Toroidal compactifications of Hilbert modular varieties

Fritz Hörmann

Department of Mathematics and Statistics
McGill University

Montréal, April 9, 2011
1. Torus embeddings

2. Hilbert modular varieties and their boundary components

3. Toroidal compactification — analytic theory

4. Algebraic theory
affine Torus embeddings

\[k \quad \text{a field} \]
\[M \quad \text{a lattice } (\cong \mathbb{Z}^n) \]
\[T = \text{spec}(k[M^*]) \quad \text{a split torus over } k \]
\[M = X_*(T) \quad \text{the cocharacter group of } T \]

We want to look at a certain type of (partial) compactifications of \(T \), called \textbf{torus embeddings}.

\[R \quad \text{a discrete valuation ring } (k\text{-algebra}) \]
\[K \quad \text{quotient field} \]
\[x \quad \text{a point in } T(K) \text{ which does not extend to } R \]

Goal: Look for open embeddings \(T \hookrightarrow \overline{T} \) such that \(x \) extends to a section \(x \in \overline{T}(R) \).

The valuation on \(K \) induces a linear morphism \(\nu_x : M^* \to \mathbb{Z} \). Therefore the subring defining the open embedding above must not contain \(m^* \) with \(\nu_x(m^*) < 0 \).
affine Torus embeddings

- \(\overline{T} := \text{spec}(k[\nu^{-1}_x\mathbb{Z}_{\geq 0}]) \).
- more generally: Replace \(\nu^{-1}_x\mathbb{Z}_{\geq 0} \) by any saturated (in order to get an open embedding) submonoid \(\subset M \) such that \(\nu_x \) is non-negative.

All these \(\overline{T} \) have the property that the action of \(T \) (by multiplication) extends to them.

Proposition

The following are equivalent

1. affine open dense embeddings \(T \hookrightarrow \overline{T} \) such that the action of \(T \) extends
2. finitely generated submonoids of \(M^* \)
3. polyhedral cones \(\sigma = \mathbb{R}_{\geq 0}v_1 + \cdots + \mathbb{R}_{\geq 0}v_n \subset M_{\mathbb{R}} \), which do not contain a line (here \(v_i \in M \))

\[\sigma \mapsto \sigma^\vee = \{ y \in M^* \mid \langle x, y \rangle \geq 0 \ \forall x \in \sigma \} \mapsto T_\sigma := \text{spec}(k[\sigma^\vee]) \]

E.g.: \(\mathbb{R}_{\geq 0}v_x \leftrightarrow \text{spec}(k[\nu^{-1}_x\mathbb{Z}_{\geq 0}]) \)
Drop the assumption of affine — can we get something proper?

\[\sigma, \tau \subset M_{\mathbb{R}} \]

\[\sigma \subset \tau \]

\[\leadsto \text{ natural map } T_{\tau} \rightarrow T_{\sigma} \]

Given a collection \(\Delta := \{ \sigma_i \} \) with \(\sigma_i \subset M_{\mathbb{R}} \), we can glue along all these natural maps (i.e. take the direct limit). Call this \(T_{\Delta} \).

\(T_{\Delta} \text{ separated} \), if \(\sigma \cap \tau \) for two r.p.c. in \(\Delta \) is either empty or a common face of \(\sigma \) and \(\tau \) which is included in \(T_{\tau} \). We call \(\Delta \) a partial polyhedral cone decomposition in this case (and assume also that with \(\sigma \in \Delta \), it contains all of the faces).

\(T_{\Delta} \text{ proper} \), if for all possibe \(\nu_x \) as above there is a cone \(\sigma \) with \(\nu_x \in \sigma \), i.e. if \(\bigcup_{\sigma \in \Delta} \sigma = M_{\mathbb{R}} \).
Theorem

The following define equivalent categories

1. open dense embeddings $T \hookrightarrow \overline{T}$ such that the action of T extends
2. partial polyhedral cone decompositions Δ of M^*.

Morphisms in the second case are *refinements*.

T_Δ **smooth**, if all r.p.c. in Δ are generated by part of a basis of M^*.

T_Δ **projective**, if there is a piecewise linear function $\mu : \bigcup \sigma \rightarrow \mathbb{R}$ with integral values on M, such that the $\sigma \in \Delta$ are the maximal sets on which μ is linear (together with the faces of those) which satisfied a certain convexity property.
For each cone $\sigma \in \Delta$ there is an associated stratum $T[\sigma]$, isomorphic to the quotient of T having cocharacter lattice $M/(\langle \sigma \rangle \cap M)$. It embeds by the obvious map

$$\text{spec}(k[\sigma^\perp \cap M^*]) \rightarrow \text{spec}(k[\sigma^\vee \cap M^*])$$

Properties:

- $T_\Delta = \bigcup_{\sigma \in \Delta} T[\sigma]$.
- $\sigma \subseteq \tau \iff \overline{T[\tau]} \subseteq \overline{T[\sigma]}$.
- $\kappa = \sigma \cap \tau \iff \overline{T[\sigma]} \cap \overline{T[\tau]} = \overline{T[\kappa]}$.
The functor

Obviously:

\[T(S) = \{ \pi : M_S \to (\mathcal{O}_S, \times) \text{ morphism of monoids} \} \]

We have:

\[T_\Delta(S) = \begin{cases}
M' \subset M_S \\
\pi : M' \to (\mathcal{O}_S, \times) \\
\forall s \in S: M'_s = \sigma^\vee \cap M \text{ for some } \sigma \in \Delta
\end{cases} \]

\(\phi \) a strict morphism of monoids if \(\phi(e) = e \) and \(\phi(x) \) invertible \(\iff \) \(x \) invertible.
Given a holomorphic map (with "bounded image")

\[\mu : B_1^*(0) \to T(\mathbb{C}) = M_\mathbb{C}/M \]

defines a monodromy element \(x \in M \) (image of 1 under the monodromy representation \(\mathbb{Z} = \pi_1(B_1^*(0)) \to M \)).

Lemma

\(\mu \) extends to \(B_1(0) \to T(\mathbb{C})_\Delta \) if and only if \(x \in \text{supp}(\Delta) \).

Roughly: Via the embedding \(B_1^*(0) \hookrightarrow \mathbb{G}_m(\mathbb{C}) \), \(\mu \) "looks like" the cocharacter \(x \).
1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification — analytic theory

4 Algebraic theory
The symmetric space

Fix the following data:

- F: totally real field of degree n
- \mathcal{L}: fixed ideal of \mathcal{O}_F
- V: projective \mathcal{O}_F-module of rank 2 with a \mathcal{L}^{-1}-valued symplectic form $\langle \cdot, \cdot \rangle_{\mathcal{O}_F}$

 i.e. an isomorphism $\Lambda^2_{\mathcal{O}_F} V \cong \mathcal{L}$

- $\langle v, w \rangle_{\mathcal{O}_F} = \text{tr}_{F\mid \mathbb{Q}} \langle v, w \rangle_{\mathbb{Q}}$

- G:

 \{ $g \in \text{Res}_{F\mid \mathbb{Q}} \text{GL}_F(V_{\mathbb{Q}}) \mid \det(g) \in \mathbb{G}_{m, \mathbb{Q}}$ \}

 \begin{align*}
 &= \text{Res}_{F\mid \mathbb{Q}} \text{GL}_F(V_{\mathbb{Q}}) \cap \text{GSp}(V_{\mathbb{Q}}) \\
 &= G(\mathbb{R})^+ / K \cdot \mathbb{Z}
 \end{align*}

- D:

 \{ polarized \mathcal{O}_F-Hodge structures on $V_{\mathbb{C}}$ \}

 $V_{\mathbb{R}} = \bigoplus_{\rho \in \text{Hom}(F, \mathbb{R})} V^\rho$ with

 V^ρ isomorphic to \mathbb{R}^2 with the F-representation induced by ρ.

The symmetric space

Definition of \mathcal{O}_F-Hodge structure

$F^0 := V^{-1,0}$ defines a \mathcal{O}_F-Hodge structure if one of the equivalent conditions hold

1. The representation $h : S \to GL(V_\mathbb{R})$ giving the Hodge structure factorizes via $G_\mathbb{R}$
2. The action of \mathcal{O}_F on V induces endomorphims of Hodge structures
3. For each ρ, there is a $F^0,\rho \subset V_\mathbb{C}^\rho$ (1-dimensional) such that $F^0 = \bigoplus \rho F^0,\rho$.
4. The complex torus $A := V_\mathbb{Z}\backslash V_\mathbb{C}/F^0$ is an \mathcal{O}_F-complex torus.
The symmetric space

Definition of polarization for O_F-Hodge structures

Each $F^0,\rho \subset V^\rho_C$ induces a sign $\text{sgn} \frac{\langle v, \overline{v} \rangle}{2\pi i}$, where $v \in F^0,\rho$ is any non-zero element. We call the Hodge structure polarized if:

1. All signs above are positive
The Borel embedding

Relaxing the condition on $F^0 := V^{-1,0}$ of polarized Hodge structure — but not the condition of \mathcal{O}_F-compatibility — F^0 is just defined by a collection of 1-dimensional subspaces $F^{0,\rho} \subset V^\rho_C$. Therefore we get the open Borel embedding:

$$D \hookrightarrow D^\vee = (\text{Res}_{F:Q} \mathbb{P}_F(V_Q))(\mathbb{C}) \cong \prod_{\rho} \mathbb{P}(V^\rho_C)$$

The closure \overline{D} of the image decomposes into boundary components, which are products of boundary components of the $H \subset \mathbb{P}(V^\rho_C)$ (either a real point or H itself). To each such boundary component one associates a real parabolic in G_R. If G_R is simple only G_R and maximal parabolics of occur, otherwise products of those. For the compactification of the quotients $D/G(Z)^+$ only those boundary components whose parabolic is defined over \mathbb{Q} matter. These are just the points

$$I \in (\text{Res}_{F:Q} \mathbb{P}_F(V_Q))(\mathbb{Q}) = \mathbb{P}_F(V_Q).$$
Siegel domain realization

The study of boundary components is intimately related to the realizations of D as a Siegel domain (of the first kind).

Consider the filtration given by I:

$$0 \subset I \subset V$$

of saturated \mathcal{O}_F-lattices. Since $\Lambda^2(V) \cong \mathcal{L}$, the lattice

$$U^I = I \otimes \Lambda^2 \otimes \mathcal{O}_F \mathcal{L}$$

acts as square zero elements shifting the filtration by 1. We let the algebraic group $\mathbb{G}_a(U^I_\mathbb{Q})$ act unipotently via exponentials of these.

Define

$$P^I = \{ g \in G \mid gI \subseteq I \}, \text{ the parabolic associated with } I$$

$$= \mathbb{G}_m \cdot \text{Res}_{F:Q} \mathbb{G}_m \cdot \mathbb{G}_a(U^I_\mathbb{Q})$$

$$G^I = \mathbb{G}_a(U^I_\mathbb{Q}) \ltimes \mathbb{G}_m \subseteq P^I$$

$$D^I = \{ \mathcal{O}_F\text{-mixed Hodge structures w.r.t. } I \} \cong U^I_\mathbb{C}$$
Ad hoc definition:
$F^0 \mathcal{O}_F$-mixed Hodge structures w.r.t. $I \Leftrightarrow F^0,\rho \neq I^\rho \forall \rho$.
This condition may also be formulated as $h : S_C \to \text{GL}_C$ (appropriately defined) factorizing through $G^I(\mathbb{C})$.

Boundary map
We have an inclusion
$$D \to D^I$$
such that
$$D = \{ x \in D^I \cong U^I_C \mid \Im(x) \in C^I \}$$
where $C^I \subset U^I_\mathbb{R}$ is the cone of totally positive elements. This is a Siegel domain of the first kind.
Note: $\Im(x)$ well-defined.
The analytic boundary and the Baily-Borel compactification

On \(D \subset D^l \cong U_C^l \) one may define the “distance” to the boundary point \(I \) as follows

\[
d^l(x) = \frac{1}{|N_{F:Q} \mathcal{O}(x)|},
\]

where we chose any \(F \)-linear identification of \(U_Q \) with \(F \).

This distance defines a topology on \(\tilde{D} = D \cap \bigcap_{I \in \mathcal{P}_F(V_Q)} I \) such that \(\tilde{D}/G(\mathbb{Z})^+ \) becomes the structure of a normal projective (but singular) complex variety, the Baily-Borel compactification. Its boundary consists of finitely many cusps (class number of \(\mathcal{O}_F \)).
1. Torus embeddings

2. Hilbert modular varieties and their boundary components

3. Toroidal compactification — analytic theory

4. Algebraic theory
For each \(I \in \mathbb{P}_F(V_{\mathbb{Q}}) \), we have

\[
G \hookrightarrow G^I \\
D \hookrightarrow D^I \\
D \subseteq D^I = (D^I)^\vee \subseteq D^\vee
\]

\(D/G(\mathbb{Z})^+ \) Hilbert modular variety — want to compactify it.
\(D^I/G^I(\mathbb{Z})^+ \) is a torus — know how to compactify it!

Toroidal compactification: Glue the closure of \(D/G^I(\mathbb{Z})^+ \) in \((D^I/G^I(\mathbb{Z})^+)_{\Delta_I} \) for some r.p.c.d \(\Delta_I \) to \(D/G(\mathbb{Z})^+ \) via the quotient map.
Given a holomorphic map

$$\mu : B_1^*(0) \to D / G(\mathbb{Z})^+$$

which does not extend to $B_1(0)$.

Lemma

(up to replacing μ by a finite cover)

A monodromy element $x \in G(\mathbb{Z})^+$ (unique up to conjugation) is unipotent.

By the very structure of $G(\mathbb{Z})$, x fixes an O_F-line $I \subset V$, hence $x \in U^I(\mathbb{Z})$ and μ lifts along the map

$$D / G^I(\mathbb{Z})^+ \to D / G(\mathbb{Z})^+.$$
Lemma

\(x \) lies automatically in \(C' \)

Sketch: If we consider \(x \) as a cocharacter of the torus \(D'/G'(\mathbb{Z})^+ \) then \(\mu \) “looks like” \(x \) via the inclusion \(B_1^*(0) \subseteq \mathbb{G}_m(\mathbb{C}) \). \(\Im(\tilde{x}(z))) \in U'_R \) is well defined (independent of the lift to \(U'_C \)) and is just

\[
\Im(\tilde{x}(z))) = (-\frac{1}{2\pi} \log |z|) \cdot x \in C'.
\]

We have seen that \(\mu \) extends to a map \(B_1(0) \to (D'/U')_{\Delta'} \) if and only if \(x \in \text{supp}(\Delta') \). Hence to compactify \(D/G(\mathbb{Z})^+ \), the support of \(\Delta' \) should cover precisely \(C' \). Such a \(\Delta' \) is called a **rational polyhedral cone decomposition** of \(C' \). In general it will be infinite.
Toroidal compactification over \mathbb{C}

For each I, choose a r.p.c.d. Δ^I of $C^I \subset U^I_{\mathbb{R}}$. Define $(D/G^I(\mathbb{Z})^+)_{\Delta^I}$ as the closure of $D/G^I(\mathbb{Z})^+$ in $(D^I/G^I(\mathbb{Z})^+)_{\Delta^I}$.

Idea: Construct the quotient by an appropriate equivalence relation on

$$\bigsqcup_{I}(D/G^I(\mathbb{Z})^+)_{\Delta^I}$$

For a $g \in G(\mathbb{Z})^+$ with $gl = J$, we get a map

$$\tilde{g} : D^I/G^I(\mathbb{Z})^+ \to D^J/G^J(\mathbb{Z})^+$$

inducing g on

$$D/G^I(\mathbb{Z})^+ \to D/G^J(\mathbb{Z})^+$$

and hence projects to the **identity** on $D/G(\mathbb{Z})^+$.
Require that the maps \(\tilde{g} \) extend to maps

\[
(D^I / G^I(\mathbb{Z})^+)_{\Delta I} \rightarrow (D^J / G^J(\mathbb{Z})^+)_{\Delta J}
\]

which is equivalent to the conditions:

- \(\Delta^I \) is invariant under \(P^I(\mathbb{Z}) = \{ g \in G(\mathbb{Z}) \mid gI = I \} \) (which boils down to invariance under \(\text{Res}_{F|Q}(\mathbb{Z}) = \mathcal{O}_F^* \))

- \(\{\Delta^I\} \) is determined by the choice of \(\Delta_{I_k} \) for representatives \(\{I_k\} \) of the ideal classes of \(F \).
We define the following equivalence relation on $\coprod (D/G^I(\mathbb{Z})^+)_{\Delta^I}$: $x_I \sim y_J$ if

- x_I and y_J are in the image of the same element $z \in D$ or
- $x_I = \tilde{g} y_J$ for an element $g \in G(\mathbb{Z})^+$ with $gl = J$.

Theorem (Hirzebruch, Mumford)

If each Δ^I is smooth, the quotient $(D/G(\mathbb{Z})^+)_{\Delta}$ of this equivalence relation is a smooth compact analytic orbifold.

By introducing levels and requiring the Δ^I to be projective, one gets smooth projective complex varieties.

Remark: The map $(D/G^I(\mathbb{Z})^+)_{\Delta^I} \to (D/G(\mathbb{Z})^+)_{\Delta}$ factors through $(D/G^I(\mathbb{Z})^+)_{\Delta^I}/(P^I(\mathbb{Z})/G^I(\mathbb{Z})^+) \simeq (D/G^I(\mathbb{Z})^+)_{\Delta^I}/O^*_F$.
1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification — analytic theory

4 Algebraic theory
Hilbert modular varieties

S a scheme over $\text{spec}(\mathbb{Q})$

$$X(S) = \left\{ \begin{array}{ll}
A & \mathcal{O}_F\text{-abelian scheme over } S \\
\rho : & \text{Hom}^{\text{sym}}_{\mathcal{O}_F}(A, t^A) \to \mathcal{L}_S \text{ } \mathcal{O}_F\text{-iso. of etale sheaves} \\
& \text{mapping polarizations to totally positive elements}
\end{array} \right\}$$

defines a Deligne-Mumford stack over \mathbb{Q} with an isomorphism

$$X(\mathbb{C}) \to D / G(\mathbb{Z})^+$$

Recipe: Pullback the natural \mathcal{O}_F-Hodge structure on $H^1_{dR}(A)$ along

$$V_{\mathbb{C}} \xrightarrow{\beta_{\mathbb{C}}} H_1(A, \mathbb{Z}) \otimes \mathbb{C} \xrightarrow{\text{period}} H^1_{dR}(A),$$

where $\beta : V \to H_1(A, \mathbb{Z})$ is an isomorphism compatible with \mathcal{O}_F-action and polarization.

Note: β is precisely determined up to $G(\mathbb{Z})^+$.
A simple kind of one-motives

Definition

An one-motive M of dimension $(n, 0, n)$ is a morphism $\alpha : X \to T$ from a locally constant etale sheaf of lattices X of dimension n to a torus T of dimension n.

Idea: Understand degenerating abelian varieties by representing them as quotients $T/\alpha(Y)$ where α is (infintesimally) close to the boundary of T (which we understand).

Define $^t M := (\alpha' : X^*(T) \to Y'^* \otimes \mathbb{G}_m)$.

Morphisms are commutative diagrams:

```
\begin{array}{c c c}
Y & \longrightarrow & Y' \\
\alpha \downarrow & & \alpha' \downarrow \\
T & \longrightarrow & T'
\end{array}
```
A simple kind one-motives over \(\mathbb{C} \)

Define (\(S = \text{spec}(\mathbb{C}) \)):

\[
0 \longrightarrow H_1(T, \mathbb{Z}) \longrightarrow H_1(M, \mathbb{Z}) \xrightarrow{\pi} Y \longrightarrow 0
\]

\[
0 \longrightarrow H_1(T, \mathbb{Z}) \longrightarrow \text{Lie}(T) \xrightarrow{\exp} T(\mathbb{C}) \longrightarrow 0
\]

Define (\(S \) arbitrary):

\[
H_1^{dR}(M) := \text{Lie}(T) \oplus Y \otimes \mathbb{Z} \mathcal{O}_S
\]

Have an isomorphism (\(S = \text{spec}(\mathbb{C}) \)):

\[
\text{period} : H_1(M, \mathbb{Z}) \otimes \mathbb{C} \rightarrow H_1^{dR}(M)
\]

\[
\gamma \mapsto (\omega \mapsto \int_{\gamma} \omega, \pi(\gamma)))
\]
“mixed” Hilbert modular varieties

Choose \(I \subset V \).

\[
X^I(S) = \left\{ \begin{array}{l}
M : \mathcal{O}_F\text{-one-motive over } S \\
\rho : \text{Hom}^{\text{sym}}_{\mathcal{O}_F}(M, tM) \to \mathcal{L} \quad \mathcal{O}_F\text{-iso. of etale sheaves} \\
\iota : I_S \to Y \quad \mathcal{O}_F\text{-iso. of etale sheaves}
\end{array} \right\} / \text{iso.}
\]

defines a split torus over \(\mathbb{Q} \) (with cocharacter group \(U^I \)) with isomorphism:

\[
X^I(\mathbb{C}) \to D^I / G^I(\mathbb{Z})^+
\]

Recipe: Pullback the natural mixed \(\mathcal{O}_F \)-Hodge structure along:

\[
V_{\mathbb{C}} \xrightarrow{\beta_{\mathbb{C}}} H^1(M, \mathbb{Z}) \otimes \mathbb{C} \xrightarrow{\text{period}} H^1_{dR}(M)
\]

where \(\beta : V \to H_1(M, \mathbb{Z}) \) is an iso. compatible with \(\mathcal{O}_F \)-action and respecting the subspaces \(I \) pointwise.

Note: \(\beta \) is precisely determined up to \(G^I(\mathbb{Z})^+ \).
Comparison over \mathbb{C}

Over \mathbb{C}, given $(M = (\alpha : Y \to T), \rho)$, we can define

$$A := T(\mathbb{C})/\alpha(Y)$$

Then (A, ρ') is a polarized \mathcal{O}_F-abelian variety precisely if

$$(*) \ (M, \rho) \in D^l/G^l(\mathbb{Z})^+ \text{ lies actually in } D/G^l(\mathbb{Z})^+$$

Under this condition, the map “forget the weight filtration”:

$$D^l/G^l(\mathbb{Z})^+ \supset D/G^l(\mathbb{Z})^+ \to D/G(\mathbb{Z})^+$$

maps (M, ρ) to (A', ρ').

We saw: $(*)$ is satisfied, if (A, ρ) is close enough to the boundary in $X^l(\mathbb{C})_{\Delta'}$.
Algebraic comparison

We can apply the “torus embedding” functor to the algebraic torus X^I to get a torus embedding $X^I \to X^I_{\Delta^I}$ even defined over \mathbb{Q}.

- R a complete discrete valuation ring (\mathbb{Q}-algebra)
- K quotient field
- $x = (M, \rho, \iota)$ a point in $X^I(K)$ which does not extend to R

(**) The corr. point extends to the partial compactification $(X^I)_{\Delta^I}$.

This is the obvious algebraic analogue of (*)

Theorem (Mumford)

\[
\begin{cases}
 (A, \rho) \in X(K) \text{ extending to} \\
 \text{an } \mathcal{O}_F\text{-semi-abelian scheme over } R \\
 \text{with } A_{R/I} \cong \mathbb{G}_m \otimes I
\end{cases}
\quad \overset{\sim}{\Rightarrow} \quad
\begin{cases}
 (M, \rho', \iota) \in X^I(K) \\
 \text{s. t. (**)} \text{ is satisfied}
\end{cases}
\]

This construction is compatible with the complex map $D \subset D^I$, e.g. if $R = \text{spec}(\mathbb{C}[[X]])$, $I = (X)$ and the map giving $x = (M, \rho, \iota)$ over R converges on $B^*_1(0)$.
Theorem (Mumford, Rapoport)

The previous construction (for more general complete rings) can be used to glue an algebraic model X_Δ of $(D/G(\mathbb{Z})^+)\Delta$ such that there are isomorphisms $\hat{X}'_{\Delta'} \rightarrow \hat{X}_\Delta$ of the formal completions along corresponding boundary strata. Over \mathbb{C} and in the interior the formal isomorphisms converge locally and give just the map $D/G'(\mathbb{Z})^+ \rightarrow D/G(\mathbb{Z})^+$.