
Singular Moduli The work of Gross-Zagier The work of Schofer, Bruinier-Yang, Bruinier-Kudla-Yang A different generalization of Gross-Zagier

Recent developments arising from the Gross-Zagier
Theorem on singular moduli

Eyal Goren

McGill University

Montreal-Toronto Workshop in Number Theory, September
4-5, 2010

1 / 93



Singular Moduli The work of Gross-Zagier The work of Schofer, Bruinier-Yang, Bruinier-Kudla-Yang A different generalization of Gross-Zagier

For τ ∈ H quadratic imaginary, the value j(τ) is called singular
modulus. The basis of the theory of complex multiplication is that
if K = Q(τ)and a := Z⊕ Zτ is an OK -module, then HK , the
Hilbert class field of K (the maximal abelian unramified extension
of K ), is equal to K (j(τ)) and one knows the Galois action:(

p,H
K

)
j(a) = j(p−1a).

This has been generalized to any τ such that K = Q(τ) is
quadratic imaginary.
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The function j lives on SL2(Z)\H ∼= A1
j (C), where

A1
j = Spec(Z[j ]), which is a coarse moduli scheme parameterizing

elliptic curves up to isomorphism. Generalizations are of various
types:

Replace by Γ\H, for Γ = Γ0(N), Γ1(N), Γ(N).

Replace by moduli schemes of abelian varieties with
Polarization, Endomorphisms, and Level structure. These are
called Shimura varieties of PEL type and are of the form

Γ\G (R)/K ,

where G is a reductive group over Q, X = G (R)/K is a
hermitian symmetric space and K is a maximal compact
subgroup of G (R). For instance:
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G = Symp2g , Γ = Symp2g (Z) corresponds to principally
polarized g -dimensional abelian varieties.
G = ResL/QGL2,Γ = GL2(OL) corresponds to (suitably)
polarized g -dimensional abelian varieties with RM by OL.

G = U(n,m) corresponds to n + m-dimensional abelian
varieties with an action of an imaginary quadratic field.

The singular moduli become the “special points” - the points in
X = G (R)/K , whose stabilizer in G contains a maximal torus T ,
defined over Q, such that T (R) is compact. Shimura gave a
general reciprocity law for the values J(τ), where τ is a special
point on X and J is a “nice function”. However, grosso modo, the
nature of these numbers is poorly understood.
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Deligne re-organized Shimura’s work and included also spaces
X = G (R)/K , coming from a reductive group G over Q, for which
there is no simple moduli interpretation. Notably:

X = SO(2, n)/S(O(2)×O(n)).

These symmetric spaces can still be understood as moduli schemes
of complex abelian varieties with given Hodge classes (in vector
spaces constructed from their Betti cohomology), and the special
points are defined as above. Their theory has been developing
slowly over the last 20 years, where a big impetus, especially for
SO(2, n) came from 2 sources:
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A) The work of Borcherds allowed one to construct functions on
X , starting from certain elliptic (vector-values) modular forms, a
more accessible object. The special points are also accessible.
Andrew Fiori has developed a theory for their classification.

Theorem (−ε, Fiori, 2010 )

Let (V, q) be a quadratic space (over k a number field) of
dimension 2n or 2n + 1 and let (E , σ) be an étale algebra with
involution over k of dimension 2n. The algebraic group over k, Oq

contains a torus of type (E , σ) if and only if:

1 Eφ splits the even Clifford algebra C 0
q for all reflex types φ of

E .

2 If dim(V ) is even then δE/k = (−1)nD(q).
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B) The theory of rational canonical models, pioneered by Shimura
and reformed by Deligne and Milne, has been extended by Vasiu
(and, more recently, by Kisin) to a theory of integral models. One
of the motivations being the study of the zeta function of these
varieties as a test case for the Langlands conjectures.

The issue is the following: for X = G (R)/K and a quotient Γ\X ,
where G is a reductive group over Q, one wants a canonical model
defined over a number field F (Γ). This was achieved by Shimura
and Deligne.

In the theory of integral models one wants a model defined over
OF (Γ)[S−1], where S - minimal as possible - is determined by
group theoretic data associated with G . (E.g., for SO(2, n), S
should be (at worst) the primes dividing the discriminant of the
quadratic form, and perhaps the prime 2.)
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The work of Gross-Zagier

It is a classical fact that j(τ) is an algebraic integer. In fact, if J is
a function on a modular curve such that the polar part of its
divisor is supported on the cusps then J(τ) is an algebraic integer
for any quadratic imaginary τ . A natural question is thus,

What is the prime factorization of j(τ)?

The curve E0 : y 2 = x3 + 1 has CM by Z[ω], where ω is a primitive
root of 1 and j = 0. It is parameterized by the point ω ∈ H. We
can rephrase our question as

What is the prime factorization of j(τ)− j(ω)?

And this question is very close to asking

What are the primes p for which Eτ is isomorphic to E0 modulo p?
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One can make this connection more precise:

Lemma (Gross-Zagier)

Let ji , i = 1, 2, be integral j-invariants in W (Fp) with
corresponding elliptic curves Ei with good reduction. Denote by
Isomn(E1,E2) the set of isomorphisms between the reduction of E1

and E2 modulo pn, then:

valp(j1 − j2) =
1

2

∑
n≥1

] Isomn(E1,E2).
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Gross-Zagier on singular moduli

Ki = Q(
√

di ), di < 0 fund’l discriminant, (d1, d2) = 1, wi = ]O×Ki
.

J(d1, d2) :=
∏

[τ1],[τ2]

(j(τ1)− j(τ2))4/w1w2 .

(τi is associated with Ki .)

Then:
J(d1, d2)2 = ±

∏
x2+4nn′=d1d2

nε(n
′).

Here ε is multiplicative and ε(`) for a prime ` such that(
d1d2
`

)
= −1 is

=


(

d1
`

)
if (d1, `) = 1(

d2
`

)
if (d2, `) = 1.
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Example

j

(
1 +
√
−163

2

)
= −2183353233293.

j

(
1 +
√
−163

2

)
− 1728 = −2636721121921272163.

(0 = j(e2πi/3), 1728 = j(i).)

A better version of Gross-Zagier, though less elegant, is

ord`(J(d1, d2)) =
1

2

∑
x∈Z

∑
n≥1

δ(x)R

(
d1d2 − x2

4`n

)
,

where R(m) is the number of ideals of OK of norm m and
δ(x) = 1, unless x is divisible by `, in which case it is 2.
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Gross-Zagier’s strategy - algebraic proof

For E/Fp, End(E )⊗Q = Q,K ,Bp,∞.

Key point: We must be in the last case. Use K to present Bp,∞
and then study optimal embeddings into these maximal orders
containing OK .

Key ingredients:

1) Explicit description of all the maximal orders into which OK

embeds. (GZ’s proof assumes K has prime discriminant. Dorman
gave a more general proof and had to extend this result.)
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2) Calculating

End(E/Wn(Fp)) = OK + pn−1R,

where R = End(E (mod p)).

(Completed by Gross in a later paper that uses strongly that the
formal group is 1-dim’l.)

3) Arithmetic intersection formula for v(j1 − j2).

v(j1 − j2) =
1

2

∑
n≥1

]Isomn(E1,E2).

This connects the arithmetic of j-invariants to arithmetic geometry
of elliptic curves.
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From the point of view of the lemma on v(j1 − j2), the theorem
can be viewed as calculating an arithmetic intersection number
(between the points j1, j2) on SL2(Z)\H, or, from Arakelov theory
perspective, the finite part of it. Equivalently, we may view it as
calculating an arithmetic intersection number (between the point
(j1, j2) and the diagonal) on SL2(Z)\H× SL2(Z)\H. The diagonal
is the divisor of j(τ1)− j(τ2), which happens to be a Borcherds lift.
The function is also a Green function of that divisor, so in the
sense of Arakelov theory, the intersection number is 0. One
concludes that the finite intersection number can be calculated via
the archimedean contribution. This is the point of view taken by
Bruinier and Yang, employing that the Brocherds lift is always a
Green function for its divisor.
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This point of view suggests further study:

What about points on Shimura varieties? Elkies, Schofer,
Errthum, Voight ...

What about other symmetric functions, e.g., traces of singular
moduli? Zagier, Ono (with Ahlgren, Jenkins, Bringmann,
Rouse), Bruinier, Funke ....

Can one refine the result of Gross-Zagier? Can one determine
the factorization of j(τ1)− j(τ2) and not just its norm?

What about higher dimensional varieties? Bruinier, Kudla,
Rapoport, Yang and in geometric setting Hirzebruch-Zagier,
van der Geer, Cogdell, Kudla, Milson, Getz-Goresky,
Terstiege... In Arakelov setting also Burgos, Kramer,
Hoermann ....
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The work of Schofer, Bruinier-Yang, Bruinier-Kudla-Yang

The setting is the following:

Let L ⊆ (V , q) a lattice of signature (2, n), where n ≥ 0.

Let f be a vector-valued weakly holomorphic elliptic modular form
in Mod!(C[L′/L], 1− n/2, ρL) whose Fourier expansion is∑

µ∈L′/L

∑
n∈q(µ)+Z

c(µ, n)qneµ.

Assume that c(µ, n) ∈ Z for n ≤ 0.

Let Ψ(f ) be the Borcherds lift of f . It is a modular form on
SO(2, n), of weight c(0, 0)/2 and level
Γ(L) =

{
M ∈ SOq(Z) : M|L′/L = Id

}
.

Recall that Ψ(f ) is defined on the Grassmannian X of positive
definite planes of V . 46 / 93
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Let λ ∈ V be such that q(λ) < 0. Then λ⊥ denotes all the points
in X that are perpendicular to Λ. It is a divisor, naturally
isomorphic to a symmetric variety of type SO(2, n − 1).

Define for µ ∈ L′/L, m < 0.

H(µ, λ) =
⋃

λ∈µ+L,q(λ)=m

λ⊥.

It is a locally finite divisor on X and its quotient on Γ(L)\X is an
algebraic divisor Z (µ,m).

The divisor of Ψ(f ) is ∑
µ,m<0

c(µ,m)Z (µ,m).

Given a CM cycle (more on that below) C on Γ(L)\X , one wants
to study

Ψ(f )(C ) =
∏
c∈C

Ψ(f )(c).
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Example

Let L be a real quadratic algebra over Q, with involution λ 7→ λ′.
So, L is either a quadratic real field, or Q⊕Q with (a, b)′ = (b, a).
Let

V =
{

A ∈ M2(OL) : tA = A′
}
⊃ Λ =


 a λ

λ′ d

 : a, d ∈ Z, λ ∈ OL

 .

We endow V with the quadratic form q(M) = det(M). It has
signature (2, 2) and the bilinear form is 〈A,B〉 = Tr(A · adj(B)).
The group SL2(OL) acts on V by

γ ∗ A = γ′ · A ·t γ.

This gives an isomorphism PSL2(OL) ∼= SOq(Z).
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We have Λ′/Λ = D−1
L /OL

∼= Z/dLZ, and so for L = Q⊕Q the
lattice Λ is unimodular.

We have,
∑

µ Z (µ,m) = Tm, the Hirzebruch-Zagier cycle of index
m, and for L = Q⊕Q it is the Hecke correspondence of level m.
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Continuing our example, the input space for the Borcherds lift are
modular forms of weight 0, i.e., vector-valued functions with values
in C[Z/dLZ]. These can be related to Jacobi forms.

In the example of L = Q⊕Q the input space is just modular
functions with poles at i∞. Namely, elements of C[j ]. The
Borcherds lift of

j(q)− 744 =
1

q
+ 196884q + . . . ....

is a modular function on SL2(Z)\H× SL2(Z)\H that vanishes
along the diagonal, and, as suspected, is equal to j(τ1)− j(τ2).
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“Big” CM points on SO(2, 2)

In their paper (Inventiones 2006) Bruinier and Yang obtain the
following result for a function Ψ(f ) on SL2(OL)\H2 that is a
Borcherds lift.

Theorem

Let C be the CM cycle associated to a primitive CM field K of
degree 4, viewed on SL2(OL)\H2, where L = K +. Assume that f
has divisor

∑
m>0 c̃(−m)Tm. Then,

log |Ψ(f )(C )| =
wK∗

4

∑
m≥0

c̃(−m)bm.

K + = Q(
√

p), where p ≡ 1 (mod 4) is a prime and dK/K+ is a
prime ideal of residue degree 1 over a prime q of Q also ≡ 1
(mod 4). K ∗ is the reflex field.
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bm =
∑

t=
n+m
√

q

2p
∈d−1

K∗/K∗,+

|n|<m
√

q

Bt ,

where,
Bt =

∑
`⊂OK∗,+ , prime ideal

Bt(`),

and

Bt(`) =


0 ` splits in K ∗

(ord`t + 1)ρ(tdK∗/K∗,+`
−1) log |`| else,

where,
ρ(a) = ]

{
A ⊆ OK∗ : NK∗/K∗,+A = a

}
.
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As a result, they have formulated the conjecture that

Tm · CM(K ) =
wK∗

4wK
bm.
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“Small” CM points

In his paper (Crelle 2009), Schofer deals with small CM points,
coming from quadratic imaginary fields, but “living” on a Shimura
variety associated to a vector space of signature (2, n). (His work
was generalized by Bruinier and Yang in a subsequent work.) His
theorem is the following:

Theorem

There exist explicit constants κ(µ,m) such that

−
∑

z∈CM(K)

log ‖Ψ(f )(z)‖ =
1

vol(KP)

∑
µ

∑
m≥0

c(µ,−m)κ(µ,m).

(Where ‖ · ‖ denotes the Peterson norm.)
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The CM cycle comes from a splitting of V = P ⊕ U, where P is
positive definite and rational vector space of dimension 2 (one
assume such a splitting exists). As such, P is essentially a
quadratic imaginary field with its norm form. This gives us a point
on X and the CM cycle is somehow constructed from this point.
KP is essentially K ∩ SO(P).

Based on such results, Bruinier and Yang had conjectured a
formula for the finite part of the arithmetic intersection number
CM(K )•Z (µ,m). It should be stressed that the constants κ(µ,m)
are hard to understand.
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“Big” CM points on SO(2, n)

In a very recent preprint, Bruinier-Kudla-Yang were able to
generalize Schofer’s methods to obtain such a result for CM cycles
coming from primitive CM fields that produce special points on X
- “the really interesting case”. Based on that they have made a
conjecture about CM(K )•Z (µ,m), which is wide open. However,
their conjecture should, in principle, yield a bound on the largest
prime that can appear in CM(K )•Z (µ,m) given K , µ,m. Farbizio
Andreatta and me are trying to prove such a bound from a moduli
theoretic point of view, attempting to generalize a very special
case worked out by Goren-Lauter (Annales Fourier Inst. 2007).
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A different generalization of Gross-Zagier

Let L be a totally real field, [L : Q] = g , h+
L = 1. Let Ki be CM

fields, such that K +
i = L. Suppose that p > 2 is unramified in K1.

Let (di ) = discKi/L, di � 0. (d1, 2) = 1. Let Ai be a principally
polarized abelian variety with CM by Ki . Another generalization of
Gross-Zagier can be phrased as:

Problem: For which primes p, A1
∼= A2 (mod p)?

Based on the work of Gross-Zagier it seems better to revise the
question. For good primes p, Ai are defined over W = W (Fp).
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What is:

1

](O×K1
/O×L ) · ](O×K2

/O×L )

∞∑
n=1

∑
A1/Wn w. CM by K1∑
A2/Wn w. CM by K2

]Isomn(A1,A2)?

(Isomn are isomorphisms between the reductions modulo (pn), with
polarization and OL-structure.)
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Results for superspecial primes

Theorem (G. - Lauter, 2010)

It is equal to

1

](O×K1
/O×L )

× ] number of superspecial CM types of K1×

∞∑
n=1

∑
[a]∈CL(K1)

]S(a, λa, p
n−1).

We now explain the quantities appearing in this theorem.
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Let us write K2 = L(w),OK2 = OL[w ]. Then S(a, λa, p
n−1) counts

elements of trace = Tr(w) and norm = Nm(w) in an explicitly
presented order R(a, λa, p

n−1) in Bp,∞ ⊗Q L and the last sum can
also be written using the function

S2(a, x) = ]{b ⊆ OK : Nm(b) =
x2 − d1d2

4p2n−1
, b ∼ a2A}.

79 / 93



Singular Moduli The work of Gross-Zagier The work of Schofer, Bruinier-Yang, Bruinier-Kudla-Yang A different generalization of Gross-Zagier

We first prove that

Lemma

There is a totally negative prime element α0 ∈ OL such that
(α0, 2pd1) = 1 and

Bp,L
∼=
(

d1, α0p

L

)
.

For α, β ∈ OK1 define a symbol

[α, β] :=

 α β

α0pβ̄ ᾱ

 ∈ M2(K1).

Bp,L
∼= {[α, β] | α, β ∈ K1}.
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Orders in the quaternion algebra Bp,L

Write α0OK1 = A · A, and let D be the different of K1/L. For
each q | d1, fix a solution λq to

x2 ≡ α0p mod q.

Let a be an integral ideal of OK1 . Let ε(a, q) ∈ {±1} be a choice
of sign ∀q | d1. Let λ ∈ OL be such that

1 λ ≡ ε(a, q)λq mod q, ∀q | d1

2 λA−1a−1a is an integral ideal of OK1 .
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Let ` ∈ OL be such that (`, α0d1a
−1a) = 1. Let

R(a, λ, `) = {[α, β] | α ∈ D−1, β ∈ D−1A−1`a−1a, α ≡ λβ mod OK1}.

Lemma

1 R(a, λ, `) is an order of Bp,L, containing OK1 .

2 R(a, λ, `) has discriminant p · `.
3 R(a, λ, `) does not depend on the choice of λ.
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Superspecial Orders

Recall that our goal is to describe all superspecial orders of Bp,L

containing OK1 . (Eichler orders of discriminant p in this case)

Theorem

Given K1 embedded in Bp,L, the isomorphism classes of
superspecial orders containing OK1 are in bijection with the class
group of K1:

a 7→ R(a, λ, 1).

(The proof is through a lot of quaternions algebra + “such orders
are related by isogenies”.)
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Theorem

End(A1 (mod pn)) = R(a, λa, p
n−1).

(The proof is via crystalline deformation theory.)
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A general result

The presence of two CM structures on A2 (mod p) ∼= A1 (mod p),
implies that we have either supersingular, or superspecial reduction.
We expect to prove such a result also for supersingular primes.
The key ingredients are in place, already. At any rate, we have

Theorem

Any prime over which CM(K1) can intersect CM(K2) is either
supersingular or superspecial and satisfies

p ≤ 4g · discK1discK2

disc4
L

.
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Thanks!
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