Introduction to theta liftings (following D. Prasad)

Jayce R. Getz McGill University Partially supported by NSERC

Highbrow motivation:

F := number field H,G := reductive F groups

Suppose given

$$^{L}H \longrightarrow {}^{L}G.$$

Langlands functoriality:

There exists a corresponding **transfer** of automorphic forms.

Imply, e.g. relationship between L-functions.

Theta liftings give explicit examples.

The Weil representation:

$$k :=$$
 field of characteristic $\neq 2$

W := finite dimensional k-vector space

Nondegenerate symplectic pairing

 $\langle \cdot, \cdot \rangle : W \times W \longrightarrow k.$

Heisenberg group: k-group H(W) such that for k-algebras R

 $H(W)(R) := \{ (w,t) : w \in W \otimes_k R, t \in R \}$

where

 $(w_1, t_1) \cdot (w_2, t_2) = (w_1 + w_2, t_1 + t_2 + \frac{1}{2} \langle w_1, w_2 \rangle.$

Have nonsplit central extension

 $0 \longrightarrow R \longrightarrow H(W)(R) \longrightarrow W \otimes_k R \longrightarrow 0$

3

Let ρ be a representation of H(W)(R).

 $\rho|_R$ yields $\psi: R^+ \to \mathbb{C}^{\times}$.

Theorem (Stone-von Neumann):

For any nontrivial character $\psi: F_v \to \mathbb{C}^{\times}$ there exists an irreducible representation

$$\rho_{\psi}: H(W)(F_v) \longrightarrow \operatorname{Aut}(V_{\psi})$$

(unique up to equivalence) on which F_v acts via ψ .

Realization:

$$k \in \{F, F_v\}$$
$$R \in \{F_v, \mathbb{A}_F^S\}$$

 $W = X \oplus Y$, X, Y isotropic.

Have smooth representation

 $\rho_{\psi}: H(W)(R) \longrightarrow V_{\psi}:= \operatorname{Aut}(\mathcal{S}(X(R)))$ where

$$\rho_{\psi}(w_1)f(x) = f(x+w_1)$$

$$\rho_{\psi}(w_2)f(x) = \psi(\langle x, w_2 \rangle)f(x)$$

$$\rho_{\psi}(t)f(x) = \psi(t)f(x)$$

for $x, w_1 \in X(R)$, $w_2 \in Y(R)$ and $t \in R$.

Weil representation:

Have action

$$\mathsf{Sp}(W)(R) \times H(W)(R) \longrightarrow H(W)(R)$$

 $(g, (w, t)) \longmapsto (gw, t).$

By uniqueness of ρ_{ψ} , Sp(W)(R) acts on $V_{\rho_{\psi}}$: there exists $\omega_{\psi}(g)$ (unique up to scaling) s.t.

$$\rho_{\psi}(gw,t) = \omega_{\psi}(g)\rho_{\psi}(w,t)\omega_{\psi}(g)^{-1}$$

Obtain

$$\mathsf{Sp}(W)(R) \longrightarrow \mathsf{PGL}(V_{\rho_{\psi}})$$

and hence

$$Mp(W) \longrightarrow GL(V_{\rho_{\psi}}).$$

Note Mp(W) is **not** algebraic.

More details

Recall the equation

$$\rho_{\psi}(gw,t) = \omega_{\psi}(g)\rho_{\psi}(w,t)\omega_{\psi}(g)^{-1} \qquad (1)$$

Define

 $\widehat{\mathsf{Sp}}_{\psi}(W) := \{(g, \omega_{\psi}(g)) \in \mathsf{Sp}(W) \times \mathbb{C}^{\times} : (1) \text{ holds}\}$ Have exact sequence

$$1 \to \mathbb{C}^{\times} \to \widehat{\mathsf{Sp}}_{\psi}(W) \to \mathsf{Sp}(W) \to 1.$$

Theorem: Restriction to the commutator subgroup yields an exact sequence

 $0 \to \mathbb{Z}/2 \to [\widehat{\mathsf{Sp}}_{\psi}(W), \widehat{\mathsf{Sp}}_{\psi}(W)] \to \mathsf{Sp}(W) \to 1$ and

$$[\widehat{\mathsf{Sp}}_{\psi}(W), \widehat{\mathsf{Sp}}_{\psi}(W)] \cong \mathsf{Mp}(W).$$

Realization:

 ${\sf Sp}(W) o {\sf PGL}(V_\psi)$ given by

$$\begin{pmatrix} A & 0\\ 0 & A^{-t} \end{pmatrix} f(X) = |\det(A)|^{\frac{1}{2}} f(A^t X)$$
 (2)

$$\begin{pmatrix} I & B \\ 0 & I \end{pmatrix} f(X) = \psi \left(\frac{X^t B X}{2} \right) f(X)$$
(3)

$$\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} f(X) = \gamma \widehat{f}(X)$$
(4)

where γ is an 8th root of unity and $\widehat{}$ denotes Fourier transform.

Dual reductive pairs:

Let $G_1, G_2 \leq Sp(W)$ be reductive subgroups.

Definition:

 (G_1, G_2) is a **dual reductive pair** if $Z_{\text{Sp}(W)}(G_1) = G_2$ and $Z_{\text{Sp}(W)}(G_2) = G_1$.

Global theta liftings

Let $\psi: F \backslash \mathbb{A}_F \to \mathbb{C}$ be nontrivial. Have a Weil representation

$$\mathsf{Sp}(W)(\mathbb{A}_F) \longrightarrow \mathcal{S}(X(\mathbb{A}_F))$$

Theorem (Weil): The cover

$$\mathsf{Mp}(W)(\mathbb{A}_F) \to \mathsf{Sp}(W)(\mathbb{A}_F)$$

splits over Sp(W)(F).

Thus Sp(W)(F) operates on $S(X(\mathbb{A}_F))$.

Define a distribution

$$\theta : \mathcal{S}(X(\mathbb{A}_F)) \longrightarrow \mathbb{C}$$

 $f \longmapsto \sum_{x \in X(F)} f(x)$

and a function

 $\theta_f(x) := \theta(x \cdot f) : \mathsf{Sp}(W)(F) \setminus \mathsf{Mp}(W)(\mathbb{A}_F) \longrightarrow \mathbb{C}$

This is the **theta function** attached to f.

 $(G_1, G_2) \leq Sp(W) :=$ dual reductive pair.

 $\widetilde{G}_i \leq \mathsf{Mp}(W)$:=the inverse images under $\mathsf{Mp}(W) \to \mathsf{Sp}(W)(F)$.

Suppose that Mp(W) splits over $G_1 \times \tilde{G}_2$.

Have a map

 $\theta_f : \mathcal{A}(G_1(F) \setminus G_1(\mathbb{A}_F)) \longrightarrow \mathcal{A}(\tilde{G}_2(F) \setminus \tilde{G}_2(\mathbb{A}_F))$ where

$$\theta_f(\phi)(g_2) = \int_{G_1(F) \setminus G_1(\mathbb{A}_F)} \theta_\phi(g_1, g_2) f(g_1) dg_1.$$

The function $\theta_f(\phi)$ is the **theta lift** of ϕ .

Of course, can switch roles of G_1 and G_2 to obtain inverse lifts.

Can restrict the domain to the π_1 -isotypic subspace, where π_1 is an automorphic representation of G_1 .

Basic question:

When is the space generated by $\theta_f(\phi)$ for $\phi \in \pi_1$ not identically zero?

Shintani's example

V/F :=orthogonal space W/F :=symplectic space

So $V \otimes W$ is a symplectic space

$$(O(V), \mathsf{Sp}(W)) \leq \mathsf{Sp}(W)$$

a dual reductive pair.

Assume dim(W) = 2, isotropic basis e_1, e_2 .

 $X = V \otimes e_1, \ Y = V \otimes e_2$

For $f \in \mathcal{S}(V)$ obtain θ -function

$$\theta_f(g) = \sum_{x \in X(F)} f(xg)$$

Since $Sp(W) \cong SL_2$, obtain a theta lifting

 $\theta_f : \mathcal{A}(O(F) \setminus O(\mathbb{A}_F)) \longrightarrow \mathcal{A}(\mathsf{SL}_2(F) \setminus H(\mathbb{A}_F))$ where $H \in \{\mathsf{SL}_2, \widetilde{\mathsf{SL}}_2\}.$

15

Concrete examples:

Let $F = \mathbb{Q}$, q =quadratic form on V.

(1) dim(V) = 1, $q = x^2$, $O(V) = \{\pm 1\}$.

Obtain classical theta functions.

(2) dim(V) = 2, q =norm form of K/\mathbb{Q} ([K : \mathbb{Q}] = 2), $O(V) \cong \operatorname{Res}_{K/\mathbb{Q}} \operatorname{GL}_1/\operatorname{GL}_1$.

Lifting constructs automorphic induction of Hecke characters to "CM" or dihedral automorphic representations on SL_2 .

(3) dim(V) = 3, $q = x^2 - yz$, $SO(V) \cong PGL_2$

Inverse of Shimura correspondence

 π :=cuspidal representation of PGL₂($\mathbb{A}_{\mathbb{Q}}$) σ :=cuspidal representation of $\widetilde{SL}_2(\mathbb{A}_{\mathbb{Q}})$.

Theorem (Waldspurger):

(1) $\theta(\pi) \neq 0$ iff $L(\frac{1}{2}, \pi) \neq 0$. (2) $\theta(\sigma) \neq 0$ iff σ has a ψ -Whittaker model.