A Brief Introduction to Hodge Structures

Dylan Attwell-Duval

Department of Mathematics and Statistics McGill University Montreal, Quebec

attwellduval@math.mcgill.ca

September 4, 2010

Let V be a **real**, finite dimensional vector space. We define complex conj. on $V(\mathbb{C}) = \mathbb{C} \otimes V$ as

 $\overline{z\otimes v}=\overline{z}\otimes v.$

Definitions

- A Hodge Decomposition of V: $V(\mathbb{C}) = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$, such that $V^{p,q} = \overline{V^{q,p}}$
- A (real) Hodge Structure: A real vector space + Hodge Decomposition
- Type of Hodge Structure: Set of 2-tuples such that $V^{p,q} \neq \{0\}$
- Weight Decomposition: $V = \bigoplus V_n$, where $V_n = \left(\bigoplus_{p+q=n} V^{p,q} \right) \cap V$
- An integral (rational) Hodge Structure: A free \mathbb{Z} (or \mathbb{Q}) module W +a Hodge Structure on $W(\mathbb{R})$ such that the $W = \bigoplus (V_n \cap W)$

We will usually be interested in the case when $V_n = \{0\}$ except for one fixed $n \in \mathbb{Z}$. In such a case we say the Hodge structure on V has weight n.

Q(m) is the unique rational Hodge Structure of weight −2m on the vector space Q, ie. (Q(m))(C) = Q(m)^{-m,-m}.

We will usually be interested in the case when $V_n = \{0\}$ except for one fixed $n \in \mathbb{Z}$. In such a case we say the Hodge structure on V has weight n.

- Q(m) is the unique rational Hodge Structure of weight −2m on the vector space Q, ie. (Q(m))(C) = Q(m)^{-m,-m}.
- Suppose V is a real vector space with complex structure J
 (J² = −Id). V(ℂ) = V^{1,0} ⊕ V^{0,1} corresponds to the decomposition
 into ±i eigenspaces. We will see later that every real Hodge Structure
 of type {(1,0), (0,1)} corresponds to a real vector space with a
 complex structure.

Hodge Structures as representations of $\ensuremath{\mathbb{S}}$

Consider $\mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}}(\mathbb{G}_m)$ as an algebraic torus over \mathbb{R} .

$$\mathbb{S}(\mathbb{R})\cong\mathbb{C}^{\times}\quad\text{and}\quad\mathbb{S}(\mathbb{C})\cong\mathbb{C}^{\times}\times\mathbb{C}^{\times}$$

Complex conj. acts on $\mathbb{S}(\mathbb{C})$ via $\overline{(z_1, z_2)} = (\overline{z_2}, \overline{z_1})$. We conclude $X^*(\mathbb{S}) = \mathbb{Z} \times \mathbb{Z}$ w/ Galois action sending (p, q) to (q, p).

Theorem

Let T be a torus over a field k, and K a Galois extension of k splitting T. To give a representation h of T on a k-vector space V amounts to giving a $X^*(T)$ -grading $V \otimes K = V(K) = \bigoplus_{\chi \in X^*(T)} V_{\chi}$ with the property that

$$\sigma(V_{\chi}) = V_{\sigma_{\chi}}, \quad \text{ for all } \sigma \in \textit{Gal}(K/k), \quad \chi \in X^*(T).$$

The V_{χ} will be subspaces of simultaneous eigenvectors on which T acts through χ :

$$h(t)v = \chi(t) \cdot v$$
, for all $v \in V_{\chi}$, $t \in T(K)$.

- By the theorem, if V is a real vector space, then a representation of algebraic groups $h : \mathbb{S} \to GL(V)$ leads to a decomposition of $V(\mathbb{C})$ into simultaneous eigenspaces $V^{p,q}$ such that $\overline{V^{p,q}} = V^{q,p}$, i.e. a Hodge decomposition.
- $v \in V^{p,q}$ iff $h(z)v = z^p \overline{z}^q v$ for all z (Discrepancy in notation between sources).
- Converse is also true. See (van Geeman) for construction of representation given Hodge decomposition.
- Weight decomposition corresponds to space

$$V_n = \{ v \in V | h(r)v = r^n v, \forall r \in \mathbb{R}^* \subset \mathbb{S}(\mathbb{R}) \}.$$

 The corresponding representation for Q(m) is the map C[×] → R sending z to multiplication by (zz̄)^{-m}.

- The corresponding representation for Q(m) is the map C[×] → R sending z to multiplication by (zz̄)^{-m}.
- For a Hodge structure arising from complex structure J as above, h(a + bi) = a ⋅ Id + b ⋅ J gives the correct representation. Conversely, given any Hodge structure of type {(1,0), (0,1)}, the map h(i) is a linear operator on V(ℝ) such that h(i)² = -Id.

Suppose (V, h_V) and (W, h_W) are Hodge structures of weight k_V and k_W . Then their tensor product induces a Hodge structure $(V \otimes W, h_V \otimes h_W)$ of weight $k_V + k_W$ where

$$(h_V \otimes h_W(z))v \otimes w = h_V(z)v \otimes h_W(z)w.$$

The dual space of a rational or real Hodge structure (V, h_V) also has an induced structure of weight $-k_V$,

$$h_V^*:\mathbb{C}^{ imes}
ightarrow GL(V_{\mathbb{R}}^*), \quad (h_V^*(z)f)(v)=f(h_V(z)^{-1}v).$$

Combining these two results allows one to induce a Hodge structure on $Hom(V, W) \cong V^* \otimes W$ when V and W are Hodge structures of vector spaces.

More Definitions (cntd.)

A morphism of Hodge structures is a map of representation spaces $f: (V, h_V) \rightarrow (W, h_W \otimes h_{\mathbb{Q}(-n)})$ for some fixed $n \in \mathbb{Z}$, ie.

$$f(h_V(z)v) = (z\overline{z})^n h_W(z)f(v).$$

A morphism is called strict when n = 0.

When V is a rational Hodge structure of weight k = 2n, we call the \mathbb{Q} subspace

$$B(V):=V\cap V^{n,n}$$

the space of Hodge classes.

If $f: V \to W$ is a strict morphism of rational Hodge structures, we can consider $f \in \text{Hom}_{\mathbb{Q}}(V, W) = V^* \otimes W$ with its natural Hodge structure. Then $(h_V^*(z) \otimes h_W(z)f)(v) = h_W(z)f(h_V(z^{-1})v) = f(v)$ and so f is of type (0,0) and therefore a Hodge class. It is not hard to see that in fact $B(V^* \otimes W)$ is equal to the set of all strict Hodge morphisms. Let X be a smooth, complex, projective variety. Then the k^{th} Betti cohomology admits a rational Hodge structure of weight k:

$$H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X).$$

Here we identify $H^k(X, \mathbb{C})$ with harmonic differential forms and the subspaces $H^{p,q}(X)$ consist of the harmonic forms of type (p, q).

Now suppose Z is any irreducible subvariety of codimension p in X. Then there is a natural map sending Z into $H^{2p}(X, \mathbb{Q})$ and this extends to a linear map on the group of codimension-p cycles, $\sum a_i Z_i \to \sum a_i [Z_i]$. The image of this map is contained in $B(H^{2p}(X, \mathbb{Q}))$ and the Hodge Conjecture asserts that every Hodge class lies in the image. Let (V, h) be a Hodge structure of weight k over R. A **polarization** on V is a bilinear map:

$$\Psi: V imes V o R$$

such that for $v, w \in V(\mathbb{R})$ we have:

$$\Psi_{\mathbb{R}}(h(z)v,h(z)w)=(z\overline{z})^{k}\Psi_{\mathbb{R}}(v,w)$$

and the map $\Psi_{\mathbb{R}}(v, h(i)w)$ is symmetric and positive definite. A Hodge structure is called polarized if such a map exists. Any polarization induces a strict morphism from $V \otimes V$ to R(-k).

Hodge Structures & Complex Abelian Varieties

Let $\Lambda \subset \mathbb{C}^n$ be a full lattice and $M = \mathbb{C}^n / \Lambda$ a complex torus. Λ has an integral Hodge structure of type $\{(1,0), (0,1)\}$ induced from that fact that $\Lambda \otimes \mathbb{R} = \mathbb{C}^n$.

Let $\Lambda \subset \mathbb{C}^n$ be a full lattice and $M = \mathbb{C}^n / \Lambda$ a complex torus. Λ has an integral Hodge structure of type $\{(1,0), (0,1)\}$ induced from that fact that $\Lambda \otimes \mathbb{R} = \mathbb{C}^n$.

Question: When is M projective?

Let $\Lambda \subset \mathbb{C}^n$ be a full lattice and $M = \mathbb{C}^n / \Lambda$ a complex torus. Λ has an integral Hodge structure of type $\{(1,0), (0,1)\}$ induced from that fact that $\Lambda \otimes \mathbb{R} = \mathbb{C}^n$.

Question: When is *M* projective?

Appell-Humbert ⇒ M is projective precisely when there exists a positive definite Riemann form on Cⁿ relative to Λ

<u>Riemann form relative to A</u>: A Hermitian form H on \mathbb{C}^n whose imaginary part E(x, y) = Im H(x, y) restricted to $\Lambda \times \Lambda$ has image in \mathbb{Z} . E is necessarily alternating and satisfies E(ix, iy) = E(x, y). Conversely, any map $E : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{R}$ with these properties induces a Riemann form H = E(ix, y) + iE(x, y). It is easy to check that given a polarization Ψ of the Hodge structure on Λ , $-\Psi$ satisfies the criteria above for the imaginary part *E* of a Riemann form. Conversely the negative of the imaginary part of any Riemann form induces a polarization.

<u>Conclusion</u>: A complex torus is polarized (projective) iff the natural Hodge structure on its lattice is.

Theorem (Riemann's Theorem)

The functor $A \to H_1(A, \mathbb{Z})$ is an equivalence of the category AV of polarized abelian varieties over \mathbb{C} to the category of polarizable integral Hodge structures of type $\{(1,0), (0,1)\}$ with strict morphisms.

Principally Polarized Hodge Structures

We can take the results of Riemann's Theorem even further and talk about *principally* polarized complex manifolds and the corresponding Hodge structures.

 $\Psi : \Lambda \times \Lambda \to \mathbb{Z}$ is a principal polarization if there exists a Frobenius basis for Ψ such that the corresponding matrix representation is $\begin{pmatrix} 0 & -Id \\ Id & 0 \end{pmatrix}$.

• Riemann's Theorem \Rightarrow Category of *n*-dim. principally polarized abelian varieties is equivalent to 2*n*-dim. principally polarized integral Hodge structures of type $\{(1,0), (0,1)\}$.

This space is parameterized by $Sp_{2n}(\mathbb{Z}) \setminus \mathfrak{h}_n$ where

$$\begin{split} \mathfrak{h}_n &= \{ N \in M_n(\mathbb{C}) : N = N^t, \operatorname{Im}(N) \gg 0 \} \\ &\cong Sp_{2n}(\mathbb{R})/K, \quad \text{where } K \text{ is a maximal compact subgroup.} \end{split}$$

Given $N \in \mathfrak{h}_n$, one can recover the corresponding lattice as $Sp\{(Id_n, N)\}$ and the polarization wrt. this lattice is $\begin{pmatrix} 0 & -Id \\ Id & 0 \end{pmatrix}$.

- J.S. Milne. Introduction to Shimura Varieties, October 2004. http://www.jmilne.org/math/articles/2005aX.pdf.
- D. van Geeman. Kuga-Satake Varieties and the Hodge Conjecture. March 1999.

http://www.citebase.org/abstract?id=oai:arXiv.org:math/9903146.