An Introduction to Kuga Fiber Varieties

Dylan Attwell-Duval

Department of Mathematics and Statistics McGill University Montreal, Quebec

attwellduval@math.mcgill.ca

April 28, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- G a \mathbb{Q} -simple algebraic group of *Hermitian* type.
- K a maximal compact subgroup of $G(\mathbb{R})$.
- Γ a torsion free arithmetic subgroup.
- Y := G(R)/K the corresponding Hermitian symmetric space and X its quotient by Γ.

Let ρ be a representation of G defined over \mathbb{Q} into a 2n-dimensional vector space V. Let L be a maximal lattice inside of V, and assume $\rho(\Gamma) \subseteq \operatorname{Aut}(L) = GL(2n, \mathbb{Z}).$

Set $T = V_{\mathbb{R}}/L$, a real analytic torus. Γ acts on V by ρ and preserves L, so our assumptions above result in the following diagram:

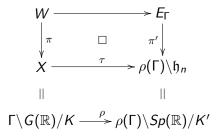
W is a smooth torus fiber bundle over X.

Recall that an *n*-dimensional polarized complex abelian variety corresponds to the real torus T plus:

- A complex structure J on V
- A symplectic form A on V such that A(v, Jw) is positive definite and $A(L, L) \subseteq \mathbb{Z}$.

Suppose there is a symplectic form A on L defined over \mathbb{Z} such that $\rho(G) \subset Sp(V_{\mathbb{Q}}, A)$. Then there is a maximal compact $K' \subset Sp(V(\mathbb{R}), A)$ containing $\rho(K)$. The space $Sp(V, A)/K' = \mathfrak{h}_n$ is the Siegel upper half plane of genus n parameterizing J as above.

Let $E_{\Gamma} = \rho(\Gamma) \setminus (\mathfrak{h}_n \times V/L)$, then the map ρ from G to Sp(V, A) induces the following smooth maps of fiber bundles.



The fiber bundle on the right is a bundle of abelian varieties, with complex structure on fiber $\{J\} \times V/L \subset E_{\Gamma}$ equal to J and polarization A. Furthermore, π' is a map of quasi-projective complex varieties. Since X is also a complex, quasi-projective variety, two questions immediately arise.

2 Questions

- When is τ (the *Eichler map*) holomorphic?
- When does W have a "good" complex structure?

Call a complex structure ${\mathfrak J}$ on W "good" if

- the map $\pi: \mathcal{W} \to X$ is holomorphic;
- *ℑ* restricted to each fiber agrees with the complex structure induced from the map into E_Γ;
- the complex structure induced by 3 on the universal covering manifold Y × V, is a holomorphic complex vector bundle over Y.

Theorem (Kuga)

W has good complex structures if and only if τ is holomorphic and in this case such a structure is unique. Moreover, if X is compact then W is a Hodge variety (hence projective).

・ロト ・ 日 ト ・ ヨ ト ・

More generally, when τ is holomorphic the W are smooth quasi-projective algebraic varieties, called *Kuga fiber varieties*. They provide families of polarized abelian varieties parameterized by X. "Kuga fiber variety" may also refer to a compactification of such a space.

Examples:

- Universal abelian varieties over appropriate moduli spaces.
- Abelian families of Hodge type.
- Abelian families of PEL type.
- Products.

Why do we care?

- Provide generalizations of well studied modular curves
- The high degree of structure imposed on Kuga varieties makes them ideal for test cases of certain conjectures.
- Can get relations between abelian varieties in the same Kuga fiber variety / between families over the same base.

We list a few examples of results regarding these spaces.

Cohomology

- When X is compact, the groups $H^{r}(W) \cong \sum_{p+q=r} H^{p}(X, H^{q}(T)) = \sum_{p+q=r} H^{p}(X, (\wedge^{q} \rho)^{*}).$
- (Abdulali) If W → X is a Kuga fiber variety satisfying the H₂ condition, then for any x ∈ X, the space H^{2p}(W_x, Q)^Γ consists of Hodge cycles.
- (Abdulali) Suppose W_i → X for i = 1, 2 are two Kuga fiber varieties over the same base satisfying the H₂-condition and defined over a number field k₀. For a sufficiently large extension k of k₀, if x ∈ X(k) the following holds:

If $F_1 \subset H^{b_1}(W_{1,x}, \mathbb{Q})$, $F_2 \subset H^{b_2}(W_{2,x}, \mathbb{Q})$ are irreducible and isomorphic as $\pi_1(X^{an}, x)$ -modules then

$$F_1\otimes \mathbb{Q}_\ell\cong F_2\otimes \mathbb{Q}_\ell((b_2-b_1)/2)$$

as $\pi_1^{\text{alg}}(X_k, x)$ -submodules of $H_{et}^{b_i}(W_{i,x}, \mathbb{Q}_\ell)$.

Abdulali's results imply certain relations among the zeta functions of W_1 and W_2 [2]. Zeta functions of Kuga varieties have been studied by Kuga, Shimura, Deligne, Langlands, Ohta, etc.

D. Duval (McGill)

 Sheaves correspond to modular forms: For N ≥ 3 let E(N) denote the universal elliptic curve of level N over Γ(N)\h₁. Let E(N)^k be a sufficiently nice smooth compactification of kth fiber product of E(N). Then

$$\mathcal{S}_{k+2}(\Gamma(N))\cong H^0(\overline{W(N)}^k,\Omega^{k+1})\otimes\mathbb{C}.$$

When k = 2 and $\overline{E(N)}^2$ is a rigid Calabi-Yau threefold, we have

$$L(\overline{W(N)}^2,s) = L(f,s)$$

where f is the normalized cusp form of weight 4 on $\Gamma(N)$.

Holomorphicity

If one wants to classify these fiber varieties, the question arises:

Find all representations $\rho: G \to Sp(2n, \mathbb{Q})$ such that τ is holomorphic.

Algebraic setting: Recall Lie($G(\mathbb{R})$) = $\mathfrak{g}_{\mathbb{R}} = \mathfrak{t} \oplus \mathfrak{p}$ with the natural map $G(\mathbb{R}) \to Y$ sending \mathfrak{p} isomorphically to $T_o(Y)$. Then there exists unique $H_0 \in Z(\mathfrak{t})$ such that $\mathrm{ad}H_0|_{\mathfrak{p}}$ is the complex structure on $T_o(Y)$. For Sp(V, A) and base point $\tau(o) = J \in \mathfrak{h}_n$, the corresponding H'_0 is $J/2 \in \mathrm{Lie}(Sp(V, A))$. Holomorphicity of τ reduces to

$$(H_1): \quad [d
ho(H_0)-H_0',d
ho(g)]=0 \quad ext{ for all } g\in \mathfrak{g}_{\mathbb{R}}.$$

An even stronger condition is

$$(H_2): d\rho(H_0) = H'_0.$$

Kuga varieties satisfying the H_2 condition have especially nice properties as we have seen.

D. Duval (McGill)

ヘロト 人間 とくほ とくほ とう

We now discuss Addington's system of classification of Kuga varieties arising from non-split quaternion algebras in terms of its "chemistry". We begin by recalling some theory.

Fix a field $F \hookrightarrow \overline{F}$ of characteristic 0 and a finite extension F'.

Definition

The restriction of scalars functor $R_{F'/F}$ from the category of F'-varieties to the category of F-varieties has the following properties:

1.
$$(R_{F'/F}X)(F) = X(F')$$

2. Let Φ be the set of distinct embeddings of F' over F. Then

$$R_{F'/F}X \cong \prod_{a \in \Phi} X^a$$
 (over \overline{F}).

Fix a totally real number field k. Let D over k be a division quaternion algebra (with involution $d \rightarrow \overline{d}$). Fix a right vector space V over D of dimension n.

Definition

Let $\epsilon = \pm 1$. A map $h: V \times V \rightarrow D$ is a *D*-valued ϵ -Hermitian form on *V* wrt. the given involution if

1. *h* is *k*-bilinear

2.
$$h(v, w\alpha) = h(v, w) . \alpha$$
 for $\alpha \in D$

3. $h(v, w) = \epsilon \overline{h(w, v)}$.

Assume that V is equipped with such an h and it is nondegenerate.

Let SU(V, h) be the special unitary group of h, ie. $g \in Aut_D V$ with reduced norm 1 and preserving h.

With notation as above, let S be the set of infinite places φ of k. <u>Definition</u>

- 1. An algebraic group of type III.1 is a group $R_{k/\mathbb{Q}}Sp(V', A)$ where V' is a 2n dimensional k-vector space.
- 2. A group of type III.2 is a group $R_{k/\mathbb{Q}}SU(V,h)$ such that $\epsilon = 1$ and when φ does not split D, h^{φ} on $V \otimes_{\varphi} \mathbb{R}$ is definite.

To define groups of type II we need the following: Suppose D splits over k', then $SU(V_{k'}, h)$ is isomorphic to a special matrix group preserving some form B on $(k')^{2n}$. As a matrix, $B^t = -\epsilon B$.

3. An algebraic group of type II is a group $R_{k/\mathbb{Q}}SU(V,h)$ with $n \ge 3$ such that $\epsilon = -1$ and when φ splits D, the real symmetric form B_{φ} corresponding to h^{φ} is definite.

イロト イヨト イヨト イヨト

Over \mathbb{R} , these groups *G* look like

 $(SU_{\mathbb{H}}(n) = SU(2n) \cap Sp(2n, \mathbb{C}), SO^*(n) = SU(n, n) \cap SO(2n, \mathbb{C})).$

The groups of type II and III are \mathbb{Q} -simple and give rise to products of Hermitian symmetric spaces of type II and III respectively. For a group of type II or III, let S_0 correspond to the non-compact factors and S_1 the compact. The complex dimension of the corresponding spaces $G(\mathbb{R})/K$ is

•
$$|S_0|n(n-1)/2$$
 if G is type II

•
$$|S_0|n(n+1)/2$$
 if G is type III.

Chemistry

Let G, S, S_0, S_1 be as above. An *atom* is an element of S, a *molecule* a set of atoms and a *polymer* a formal sum of molecules. Let k' be the Galois closure of k and $\mathfrak{G} = \text{Gal}(k', \mathbb{Q})$.

 \mathfrak{G} acts on atoms transitively. This induces an action on molecules and polymers.

A polymer is called stable if

(i) it is invariant under &

(ii) each molecule contains at most one atom from S_0 .

A stable polymer is *rigid* if each molecule contains exactly one atom from S_0 .

Recall that over \mathbb{C} , $G = R_{k/\mathbb{Q}}G_0 \cong \prod_{a \in S} G_0^a$, with $G_0^a(\mathbb{C}) \cong Sp(2n, \mathbb{C})$ or $SO(2n, \mathbb{C})$. Denote this representation by id. We define complex representations of G corresponding to atoms, molecules and polymers as follows:

イロト イヨト イヨト

Chemistry (Cntd.)

- For $a \in S$, let ρ_a be the projection representation $G(\mathbb{C}) \to G_0^a(\mathbb{C})$, so $\rho_a = id \circ proj_a$.
- For a molecule $M = \{a_1, \ldots, a_m\}$, define $\rho_M = \rho_{a_1} \otimes \ldots \otimes \rho_{a_m}$.
- For a polymer $P = M_1 + \ldots + M_d$, define $\rho_P = \rho_{M_1} \oplus \ldots \oplus \rho_{M_d}$.

Theorem (Addington, Satake)

Let G be a group of type II with dim_D $V \ge 5$, or of type III.

- (i) If ρ is a symplectic representation of G over \mathbb{Q} that admits a holomorphic Eichler map, then ρ is equivalent (over \mathbb{C}) to a stable polymer representation.
- (ii) If P is a stable polymer, then there is a positive integer N (determined by the size of the molecules in P) such that ρ_{NP} is a symplectic representation defined over \mathbb{Q} and admits a holomorphic Eichler map.

イロト イヨト イヨト イヨト

Abdulali showed that Addington's chemistry and main theorem could be generalized to representations of products of groups of type III.2 with $\dim_D V = 1$. He also determined that if P is rigid, the corresponding Eichler map satisfies the H_2 condition.

Sketch of (i) Since G is \mathbb{Q} -simple \Rightarrow can assume ρ is \mathbb{Q} -primary, i.e. if ρ_0 is an irreducible $\overline{\mathbb{Q}}$ -subrepresentation of ρ then for some numberfield K and positive integer p, $p.\rho_0$ is defined over K and

 $\rho \cong_{\overline{\mathbb{Q}}} R_{K/\mathbb{Q}} p.\rho_0.$

Since $G(\mathbb{C}) = \prod_{a \in S} G^a(\mathbb{C})$ are simple groups,

$$\rho_0 \cong \bigotimes_{a \in S} \rho_{0,a} \circ \operatorname{proj}_a.$$

If $\{\tau_1, \ldots, \tau_e\}$ are extensions of the distinct embeddings of K into $\overline{\mathbb{Q}}$, then

$$\rho \cong \sum_{i=1}^{e} p\left(\bigotimes_{a \in S} \rho_{0,a} \circ \operatorname{proj}_{a}\right)^{\tau_{i}} \cong \sum_{i=1}^{e} p\left(\bigotimes_{a \in S} \rho_{0,a}^{\tau_{i}} \circ \operatorname{proj}_{\tau_{i}(a)}\right)$$

イロト 不得下 イヨト イヨト 二日

We must show each $\rho_{0,a}^{\tau_i} = \text{id or trivial.}$

- When a ∈ S₀, Satake's classification over the reals of symplectic representations for the noncompact simple Lie group G^a(ℝ) [7] says ρ^{τ_i}_{0,a} is either a multiple of the identity or trivial. But ρ^{τ_i}_{0,a} is irreducible.
- For a ∈ S₁, use the fact that the Galois group of k' over Q acts transitively on the atoms to reduce to previous case.

Let $M = \{a \in S : \rho_{0,a} = id\}$. Then $P = p \sum_{i=1}^{e} \tau_i(M)$ and since $\rho \cong_{\mathbb{C}} \rho_P$ is defined over \mathbb{Q} , it follows easily that $P = \sigma(P)$. That each M contains at most one noncompact embedding can be found in [8, Ch. IV. 5] (Follows from the H_1 condition).

Remarks Regarding (ii)

- For groups of type III.1, P = p. $\sum_{i=1}^{d} a_i$ and Satake [7] showed ρ_P is already defined over \mathbb{Q} and admits a holomorphic Eichler map. Addington's chemistry is needed for groups of type II and III.1
- ρ_P defined over Q: Reduce to when P is prime (Galois orbit of molecule M). Embed the k' groups G₀^a = SU(V^a, h^a) into

$$E_M = M(n, D \otimes_{a_1} k') \otimes_{k'} \ldots \otimes_{k'} M(n, D \otimes_{a_m} k')$$

 E_M is defined over stabilizer k_0 of M and $G \hookrightarrow R_{k_0/\mathbb{Q}}E_M$ over \mathbb{Q} .

$$E_M \cong M((2n)^m, k_0)$$
 or $M(n(2n)^{m-1}, D')$

for D' a division quaternion algebra. The corresponding irreducible representations of G are equivalent over $\overline{\mathbb{Q}}$ to ρ_P or $2\rho_P$ respectively.

(日) (周) (三) (三)

Examples

1) (Satake type polymers): $S = \{1, ..., d\}$, $P = \{1\} + \{2\} + ... + \{d\}$. These are rigid iff $S_0 = S$. If G is a group of type III.1 ($R_{F/\mathbb{Q}}Sp(V', A)$), ρ_P is defined over \mathbb{Q} , otherwise ρ_{2P} is. Kuga varieties of PEL type for abelian varieties of type II and III arise in this way (when $S_0 = S$).

Example: D a totally definite quaternion algebra over a totally real number field k, $[k : \mathbb{Q}] = d$. V an n-dimensional right D vector space and h a non-degenerate skew-hermitian form on V. Then $A := \operatorname{Tr}_{D/\mathbb{Q}} h(x, y)$ is a symplectic form on V (as a \mathbb{Q} -vector space). Given a lattice L and torsion free Γ preserving L, the representation $G = R_{k/\mathbb{Q}}SU(V, D) \hookrightarrow Sp(V, A)$ is equivalent (over \mathbb{C}) to ρ_{2P} . The inclusion induces a holomorphic τ satisfying the H_2 condition and this realizes $\Gamma \setminus G/K$ as a PEL-type Shimura variety parameterizing (2*dn*)-dimensional abelian varieties of type III.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Examples (Cntd.)

2) (Mumford type polymers): Assume S_0 has 1 element. $P = M = S = \{1, \dots, d\}$, so P is rigid.

Example (Mumford): Let $[k : \mathbb{Q}] = 3$ be totally real, D a quaternion division algebra over k. Define $E_M = E$ as:

$$E = (D \otimes_{a_1} k') \otimes_{k'} (D \otimes_{a_2} k') \otimes_{k'} (D \otimes_{a_3} k').$$

 \mathfrak{G} acts on E by permuting the factors. Define $\operatorname{Cor}_{k/\mathbb{Q}}(D)$ to be the subalgebra of E fixed by this action (This will be a CSA over \mathbb{Q} satisfying $\operatorname{Cor}_{k/\mathbb{Q}}(D) \otimes k' \cong E$). We have the norm map

$$Nm: D^* \to \operatorname{Cor}_{k/\mathbb{Q}}(D)^*$$

 $Nm(d) = (d \otimes 1) \otimes (d \otimes 1) \otimes (d \otimes 1)$

Assume

$$\operatorname{Cor}_{k/\mathbb{Q}}(D) \cong M_{8}(\mathbb{Q}) \tag{1}$$
$$D \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{H} \oplus \mathbb{H} \oplus M_{2}(\mathbb{R}). \tag{2}$$

- 利田 ト - 田 ト - -

Take V = D, *h* the standard involution and $G = R_{k/\mathbb{Q}}SU(V, h)$. The norm map provides a representation of *G* on \mathbb{Q}^8 by (1) (By (2), this representation is of "Mumford type"). Over \mathbb{R} , the representation factors through the 2-1 map

 $SU(2) \times SU(2) \times SL(2,\mathbb{R}) \twoheadrightarrow SO(4,\mathbb{R}) \times SL(2,\mathbb{R}) \circlearrowleft \mathbb{R}^4 \otimes \mathbb{R}^2.$

There is a unique symplectic form (up to scalars) A left fixed by the \mathbb{Q} -representation D^* .

Let
$$\varphi_0 : \mathbb{S} \to SO(4, \mathbb{R}) \times SL(2, \mathbb{R}) \subset Sp(\mathbb{R}^8, A)$$
 send
 $e^{i\theta} \to I_4 \otimes \left(\begin{array}{c} \cos\theta \\ -\sin\theta \end{array} \begin{array}{c} \sin\theta \\ \cos\theta \end{array} \right).$

The map ρ satisfies the H_1 condition for the complex structure induced by φ_0 . Thus for any appropriate choice of L and Γ , we get a holomorphic map

$$\Gamma \setminus \mathfrak{h}_1 \hookrightarrow \rho(\Gamma) \setminus \mathfrak{h}_4.$$

Since G is Q-simple, it follows $\rho(G)$ is the Hodge group of a generic conjugate of φ_0 , so the Kuga variety associated to it is of Hodge type. The representation ρ is absolutely irreducible, so if X_{φ} is an abelian variety with Hodge group $\rho(G)$, X_{φ} has no non-trivial endomorphisms. Hence the variety is not of PEL type.

D. Duval (McGill)

- 1 S. Abdulali, Hodge structures on Abelian Varieties of Type III, Ann. of Math. (2) 155 no. 3 (2002), 915-928.
- 2 S. Abdulali, Zeta Functions of Kuga Fiber Varieties, Duke Math J. 57 no 1. (1988), 333-344.
- 3 S. Addington, Equivariant Holomorphic Maps of Symmetric Domains, Duke Math J. 55 no.1 (1987), 65-88.
- 4 M. Kuga, Fiber Varieties over a Symmetric Space... Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo.,1965) pp. 338-346 Amer. Math. Soc., Providence, R.I.
- 5 M.H. Lee, Mixed Siegel Modular Forms and Kuga Fiber Varieties, Illinois J. Math. 38 no. 4 (1994), 692-700.

- 6 D. Mumford, A Note of Shimura's Paper "Discontinuous Groups and Abelian Varieties", Math. Ann. 181 (1969) 345-351.
- 7 I. Satake, Symplectic Representations of Algebraic Groups Satisfying... ActaMath. 117 (1967) 215-279
- 8 I. Satake, *Algebraic Structures of Symmetric Domains*. Princeton University Press, 1980.
- 9 G. Shimura, On Analytic Families of Polarized Abelian Varieties and Automorphic Functions, Ann. of Math. (2) 78 no 1. (1963), 149-192.