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Abstract. These notes are taken from a lecture given by Professor Henri
Darmon at the Fourth Montreal-Toronto Workshop in Number Theory
at the CRM (April 28-29, 2012). They are expanded slightly and include
most of the comments and questions from the audience as footnotes. The
scribe takes any responsibility for errors introduced in the copying and
typesetting procedure.
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1. The Classical Setting

The goal shall be to investigate certain cycles on Kuga-Sato varieties and
similar varieties. Before introducing the cycles we are interested in, we shall
first review the classical case in the spirit of Bloch and Schoen. Some of this
classical material was already explicated in the series of three afternoon talks
on Saturday by Sankaran, Koshravi, and Smithling.

In this classical case, we have some integer r ≥ 0 and the 2r-th Kuga-Sato
variety W2r that can be described as the 2rth power of a universal elliptic
curve over X0(N)1. In this case dim(W2r) = 2r + 1. Let us visualise this as

E2r

π
��

X0(N)

Consider for a closed point x ∈ X0(N) some fiber π−1({x}) = Ex ×
Ex where Ex is some elliptic curve. Generically, the Neron-Severi group
NS(Ex×Ex) of the fiber has rank 3 generated by 0×Ex, Ex×0, and the di-
agonal ∆. There are however certain exceptional fibers where the rank of the
Neron-Severi group jumps to rank four. Such a case may be Ex = A where A
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has complex multiplication by a quadratic imaginary order say Z[
√
D] where

D < 0.
In this case, the extra element is the graph of the multiplication map by√
D denoted graph(

√
D) ⊆ Ex × Ex which does not come from specializing

a generic element. We can form out of this graph an element

∆A = (graph(
√
D)− A× 0−D(0× A))r ∈ CHr+1(W2r)0(HD)

of the higher Chow group of nullhomologous cycles, and this element is sup-
ported on the fiber above A. We get such a cycle ∆A for each elliptic curve
with complex multiplication arising from such closed fibers. Here in fact
the field of definition is HD, the ray class field attached to the imaginary
quadratic order.

We now define ∆D = traceHD/K(∆A) where K = Q(
√
D).

There are a few results already known

Theorem 1 (Shoen). If r = 1 and N = 3, {∆A}A generates a subgroup of
infinite rank in CHr+1(W2)0.

This result is proved by looking at the images of the ∆A under the Abel-
Jacobi map. The second result was first formulated by Gross and Zagier
and proved in complete generality by Zhang, which relates the heights of
these cycles to central critical values of derivatives of L-functions attached
to modular forms.

Theorem 2 (Gross-Zagier, Zhang). Let f ∈ S2r+2(Γ0(N)) and let δfD be an
f -isotypic projection of the cycle ∆D. Then

ĥ(∆f
D) = (∗)L′(f/k, r + 1)

where (∗) will always stand for some nonzero “fudge” factor.

For r = 0 this is the usual Gross-Zagier formula, and for r ≥ 1 this is
the generalisation to forms of even weight greater than four. Of course,
here there are a few points that are being glossed over here. For instance, for
these cycles we have defined to exist there should be some Heegner hypothesis
satisfies which forces the sign in the functional equation of the L-function to
be minus one.

2. Generalised Heegner Cycles

Now we come to the main topic. We generalise by replacing W2r with
something very similar: the product Wr × Ar, where A is a fixed elliptic
curve with CM by OK , which also is fibered over X0(N):

Wr × Ar

π
��

X0(N)

Notice now that Wr can be of even or odd dimension! Here K = Q(
√
D) is

as usual some imaginary quadratic field, and in fact all the examples of A
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in this lecture will be CM by the maximal order in an imaginary quadratic
field with class number 1.

[A question was asked (see footnote2).]
For r = 1 (which is in some sense the minimal case) here, we get the fiber

over a closed point π−1(x) = Ex × A. In this case, generically the rank of
the Neron-Severi group is 2. As in Section 1, we wish to know the points at
which the rank jumps. In fact, the points for which the NS-rank becomes
bigger are exactly those x for which there is an isogeny ϕ : A → Ex =: A′

for instance, then we get two extra elements of NS(Ex × A): the graphs

graph(ϕ) and graph(ϕ ◦
√
D). In this case, we define

∆ϕ,r = (graph(ϕ)− 0× A− deg(ϕ)A′ × 0)r

We can think of ∆ϕ,1 living in A × A′, where A × A′ is viewed as a fiber
of the variety W1 × A. Then ∆ϕ,r ∈ CH2r+1(Xr)0(HD) where Xr = WrA

r.
Here we have used the subscript 0 for the Chow group again: by a similar
argument as in the classical case in Section 1 we can indeed show that ∆ϕ,r

is a nullhomologous cycle.
This now gives us a method of constructing a large number of different

cycles on these Kuga-Sato-like varieties
We want to understand the behaviour of these cycles and applications.

3. Gross-Zagier-like Formulae

Assume that A has CM by OK , where K = Q(
√
D) is imaginary quadratic

and such that the class number of OK is trivial [i.e. has trivial reduced K0

group], that the discriminant D(K) is odd, and that O×K = {±1}.
[A question was asked (see footnote3) ]
Consider a cusp form f ∈ Sr+2(Γ0(N)), which corresponds to some middle

cohomology class. We can define the classical Hecke character ψ on ideals
by

ψ((α)) =

(
α√
D

)
α (1)

where
(
α√
D

)
is the Legendre symbol. This does not depend on the choice of

generator α of (α) and this character is of weight (1, 0).
We will consider the special case where the isogeny ϕ is actually the iden-

tity, and for notational convenience we define ∆r = ∆1,r. Again we can
look at the f -isotypic projection (i.e. onto the f -component). Furthermore,
this f -component further decomposes by looking at the cohomology of Ar

according to certain Hecke characters that can be formed from the basic one
defined in Equation (1). For instance, there is a piece where the underlying

`-adic representation corresponds to ψjψ
r−j

.

2Q:Is it possible that the derivative of the L-function could vanish? A: In this setting,
yes. It certainly happens for weight 2. There are examples of higher order vanishing.

3Q: How dependent is this on class number 1? A: This is just for notational simplicity.
In fact in our paper we formulate our results for arbitrary K, but in the general case the
notation just becomes more messy.
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Then we conjecture that for 0 ≤ j ≤ r,

ĥ
(

∆f,ψjψ
r−j

r

)
= (∗)L′(f × θψr−2j , r + 1− j).

Here the θ− denotes the corresponding θ series attached to a character and
the product denotes Rankin convolution. Note that wt(θψr−2j) = 1+r−2j <
wt(f) = r+2. The novelty of this conjecture is that we capture such values of
f convoluted not just with finite order characters in the imaginary quadratic
field (i.e. θ series of weight 1 attached to finite group characters), but with θ
series of more general weights attached to characters of more general weights.
We remark that this formula is not in the literature as it is not proved, but
one could imagine that the techniques used by Zhang to prove the Gross-
Zagier formula could also be used to prove this formula.

[A question was asked (see footnote4) ]
Let p be a prime that splits in K. Now we turn to a p-adic variant of this

formula and the corresponding p-adic L-functions, which will also play a role
in the next lecture given by Kartin Prasanna. In this case, we will consider
the p-adic version of the Abel-Jacobi map. Instead of looking at the heights
of these generalised Heegner cycles, we will look at the images of ∆r under
this p-adic variant. Also, instead of the classical L-series on the right hand
side, we will have a p-adic variant constructed by Hida.

Recall that the classical complex Jacobi map (see the lecture of Patrick
Wall) was defined as a map

AJC : CHr+1(X)0 →
Filr+1H2r+1

dR (X/C)∨

ImH2r+1(X(C),Z)
.

The notation Fil∗ indicates the Hodge filtration and −∨ indicates the dual.
We saw yesterday in Wall’s lecture how this map was defined on cycles es-
sentially by integrating. Note that in this setting the torsion is dense in the
target. If we use the p-adic version of this Abel-Jacobi map

AJp : CHr+1(X)0(Qp)→ Filr+1(H2r+1
dR (X/Qp))

∨

then we have the following advantages:

(1) The target is now torsion-free, so that any torsion element in the
Chow group must map to 0 in the target. Hence, torsion is easier to
detect as in principal it is just a finite computation!

(2) More closely related to etale cohomology and Galois representations:
AJp factors through the etale AJ map, which was illustrated briefly
in Zong’s lecture (“Bloch’s recurring fantasy”). This is useful for
arithmetic applications (e.g. Euler systems).

p-adic L functions arise from some classical L-function by looking at crit-
ical values. Dividing these values by the appropriate periods one obtains

4Q: Is your height the Bloch-Beilinson height pairing on the central middle Chow group?
A: Exactly.
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some algebraic numbers, and then we would like to know whether these al-
gebraic parts of special values of L-functions extend p-adically to a larger
domain.

For p-adic L-functions, the special values that will be interpolate are the
special values in the Gross-Zagier formula.

L(f/K × (ψi × (ψ∗)j)−1, 0).

for some fixed modular form f and ψ varying over Hecke characters with
ψ∗ = ψ ◦ c, with c being complex conjugation. Here we have just normalised
via twisting by the norm character so that the special value occurs at 0. If
we look at this collection of central critical values as i and j varies, we can
visualize this in a diagram shown in Figure 1.

i

j

1 k-1

Figure 1. The shaded regions show where the central critical
values occur. The line is the central critical line reflected under
the classical functional equation.

Now the idea is that we can recover certain values of the p-adic L function
as images of ∆r under the p-adic Abel-Jacobi map:

AJp(∆r)(ωf ∧ ωAjηr−jA ) = (∗)Lp(f × ψj+1ψ∗r+1−j

Here

ωf ∈ Ωr+1(Wr) ⊆ Filr+1 Hr+1
dR (W − r)

ωA ∈ Ω1(A) ⊆ H1
dR(A)

ηA ∈ H1
dR(A/Qp), 〈ωA, ηA〉 = 1

Now ηA is defined to be in the eigenspace for the Qp-linear operator Frobenius
acting on the de Rham cohomology of A/Qp. [A question was asked (see

footnote5) ]

5Q: Is there a relation between the complex and p-adic Abel-Jacobi map? A: That’s
a very good question. We will see some ideas of this later in the talk. There should be
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4. Applications: An Interesting Hodge Cycle

Let D(K) ∈ {7, 11, 19, 43, 67, 163}. If our imaginary quadratic field K has
such a discriminant, then K has class number one. Also assume that r ≥ 1 is
odd. We are now going to consider a special case of this Kuga-Sato variety:
Wr = Er → X0(D) and Xr = Wr × Ar, where A has CM by OK with the
conductor of A equal to D2 (i.e. the minimal case).

As before (Equation (1), we consider the Hecke character ψ. If we take
even powers ψr+1 of ψ then ψr+1 is an unramified character of K and so
θψr+1 ∈ Sr+2(Γ0(D), εK) where εK is the quadratic odd Dirichlet character
associated to the quadratic field K.

Now we have

Hr+1
et (Wr,Q`)

θψr+1 ∼= IndQ
K ψ

r+1
1
∼= εHr+1

et (A
r+1

,Q`)

where ε is a suitable projector. Here the bar notation means extension to the
algebraic closure. The latter two isomorphisms as representations of GQ =

Gal(Q/Q) shows that the two varieties Wr and Ar+1, which geometrically
look very different share in common a piece of their cohomology. This in
turn translates to the existence of a Tate cycle which lives in the middle etale
cohomology of the product Wr × Ar, and it is invariant under the action of
GQ. We shall denote this Tate cycle by

πet ∈ H2r+2
et (Wr × Ar+1,Q`)(r + 1)GQ .

Given this Tate cycle, there is a corresponding Hodge cycle

πHd ∈ Hr+1,r+1
dR (Wr × Ar+1/C) ∩H2r+2

B (Wr × Ar+1,Q)

where HB is just the Betti cohomology. This Hodge cycle πHd can be ob-
tained by studying the periods of the theta series. We can then formulate a
conjecture.

Conjecture 1 (C). There is an algebraic cycle π ∈ CHr+1(Wr×Ar+1) such
that c`et(π) = πet and c`(π) = πHd.

This is only known in the following cases:

• r = 0: then Wr is a modular curve, and A is an elliptic curve. Then
the existence of π is just the parametrization from the modular curve
to the elliptic curve. Follows from the Tate conjecture for curves.
• r = 1, D = 7: then Wr is an extremal K3 surface with maximal

Picard rank. The Shioda-Inose theory gives for an involution τ on
the surface Wr a correspondence W/(τ) ∼= Kummer(A× A).
• r = 2, D = 3. Here Shoen proved that π exists!

a relation, but there is nothing obvious. It is quite deep; in fact if we could show the
vanishing of the complex version implies the vanishing of the p-adic version, this would be
fantastic progress! In fact, in the next part you will see that we know much more about
the p-adic images under AJp of some generalised Heegner cycles compared to the complex
images under AJC. However, we know that the vanishing one one is equivalent to the
vanishing of the other in the elliptic curve case.
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It is quite difficult to produce the cycle π! This would be a good place to
find a counterexample to the Hodge conjecture. One thing we would like to
do is get a bit of evidence for the validity of the Hodge conjectures. There
is a quote of Weil on the Hodge conjectures that motivates this a bit:

In spite of the designation of conjecture, there is, as far as
I know, not a shred of justification to believe in the Hodge
conjectures. One would do geometers a great service if one
could dispose of it by means of a counterexample.

If we really want to get rid of the Hodge conjectures, it would be a good
place to start to try and find an example where this algebraic cycle is not
present. This leads to the notion of the last topic in my talk.

5. Test Cycles

The question is, how are we going to test for the presence of this algebraic
cycle? If π exists, then it induces a correspondence

Xr = Wr × Ar  A

This correspondence, which we shall call

π? : CHr+1(Wr × Ar)→ A.

takes codimension r + 1 cycles and maps them to the elliptic curve. We
have appended the character π with the question mark to emphasize that π
might not exist. This map would respect fields of definition. Now, we have
an infinite collection of cycles ∆ϕ,r. Although they are hard to write down
explicitly, if we could only map them down to the elliptic curve A then we
could work with the corresponding points.

Even if we cannot prove that this cycle π exists, we can still compute the
underlying points, since to do this we only need the Hodge or p-adic realiza-
tions of this cycle. Thus if π exists we know what the this correspondence
must look like!6

Another remark is that π? has unconditional complex and p-adic variants,
which we shall denote πC and πp respectively. Then at the level of complex
points, there is a commutative diagram

CHr+1(Xr)0(C)
π? //

AJC
��

A(C)

AJC
��

Filr+1 H2r+1(Xr)
∨ // Ω1(A/C)∨

H1(A(C),Z)

Conjecture 2 (CC). πC(∆r) ∈ A(K)⊗Q.

6Scribe’s note: At this point Zong made a remark about whether π was really well-
defined since one had to use a moving lemma, but the speaker and Zong waited until after
the talk to discuss this, and I did not hear this discussion unfortunately.
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This can be tested numerically. In all cases πC(∆r) =
√
−DmrPA where

mr has an interpretation as an L-value and PA is a generator of A(Q). The
L-value interpretation of mr is more precisely

m2
r = (∗)L(ψ2r+1

A , r + 1).

There is a table in the paper showing some computations [this was shown in
the lecture].

The same statement should hold for the p-adic Abel-Jacobi map. In fact
in the p-adic case we actually have a theorem.

Theorem 3 (Cp). πp(∆r) = (∗)mrPA for all r > 1 and D ∈ {11, . . . , 163}.

From Cp and CC, one should be able to conclude C, but we are very far
away from doing this. Note that in Theorem 3 we have only stated the
theorem for D ≥ 11 in the list of supposed discriminants and we have shown
calculations that only apply to this case. What happens when D = 7?

The image of the cycle under Abel-Jacobi is controlled by the central
critical value of an L-function

L(θψr+1/K × ψr, ∗) = L(ψ2r+1, s)L(ψ, s− r).
where the factorization is just a product of two Hecke L-functions. The situ-
ations where we can produce a point on the elliptic curve are those in which
the first factor has sign −1 nad the second has sign +1 in their respective
functional equations. This happens at exactly the values of D in Theorem
3.

If D = 7, then the first factor vanishes and the second does not, so we
need to consider the image of the cycle in a different piece of the intermediate
Jacobian of the varieties, and this will be the subject of the next talk.
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