The Gross-Zagier Theorem on Singular Moduli

Bahare Mirza

September 4, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

When do two elliptic curves, E and E', over $\overline{\mathbb{Q}}$ with Complex Multiplicatin, have the same reduction modulo a prime \mathfrak{p} of the field of definition?

- ▶ When reduced curves mod p have the same j-invariant.
- This happens when the prime \mathfrak{p} devides j(E) j(E').

This reduces the question to factoring j(E) - j(E') into primes.

Convention and Notation

Let d_1 and d_2 be two fundamental discriminants with $gcd(d_1, d_2) = 1$. Define

$$J(d_1, d_2) = \left\{ \prod_{\substack{[\tau_1], [\tau_2] \\ disc \tau_i = d_i}} (j(\tau_1) - j(\tau_2)) \right\}^{4/w_1 w_2}, \quad (1)$$

where w_i is the number of roots of unity in the quadraic field of discriminant d_i .

- If d₁, d₂ < −4, J(d₁, d₂) is the absolute norm of the algebraic integer j(τ₁) − j(τ₂) and hence is an integer.
- In general $J(d_1, d_2)^2$ is an integer.

The main result of this article concerns factoring this integer.

Statement of the Theorem

Theorem

$$J(d_1, d_2)^2 = \pm \prod_{\substack{x, n, n' \in \mathbb{Z} \\ n.n' > 0 \\ x^2 + 4nn' = d_1 d_2}} n^{\varepsilon(n')},$$

where ε is defined as follows; if n=l a prime with $\left(\frac{d_1d_2}{l}\right) \neq -1$, let

$$\varepsilon(I) = \begin{cases} \left(\frac{d_1}{I}\right) & \text{if } (d_1, I) = 1, \\ \left(\frac{d_2}{I}\right) & \text{if } (d_2, I) = 1. \end{cases}$$

And if $n = \prod_i l_i^{a_i}$, with $(\frac{d_1d_2}{l_i}) \neq -1$, for all *i* (which covers all integers, *n*, occuring in the above product), then we define $\varepsilon(n) = \prod_i \varepsilon(l_i)_i^a$.

Yet More Notation

Н

For simplicity we assume $d_1 = -p$, but let d_2 be any negative discriminant. Fix the following notation,

$$\tau = \frac{1 + \sqrt{-p}}{2}$$

$$K = \mathbb{Q}(\sqrt{-p})$$

$$\mathcal{O} = \mathbb{Z}[\tau] \text{ ring of integers in K}$$

$$j = j(\tau)$$

$$= K(j) \text{ the Hilbert class field of}$$

 ν a finite place in H

Κ

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

 A_{ν} the completion of the maximal unramified extension of the ring of $\nu\text{-integers}$ in H

 W_{ν} an extension of A_{ν} by an element w which satisfies a quadratic equation of discriminant d_2

e ramificition index of $W_{
u}/A_{
u}$

Algebraic Proof-First Step

In the first step we analyze the algebraic integer

$$\alpha = \prod_{\substack{[\tau_2]\\ \text{disc}\tau_2 = d_2}} (j - j(\tau_2))^{\frac{4}{w_1 w_2}}$$

in H, and calculate its valuation at each finite prime, ν , of H. To do this, we consider elliptic curves, E and E', over $W = W_{\nu}$ with complex multiplication by \mathcal{O} and $\mathbb{Z}[w]$ respectively, and j-invariant equal to j and $j' = j(\tau_2)$ and good reduction at ν and try to realize $ord_{\nu}(\alpha)$ as a geometric invariant related to these two curves.

Geometry

E and E' are elliptic curves over W which is a complete discrete valuation ring. Its quotient field has characteristic zero and residue field has characteristic l > 0 and is algebraicaly closed. We wish to calculate the order of j - j' with respect to ν normalized so that $\nu(\pi) = 1$ for π a uniformizer of W. The main tool for proving the theorem is the following proposition, which interprets $\nu(j - j')$ geometrically;

Geometry

Theorem

Let $Iso_n(E, E')$ be the set of isomorphisms from E to E' defined over W/π^n and $i(n) = \frac{Card(Iso_n(E,E'))}{2}$, then we have

$$\nu(j-j')=\sum_{n\geq 1}i(n).$$

This can be proved using the fact that, to find an element of $Iso_n(E, E')$ we should solve the following system of congruences modulo π^n

$$\begin{cases} a_4 \equiv u^4 a'_4 \\ a_6 \equiv u^6 a'_6, \end{cases}$$
(2)

for u, unit in W/π^n .

Proof; Continued

Next we rewrite the above equation in a manner that is merely dependant on E;

To every isomorphism $f: E \to E'$ corresponds an endomorphism of E, which has the same norm and trace as w and induces the same action on the tangent space to E at the origin, namely $w_f = f^{-1}.w.f$. So w_f belongs to the following subset of $End_n(E)$

$$S_n = \{\alpha_0 | Tr(\alpha_0) = Tr(w), N(\alpha_0) = N(w), \alpha_0 = w \text{ on Lie}(\mathsf{E})\}$$

On the other hand, every element in S_n is of the form w_f for some ismorphism $f : E \to E' \mod \pi^n$, for some elliptic curve E' with complex multiplication by the ring $\mathbb{Z}[w]$. This follows from the lifting theorem below;

Lifting Theorem

Theorem

Let E_0 be an elliptic curve over W/π^n and α_0 an endomorphism of E_0 . Assume that $\mathbb{Z}[\alpha_0]$ has rank 2 as a \mathbb{Z} module and that it is integrally closed. Assume further that α_0 induces multiplication by a quadratic element w_0 on Lie (E_0) . If there exists w such that $w \equiv w_0 \mod \pi^n$ and $w^2 - Tr(w_0)w + N(w_0) = 0$, Then there exists an elliptic curve over W and an endomorphism α of E such that $(E, \alpha) \equiv (E_0, \alpha_0) \mod \pi^n$, and α induces multiplication by w on Lie(E)

So we are reduced to counting the elements of S_n .

Counting S_n

We consider several cases;

- ▶ If $(\frac{1}{p}) = 1$, then $End_n E = O$ which does not contain any element of discriminant d_2 . So S_n is empty in this case.
- If (¹/_p) ≠ 1 then End₁E is a maximal order in the quaternion algbera which ramifies at I and infinity. Here, I is the residual characteristic of v

Now we investigate more the structure of the Quaternion algebra mentioned above.

There exists a unique Quaternion algebra, up to isomorphism, over K which ramifies exactly at the primes I and ∞ . This quaternion algebra can be given by the following subalgebra of 2 by 2 matrices over K,

$$B = \left\{ \begin{bmatrix} \alpha, \beta \end{bmatrix} = \begin{pmatrix} \alpha & \beta \\ -I\bar{\beta} & \bar{\alpha} \end{pmatrix} \right\}.$$

Case of Supersingular Reduction

Maximal orders of B which can occur as endomorphism ring of E reduced modulo π , up to isomorphism, are in 1-1 correspondence with ideal classes of \mathcal{O} . More precisely, if the ideal corresponding to \tilde{E} , curve given by reducing E mod π , is a then,

$$\mathit{End}_1(\mathit{E}) = \{ [\alpha, \beta] | \alpha \in \mathcal{D}^{-1}, \beta \in \mathcal{D}^{-1}\bar{\mathfrak{a}}/\mathfrak{a}, \alpha \equiv \lambda \beta \bmod \mathcal{O}_p \},\$$

where \mathcal{D}^{-1} is the inverse different of \mathcal{O} and λ is a square root of -l modulo \mathcal{D} .

Again we split to several cases;

- case 1, I does not divide pq in which e = 1
- case 2, I divides q in which e = 2
- case 3, l=p in which e = 1 again.

Case 1

Here we have,

$$End_n(E) = \{ [\alpha, \beta] | \alpha \in \mathcal{D}^{-1}, \beta \in \mathcal{D}^{-1} I^{n-1} \bar{\mathfrak{a}} / \mathfrak{a}, \alpha \equiv \lambda \beta \bmod \mathcal{O}_p \}.$$

every element of End_n with norm and trace equal to norm and trace of w, is of the form $[\alpha, \beta]$ where $\alpha = \frac{x+Tr(w)\sqrt{-p}}{2\sqrt{-p}}$ and $\beta = \frac{\gamma l^{n-1}}{\sqrt{-p}}$ with $\gamma \in \bar{\mathfrak{a}}/\mathfrak{a}$. If we set $(b) = (\gamma)\mathfrak{a}/\bar{\mathfrak{a}}$, \mathfrak{b} is an integral ideal in the class of \mathfrak{a}^2 . The pair (x, \mathfrak{b}) satisfies the following equation,

$$x^2+4l^{2n-1}N(\mathfrak{b})=pq.$$

On the other hand, any such pair, with a choice of generator for $\mathfrak{b}\bar{\mathfrak{a}}/\mathfrak{a}$ gives an element, $[\alpha,\beta]$ in B. If it further satisfies $\alpha \equiv \lambda\beta$ mod \mathcal{O}_p , it would be in $End_n(E)$ and if it induces multiplication by w on Lie(E) then it is in S_n .

Counting S_n

Using these considerations we can count the number of elements of S_n . Similar considerations also gives the other two cases. We have;

In the first case, the number of elements of S_n equals w₁/2 times the number of solutions (x, 𝔥) of

$$x^2 + 4l^{2n-1}N(\mathfrak{b}) = pq,$$

where solutions with $x \equiv 0 \mod p$ should be counted twice.

- In the second case S_n is empty for n ≥ 2 and #S₁ is given the same way as the first case.
- ▶ In the third case also, for $n \ge 2$, S_n is empty and $\#S_1$ is given just as above.

Conclusion

Putting together the above results for different (finite) primes, and letting j vary in the set of j-invariants of all elliptic curves with CM with an order in a quadratic field of discriminant d_1 , the proof of the main theorem is complete.

Thank you!

◆□ → < @ → < E → < E → ○ < ○ < ○ </p>