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Motivation

- You know, Zp...

- What are you saying, stranger? Do you mean Fp?
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Motivation II

Elements of Zp :
∞
∑

i=0
aip

i = a0 + a1p + a2p
2 + · · ·+ anp

n + · · ·

where ai ∈ {0, . . . , p − 1}“ = ”Fp.

So

Zp =

∞
∏

i=0

Fp.

This is true as sets, but not as rings!

How can we understand the ring structure of Zp viewed in
∞
∏

i=0
Fp?
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The Definition (as a set)

Throughout this talk, p is fixed.

Let A be a ring and define

W (A) := Wp(A) :=

∞
∏

i=0

A

If x ∈W (A), we will denote its coordinates by xn, i.e.,

x = (xn)
∞
n=0 ∈W (A).
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The Witt polynomials

Definition

For each n ∈ Z≥0, define the n-th Witt polynomial to be

wn :=

n
∑

i=0

piX pn−i

i ∈ Z[X0, . . . ,Xn].

Example

w0 = X0

w1 = X p
0 + pX1

w2 = X p2

0 + pX p
1 + p2X2

w3 = X p3

0 + pX p2

1 + p2X p
2 + p3X3
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Ghost components

The wn’s define maps

wn : W (A) −→ A, and

w∗ := (wn)
∞
n=0 : W (A)→ AZ≥0 .

Terminology

Let x = (xn)
∞
n=0 ∈W (A).

Witt components: xn

ghost components: wn(x)

Remark

If p is not a zero-divisor in A, then w∗ is injective.
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The definition (as a ring)

Theorem (Main Theorem)

There is a unique covariant functor W = Wp : AlgZ −→ AlgZ such
that for any ring A,

(i) Wp(A) =
∞
∏

i=0

A and, for any ring homomorphism f : A→ B,

W (f )((an)
∞
n=0) = (f (an))

∞
n=0.

(ii) The maps wn : W (A)→ A are homomorphism of rings for all
n ∈ Z≥0.

Moreover, the zero element of W (A) is (0, 0, . . . ) and the unit
element is (1, 0, 0, . . . ).

Definition

The ring W (A) is the ring of Witt Vectors with coefficients in A.
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Fp  Zp (Argh!)

Theorem

Let K be a perfect ring of characteristic p, and let R be the strict
p-ring with residue ring K and Teichmüller representatives
τ : K → R. Then we have a ring isomorphism

f : W (K )
∼
−−→ R

(xn) 7−→
∞
∑

n=0
τ(x

1/pn

n )pn

Corollary (Cavemen reconstruct Zp from Fp!!!)

Let τ : Fp → Zp be the Teichmüller character. Then we have a ring
isomorphism

f : W (FP)
∼
−−→ Zp

(xn) 7−→
∞
∑

n=0
τ(xn)p

n
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Universal polynomials for + and ·

Let R = Z[X0,X1, . . . ,Y0,Y1, . . . ].
Take X = (Xn) and Y = (Yn) ∈W (R).
Let (Sn) = S = X + Y be the sum in W (R). Then

wn(S) = wn(X + Y ) = wn(X ) + wn(Y ).

We can EXPLICITLY solve those equations for Sr and obtain, for
each r ∈ Z≥0, Sr ∈ Z[X0, . . . ,Xr ,Y0, . . . ,Yr ].

Now, if A is any ring and (xn), (yn) ∈W (A), we can compute the
sum x + y ∈W (A) just by specializing the polynomials Sr , i.e,

(xn) + (yn) = (Sn(x , y)) .

So the polynomials Sn are universal polynomials giving us addition in
W (A) for any ring A! Same thing for multiplication!
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Reduction to the Universal Case

Idea: We want to prove something about W (A) for any ring A.

Strategy:

Prove it for W (R), where R = Z[X0,X1, . . . ,Y0,Y1, . . . ]. This is
usually easier because p is not a zero-divisor in R (as opposed to
Fp) and, therefore, w∗ : W (R)→ RZ≥0.

Now, specialize to A.

This is called reduction to the universal case.
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The Shift-Map (fancy name: Verschiebung)

Define the Verschiebung map by

V : W (A) −→ W (A)
(x0, x1, x2, . . . ) 7−→ (0, x0, x1, . . . ).

Proposition

The map V respects addition, i.e, V (x + y) = V (x) + V (y).

Proof (sketch).

Reduce it to the universal case, that is: prove it for the ring
R = Z[X0,X1, . . . ,Y0,Y1, . . . ]. To do this, first prove that

wn(V (X + Y )) = wn(V (X ) + V (Y )).

Then, use that w∗ = (wn) : W (R)→ RZ≥0 is injective (this follows
because p is not a zero-divisor in R).
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The Frobenius map

From now on, the ring A = k will be a perfect field of characteristic p.

We have the Frobenius automorphism:

σ : k
∼
−−→ k

α 7−→ αp

which, by the main theorem, induces an automorphism (also called
Frobenius) for W (k)

F = W (σ) : W (k)
∼
−−→ W (k)

(xn) 7−→ (xpn ).

Luiz Kazuo Takei Witt Vectors and Dieudonné Rings



Properties of F and V

Proposition

The maps F ,V : W (k)→W (k) satisfy the following properties:

FV (x) = VF (x) = p · x

V (F (x)y) = xV (y) (V is F−1-linear).
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Topology on W (k)

Let n ∈ Z≥0. Consider

W(n)(k) :=
n
∏

i=0

k ≤W (k)

and
πn : W (k) −→ W(n)(k)

(xr )
∞
r=0 7−→ (xr )

n
r=0.

It is clear that
W (k) = lim

←−
W(n)(k).

Definition

Let k be equipped with the discrete topology. The standard

topology on W (k) is the inverse limit topology on lim
←−

W(n)(k),

which is the same as the product topology on W (k) =
∞
∏

i=0
k .
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More about topology

Proposition

(1) W (k) is a topological ring.

(2) W (k) is complete and Hausdorff.

(3) The sets ker(πn) for n ≥ 0 form a neighborhood of the identity in
W (k).

Remark

Notice that ker(πn) = {(0, . . . , 0, xn+1, xn+2, . . . )}. So the standard
topology is the p-adic topology!

Proposition

All the maps defined so far (including W (f ), for any f : k → k ′) are
continuous.
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Dieudonné Rings

Idea: have W (k) and the maps F and V all together in a single ring.

The following ring is sometimes called Dieudonné ring:

W (k)[F ,V ]

This is the non-commutative polynomial ring in the variables F and
V satisfying:

F · V = V · F = p , F · a =Fa · F , V ·Fa = a · V
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Dieudonné Rings II

Sometimes people call Dieudonné ring this other ring:

W (k) ((F )),

the non-commutative ring of Laurent series in the variable F satisfying

F · a =Fa · F .

Remark

Note that V can be viewed inside this ring, namely:

V · F = p =⇒ V = p
1

F
.
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Some useful functions

Let g =
∞
∑

i=m

aiF
i ∈W (k) ((F )) with am 6= 0.

Define the functions

d : W (k) ((F )) \ {0} −→ Z

g 7−→ m

and
s : W (k) ((F )) \ {0} −→ Z

g 7−→ ν(am)

where ν is the valuation of W (k).
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Quasi-Euclidean property

Proposition

The Dieudonné ring W (k) ((F )) is “Euclidean” with respect to the
function s. In particular, all left and right ideals are principal.

Proof.

Let g , h ∈W (k) ((F )) with h 6= 0. We want: q, r such that

g = h · q + r , s(r) < s(h) or r = 0.

If s(g) ≥ s(h), then there is q1 such that

d(g − h · q1) ≥ m + 1.

If s(g − h · q1) ≥ s(g), stop. Otherwise, continue.
Note that d(qi+1) > d(qi). So if this process doesn’t stop, we obtain

g = h ·

(

∑

i

qi

)

.
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THANK YOU!
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