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affine Torus embeddings

k a field
M a lattice (∼= Zn)
T = spec(k[M∗]) a split torus over k
M = X∗(T ) the cocharacter group of T

We want to look at a certain type of (partial) compactifications of T ,
called torus embeddings.

R a discrete valuation ring (k-algebra)
K quotient field
x a point in T (K ) which does not extend to R

Goal: Look for open embeddings T ↪→ T such that x extends to a
section x ∈ T̃ (R).
The valuation on K induces a linear morphism νx : M∗ → Z. Therefore
the subring defining the open embedding above must not contain m∗

with νx(m∗) < 0.
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affine Torus embeddings

T := spec(k[ν−1
x Z≥0]).

more generally: Replace ν−1
x Z≥0 by any saturated (in order to get an

open embedding) submonoid ( M such that νx is non-negative.

All these T have the property that the action of T (by multiplication)
extends to them

Proposition

The following are equivalent

1 affine open dense embeddings T ↪→ T such that the action of T
extends

2 finitely generated submonoids of M∗

3 polyhedral cones σ = R≥0v1 + · · ·+ R≥0vn ⊂ MR, which do not
contain a line (here vi ∈ M)

σ 7→ σ∨ = {y ∈ M∗ | 〈x , y〉 ≥ 0 ∀x ∈ σ} 7→ Tσ := spec(k[σ∨])
E.g.: R≥0νx ↔ spec(k[ν−1

x Z≥0])
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general Torus embeddings

Drop the assumption of affine — can we get something proper?

σ, τ ⊂ MR

σ ⊆ τ
 natural map Tτ → Tσ

Given a collection ∆ := {σi} with σi ⊂ MR, we can glue along all these
natural maps (i.e. take the direct limit). Call this T∆.

T∆ separated, if σ ∩ τ for two r.p.c. in ∆ is either empty or a common
face of σ and τ which is included in Tτ . We call ∆ a partial polyhedral
cone decomposition in this case (and assume also that with σ ∈ ∆, it
contains all of the faces).

T∆ proper, if for all possibe νx as above there is a cone σ with νx ∈ σ,
i.e. if

⋃
σ∈∆ σ = MR.
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Theorem

The following define equivalent categories

1 open dense embeddings T ↪→ T such that the action of T extends

2 partial polyhedral cone decompositions ∆ of M∗.

Morphisms in the second case are refinements.

T∆ smooth, if all r.p.c. in ∆ are generated by part of a basis of M∗.

T∆ projective, if there is a piecewise linear function µ :
⋃
σ → R with

integral values on M, such that the σ ∈ ∆ are the maximal sets on which
µ is linear (together with the faces of those) which satisfied a certain
convexity property.
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Stratification

For each cone σ ∈ ∆ there is an associated stratum T[σ], isomorphic to
the quotient of T having cocharacter lattice M/(< σ > ∩M). It embedds
by the obvious map

spec(k[σ⊥ ∩M∗])→ spec(k[σ∨ ∩M∗])

Properties:

T∆ =
⋃
σ∈∆ T[σ].

σ ⊆ τ ⇔ T[τ ] ⊆ T[σ].

κ = σ ∩ τ ⇔ T[σ] ∩ T[τ ] = T[κ].
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The functor

Obviously:

T (S) = {π : MS → (OS ,×) morphism of monoids}

We have:

T∆(S) =


M ′ ⊂ MS a subsheaf of monoids,
π : M ′ → (OS ,×) a (strict) morphism of

sheaves of monoids such that
∀s ∈ S : M ′s = σ∨ ∩M for some σ ∈ ∆


φ a strict morphism of monoids if φ(e) = e and φ(x) invertible ⇔ x invertible.
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Monodromy

Given a holomorphic map (with “bounded image”)

µ : B∗1 (0)→ T (C) = MC/M

defines a monodromy element x ∈ M (image of 1 under the monodromy
representation Z = π1(B∗1 (0))→ M).

Lemma

µ extends to B1(0)→ T (C)∆ if and only if x ∈ supp(∆).

Roughly: Via the embedding B∗1 (0) ↪→ Gm(C), µ “looks like” the
cocharacter x .
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The symmetric space

Fix the following data:

F totally real field of degree n
L fixed ideal of OF

V projective OF -module of rank 2 with a
L−1-valued symplectic form 〈, 〉OF

i.e. an isomorphism Λ2
OF

V ∼= L
〈v ,w〉 trF |Q〈v ,w〉OF

G {g ∈ ResF |Q GLF (VQ) | det(g) ∈ Gm,Q}
= ResF |Q GLF (VQ) ∩ GSp(VQ)

D {polarized OF -Hodge structures on VC }
= G (R)+/K · Z

VR =
⊕

ρ∈Hom(F ,R) V
ρ with

V ρ isomorphic to R2 with the F -representation induced by ρ.
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The symmetric space

Definition of OF -Hodge structure

F 0 := V−1,0 defines a OF -Hodge structure if one of the equivalent
conditions hold

1 The representation h : S→ GL(VR) giving the Hodge structure
factorizes via GR

2 The action of OF on V induces endomorphims of Hodge structures

3 For each ρ, there is a F 0,ρ ⊂ V ρ
C (1-dimensional) such that

F 0 =
⊕

ρ F
0,ρ.

4 The complex torus A := VZ\VC/F
0 is an OF -complex torus.
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The symmetric space

Definition of polarization for OF -Hodge structures

Each F 0,ρ ⊂ V ρ
C induces a sign sgn 〈v ,v〉2πi , where v ∈ F 0,ρ is any non-zero

element. We call the Hodge structure polarized if:

1 All signs above are positive
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The Borel embedding

Relaxing the condition on F 0 := V−1,0 of polarized Hodge structure —
but not the condition of OF -compatibility — F 0 is just defined by a
collection of 1-dimensional subspaces F 0,ρ ⊂ V ρ

C .
Therefore we get the open Borel embedding:

D ↪→ D∨ = (ResF :Q PF (VQ))(C) ∼=
∏
ρ

P(V ρ
C )

The closure D of the image decomposes into boundary components,
which are products of boundary components of the H ⊂ P(V ρ

C ) (either a
real point or H itself). To each such boundary component one associates
a real parabolic in GR. If GR is simple only GR and maximal parabolics of
occur, otherwise products of those. For the compactification of the
quotients D/G (Z)+ only those boundary components whose parabolic is
definied over Q matter. These are just the points

I ∈ (ResF :Q PF (VQ))(Q) = PF (VQ).
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Siegel domain realization

The study of boundary components is intimately related to the
realizations of D as a Siegel domain (of the first kind).

Consider the filtration given by I :

0 ⊂ I ⊂ V

of saturated OF -lattices. Since Λ2(V ) ∼= L, the lattice

U I = I⊗2 ⊗OF
L

acts as square zero elements shifting the filtration by 1. We let the
algebraic group Ga(U I

Q) act unipotently via exponentials of these.
Define

P I {g ∈ G | gI ⊆ I}, the parabolic associated with I
= Gm · ResF :Q Gm ·Ga(UQ)

G I Ga(U I
Q) oGm ⊆ P I

D I {OF -mixed Hodge structures w.r.t. I } ∼= U I
C
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Siegel domain realization / Boundary map

Ad hoc definition:
F 0 OF -mixed Hodge structures w.r.t. I ⇔ F 0,ρ 6= I ρC ∀ρ.
This condition may also be formulated as h : SC → GLC (appropriately defined)

factorizing through G I (C).

Boundary map

We have an inclusion
D → D I

such that
D = {x ∈ D I ∼= U I

C | =(x) ∈ C I}

where C I ⊂ U I
R is the cone of totally positive elements. This is a Siegel

domain of the first kind.
Note: =(x) well-defined.
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The analytic boundary and the Baily-Borel
compactification

On D ⊂ D I ∼= U I
C one may define the “distance” to the boundary point I

as follows

d I (x) =
1

|NF :Q=(x)|
,

where we chose any F -linear identification of UQ with F .

This distance defines a topology on D̃ = D ∩
⋂

I∈PF (VQ) I such that

D̃/G (Z)+ becomes the structure of a normal projective (but singular)
complex variety, the Baily-Borel compactification. Its boundary consists
of finitely many cusps (class number of OF )
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Summary

For each I ∈ PF (VQ), we have

G ←↩ G I

D ↪→ D I

D ⊆ D I = (D I )∨ ⊆ D∨

D/G (Z)+ Hilbert modular variety — want to compactify it.
D I/G I (Z)+ is a torus — know how to compactify it!

Toroidal compactification: Glue the closure of D/G I (Z)+ in
(D I/G I (Z)+)∆I

for some r.p.c.d ∆I to D/G (Z)+ via the quotient map.
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Analytic investigation of boundary

Given a holomorphic map

µ : B∗1 (0)→ D/G (Z)+

which does not extend to B1(0).

Lemma

(up to replacing µ by a finite cover)
A monodromy element x ∈ G (Z)+ (unique up to conjugation) is
unipotent.

By the very structure of G (Z), x fixes an OF -line I ⊂ V , hence
x ∈ U I (Z) and µ lifts along the map

D/G I (Z)+ → D/G (Z)+.
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Analytic investigation of boundary

Lemma

x lies automatically in C I

Sketch: If we consider x as a cocharacter of the torus D I/G I (Z)+ then µ

“looks like” x via the inclusion B∗1 (0) ⊆ Gm(C). =(x̃(z))) ∈ U I
R is well

defined (independent of the lift to U I
C) and is just

=(x̃(z))) = (− 1
2π log |z |) · x ∈ C I .

We have seen that µ extends to a map B1(0)→ (D I/U I )∆I if and only if
x ∈ supp(∆I ). Hence to compactify D/G (Z)+, the support of ∆I should
cover precisely C I . Such a ∆I is called a rational polyhedral cone
decomposition of C I . In general it will be infinite.
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Toroidal compactification over C

For each I , choose a r.p.c.d. ∆I of C I ⊂ U I
R.

Define (D/G I (Z)+)∆I as the closure of D/G I (Z)+ in (D I/G I (Z)+)∆I .

Idea: Construct the quotient by an appropriate equivalence relation on∐
I

(D/G I (Z)+)∆I

For a g ∈ G (Z)+ with gI = J, we get a map

g̃ : D I/G I (Z)+ → DJ/G J(Z)+

inducing g on
D/G I (Z)+ → D/G J(Z)+

and hence projects to the identity on D/G (Z)+.
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Toroidal compactification over C

Require that the maps g̃ extend to maps

(D I/G I (Z)+)∆I → (DJ/G J(Z)+)∆J

which is equivalent to the conditions:

∆I is invariant under P I (Z) = {g ∈ G (Z) | gI = I} (which boils
down to invariance under ResF |Q(Z) = O∗F )

{∆I} is determined by the choice of ∆Ik for representatives {Ik} of
the ideal classes of F .
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Toroidal compactification over C

We define the following equivalence relation on
∐

I (D/G
I (Z)+)∆I :

xI ∼ yJ if

xI and yJ are in the image of the same element z ∈ D or

xI = g̃ yJ for an elec.ment g ∈ G (Z)+ with gI = J.

Theorem (Hirzebruch, Mumford)

If each ∆I is smooth, the quotient (D/G (Z)+)∆ of this equivalence
relation is a smooth compact analytic orbifold.

By introducing levels and requiring the ∆I to be projective, one gets
smooth projective complex varieties.
Remark: The map (D/G I (Z)+)∆I → (D/G (Z)+)∆ factors through
(D/G I (Z)+)∆I /(P I (Z)/G I (Z)+) ' (D/G I (Z)+)∆I /O∗F .

Fritz Hörmann Department of Mathematics and Statistics McGill University

Toroidal compactifications of Hilbert modular varieties



Outline Torus embeddings Hilbert modular varieties and their boundary components Toroidal compactification — analytic theory Algebraic theory

1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification — analytic theory

4 Algebraic theory
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Hilbert modular varieties

S a scheme over spec(Q)

X (S) =


A OF -abelian scheme over S
ρ : Homsym

OF
(A, tA)→ LS OF -iso. of etale sheaves

mapping polarizations to totally positive elements


defines a Deligne-Mumford stack over Q with an isomorphism

X (C)→ D/G (Z)+

Recipe: Pullback the natural OF -Hodge structure on H1
dR(A) along

VC
βC // H1(A,Z)⊗ C

period // HdR
1 (A),

where β : V → H1(A,Z) is an isomorphism compatible with OF -action
and polarization.
Note: β is precisely determined up to G (Z)+.
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A simple kind of one-motives

Definition

An one-motive M of dimension (n, 0, n) is a morphism α : X → T from a
locally constant etale sheaf of lattices X of dimension n to a torus T of
dimension n.

Idea: Understand degenerating abelian varieties by representing them as
quotients T/α(Y ) where α is (infintesimally) close to the boundary of T
(which we understand).
Define tM := (α′ : X ∗(T )→ Y ∗ ⊗Gm).
Morphisms are commutative diagrams:

Y //

α

��

Y ′

α′

��
T // T ′
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A simple kind one-motives over C

Define (S = spec(C)):

0 // H1(T ,Z) // H1(M,Z)
π //

��

Y

α

��

// 0

0 // H1(T ,Z) // Lie(T )
exp // T (C) // 0

Define (S arbitrary):

HdR
1 (M) := Lie(T )⊕ Y ⊗Z OS

Have an isomorphism (S = spec(C)):

period : H1(M,Z)⊗ C → HdR
1 (M)

γ 7→ (ω 7→
∫
γ

ω, π(γ)))
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“mixed” Hilbert modular varieties

Choose I ⊂ V .

X I (S) =


M OF -one-motive over S
ρ : Homsym

OF
(M, tM)→ L OF -iso. of etale sheaves

ι : IS → Y OF -iso. of etale sheaves

 /iso.

defines a split torus over Q (with cocharacter group U I ) with
isomorphism:

X I (C)→ D I/G I (Z)+

Recipe: Pullback the natural mixed OF -Hodge structure along:

VC
βC // H1(M,Z)⊗ C

period // H1
dR(M)

where β : V → H1(M,Z) is an iso. compatible with OF -action and
respecting the subspaces I pointwise.
Note: β is precisely determined up to G I (Z)+.
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Comparison over C

Over C, given (M = (α : Y → T ), ρ), we can define

A := T (C)/α(Y )

Then (A, ρ′) is a polarized OF -abelian variety precisely if

(*) (M, ρ) ∈ D I/G I (Z)+ lies actually in D/G I (Z)+

Under this condition, the map “forget the weight filtration”:

D I/G I (Z)+ ⊃ D/G I (Z)+ → D/G (Z)+

maps (M, ρ) to (A′, ρ′).
We saw: (*) is satisfied, if (A, ρ) is close enough to the boundary in
X I (C)∆I .
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Algebraic comparison

We can apply the “torus embedding” functor to the algebraic torus X I to
get a torus embedding X I → X I

∆I even defined over Q.

R a complete discrete valuation ring (Q-algebra)
K quotient field
x = (M, ρ, ι) a point in X I (K ) which does not extend to R

(**) The corr. point extends to the partial compactification (X I )∆I .

(this is the obvious algebraic analogue of (*))

Theorem (Mumford) (A, ρ) ∈ X (K ) extending to
an OF -semi-abelian scheme over R
with AR/I

∼= Gm ⊗ I

 ∼=
{

(M, ρ′, ι) ∈ X I (K )
s. t. (**) is satisfied

}

This construction is compatible with the complex map D ⊂ D I , e.g. if
R = spec(C[[X ]]), I = (X ) and the map giving x = (M, ρ, ι) over R
converges on B∗1 (0).
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Algebraic toroidal compactification

Theorem (Mumford, Rapoport)

The previous construction (for more general complete rings) can be used
to glue an algebraic model X∆ of (D/G (Z)+)∆ such that there are

isomorphisms X̂ I
∆I → X̂∆ of the formal completions along corresponding

boundary strata.
Over C and in the interior the formal isomorphisms converge locally and
give just the map D/G I (Z)+ → D/G (Z)+.
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