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Notation

G a Q-simple algebraic group of Hermitian type.

K a maximal compact subgroup of G (R).

Γ a torsion free arithmetic subgroup.

Y := G (R)/K the corresponding Hermitian symmetric space and X
its quotient by Γ.

Let ρ be a representation of G defined over Q into a 2n-dimensional vector
space V . Let L be a maximal lattice inside of V , and assume
ρ(Γ) ⊆ Aut(L) = GL(2n,Z).
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A Commutative Diagram

Set T = VR/L, a real analytic torus. Γ acts on V by ρ and preserves L, so
our assumptions above result in the following diagram:

Y × T
p̃ //

π̃

��

Γ\(Y × T )=: W

π

��
Y

p // Γ\Y =: X

W is a smooth torus fiber bundle over X .
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Families of Abelian varieties

Recall that an n-dimensional polarized complex abelian variety corresponds
to the real torus T plus:

A complex structure J on V

A symplectic form A on V such that A(v , Jw) is positive definite and
A(L, L) ⊆ Z.

Suppose there is a symplectic form A on L defined over Z such that
ρ(G ) ⊂ Sp(VQ,A). Then there is a maximal compact K ′ ⊂ Sp(V (R),A)
containing ρ(K ). The space Sp(V ,A)/K ′ = hn is the Siegel upper half
plane of genus n parameterizing J as above.
Let EΓ = ρ(Γ)\(hn × V /L), then the map ρ from G to Sp(V ,A) induces
the following smooth maps of fiber bundles.
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W

�π

��

// EΓ

π′

��
X

τ //

||

ρ(Γ)\hn

||

Γ\G (R)/K
ρ // ρ(Γ)\Sp(R)/K ′

The fiber bundle on the right is a bundle of abelian varieties, with complex
structure on fiber {J} × V /L ⊂ EΓ equal to J and polarization A.
Furthermore, π′ is a map of quasi-projective complex varieties. Since X is
also a complex, quasi-projective variety, two questions immediately arise.
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2 Questions

When is τ ( the Eichler map) holomorphic?

When does W have a “good” complex structure?

Call a complex structure J on W “good” if

the map π : W → X is holomorphic;

J restricted to each fiber agrees with the complex structure induced
from the map into EΓ;

the complex structure induced by J on the universal covering
manifold Y × V , is a holomorphic complex vector bundle over Y .

Theorem (Kuga)

W has good complex structures if and only if τ is holomorphic and in this
case such a structure is unique. Moreover, if X is compact then W is a
Hodge variety (hence projective).
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Kuga Fiber Varieties

More generally, when τ is holomorphic the W are smooth quasi-projective
algebraic varieties, called Kuga fiber varieties. They provide families of
polarized abelian varieties parameterized by X . “Kuga fiber variety” may
also refer to a compactification of such a space.

Examples:

Universal abelian varieties over appropriate moduli spaces.

Abelian families of Hodge type.

Abelian families of PEL type.

Products.
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Kuga Fiber Varieties (Cntd.)

Why do we care?

Provide generalizations of well studied modular curves

The high degree of structure imposed on Kuga varieties makes them
ideal for test cases of certain conjectures.

Can get relations between abelian varieties in the same Kuga fiber
variety / between families over the same base.

We list a few examples of results regarding these spaces.
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Cohomology

When X is compact, the groups
H r (W ) ∼=

∑
p+q=r Hp(X ,Hq(T )) =

∑
p+q=r Hp(X , (∧qρ)∗).

(Abdulali) If W → X is a Kuga fiber variety satisfying the H2

condition, then for any x ∈ X , the space H2p(Wx ,Q)Γ consists of
Hodge cycles.

(Abdulali) Suppose Wi → X for i = 1, 2 are two Kuga fiber varieties
over the same base satisfying the H2-condition and defined over a
number field k0. For a sufficiently large extension k of k0, if x ∈ X (k)
the following holds:
If F1 ⊂ Hb1(W1,x ,Q), F2 ⊂ Hb2(W2,x ,Q) are irreducible and
isomorphic as π1(X an, x)-modules then

F1 ⊗Q`
∼= F2 ⊗Q`((b2 − b1)/2)

as πalg

1 (Xk , x)-submodules of Hbi
et (Wi ,x ,Q`).

Abdulali’s results imply certain relations among the zeta functions of W1

and W2 [2]. Zeta functions of Kuga varieties have been studied by Kuga,
Shimura, Deligne, Langlands, Ohta, etc.
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Sheaves correspond to modular forms: For N ≥ 3 let E (N) denote

the universal elliptic curve of level N over Γ(N)\h1. Let E (N)
k

be a
sufficiently nice smooth compactification of kth fiber product of
E (N). Then

Sk+2(Γ(N)) ∼= H0(W (N)
k
,Ωk+1)⊗ C.

When k = 2 and E (N)
2

is a rigid Calabi-Yau threefold, we have

L(W (N)
2
, s) = L(f , s)

where f is the normalized cusp form of weight 4 on Γ(N).
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Holomorphicity

If one wants to classify these fiber varieties, the question arises:

Find all representations ρ : G → Sp(2n,Q) such that τ is holomorphic.

Algebraic setting: Recall Lie(G (R)) = gR = t⊕ p with the natural map
G (R)→ Y sending p isomorphically to To(Y ). Then there exists unique
H0 ∈ Z (t) such that adH0|p is the complex structure on To(Y ). For
Sp(V ,A) and base point τ(o) = J ∈ hn, the corresponding H ′0 is J/2 ∈
Lie(Sp(V ,A)). Holomorphicity of τ reduces to

(H1) : [dρ(H0)− H ′0, dρ(g)] = 0 for all g ∈ gR.

An even stronger condition is

(H2) : dρ(H0) = H ′0.

Kuga varieties satisfying the H2 condition have especially nice properties
as we have seen.
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Addington’s Chemistry

We now discuss Addington’s system of classification of Kuga varieties
arising from non-split quaternion algebras in terms of its “chemistry”. We
begin by recalling some theory.

Fix a field F ↪→ F of characteristic 0 and a finite extension F ′.

Definition

The restriction of scalars functor RF ′/F from the category of F ′-varieties
to the category of F -varieties has the following properties:

1. (RF ′/F X )(F ) = X (F ′)

2. Let Φ be the set of distinct embeddings of F ′ over F . Then

RF ′/F X ∼=
∏
a∈Φ

X a (over F ).
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Unitary groups

Fix a totally real number field k. Let D over k be a division quaternion
algebra (with involution d → d). Fix a right vector space V over D of
dimension n.

Definition

Let ε = ±1. A map h : V × V → D is a D-valued ε-Hermitian form on V
wrt. the given involution if

1. h is k-bilinear

2. h(v ,wα) = h(v ,w).α for α ∈ D

3. h(v ,w) = εh(w , v).

Assume that V is equipped with such an h and it is nondegenerate.

Let SU(V , h) be the special unitary group of h, ie. g ∈ AutDV with
reduced norm 1 and preserving h.
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Algebraic Groups of Type II and III

With notation as above, let S be the set of infinite places ϕ of k.
Definition

1. An algebraic group of type III.1 is a group Rk/QSp(V ′,A) where V ′ is
a 2n dimensional k-vector space.

2. A group of type III.2 is a group Rk/QSU(V , h) such that ε = 1 and
when ϕ does not split D, hϕ on V ⊗ϕ R is definite.

To define groups of type II we need the following: Suppose D splits over
k ′, then SU(Vk ′ , h) is isomorphic to a special matrix group preserving
some form B on (k ′)2n. As a matrix, Bt = −εB.

3. An algebraic group of type II is a group Rk/QSU(V , h) with n ≥ 3
such that ε = −1 and when ϕ splits D, the real symmetric form Bϕ
corresponding to hϕ is definite.
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Over R, these groups G look like

III .1
∏
ϕ∈S Sp(2n,R)

III .2
∏

Dϕ∼=M2(R) Sp(2n,R)×
∏

Dϕ∼=H SUH(n)

II
∏

Dϕ∼=M2(R) SO(2n,R)×
∏

Dϕ∼=H SO∗(n)

(SUH(n) = SU(2n) ∩ Sp(2n,C), SO∗(n) = SU(n, n) ∩ SO(2n,C)).

The groups of type II and III are Q-simple and give rise to products of
Hermitian symmetric spaces of type II and III respectively. For a group of
type II or III, let S0 correspond to the non-compact factors and S1 the
compact. The complex dimension of the corresponding spaces G (R)/K is

|S0|n(n − 1)/2 if G is type II

|S0|n(n + 1)/2 if G is type III.
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Chemistry

Let G , S ,S0,S1 be as above. An atom is an element of S , a molecule a
set of atoms and a polymer a formal sum of molecules. Let k ′ be the
Galois closure of k and G = Gal(k ′,Q).
G acts on atoms transitively. This induces an action on molecules and
polymers.

A polymer is called stable if

(i) it is invariant under G

(ii) each molecule contains at most one atom from S0.

A stable polymer is rigid if each molecule contains exactly one atom from
S0.

Recall that over C, G = Rk/QG0
∼=
∏

a∈S G a
0 , with G a

0 (C) ∼= Sp(2n,C) or
SO(2n,C). Denote this representation by id. We define complex
representations of G corresponding to atoms, molecules and polymers as
follows:
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Chemistry (Cntd.)

For a ∈ S , let ρa be the projection representation G (C)→ G a
0 (C), so

ρa = id◦proja.

For a molecule M = {a1, . . . , am}, define ρM = ρa1 ⊗ . . .⊗ ρam .

For a polymer P = M1 + . . .+ Md , define ρP = ρM1 ⊕ . . .⊕ ρMd
.

Theorem (Addington, Satake)

Let G be a group of type II with dimD V ≥ 5, or of type III.

(i) If ρ is a symplectic representation of G over Q that admits a
holomorphic Eichler map, then ρ is equivalent (over C) to a stable
polymer representation.

(ii) If P is a stable polymer, then there is a positive integer N (determined
by the size of the molecules in P) such that ρNP is a symplectic
representation defined over Q and admits a holomorphic Eichler map.
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Abdulali showed that Addington’s chemistry and main theorem could be
generalized to representations of products of groups of type III.2 with
dimD V = 1. He also determined that if P is rigid, the corresponding
Eichler map satisfies the H2 condition.
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Sketch of (i)
Since G is Q-simple ⇒ can assume ρ is Q-primary, ie. if ρ0 is an
irreducible Q-subrepresentation of ρ then for some numberfield K and
positive integer p, p.ρ0 is defined over K and

ρ ∼=Q RK/Qp.ρ0.

Since G (C) =
∏

a∈S G a(C) are simple groups,

ρ0
∼=
⊗
a∈S

ρ0,a ◦ proja.

If {τ1, . . . , τe} are extensions of the distinct embeddings of K into Q, then

ρ ∼=
e∑

i=1

p

(⊗
a∈S

ρ0,a ◦ proja

)τi
∼=

e∑
i=1

p.

(⊗
a∈S

ρτi0,a ◦ projτi (a)

)
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We must show each ρτi0,a = id or trivial.

When a ∈ S0, Satake’s classification over the reals of symplectic
representations for the noncompact simple Lie group G a(R) [7] says
ρτi0,a is either a multiple of the identity or trivial. But ρτi0,a is
irreducible.

For a ∈ S1, use the fact that the Galois group of k ′ over Q acts
transitively on the atoms to reduce to previous case.

Let M = {a ∈ S : ρ0,a = id}. Then P = p
∑e

i=1 τi (M) and since ρ ∼=C ρP

is defined over Q, it follows easily that P = σ(P). That each M contains
at most one noncompact embedding can be found in [8, Ch. IV. 5]
(Follows from the H1 condition). �
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Remarks Regarding (ii)

For groups of type III.1, P = p.
∑d

i=1 ai and Satake [7] showed ρP is
already defined over Q and admits a holomorphic Eichler map.
Addington’s chemistry is needed for groups of type II and III.1

ρP defined over Q: Reduce to when P is prime (Galois orbit of
molecule M). Embed the k ′ groups G a

0 = SU(V a, ha) into

EM = M(n,D ⊗a1 k ′)⊗k ′ . . .⊗k ′ M(n,D ⊗am k ′)

EM is defined over stabilizer k0 of M and G ↪→ Rk0/QEM over Q.

EM
∼= M((2n)m, k0) or M(n(2n)m−1,D ′)

for D ′ a division quaternion algebra. The corresponding irreducible
representations of G are equivalent over Q to ρP or 2ρP respectively.
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Examples

1) (Satake type polymers): S = {1, . . . , d}, P = {1}+ {2}+ . . .+ {d}.
These are rigid iff S0 = S . If G is a group of type III.1 (RF/QSp(V ′,A)),
ρP is defined over Q, otherwise ρ2P is. Kuga varieties of PEL type for
abelian varieties of type II and III arise in this way (when S0 = S).

Example: D a totally definite quaternion algebra over a totally real
number field k, [k : Q] = d . V an n-dimensional right D vector space and
h a non-degenerate skew-hermitian form on V. Then A :=TrD/Qh(x , y) is
a symplectic form on V (as a Q-vector space). Given a lattice L and
torsion free Γ preserving L, the representation
G = Rk/QSU(V ,D) ↪→ Sp(V ,A) is equivalent (over C) to ρ2P . The
inclusion induces a holomorphic τ satisfying the H2 condition and this
realizes Γ\G/K as a PEL-type Shimura variety parameterizing
(2dn)-dimensional abelian varieties of type III.
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Examples (Cntd.)

2) (Mumford type polymers): Assume S0 has 1 element.
P = M = S = {1, . . . , d}, so P is rigid.

Example (Mumford): Let [k : Q] = 3 be totally real, D a quaternion
division algebra over k . Define EM = E as:

E = (D ⊗a1 k ′)⊗k ′ (D ⊗a2 k ′)⊗k ′ (D ⊗a3 k ′).

G acts on E by permuting the factors. Define Cork/Q(D) to be the
subalgebra of E fixed by this action (This will be a CSA over Q satisfying
Cork/Q(D)⊗ k ′ ∼= E ). We have the norm map

Nm : D∗ → Cork/Q(D)∗

Nm(d) = (d ⊗ 1)⊗ (d ⊗ 1)⊗ (d ⊗ 1)

Assume

Cork/Q(D) ∼= M8(Q) (1)

D ⊗Q R ∼= H⊕H⊕M2(R). (2)
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Take V = D, h the standard involution and G = Rk/QSU(V , h). The
norm map provides a representation of G on Q8 by (1) (By (2), this
representation is of “Mumford type”). Over R, the representation factors
through the 2-1 map

SU(2)× SU(2)× SL(2,R) � SO(4,R)× SL(2,R) 	 R4 ⊗ R2.

There is a unique symplectic form (up to scalars) A left fixed by the
Q-representation D∗.
Let ϕ0 : S→ SO(4,R)× SL(2,R) ⊂ Sp(R8,A) send

e iθ → I4 ⊗
(

cos θ sin θ
− sin θ cos θ

)
.

The map ρ satisfies the H1 condition for the complex structure induced by
ϕ0. Thus for any appropriate choice of L and Γ, we get a holomorphic map

Γ\h1 ↪→ ρ(Γ)\h4.

Since G is Q-simple, it follows ρ(G ) is the Hodge group of a generic
conjugate of ϕ0, so the Kuga variety associated to it is of Hodge type.
The representation ρ is absolutely irreducible, so if Xϕ is an abelian variety
with Hodge group ρ(G ), Xϕ has no non-trivial endomorphisms. Hence the
variety is not of PEL type.
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