) piece.

On the other hand, R(χ) acts on the Betti

cohomology as well. Choosing a rational basis,

one gets four periods c±,± of ωf .

The matrix formed from these periods gives

the change of basis from the rational structure

to the de Rham structure.

Another explicit calculation shows that the ma-

trix of R(χ) with respect to the rational struc-

ture is an anti-diagonal matrix whose entries

are

g(χ)c++/c−−, g(χ)c+−/c−+,

g(χ)c−+/c+−, g(χ)c−−/c++.



This matrix has to have rational entries and so

this implies a period relation.

Using this, one constructs two (1,1) classes

with rational periods, in other words Hodge cy-

cles. This matches the dimension of the space

of Tate cycles.



Thus the strategy is to match Tate cycles with

Hodge cycles and this can be applied in greater

generality.

Working with D. Ramakrishnan to do this match-

ing of Tate cycles and Hodge cycles in the case

of Quaternionic Shimura varieties.

In particular, we get a proof of the Tate con-

jecture for quaternionic Shimura surfaces over

a real quadratic field.

It was proved by Lai if the quaternion algebra

comes from Q since in this case, one has a

supply of Hirzebruch-Zagier cycles and one can

follow the method of HLR.

This method will not work in general and one

has to rely on period relations.



Several other cases have been studied:

Unitary Shimura surfaces (Blasius, Rogawski)

Product of two Hilbert modular surfaces (M,

D. Prasad)

Product of two unitary Shimura surfaces (Knightly)



The second conjecture of Tate asserts that the

order of pole of the L-function L(IH2
` (X), s)

has a pole at s = 2 of order equal to the di-

mension of Tate cycles, i.e.

dim (IH2
` (X)(1))Gal(Q/Q).

More generally, if the L-function is viewed over

an extension M of Q, then

ords=2 L(IH2
` (X)/M , s) =

−dim (IH2
` (X)(1))Gal(Q/M).

Since the L-function is a product of L-functions

L(IH2(π), s), the conjecture can be studied at

this level.



Harder, Langlands and Rapaport showed that

if π does not have complex multiplication, then

the above conjecture holds for Abelian exten-

sions M of Q.

The case of π having complex multipication

was proved by Klingenberg and independently

by M and Ramakrishnan. In this case, one does

not need to restrict M to be Abelian over Q.

In fact, one gets poles (in some cases) over

dihedral extensions.



As an indication of our level of ignorance re-

garding cohomological conjectures about alge-

braic cycles, we give several examples of simple

cohomology constructions whose analogues are

not known for algebraic cycles. For lack of a

better name, we call these “exotic cycles”.



1) Complex multiplication cycles:

This is an old example (perhaps due to Harder?)

Let ψ denote an algebraic Hecke character of

weight 1 for an imaginary quadratic field F

(say). By class field theory, we may view it

as a homomorphism

ρψ,` : Gal(Q/F ) −→ Q×`
with the characteristic property that for almost

all primes p of F , the above homomorphism is

Frobp 7→ ψ(p).



ψ defines a cusp form f (say) of weight 2 for

GL2/Q. Indeed, f has Fourier expansion

f(z) =
∑
a
ψ(a) exp2πiN(a)z

where the sum is over integral ideals a of F .

If f is the conductor of ψ, then f is a form for

Γ0(N) where

N = dFNf

and dF is the absolute value of the discriminant

of F .



We can induce the representation ρψ,` to Q
and we get a 2-dimensional representation of

Gal(Q/Q).

The `-adic representation associated to f is the

above induced representation.

f contributes a subspace H1(f) to the coho-

mology H1(X) of the modular curve X =

X0(N).

We can consider ψ2. This is a Hecke character

of weight 2 and corresponds to a cusp form g

(say) of weight 3.

g contributes a subspace H2(g) to the coho-

mology H2(S) of the universal elliptic curve

over X.



We have a natural map defined over Q:

H1(f)⊗H1(f) −→ H2(g)

and hence also a map

H1(X)⊗ H1(X) −→ H2(S)

and thus a Tate class in

H2(X ×X) ⊗ H2(S) ⊆ H4(X × X × S).

We don’t know whether this is algebraic.

The squaring operation on Hecke characters is

not understood algebraically.



2) Base change cycles

Let F be a real quadratic field. Let XK be as

above.

The non-trivial cohomology of XK occurs in

dimension 2. We have

IH2(XK) = ⊕Π IH2(Π).

Here, the sum is over certain automorphic rep-

resentations Π of GL2(FA).



One way of producing Π that appear in the

above sum is to begin with a π that appears

in the cohomology of the modular curve.

Starting with such a π, one can consider Π =

π|F (the base change of π to F ).

Then, one shows that

H2(Π) ' H1(π)⊗H1(π)

as Gal(Q/F )-modules.



Now, consider two such real quadratic fields

F1 and F2 (say). We have two corresponding

surfaces X1 and X2 (suppresing the compact

subgroups for now).

Let π be as above and denote by Π1 and Π2

the base change of π to F1 and F2 respectively.

Then, as Gal(Q/F1F2)-modules, we have

H2(Π1)⊗H2(Π2) ' H1(π)⊗4.

If π is a “non-CM” form, as a Galois module,

we may view V = H1(π) as the standard two

dimensional representation of GL2.



It is easy to see that in this case, the space

of invariants in V ⊗4 is two dimensional. One

invariant comes from

∧2V ⊗ ∧2V

and the other is a summand of

Sym2V ⊗ Sym2V.

The first invariant is easily accounted for as

coming from a product of a cycle on X1 and

on X2. But the second invariant is a new cycle.

This construction (which can be made quite

generally) is due to KM and D. Prasad.



3) Weil cycles:

Let A be an Abelian variety defined over k and

let E be a subfield of End(A)⊗Q in which 1 ∈ E
acts as the identity endomorphism. Suppose

that E acts k-rationally. Let

V` = H1
` (A)

and suppose that

r = dimE⊗Q`
V`.

Consider

WE(V`) = ∧rE⊗Q`
V`.

This is a one dimensional E ⊗Q`- module.



The action of Gal(k/k) is through the determi-

nant and apriori, this takes values in (E⊗Q`)
×.

The space WE(V`) consists of Tate classes if

and only if the determinant takes values in Q×` .

This is the `-adic analogue of Weil’s construc-

tion of exceptional Hodge classes.



Tate’s conjecture on L-functions raises a com-
patibility question:

We may consider extension K/F and the base
change X/K of X to K.

Tate’s conjecture says that

ords=j+1 L2j(X/K, s) = −dim A
j
`(X,K)

where the right hand side denotes the Q-vector
space spanned by codimension j-cycles modulo
homological equivalence, that have a represen-
tative defined over K.

Since the right hand side stabilizes for K suf-
ficiently large, compatibility would require the
following to be true:

supK ords=j+1 L2j(X/K, s) � 1.

This is not known. It might be approachable
in the function field case.


