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The basic problem

The basic problem is to find a generalization of the work of
Borcherds described in earlier lectures, for example, to
arbitrary totally real fields.
The basic setup is the following:

F = a totally real field with |F : Q| = d .

V = a quadratic space over F

sig(V ) = ((n, 2), (n + 2, 0), . . . , (n + 2, 0))

L = (even) integral lattice in V , L′ = dual lattice.

SL ⊂ S(V (F̂ ))
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The basic problem

This subspace is stable under the Weil representation
action ω = ωψ of SL2(Ẑ).
We define a representation ωL of SL2(Z) on SL via
restriction. Also, let ρ̄L = ωL, i.e.,

ρL(γ)ϕ = ωL(γ)ϕ̄.

Recall

D = oriented negative 2-planes in V∞1 .

ϕ(τ, z) = Gaussian, τ ∈ Hd , z ∈ D.

ϕ = ϕµ ∈ SL

θ(τ, z, h, ϕ) =
∑

x∈V (F )

ϕ(τ, z; x) ϕ(h−1x), h ∈ G(Af ),

= Siegel theta function
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The basic problem

The Siegel theta function θ(τ, z, h, ϕ) has weight

(
n
2
− 1,

n
2

+ 1, . . . ,
n
2

+ 1).

We view
θ(τ, z, h) : SL −→ C

as a distribution on SL or S(V (Af )).
Let

f =
Hilbert modular form

of weight (1− n
2 , n

2 + 1, . . . , n
2 + 1).

but anti-holomorphic in (τ2, . . . , τd), SL-valued and type ωL.
Let

θ(z, h; f ) =

∫
Γ\Hd

f (τ) · θ(τ, z, h) (v2 . . . vd)
n
2 +1 dµ(τ)
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The basic problem

Allowing f to be ‘meromorphic’ at the cusps, we would like
to see log ||Ψ(f )||2 as an output for a meromorphic form
Ψ(f ) on XK with an explicitly given divisor.
Problem I. Why this signature?
For example, you could consider the case

sig(V ) = ((n, 2), . . . , (n, 2)︸ ︷︷ ︸
r

, (n + 2, 0), . . . , (n + 2, 0)︸ ︷︷ ︸
d−r

).

Our present vision of the relation between automorphic
forms and Chow groups is too naive.
Problem II. Koecher’s principle: Once a function is
holomorphic on Γ\Hd , it is holomorphic at the cusps, i.e.,
there are no nonzero f ’s of the type we need!
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The basic problem

Bruinier has found a way to get around this problem. At the
moment, the method involves a more analytic approach:
J. H. Bruinier, Regularized theta lifts for orthogonal groups
over totally real fields, arXiv:0908.3076v2
There is also a more recent paper of Bruinier and Yang in
which they give arithmetic applications:
J.H. Bruinier and Tonghai Yang, CM values of automorphic
Green functions on orthogonal groups over totally real
fields, arXiv:1004.3720v2
I will probably not have time to discuss this.
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Review of the Borcherds case

First we review the case F = Q, d = 1.
Here the input functions can be either:
weakly holomorphic forms, Borcherds’ original input, or
harmonic weak Maass forms, introduced by Bruinier and
Funke.
Here are the definitions:
For a function

f : H −→ SL,

define the slash operator of weight k

(f|k ,ρ̄L [γ])(τ) = j(γ, τ)−k ρ̄L(γ)−1 f(τ).
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Review of the Borcherds case

Harmonic weak Maass forms:

Hk ,ρ̄L

(i) For all γ ∈ SL2(Z),

f|k ,ρ̄L [γ] = f.

(ii) ∆k f = 0 where

∆k = −v2
(

∂2

∂u2 +
∂2

∂v2

)
+ ik v

(
∂

∂u
+ i

∂

∂v

)
.

(iii) There is a finite sum

Pf(τ) =
∑
m≤0

c+(m) qm, c+(m) ∈ SL

so really just an element of C[q−1]⊗C SL, such that

f(τ)− Pf(τ) = O(e−εv ), as v −→∞,

for some ε > 0.
Stephen Kudla (Toronto) Travaux de Bruinier
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Review of the Borcherds case

Note that

−∆k = Rk−2 ◦ Lk = Lk+2 ◦ Rk + k .

where the raising and lowering operators are

Rk = 2i
∂

∂τ
+ kv−1, Lk = −2i v2 ∂

∂τ̄
.

Weakly holomorphic forms:

M!
k ,ρ̄L

⊂ Hk ,ρ̄L .

Here f is holomorphic, i.e., killed by Lk , and satisfies (i) and
(iii). Condition (iii) then just says that f is meromorphic at
the cusp.

Stephen Kudla (Toronto) Travaux de Bruinier



Review of the Borcherds case

Note that

−∆k = Rk−2 ◦ Lk = Lk+2 ◦ Rk + k .

where the raising and lowering operators are

Rk = 2i
∂

∂τ
+ kv−1, Lk = −2i v2 ∂

∂τ̄
.

Weakly holomorphic forms:

M!
k ,ρ̄L

⊂ Hk ,ρ̄L .

Here f is holomorphic, i.e., killed by Lk , and satisfies (i) and
(iii). Condition (iii) then just says that f is meromorphic at
the cusp.

Stephen Kudla (Toronto) Travaux de Bruinier



Review of the Borcherds case

Note that

−∆k = Rk−2 ◦ Lk = Lk+2 ◦ Rk + k .

where the raising and lowering operators are

Rk = 2i
∂

∂τ
+ kv−1, Lk = −2i v2 ∂

∂τ̄
.

Weakly holomorphic forms:

M!
k ,ρ̄L

⊂ Hk ,ρ̄L .

Here f is holomorphic, i.e., killed by Lk , and satisfies (i) and
(iii). Condition (iii) then just says that f is meromorphic at
the cusp.

Stephen Kudla (Toronto) Travaux de Bruinier



Review of the Borcherds case

Note that

−∆k = Rk−2 ◦ Lk = Lk+2 ◦ Rk + k .

where the raising and lowering operators are

Rk = 2i
∂

∂τ
+ kv−1, Lk = −2i v2 ∂

∂τ̄
.

Weakly holomorphic forms:

M!
k ,ρ̄L

⊂ Hk ,ρ̄L .

Here f is holomorphic, i.e., killed by Lk , and satisfies (i) and
(iii). Condition (iii) then just says that f is meromorphic at
the cusp.

Stephen Kudla (Toronto) Travaux de Bruinier



Review of the Borcherds case

Consider the conjugate lowering operator

δk : f 7→ vk−2Lk (f) = 2i vk ∂f
∂τ̄

.

Observing the identity

L2−k (vk−2φ̄) = vk Rk−2φ.

we have

L2−k (δk (f)) = vk Rk−2 ◦ Lk (f) = vk ∆k (f) = 0,

i.e., δk (f) is holomorphic.
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Review of the Borcherds case

Indeed:

Proposition (Bruinier-Funke)
There is an exact sequence

0 −→M!
k ,ρ̄L

−→ Hk ,ρ̄L

δk−→ S2−k ,ρL −→ 0.

where S2−k ,ρL is the space of holomorphic cusp forms of type
ρL and weight 2− k.

Remark: In particular, the space of weakly holomorphic
forms has finite codimension in the space of harmonic
weak Maass forms.
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Relation to Poincaré series

To define Poincaré series, we begin with simpler spaces of
functions, which are only required to have translation
invariance.
The first of these, for s ∈ C, is

Ak ,ρ̄L(s)

the space of smooth functions

f : H −→ SL

(i) For all γ ∈ Γu
∞ ⊂ Γ∞, (Note that |Γ∞ : Γu

∞| = 2.)

f |k ,ρ̄L [γ] = f

(ii)

∆k f =
1
4

(k − 1 + s)(k − 1− s) f ,

Note that for the values s = ±s0, s0 = 1− k , such
functions are annihilated by ∆k .
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functions, which are only required to have translation
invariance.
The first of these, for s ∈ C, is
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Relation to Poincaré series

Such functions have a Fourier expansion of the following
form

f (τ) = a(0, s) v (1−k−s)/2 + b(0, s) v (1−k+s)/2

+
∑
m 6=0

a(m, s)Ws(4πmv) e(mu)

+ b(m, s)Ms(4πmv) e(mu),

where Ws(t) and Ms(t) are Whittaker functions, and
a(m, s) and b(m, s) are in SL.
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Relation to Poincaré series

The key facts about them are
(a) Formulas:

Ms(v) = |v |−k/2 Mν,µ(|v |),

Ws(v) = |v |−k/2 Wν,µ(|v |),
ν = sgn(v) k/2, µ = s/2.

Note that the only dependence on the sign of v is in the
index ν. Here Mν,µ(|v |) and Wν,µ(|v |) are classical
Whittaker functions.
(b) Asymptotics:

Mν,µ(t) = tµ+ 1
2 (1+O(t)), Wν,µ(t) = O(t−µ+ 1

2 ), t −→ 0,

Wν,µ(t) = O(e−εt), and

Mν,µ(t) =
Γ(1 + 2µ)

Γ(µ− ν + 1
2)

et/2 t−ν(1 + O(t−1)), t −→∞.
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Relation to Poincaré series

(c) Special values at s0 = 1− k , (Remark: Usually, k < 1.)

Ws0(v) =

{
e−v/2 if v > 0,

e−v/2 Γ(1− k , |v |) if v < 0,

for Γ(s, x) the incomplete Γ-function, and

Ms0(v) = (−sgn(v))k−1 e−v/2
(

Γ(2−k)−(1−k) Γ(1−k ;−v)

)
,

Note that
Ws0(v) � e−|v |/2, |v | → ∞,

whereas
Ms0(v) � e|v |/2, |v | → ∞.
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Relation to Poincaré series

Next, the space of Whittaker forms is the subspace of
Ak ,ρ̄L(s) spanned by functions of the form

b(m, s)Ms(4πmv) e(mu),

for m < 0.
Taking s = s0 = 1− k , the space of
harmonic Whittaker forms

Hk ,ρ̄L .

is the subspace of Ak ,ρ̄L(s0) spanned by the functions of
the form

b(m, s0)Ms0(4πmv) e(mu),

for m < 0. Here b(m, s0) ∈ SL, as before.
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Relation to Poincaré series

Very explicitly, for any s ∈ C, the space of Whittaker forms
is the span of the functions

fm,µ(τ, s) = Γ(s + 1)−1Ms(4πmv) e(mu) ϕµ.

for m ∈ Q, m < 0, µ ∈ L′/L, with m + Q(µ) ∈ Z.
Let

δk (f ) = vk−2Lk (f ).

Then, for f ∈ Hk ,ρ̄L , δk (f ) ∈ S2−k ,ρL , the space of
holomorphic functions g : H → SL satisfying (i) and of
exponential decay as v →∞.
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Relation to Poincaré series

Assume that k < 0. Then we can form Poincaré series:

M !
k ,ρ̄L

−→ Hk ,ρ̄L

δk−→ S2−k ,ρL

↓ ↓ ↓

M!
k ,ρ̄L

−→ Hk ,ρ̄L

δk−→ S2−k ,ρL

where the first two vertical arrows are given by

f 7→ PSk ,ρ̄L(f ) =
∑

γ∈Γu
∞\Γ

f |k ,ρ̄L [γ],

and the third is

g 7→ PS2−k ,ρL(g) =
∑

γ∈Γu
∞\Γ

g|2−k ,ρL [γ].
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Relation to Poincaré series

The space M !
k ,ρ̄L

is the kernel of the composite map

ξk = PS2−k ,ρL ◦ δk .

Proposition
PSk ,ρ̄L : Hk ,ρ̄L

∼−→ Hk ,ρ̄L ,

with inverse given by

f 7→
∑
m<0

∑
µ

c+(m) fm,µ(τ, s0).

where

Pf(τ) =
∑
m≤0

c+(m) qm, c+(m) ∈ SL.

In particular, the weakly holomorphic forms have a simple
description:

PSk ,ρ̄L : M !
k ,ρ̄L

∼−→M!
k ,ρ̄L

.
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The Borcherds lift of a Poincaré series

The upshot of the previous discussion is that every
f ∈ Hk ,ρ̄L can be written uniquely as a Poincaré series for
f ∈ Hk ,ρ̄L .
If f = PSk ,ρ̄L(f ), then

Φ(z, h; f) =

∫ reg

Γ\H
f(τ) · θ(τ, z, h) dµ(τ)

=

∫ reg

Γu
∞\H

f (τ) · θ(τ, z, h) dµ(τ). (0.1)

Here we will come back to be more careful about what the
regularization means in the second line.
In any case, the resulting integral is expressed directly in
terms of f .
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The Borcherds lift of a Poincaré series

Here is Bruinier’s key idea. In the case F = Q,

M !
k ,ρ̄L

−→ Hk ,ρ̄L

δk−→ S2−k ,ρL

↓ ↓ ↓

M!
k ,ρ̄L

−→ Hk ,ρ̄L

δk−→ S2−k ,ρL

θreg ↓ θreg ↓ θKM ↓
Borcherds

forms
−→ harmonic

Green functions
ddc
−→ A(1,1)(X )

where the lower right square is the Theorem of
Bruinier-Funke for θKM the classical geometric theta lift.
To be precise

ddc(θreg(f)) = θKM(δk (f)) + a+(0) Ω.
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The Borcherds lift of a Poincaré series

For F with d > 1, the first two spaces on the bottom row
are zero, by Koecher’s principal.
First, Bruinier defines the space Hk,ρ̄L .
Of course, the Poincaré series for functions in this space
diverge wildly.
The main idea is to bypass the ‘missing spaces’ and to
define directly a map

θBruinier : Hk ,ρ̄L −→
harmonic

Green functions

by regularizing the unfolded version (0.1):

f 7→
∫ reg

Γu
∞\H

f (τ) · θ(τ, z, h) dµ(τ).

Stephen Kudla (Toronto) Travaux de Bruinier



The Borcherds lift of a Poincaré series

For F with d > 1, the first two spaces on the bottom row
are zero, by Koecher’s principal.
First, Bruinier defines the space Hk,ρ̄L .
Of course, the Poincaré series for functions in this space
diverge wildly.
The main idea is to bypass the ‘missing spaces’ and to
define directly a map

θBruinier : Hk ,ρ̄L −→
harmonic

Green functions

by regularizing the unfolded version (0.1):

f 7→
∫ reg

Γu
∞\H

f (τ) · θ(τ, z, h) dµ(τ).

Stephen Kudla (Toronto) Travaux de Bruinier



The Borcherds lift of a Poincaré series

For F with d > 1, the first two spaces on the bottom row
are zero, by Koecher’s principal.
First, Bruinier defines the space Hk,ρ̄L .
Of course, the Poincaré series for functions in this space
diverge wildly.
The main idea is to bypass the ‘missing spaces’ and to
define directly a map

θBruinier : Hk ,ρ̄L −→
harmonic

Green functions

by regularizing the unfolded version (0.1):

f 7→
∫ reg

Γu
∞\H

f (τ) · θ(τ, z, h) dµ(τ).

Stephen Kudla (Toronto) Travaux de Bruinier



The Borcherds lift of a Poincaré series

For F with d > 1, the first two spaces on the bottom row
are zero, by Koecher’s principal.
First, Bruinier defines the space Hk,ρ̄L .
Of course, the Poincaré series for functions in this space
diverge wildly.
The main idea is to bypass the ‘missing spaces’ and to
define directly a map

θBruinier : Hk ,ρ̄L −→
harmonic

Green functions

by regularizing the unfolded version (0.1):

f 7→
∫ reg

Γu
∞\H

f (τ) · θ(τ, z, h) dµ(τ).

Stephen Kudla (Toronto) Travaux de Bruinier



The Borcherds lift of a Poincaré series

For F with d > 1, the first two spaces on the bottom row
are zero, by Koecher’s principal.
First, Bruinier defines the space Hk,ρ̄L .
Of course, the Poincaré series for functions in this space
diverge wildly.
The main idea is to bypass the ‘missing spaces’ and to
define directly a map

θBruinier : Hk ,ρ̄L −→
harmonic

Green functions

by regularizing the unfolded version (0.1):

f 7→
∫ reg

Γu
∞\H

f (τ) · θ(τ, z, h) dµ(τ).

Stephen Kudla (Toronto) Travaux de Bruinier



The Borcherds lift of a Poincaré series

Here is the picture:

M !
k,ρ̄L

−→ Hk,ρ̄L

δk−→ S2−k,ρL

...
... PS2−k ,ρL ↓

... θBruinier ... S2−k,ρL

...
∨

...
∨ θKM ↓

Borcherds
forms

??
−→

harmonic
Green functions

??

ddc
−→ A(1,1)(X ).

Stephen Kudla (Toronto) Travaux de Bruinier



The basic spaces of Whittaker functions

To carry out this construction for a totally real field F , we
first need the analogues of the spaces Ak ,ρ̄L(s) and Hk ,ρ̄L in
the Hilbert modular case.
Recall:

sig(V ) = ((n, 2), (n + 2, 0), . . . , (n + 2, 0))

Siegel weight = (
n
2
− 1,

n
2

+ 1, . . . ,
n
2

+ 1)

k = (1− n
2

,
n
2

+ 1, . . . ,
n
2

+ 1)

k = 1− n
2

, its first component.
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The basic spaces of Whittaker functions

Now, for s ∈ C,
Ak,ρ̄L(s)

is the space of smooth functions

f : Hd −→ SL.

(1) For all γ ∈ Γu
∞,

f |k,ρ̄L [γ] = f

Note that Γu
∞ now has infinite index in Γ∞.

(2) In the first variable, for k = 1− n
2 ,

∆k f =
1
4

(k − 1 + s)(k − 1− s) f ,

(3) f is anti-holomorphic in (τ2, . . . , τd).
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The basic spaces of Whittaker functions

Such functions have a Fourier expansion of the following
form

f (τ) = a(0, s) v (1−k−s)/2
1 + b(0, s) v (1−k+s)/2

1

+
∑
m 6=0

a(m, s) Ws(4πmv) e(tr(mu))

+ b(m, s) Ms(4πmv) e(tr(mu)),
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The basic spaces of Whittaker functions

where

Ws(t) = Ws(t1) exp(
1
2
(t2 + · · ·+ td))

Ms(t) = Ms(t1) exp(
1
2
(t2 + · · ·+ td))

are Whittaker functions, m ∈ F , and a(m, s) and b(m, s)
are in SL.
Here, for example, m constrains the support of a(m, s):

a(m, s) =
∑
µ∈L′/L

m+Q(µ)∈∂−1
F

a(m, µ, s) ϕµ ∈ SL.
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The basic spaces of Whittaker functions

The space of Whittaker forms is the subspace of Ak,ρ̄L(s)
spanned by functions of the form

b(m, s) Ms(4πmv) e(tr(mu)),

for m � 0.
Taking s = s0 = 1− k , the space of harmonic Whittaker
forms

Hk,ρ̄L .

is the subspace of Ak,ρ̄L(s0) spanned by the functions of
the form

b(m, s0) Ms0(4πmv) e(mu),

for m � 0. Here b(m, s0) ∈ SL, as before.
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The basic spaces of Whittaker functions

Now let
δk (f ) = vk−2

1 Lk (f ),

where the differential operator just acts on the first variable.
The complex conjugation now makes this function
holomorphic on Hd .
This explains condition (3)!
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The basic spaces of Whittaker functions

Let
κ = (

n
2

+ 1, . . . ,
n
2

+ 1),

and, noting that 2− k = n
2 + 1, define the lowering

Poincaré operator

ξk = PSκ,ρL ◦ δk : Hk,ρ̄L −→ Sκ,ρL .

Then there is an exact sequence:

0 −→ M !
k,ρ̄L

−→ Hk,ρ̄L

ξk−→ Sκ,ρL −→ 0,

where M !
k,ρ̄L

is defined to be the kernel of ξk.
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The main results

Now suppose that f is a Whittaker form in Ak,ρ̄L(s) define
the regularization:

∫ reg

Γu
∞\H

f (τ, s) · θ(τ, z, h) dµ(τ)

=

∫
(R×+ )d

( ∫
OF\Rd

f (τ, s)·θ(τ, z, h) du
)

(v2 . . . vd)
n
2−1 N(v)−2 dv .

(0.2)

For example, for the ‘standard’ vector for m � 0

f−m,µ(τ, s) = C Ms(−4πmv) e(−tr(mu))ϕµ,

where , m−Q(µ) ∈ ∂−1
F , denote that regularized integral by

Φm,µ(z, h, s).
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The main results

Here are Bruinier’s basic analytic results:
Theorem
(i) For Re(s) > s0 + 2, the regularized integral (0.2)
converges for (z, h) outside of a set of measure 0 and
defines an integrable function on XK .
More precisely,

Φm,µ(z, h, s) =
∑

x∈h(µ+L)

Q(x)=m

φ(x , z, s), (0.3)

where

φ(x , z, s) =
Γ(1

2(s + s0))

Γ(s + 1)
R(x , z)

1
2 (s+s0)

× F (
1
2
(s + s0),

1
2
(s − s0), s + 1; R(x , z)).
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The main results

Here
R(x , z) =

Q(x1)

Q(prz⊥(x1))
,

and

F (a, b, c; z) = Gauss’s hypergeometric function.

(ii) (Offending terms) On the complement of the special
cycle Z (m, µ), the series on the right hand side of (0.3)
converges for Re(s) > s0. In a neighborhood of any point
(z0, h0),

Φm,µ(z, h, s)−
∑

x∈h0(µ+L)

Q(x)=m
(x1,z0)=0

φ(x , z, s)

is a C∞-function.
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The main results

(iii) On XK − Z (m, µ), the function Φm,µ(z, h, s) a
meromorphic analytic continuation in s with a simple pole
at s = s0 with residue

A(m, µ) = 2
deg(Z (m, µ))

vol(XK )
.

Moreover, for a fixed s away from the poles, Φm,µ(z, h, s) is
real analytic on XK − Z (m, µ).
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The main results

Finally, for f ∈ Hk,ρ̄L , write

f =
∑
µ∈L′/L

∑
m�0

c(m, µ) f−m,µ(τ),

and let

Φ(z, h, s, f ) =
∑
µ∈L′/L

∑
m�0

c(m, µ) Φm,µ(z, h, s).

Definition: The regularized theta lift Φ(z, h, f ) of f is the
constant term in the Laurent expansion of Φ(z, h, s, f ) at
s = s0.

Φ(z, h, f ) = CTs=s0Φ(z, h, s, f ).

Thus we have defined

θBruinier : f 7→ Φ(z, h, f ).
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The main results

The following result says that, indeed,

θBruinier : Hk,ρ̄L −→ harmonic Green functions.

Theorem
Let

Z (f ) =
∑
µ∈L′/L

∑
m�0

c(m, µ) Z (m, µ),

Then the differential form ddcΦ(f ) on XK − Z (f ) extends to a
smooth (1, 1)-form ω(f ) on XK which is a harmonic Poincaré
dual to Z (f ). Moreover, Then

ddc[Φ(f )] + δZ (f ) = [ω(f )],

i.e., Φ(f ) is a Green function of log type for the cycle Z (f ).
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i.e., Φ(f ) is a Green function of log type for the cycle Z (f ).
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The main results

Bruinier extends the result of Bruinier-Funke relating this
regularized lifting of f ∈ to the θKM lift of ξk(f ). I will omit
this.
It plays a crucial role in the construction of Borcherds
forms.
Recall the exact sequence:

0 −→ M !
k,ρ̄L

−→ Hk,ρ̄L

ξk−→ Sκ,ρL −→ 0,

where M !
k,ρ̄L

is defined to be the kernel of ξk.
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Borcherds forms

When applied to the subspace M !
k,ρ̄L

, θBruinier yields the
desired generalization of Borcherds forms.
Theorem For f ∈ M !

k,ρ̄L
, with

f =
∑
µ∈L′/L

∑
m�0

c(m, µ) f−m,µ(τ),

and c(m, µ) ∈ Z, recall that

Z (f ) =
∑
µ∈L′/L

∑
m�0

c(m, µ) Z (m, µ).

Let

B(f ) = −deg(Z (f ))
vol(XK )

.

Stephen Kudla (Toronto) Travaux de Bruinier



Borcherds forms

When applied to the subspace M !
k,ρ̄L

, θBruinier yields the
desired generalization of Borcherds forms.
Theorem For f ∈ M !

k,ρ̄L
, with

f =
∑
µ∈L′/L

∑
m�0

c(m, µ) f−m,µ(τ),

and c(m, µ) ∈ Z, recall that

Z (f ) =
∑
µ∈L′/L

∑
m�0

c(m, µ) Z (m, µ).

Let

B(f ) = −deg(Z (f ))
vol(XK )

.

Stephen Kudla (Toronto) Travaux de Bruinier



Borcherds forms

When applied to the subspace M !
k,ρ̄L

, θBruinier yields the
desired generalization of Borcherds forms.
Theorem For f ∈ M !

k,ρ̄L
, with

f =
∑
µ∈L′/L

∑
m�0

c(m, µ) f−m,µ(τ),

and c(m, µ) ∈ Z, recall that

Z (f ) =
∑
µ∈L′/L

∑
m�0

c(m, µ) Z (m, µ).

Let

B(f ) = −deg(Z (f ))
vol(XK )

.

Stephen Kudla (Toronto) Travaux de Bruinier



Borcherds forms

When applied to the subspace M !
k,ρ̄L

, θBruinier yields the
desired generalization of Borcherds forms.
Theorem For f ∈ M !

k,ρ̄L
, with

f =
∑
µ∈L′/L

∑
m�0

c(m, µ) f−m,µ(τ),

and c(m, µ) ∈ Z, recall that

Z (f ) =
∑
µ∈L′/L

∑
m�0

c(m, µ) Z (m, µ).

Let

B(f ) = −deg(Z (f ))
vol(XK )

.

Stephen Kudla (Toronto) Travaux de Bruinier



Borcherds forms

Then there is a meromorphic function Ψ(z, h, f ) on
D×G(Af ) such that
(i) Ψ(z, h, f ) is modular of weight −B(f ) and a multiplier
system of finite order, i.e., it is left G(Q)-invariant and
transforms under K by a unitary character of finite order.

(ii)
div(Ψ(f )) = Z (f ).

(iii)
− log ||Ψ(z, h, f )||2 = Φ(z, h, f ).

I will omit the sketch of the proof.
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Arithmetic applications

Bruinier’s results open the way for a number of arithmetic
applications. In particular, several nice results that
depended on Borcherd’s work, and hence were only
available over Q, can now be proved in a much more
systematic way.
For example:
(1) Modularity of the generating function for the classes of
the Z (m, µ)’s in the Chow group CH1(XK ).
(2) The results of Bruinier-Yang on singular moduli for
general Shimura curves.
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Arithmetic applications

Define the generating function

φCH(τ) =
∑
µ∈L′/L

∑
m�0

[Z 0(m, µ)] qm ϕµ,

where [Z 0(m, µ)] denotes the class of Z 0(m, µ) in the
Chow group CH1(XK ).
Theorem

φCH(τ) ∈ Sκ,ρL ⊗ CH1(XK )

is an SL ⊗ CH1(XK )-valued modular form of weight κ.
This result as also proved by X. Yuan, W. Zhang and S.
Zhang by another method, based on the modularity of the
image of this series in cohomology H2(XK ).
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Arithmetic applications

One last remark is the following:
Consider the map

Hk,ρ̄L,Z −→ Z 1(XK ), f 7→ Z (f ).

Then
Hk,ρ̄L,Z −→ Z 1(XK )

↘ ↓
CH1(XK )
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Arithmetic applications

If f ∈ M !
k,ρ̄L,Z then Z (f ) = div(Ψ(f )), and hence

Hk,ρ̄L,Z −→ Z 1(XK )

↓ ↓
Hk,ρ̄L,Z/M !

k,ρ̄L,Z −→ CH1(XK ).

This gives a map

Sκ,ρL −→ CH1(XK )C.

Problem: When is this injective?
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