Schoen's work III

Brian D. Smithling

University of Toronto

Montreal–Toronto Workshop in Number Theory April 28, 2012

イロト イヨト イヨト イヨト

 $\begin{array}{l} D = \mbox{the discriminant of an order in an imaginary quadratic field} \\ \mathcal{O}_D = \mathbb{Z} \Big[\frac{D + \sqrt{D}}{2} \Big], \mbox{the order of discriminant } D \\ k_D = \mbox{Frac } \mathcal{O}_D = \mathbb{Q} \big(\sqrt{D} \big) \\ H_D = k_D \big(j(\mathcal{O}_D) \big), \mbox{the ring class field attached to the order } \mathcal{O}_D. \\ \mathfrak{H}_D = \mbox{group of nth roots of unity} \\ \widetilde{W} = \mbox{the smooth projective 3-fold over } \mbox{Spec } \mathbb{Q} \mbox{ from the previous 2 talks, fibered over } \\ X = \mathbb{P}^1_{\mathbb{Q}} \\ \mbox{For } F/\mathbb{Q} \mbox{ a quadratic extension, } \delta(F) = 1 \mbox{ if } F \mbox{ is real and unramified at 3 or imaginary and ramified at 3, and } \delta(F) = -1 \mbox{ otherwise.} \end{array}$

<ロト <回ト < 回ト < 回ト

Let F be a number field. This and the previous two talks are interested in the instance of the Beilinson–Bloch conjecture

$$\mathsf{rank}\; CH^2(\widetilde{W}_F)_{\mathsf{hom}} \stackrel{?}{=} \mathsf{ord}_{s=2} \, L_F\big(H^3_{\mathrm{\acute{e}t}}(\widetilde{W}_{\overline{\mathbb{Q}}}, \mathbb{Q}_I), s\big),$$

say especially when $[F : \mathbb{Q}] \leq 2$.

An important consequence of Amir-Khosravi's talk is that for $F = \mathbb{Q}$ or F quadratic with $\delta(F) = 1$,

$$\mathsf{rank}\ \mathcal{CH}^2(\widetilde{W}_F)_{\mathsf{CM}}=0,$$

where we recall

$$CH^{2}(\widetilde{W}_{F})_{CM} = \ker[CH^{2}(\widetilde{W}_{F})_{hom} \longrightarrow CH^{2}(\widetilde{W}_{F} \times_{X} \eta_{X})].$$

A big remaining task is to study the *L*-function side of the story, and in particular to see that $\delta(F)$ gives the sign in the functional equation for L_F .

イロト イヨト イヨト イヨト

For F a number field, write

$$G_F := \operatorname{Gal}(\overline{\mathbb{Q}}/F)$$

and

$$\rho_{F,I} \colon G_F \longrightarrow GL(H^3_{\operatorname{\acute{e}t}}(\widetilde{W}_{\overline{\mathbb{Q}}}, \mathbb{Q}_I)).$$

Since W_F has good reduction at primes \mathfrak{p} of F not dividing 3, the representation $\rho_{F,I}$ is unramified at primes $\mathfrak{p} \nmid 3I$. By Deligne's proof of the Weil conjectures, for such \mathfrak{p} the polynomial

$$P_{\mathfrak{p}}(t) := \mathsf{det}ig(\mathsf{id} - t \operatorname{Frob}_{\mathfrak{p}}^{-1} \mid H^3_{\mathrm{\acute{e}t}}(\widetilde{W}_{\overline{\mathbb{Q}}}, \mathbb{Q}_l)ig)$$

has coefficients in \mathbb{Z} and is independent of *I*.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We form the partial *L*-series

$$L_F(H^3(\widetilde{W}),s) := \prod_{\substack{\mathfrak{p} \text{ prime of } F \\ \mathfrak{p} \nmid 3}} \frac{1}{P_\mathfrak{p}(N\mathfrak{p}^{-s})},$$

which converges absolutely for $\Re(s) > \frac{5}{2}$. The missing factors, for primes $\mathfrak{p} \mid 3$, converge absolutely and are nonvanishing for $\Re(s) > \frac{3}{2}$, and therefore do not affect $\operatorname{ord}_{s=2} L_F(H^3(\widetilde{W}), s)$.

We can regard $L_F(H^3(\widetilde{W}), s)$ as the (again, partial) Artin *L*-series $L(\rho_F^*, s)$ attached to the contragredient representation ρ_F^* of $\rho_{F,l}$. By the general formalism of *L*-series,

$$L(\rho_F^*,s) = L(\operatorname{Ind}_{G_F}^{G_{\mathbb{Q}}}\rho_F^*,s) = L(\rho_{\mathbb{Q}}^* \otimes \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}}}\mathbf{1},s).$$

When F/\mathbb{Q} is Galois, we have $\operatorname{Ind}_{G_{\mathcal{F}}}^{G_{\mathbb{Q}}} \mathbf{1} \simeq \bigoplus_{\xi} \xi^{\dim \xi}$, where the sum runs through the irreducible representations ξ of $\operatorname{Gal}(F/\mathbb{Q})$. Hence

$$L(\rho_{\mathsf{F}}^*,s)=\prod_{\xi}L(\rho_{\mathbb{Q}}^*\otimes\xi,s)^{\dim\xi}.$$

・ロン ・四 と ・ ヨ と ・ ヨ と

Recall that the Beilinson-Bloch conjecture asserts that

$$\dim \operatorname{CH}^2(\widetilde{W}_F)_{\operatorname{hom}}\otimes \overline{\mathbb{Q}}_I = \operatorname{ord}_{s=2} L_F(\operatorname{H}^3_{\operatorname{\acute{e}t}}(\widetilde{W}_{\overline{\mathbb{Q}}}, \mathbb{Q}_I), s).$$

Schoen uses the identity $L(\rho_F^*, s) = \prod_{\xi} L(\rho_Q^* \otimes \xi, s)^{\dim \xi}$ to formulate the following refinement to B–B in the case at hand.

For each $\overline{\mathbb{Q}}_{l}$ -representation V and irreducible representation ξ of Gal (F/\mathbb{Q}) , let V^{ξ} denote the ξ -isotypic component of V, and let ν_{ξ} denote the multiplicity of ξ in V. Then

Conjecture

$$\dim \big(\mathit{CH}^2(\widetilde{W}_{\mathit{F}})_{hom} \otimes \overline{\mathbb{Q}}_{\mathit{I}} \big)^{\xi} = \operatorname{ord}_{s=2} L\big(\rho^*_{\mathbb{Q}} \otimes (\operatorname{Ind}_{\mathit{G}_{\mathit{F}}}^{\mathit{G}_{\mathbb{Q}}} \mathbf{1})^{\xi}, s \big),$$

or equivalently,

$$\nu_{\xi}\big(\mathit{CH}^{2}(\widetilde{W}_{\mathit{F}})_{\mathsf{hom}}\otimes\overline{\mathbb{Q}}_{\mathit{I}}\big)=\mathsf{ord}_{s=2}\,\mathit{L}\big(\rho_{\mathbb{Q}}^{*}\otimes\xi,s\big).$$

イロト イヨト イヨト イヨト

We first consider $F = \mathbb{Q}$.

Recall from Sankaran's talk the Dedekind η -function

$$\eta(\tau) = \exp(2\pi i \tau/24) \prod_{n \ge 1} (1 - \exp(2\pi i n \tau))$$

and the global 3-form on \widetilde{W}^{an}

$$\omega = \frac{2\pi i}{3} \eta^8(\tau) \, d\tau \, dz_1 \, dz_2,$$

which is a generator for $H^{3,0}(\widetilde{W}^{an},\mathbb{C})$.

Let $q = \exp(2\pi i \tau/3)$, and consider the *q*-expansion $\eta^8(\tau) = \sum_{n\geq 1} a_n q^n$ and associated Dirichlet series

$$L(\eta^8(3\tau),s) = \sum_{n\geq 1} a_n n^{-s}.$$

 $\eta^{8}(3\tau)$ is the unique normalized weight 4 newform on $\Gamma_{0}(9)$.

By Deligne, for primes $p \neq 3$, we have

$$\mathsf{Tr}\big(\rho_{\mathbb{Q}}(\mathsf{Frob}_{\rho}^{-1}) \bigm| H^{3}_{\mathrm{\acute{e}t}}(\widetilde{W}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{l})\big) = \mathsf{Tr}\big(T_{\rho} \Bigr| H^{3,0}(\widetilde{W}^{\mathsf{an}}, \mathbb{C})\big).$$

Since $H^{3,0}(\widetilde{W}^{an},\mathbb{C})$ is 1-dimensional with generator ω , the RHS equals a_p . It follows from this that the Euler product expansion for $L(\eta^8(3\tau), s)$ agrees (at primes $p \neq 3$) with that for $L(\rho^*_{\mathbb{Q}}, s)$.

We shall exploit this by expressing $L(\eta^8(3\tau), s)$ as a Hecke *L*-series. Let ζ_3 be a primitive 3rd root of unity and $K := \mathbb{Q}(\zeta_3)$. Let $I_{\sqrt{-3}}$ denote the group of fractional ideals for $\mathbb{Z}[\zeta_3]$ relatively prime to $\sqrt{-3}$, and define the Größencharakter

$$\begin{array}{ccc} \Psi \colon & I_{\sqrt{-3}} \longrightarrow K^{\times} \\ & \mathfrak{a} \longrightarrow a^3 \end{array}$$

where a = (a) with $a \equiv 1 \mod \sqrt{-3}$.

By a lemma of Shimura (going back to Hecke), $L(\Psi, s)$ is the Mellin transform of a weight 4, normalized newform on $\Gamma_0(9)$, namely of $\eta^8(3\tau)$. Hence

$$L(\eta^{8}(3\tau),s) = L(\Psi,s) = \prod_{\substack{\mathfrak{p} \text{ prime of } K\\ \mathfrak{p} \neq (\sqrt{-3})}} \frac{1}{1 - \Psi(\mathfrak{p})N\mathfrak{p}^{-s}}.$$

For F/\mathbb{Q} quadratic, let $\gamma \colon G_{\mathbb{Q}} \to \mu_2$ be the character with kernel G_F . Then

$$L(\rho_{F}^{*},s) = L(\rho_{\mathbb{Q}}^{*} \otimes \mathsf{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \mathbf{1},s) = L(\rho_{\mathbb{Q}}^{*},s)L(\rho_{\mathbb{Q}}^{*} \otimes \gamma,s)$$

and (up to finitely many bad Euler factors)

$$L(\rho_{\mathbb{Q}}^*\otimes\gamma,s)=L(\Psi\cdot(\gamma\circ N_{K/\mathbb{Q}}),s),$$

where the γ on the RHS is viewed as a character on ideals via class field theory.

We shall also consider the case that F is the ring class field $H_{9D} = k_D(j(\mathcal{O}_{9D}))$, where D is the discriminant of an order in an imaginary quadratic field. Recall from Amir-Khosravi's talk that the irreducible representations of $Gal(H_{9D}/\mathbb{Q})$ consist of characters γ : $Gal(H_{9D}/\mathbb{Q}) \rightarrow \mu_2$ and 2-dimensional representations of the form

$$\mathsf{Ind}_{\mathsf{Gal}(H_{9D}/\mathbb{Q})}^{\mathsf{Gal}(H_{9D}/\mathbb{Q})} \kappa$$

for $\kappa \neq \kappa^{-1}$ a character of Gal (H_{9D}/k_D) .

Hence

$$L(\rho_{H_{9D}}^*, \boldsymbol{s}) = \prod_{\kappa} L(\rho_{\mathbb{Q}}^* \otimes \operatorname{Ind}_{G_{k_D}}^{G_{\mathbb{Q}}} \kappa, \boldsymbol{s}) \prod_{\gamma} L(\rho_{\mathbb{Q}}^* \otimes \gamma, \boldsymbol{s}).$$

The factor $L(\rho_{\mathbb{Q}}^{*} \otimes \gamma, s)$ is expressible as a Hecke *L*-series as on the previous slide. Furthermore one has (again up to finitely many bad Euler factors)

$$L(\rho_{\mathbb{Q}}^* \otimes \operatorname{Ind}_{G_{k_D}}^{G_{\mathbb{Q}}} \kappa, s) = L((\Psi \circ N_{Kk_D/K}) \cdot (\kappa \circ N_{Kk_D/k_D}), s) \quad \text{if} \quad K \neq k_D,$$

and

$$L(\rho^*_{\mathbb{Q}}\otimes \operatorname{Ind}_{G_{k_D}}^{G_{\mathbb{Q}}}\kappa,s) = L(\Psi\cdot\kappa,s)L(\Psi\cdot\kappa^{-1},s) \quad \text{if} \quad K=k_D.$$

メロト メポト メヨト メヨ

Analytic continuation and the functional equation for all of the L-series on previous slides now follow from that for Hecke L-series.

We'd now like to see that for F quadratic, $\delta(F)$ gives the sign in the functional equation for $L(\rho_F^*, s)$. In fact we shall give the sign for all of the Hecke *L*-series on previous slides.

Let Φ denote any of the Größencharaktere Ψ , $\Psi \cdot (\gamma \circ N_{K/\mathbb{Q}})$, $(\Psi \circ N_{Kk_D/K}) \cdot (\kappa \circ N_{Kk_D/k_D})$, $\Psi \cdot \kappa$, $\Psi \cdot \kappa^{-1}$ appearing previously, and let

$$\chi(\mathfrak{p}) := \frac{\Phi(\mathfrak{p})}{N\mathfrak{p}^{3/2}}$$

and

$$L(\chi, s) := \prod_{\mathfrak{p}} \frac{1}{1 - \chi(\mathfrak{p}) N \mathfrak{p}^{-s}} = L(\Phi, s + 3/2).$$

イロト イ団ト イヨト イヨト

2r := the degree of the field M = K or Kk_D for which Φ is a Größencharakter,

- $\mathfrak{D} :=$ the different of M/\mathbb{Q} , and
 - $\mathfrak{c} := \mathsf{the conductor of } \Phi.$

Let

$$L^{\sharp}(\chi, \boldsymbol{s}) := (N_{M/\mathbb{Q}}\mathfrak{c}\mathfrak{D})^{r\boldsymbol{s}/2} (2\pi)^{r(\boldsymbol{s}+3/2)} \Gamma(\boldsymbol{s}+3/2)^r L(\chi, \boldsymbol{s}).$$

Then L^{\sharp} admits an analytic continuation and functional equation

$$w(\chi)L^{\sharp}(\chi,s) = L^{\sharp}(\overline{\chi},1-s).$$

In all cases under consideration the character χ satisfies $\chi(\overline{\mathfrak{p}}) = \overline{\chi}(\mathfrak{p})$ $\implies L^{\sharp}(\chi, s) = L^{\sharp}(\overline{\chi}, s)$ $\implies w(\chi) = \pm 1.$

Set $w(\Phi) := w(\chi)$.

<ロト </p>

Theorem

- $w(\Psi) = 1 \text{ and } L(\Psi, 2) \neq 0.$
- **2** Let F be a quadratic field and $\gamma: G_{\mathbb{Q}} \to \mu_2$ the Dirichlet character with kernel G_F . Then $w(\Psi \cdot (\gamma \circ N_{F/\mathbb{Q}})) = \delta(F)$.

Let κ be a ring class character for k_D , and assume in (3)–(5) that $k_D \neq K$.

- If κ is unramified at 3, then w((Ψ ∘ N_{Kk_D/K}) · (κ ∘ N_{Kk_D/k_D})) = δ(L), where L ⊂ Kk_D is the maximal subfield unramified at 3.
- If κ is tamely ramified at 3, then $w((\Psi \circ N_{Kk_D/K}) \cdot (\kappa \circ N_{Kk_D/k_D})) = 1$.

• If κ is wildly ramified at 3, then $w((\Psi \circ N_{Kk_D/K}) \cdot (\kappa \circ N_{Kk_D/k_D})) = -1$. Now assume that $k_D = K$.

- If κ ramifies at 3, then $\kappa \neq \kappa^{-1}$ and $w(\Psi \cdot \kappa) = -w(\Psi \cdot \kappa^{-1})$.
- If κ is unramified at 3, then w(Ψ · κ) = ε(b)κ⁻¹((√-3)), where bZ[ζ₃] is the conductor of κ, b ∈ Z, and ε: G_Q → μ₂ is the Dirichlet character associated to K/Q. If κ has odd order, then κ((√-3)) = 1.

イロン イ団 と イヨン イヨン

Nonvanishing of $L(\Psi, 2)$ is verified by numerical computation.

The main ingredient in the rest of the proof is a result of Tate asserting that $w = \prod_{\nu} w_{\nu}$, where w_{ν} can be expressed explicitly in terms of local differents and conductors.

メロト メポト メヨト メヨ

Root numbers and representation multiplicities

The preceding theorem combines with Amir-Khosravi's talk to yield the following. Given an irreducible representation ξ of Gal (H_{9D}/\mathbb{Q}) , let $w(\rho_{\mathbb{Q}}^* \otimes \xi)$ denote the root number of $L(\rho_{\mathbb{Q}}^* \otimes \xi, s)$. Recall the definition of $\mathscr{Z}(D)$: $CM_D = \{x \in \dot{X}(\overline{\mathbb{Q}}) \mid \text{End}(Y_x) = \mathscr{O}_D\}$, Z(D) is the subgroup of $\bigoplus_{x \in CM_D} NS(\widetilde{W}_x)$ generated by complex multiplication cycles, and $\mathscr{Z}(D)$ is a certain quotient of Z(D) defined in terms of the $SL_2(\mathbb{F}_3)$ -action on Z(D).

Corollary

Case I: $k_D \neq K$.

- Suppose 9 $\nmid D$. If $w(\rho_{\mathbb{Q}}^* \otimes \xi) = 1$, then $\nu_{\xi}(\mathscr{Z}(D) \otimes \overline{\mathbb{Q}}_l) = 0$. If $w(\rho_{\mathbb{Q}}^* \otimes \xi) = -1$, then $\nu_{\xi}(\mathscr{Z}(D) \otimes \overline{\mathbb{Q}}_l) = 1$.
- **②** Suppose 9 | D. If w(ρ^{*}_Q ⊗ ξ) = 1, then ν_ξ(𝔅(D/9^j) ⊗ $\overline{\mathbb{Q}}_l$) = 0 for all $j \ge 0$. If w(ρ^{*}_Q ⊗ ξ) = −1, then ν_ξ(𝔅(D/9^j) ⊗ $\overline{\mathbb{Q}}_l$) = 1 for exactly one $j \ge 0$.

Case II: $k_D = K$.

- Suppose dim $(\xi) = 1$. Then the same conclusions as in (1) apply.
- Suppose $\xi = \operatorname{Ind}_{G_{\mathcal{K}}}^{G_{\mathbb{Q}}} \kappa$ with κ ramified at $(\sqrt{-3})$. Then $w(\rho_{\mathbb{Q}}^* \otimes \xi) = -1$, and $\nu_{\xi} \left(\mathscr{Z}(D/9^j) \otimes \overline{\mathbb{Q}}_l \right) = 1$ for exactly one $j \ge 0$.
- Suppose ξ = Ind^{G_Q}_{G_K} κ with κ unramified at (√-3). Then L(ρ^{*}_Q ⊗ ξ, s) is the product of two L-functions with the same root number, which is computed in part (7) of the previous theorem. Furthermore ν_ξ(𝔅(D) ⊗ Q_l) = 0.

Refined Beilinson-Bloch revisited

Now recall $CH^2(\widetilde{W}_F)_{CM} = \ker[CH^2(\widetilde{W}_F)_{hom} \to CH^2(\widetilde{W}_F \times_X \eta_F)]$. The previous corollary paired with Schoen's refined Beilinson–Bloch conjecture raises the question of for which D and ξ one has

$$\nu_{\xi} \big(CH^2(\widetilde{W}_{H_{9D}})_{\mathsf{CM}} \otimes \overline{\mathbb{Q}}_I \big) = \operatorname{ord}_{s=2} L(\rho_{\mathbb{Q}}^* \otimes \xi, s).$$

One expects that the following hypotheses will often hold:

- $\operatorname{ord}_{s=2} L(\rho_{\mathbb{Q}}^* \otimes \xi, s) = 0 \text{ or } 1 \text{ according as } w(\rho_{\mathbb{Q}}^* \otimes \xi) = 1 \text{ or } -1.$
- The map $(\mathscr{Z}(D) \otimes \overline{\mathbb{Q}}_I)^{\xi} \to (CH^2(\widetilde{W}_{H_{9D}})_{\mathsf{CM}} \otimes \overline{\mathbb{Q}}_I)^{\xi}$ is injective.

In the cases covered in (1)-(4) in the previous corollary, these hypotheses imply that

$$\nu_{\xi} \big(CH^2(\widetilde{W}_{H_{9D}})_{\mathsf{CM}} \otimes \overline{\mathbb{Q}}_I \big) \geq \operatorname{ord}_{s=2} L(\rho_{\mathbb{Q}}^* \otimes \xi, s).$$

(At least) two difficulties arise when trying to prove the reverse inequality:

- When ξ is the character of an imaginary quadratic field unramified at 3, there are infinitely many D' such that (𝔅(D') ⊗ Q
)^ξ contributes to (CH²(W
 _{HgD}) ⊗ Q
)^ξ.
- Any ξ can be inflated to a representation of $Gal(H_{g_n 2_D}/\mathbb{Q})$. If $3 \nmid n$, then $\nu_{\xi}(\mathscr{Z}(n^2 D) \otimes \overline{\mathbb{Q}}_l) = \nu_{\xi}(\mathscr{Z}(D) \otimes \overline{\mathbb{Q}}_l)$. One would hope that the images of these vector spaces in $(CH^2(\widetilde{W}_{H_{g_D}})_{CM} \otimes \overline{\mathbb{Q}}_l)^{\xi}$ coincide, but it is not clear how to relate them.

Let F be an imaginary quadratic field with $\operatorname{ord}_{s=2} L(\rho_F^*, s) = 1$. Then B–B predicts

$$\operatorname{rank} CH^2(\widetilde{W}_F)_{\operatorname{hom}} = 1.$$

Recall again from Amir-Khosravi's talk that if F is unramified at 3, then there are infinitely many D with $k_D \neq F$ such that Z(D) contributes to $CH^2(\widetilde{W}_F)_{\text{hom}}$. Thus B–B predicts relations in the Chow group between the cycles so obtained as D varies, but understanding this appears to be very difficult.

Rather than attempt to address this problem directly, Schoen uses the Abel-Jacobi map

$$CH^2(\widetilde{W}_F)_{hom} \longrightarrow J^3(\widetilde{W}^{an}).$$

to move everything to the intermediate Jacobian $J^3(\widetilde{W}^{an})$.

In the particular case that D = -4, i.e. $F = \mathbb{Q}(\sqrt{-1})$, he obtains computer evidence that the Abel–Jacobi images of about 50 CM cycles are all integer multiples of the image of a single CM cycle in the intermediate Jacobian, as we shall now see.

・ロト ・個ト ・ヨト ・ヨト

Intermediate Jacobian

Recall from Walls's talk that for any compact Kähler manifold X of \mathbb{C} -dimension n, the intermediate Jacobian $J^{2k-1}(X)$ can be expressed as the complex torus

$$J^{2k-1}(X) = F^{n-k+1}H^{2n-2k+1}(X,\mathbb{C})^{\vee}/(H_{2n-2k+1}(X,\mathbb{Z})/\text{torsion}).$$

We take $X = \widetilde{W}^{an}$, so that n = 3, and k = 2. Since $h^{3,0} = 1$ and $h^{2,1} = 0$, we have that $F^2 H^3(\widetilde{W}^{an}, \mathbb{C})^{\vee} = H^{3,0}(\widetilde{W}^{an})^{\vee}$

is 1-dimensional. The map

$$H_3(\widetilde{W}^{an},\mathbb{Z})/ ext{torsion}\longrightarrow H^{3,0}(\widetilde{W}^{an})^{ee}$$

is given by

$$\xi\longmapsto \bigg[\varphi\mapsto \int_{\xi}\varphi\bigg].$$

Using the description in Sankaran's talk of the action of $SL_2(\mathbb{F}_3)$ on the global 3-form ω , one can see that $H_3(\widetilde{W}^{an},\mathbb{Z})/\text{torsion}$ is a free, rank one $\mathbb{Z}[\zeta_3]$ -module. Fix a basis ξ , and take the basis element dual to ω in $H^{3,0}(\widetilde{W}^{an})^{\vee}$. Then we identify

$$J^{3}(\widetilde{W}^{an}) = \mathbb{C}/\Omega\mathbb{Z}[\zeta_{3}]$$

where $\Omega := \int_{\xi} \omega$.

Relative to our choices, the Abel-Jacobi map

$$\alpha \colon Z^2(\widetilde{W}^{an})_{\mathrm{hom}} \longrightarrow J^3(\widetilde{W}^{\mathrm{an}})$$

now admits the concrete description

$$lpha(z) = \int_{\mathcal{C}_z} \omega \mod \Omega \mathbb{Z}[\zeta_3],$$

where C_z is a differentiable 3-chain bounding z.

We shall just give a sketch of Schoen's approach to numerical computation of the Abel–Jacobi map on CM cycles. There are three main ingredients.

The first is the uniformization

$$\Gamma(3) \setminus \mathfrak{H} \xrightarrow{\sim} \dot{X}^{\mathsf{an}} = \mathbb{P}^1_{\mathbb{C}} \smallsetminus \{\infty, 3\mu_3\}$$

discussed in Sankaran's talk. Given $\tau \in \mathfrak{H}$ mapping to a CM point and z_{τ} the resulting CM cycle, Schoen derives from a previous paper an explicit formula for $\alpha(z_{\tau})$.

イロト イヨト イヨト イヨ

Computer evaluation of Schoen's formula requires little more than knowledge of the Fourier coefficients of $\eta^8(3\tau) = \sum_{n\geq 1} a_n q^n$, $q = \exp(2\pi i\tau)$. These are easily written down by virtue of the fact that $\eta^8(3\tau)$ is the cusp form associated to the Hecke character Ψ on $\mathbb{Q}(\zeta_3)$ we encountered earlier:

- If $3 \mid n$, then $a_n = 0$.
- If p is prime and $\equiv -1 \mod 3$, then $a_p = 0$.
- If p is prime and $\equiv 1 \mod 3$, then $a_p = \pi^3 + \overline{\pi}^3$, where $p = \pi \overline{\pi}$ in $\mathbb{Z}[\zeta_3]$ and $\pi \equiv 1 \mod \sqrt{-3}$.

The second ingredient in the numerical computation of the Abel–Jacobi map is the choice of a good $\mathbb{Z}[\zeta_3]$ -generator ξ for $H_3(\widetilde{W}^{an},\mathbb{Z})/\text{torsion}$. Very roughly, one would like to use the homology class of $\widetilde{W}(\mathbb{R})$, but $\widetilde{W}(\mathbb{R})$ is not orientable.

Schoen works around this by constructing an auxiliary scheme \widehat{W} over \mathbb{Q} , obtained via a sequence of blow-ups along certain components of the singular fibers of $\widetilde{W} \to X$, with the property that $\widehat{W}(\mathbb{R})$ is orientable and $H^3(\widehat{W}^{an},\mathbb{Z}) \simeq H^3(\widetilde{W}^{an},\mathbb{Z})$.

Letting w denote the homology class of $\widehat{W}(\mathbb{R})$, it turns that w/3 may be taken as the desired generator.

The third and final ingredient is the numerical evaluation of the period

$$\Omega = \frac{1}{3} \int_{w} \omega.$$

Schoen effects this calculation via the complex uniformization from Sankaran's talk and various transformation properties of $\eta^{8}(\tau)$, which ultimately yield an infinite series converging rapidly to Ω .

・ロト ・回ト ・ヨト ・ヨ

Our goal is now to construct lots of CM cycles defined over $\mathbb{Q}(\sqrt{-1})$ and investigate the relations between their images in $J^3(\widetilde{W}^{an})$.

Let $d \not\equiv 0 \mod 3$ be the discriminant of a real quadratic field. Then D = -4d is the discriminant of the order $\mathscr{O}_D := \mathbb{Z}\left[\frac{D+\sqrt{D}}{2}\right]$ in k_D , and $\mathbb{Q}(\sqrt{-1}) \subset H_D$. Let x denote the image of $\frac{D+\sqrt{D}}{2}$ in $\Gamma(3) \setminus \mathfrak{H}$.

If $D \equiv 1 \mod 3$, then recall from Amir-Khosravi's talk that

- there are two Heegner points x_0 in the $SL_2(\mathbb{F}_3)$ -orbit of x,
- the corresponding CM cycles are defined over H_D , and
- these cycles have the same image in $\mathscr{Z}(D)$.

We define

$$z_D := \sum_{\gamma \in \mathsf{Gal}(\mathcal{H}_D/Q(\sqrt{-1}))} z_{x_0}^{\gamma}.$$

<ロト </p>

If $D \equiv -1 \mod 3$, then let x_0 be a special point in the $SL_2(\mathbb{F}_3)$ -orbit of x. The cycle z_{x_0} is defined over H_{9D} , and its image in $\mathscr{Z}(D)$ is again independent of the special point x_0 . In his earlier study of the Galois action on CM cycles, Schoen shows that $Gal(H_{9D}/H_D) \simeq \mathbb{Z}/4\mathbb{Z}$ acts trivially on z_{x_0} .

We define

$$z_D := rac{1}{4} \sum_{\gamma \in \mathsf{Gal}(\mathcal{H}_{9D}/\mathbb{Q}(\sqrt{-1}))} z_{x_0}^{\gamma}.$$

Computer evaluation of the Abel–Jacobi map on the cycles z_D so defined requires some further manipulations, the details of which we omit.

Schoen then computes the Abel–Jacobi image $\alpha(z_D)$ for all d < 250, and finds that $\alpha(z_D) = c_d \alpha(z_{\sqrt{-1}})$ for all d, where $c_d \in \mathbb{Z}$ is given in the following table.

<ロ> (日) (日) (日) (日) (日)

Relations $\alpha(z_D) = c_d \alpha(z_{\sqrt{-1}})$ in the intermediate Jacobian

$D = -4d \equiv 1 \mod 3$			$D=-4d\equiv -1 mod mod 3$			
d	D	Cd	d	D	Cd	
5	-20	-3	13	-52	3	
8	-32	6	28	-112	12	
17	-68	-3	37	-148	-12	
29	-116	9	40	-160	-6	
41	-164	15	61	-244	6	
44	-176	-24	73	-292	$^{-15}$	
53	-212	3	76	-304	-24	
56	-224	12	85	-340	27	
65	-260	-24	88	-352	-12	
77	-308	$^{-18}$	97	-388	21	
89	-356	15	109	-436	-27	
92	-368	24	124	-496	12	
101	-404	$^{-15}$	133	-532	-6	
104	-416	-24	136	-544	30	

・ロト ・回ト ・ヨト ・ヨ

Relations $\alpha(z_D) = c_d \alpha(z_{\sqrt{-1}})$ in the intermediate Jacobian, cont'd

$D = -4d \equiv 1 \mod 3$			$D=-4d\equiv -1 mod mod 3$			
d	D	Cd	d	D	Cd	
113	-452	-27	145	-580	3	
137	-548	63	157	-628	-6	
140	-560	24	172	-688	0	
149	-596	69	181	-724	9	
152	-608	-48	184	-736	60	
161	-644	-42	193	-772	24	
173	-692	9	205	-820	25	
185	-740	-6	217	-868	24	
188	-752	24	220	-880	-48	
197	-788	-33	229	-916	-27	
209	-836	-6	232	-928	-54	
221	-884	-42	241	-964	21	
233	-932	57				
236	-944	48				

248

-992

36

・ロト ・回ト ・ヨト ・

A modular form of weight 5/2

Given an odd integer $k \ge 5$ and $g \in S_{k/2}(\Gamma_0(4N))$ an eigenform for all Hecke operators T_{p^2} , (p, 4N) = 1, with corresponding eigenvalues λ_p , the Shimura correspondence associates to g a cusp form $f \in S_{k-1}(\Gamma_0(2N))$ satisfying $T_p f = \lambda_p f$.

In our situation we have $f(\tau) = \eta^8(3\tau) \in S_4(\Gamma_0(9))$, and a corresponding $g \in S_{5/2}(\Gamma_0(36))$ is described by Koblitz.

Let $g_1(\tau)$ denote the unique weight 2 normalized newform on $\Gamma_0(36)$. Write

$$heta(au):=\sum_{n\in\mathbb{Z}}q^{n^2},\quad q=\exp(2\pi i au).$$

Then

$$g := (g_1\theta)|_{1+(1/4)T_4}.$$

Writing $g(\tau) = \sum_{d \ge 1} b_d q^d$, Schoen's computer calculations indicate that for all d < 250 the discriminant of a real quadratic field,

$$b_d = -\epsilon(d)2c_d$$

where as before ϵ is the Dirichlet character of the quadratic field $\mathbb{Q}(\zeta_3)!!!$ The idea that the integers c_d might arise from Fourier coefficients of a modular form of weight $\frac{5}{2}$ is due to Gross.