Serre-Tate Theorems

Amy (Cheung) Wooding

McGill

April 18, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Serre-Tate Theorems

Serre-Tate "general" Theorem

In positive characteristic, there is an equivalence of categories relating

$$\left\{\begin{array}{l} \text{deformations of an} \\ \text{abelian variety} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{deformations of its} \\ p\text{-divisible group} \end{array}\right)$$

Serre-Tate Coordinates Theorem For an *ordinary* abelian variety over a field k,

$$\left\{\begin{array}{c} \mathsf{local} \ \mathsf{deformations} \\ \mathsf{of} \ A \ \mathsf{to} \ R \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \mathsf{choice} \ \mathsf{of} \ g^2 \ \text{``local} \\ \mathsf{coordinates''} \ \mathsf{in} \ 1 + \mathbf{m}_R \end{array}\right\}$$

Outline

1 Deformations of Abelian Schemes

- 2 Serre-Tate "general" Theorem
 - The categories
 - Theorem
 - Proof
- Serre-Tate Local Coordinates
 Theorem
- 4 Applications
 - Canonical Lifts
 - Structure of Moduli Spaces

5 Extro

Let A/S be an abelian scheme and let $S \to T$ be a morphism of schemes.

Definition

Then a deformation of A/S to T is an abelian scheme \mathcal{A}/T together with an isomorphism over S:

$$F: \mathcal{A} \times_T S \cong A.$$

In other words, the following diagram commutes:

We'll be interested in cases where

- $S = \operatorname{Spec}(R_0)$
- $\bullet \ T = \operatorname{Spec}(R)$
- $S \to T$ induced by $R \twoheadrightarrow R_0$

Definition

Such a deformation is also called a *lift* of A from R_0 to R. Even more, if R is local artinian and $R_0 = k$ is a field, then a deformation A/R is called an *infinitessimal (or local) deformation (or lift)*.

Other deformation objects

Let G be an object defined over $\operatorname{Spec}(R_0)$, then we can also talk about deformations of G to R.

- *G* is a *p*-divisible group
- *G* is an abelian scheme with additional structure (polarization, endomorphism...)

The category C_k

Let \boldsymbol{k} be a field and let

$$W := \begin{cases} k & \operatorname{char}(k) = 0\\ W(k) & \operatorname{char}(k) > 0 \end{cases}$$

Objects

Pairs (R, ϕ)

- R is local artinian W-algebras
- $\phi: k \cong R/\mathbf{m}_R$ is a fixed isomorphism such that the following diagram commutes

$$W \longrightarrow R$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$k \longrightarrow R/\mathbf{m}_R$$

The category C_k

Let k be a field and let

$$W := \left\{ \begin{array}{ll} k & \operatorname{char}(k) = 0 \\ W(k) & \operatorname{char}(k) > 0 \end{array} \right.$$

Objects

Pairs (R, ϕ)

Morphisms

local W-algebra homomorphisms

Examples

- $k[\varepsilon]/(\varepsilon^n)$ when k has characteristic 0
- $W(k)/(p^n)$ when k has positive characteristic

Local Deformation Functor

Fix an abelian variety A/k.

$$\widehat{\mathcal{M}}_{A/k}: \mathcal{C}_k \longrightarrow \mathsf{Set}$$

 $R \longmapsto \{ \text{deformations of } A \text{ to } R \}$

Definition $\widehat{\mathcal{M}}_{A/k}$ is called the *local (or infinitessimal) deformation functor* associated with A/k.

・ロト・西ト・ヨト・ヨー シック

Representability of
$$\widehat{\mathcal{M}}_{Aig/k}$$

Theorem (Grothendieck) Let A/k be an abelian variety and $\widehat{\mathcal{M}}_{A/k}$ its associated local deformation functor. Then $\widehat{\mathcal{M}}_{A/k}$ is pro-representable by the complete, local noetherian ring

$$\mathcal{O} = W[[t_{11}, \ldots, t_{gg}]]$$

(日) (圖) (E) (E) (E)

where g is the dimension of A.

Remark

We can also construct local deformation functors that carry "extra structure", say for (A, λ) with λ a principal polarization. In general, the local deformation functor is pro-representable by a \mathcal{O}/\mathfrak{a} where \mathfrak{a} is a suitably defined ideal depending on the extra structure. For example $\widehat{\mathcal{M}}_{(A,\lambda)}$ is pro-representable by

$$\mathcal{O} = W[[t_{11},\ldots,t_{gg}]]/(\ldots,t_{ij}-t_{ji},\ldots).$$

Serre-Tate "general" Theorem

Serre-Tate "general" Theorem

In positive characteristic, there is an equivalence of categories relating

$$\left\{\begin{array}{c} \text{deformations of an} \\ \text{abelian variety} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{deformations of its} \\ p\text{-divisible group} \end{array}\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ab_{R}

Let R be a ring. Then we let Ab_R denote the category abelian schemes over R:

Objects

Abelian schemes over R; that is, smooth, proper group schemes $\pi:A\to R$ whose geometric fibres are connected.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Morphisms

Group homomorphisms over ${\boldsymbol R}$

$\mathsf{Def}(\mathsf{R},\mathsf{R}_0)$

Let R be a ring where p is nilpotent, and let $R \twoheadrightarrow R_0$ be a fixed surjective ring homomorphism. The category $Def(R, R_0)$ is given by

Objects

Triples (A_0, G, ϵ) where

- A_0 is an abelian scheme over R_0
- G is a p-divisible group over R

• $\epsilon: G_0 \to A_0(p^\infty)$ an ismorphism of *p*-divisible groups over R_0

In other words, (G, ϵ) is a lift of the *p*-divisible group of A_0 to R.

└─ Serre-Tate "general" Theorem └─ The categories

$\mathsf{Def}(\mathsf{R},\mathsf{R}_0)$

Objects

Triples (A_0, G, ϵ)

Morphisms

A morphism $(A_0,G,\epsilon_A) \to (B_0,H,\epsilon_B)$ is a pair (f_0,g) where

• $f_0: A_0 \rightarrow B_0$ morphism of abelian schemes/ R_0

• $g:G \to H$ morphisms of p-divisible groups /R such that $f_0(p^\infty) = g_0$; that is,

Serre-Tate Theorem

Theorem

Let R be a ring in which p is nilpotent, with $I \subset R$ a nilpotent ideal. Write $R_0 = R/I$. Then, there is an equivalence of categories given by

$$Ab_R \longrightarrow Def(R, R_0)$$

$$A \longmapsto (A_0 = A \otimes_R R_0, A(p^{\infty})).$$

Key facts

Let R be a ring in which p is nilpotent, with $I \subset R$ a nilpotent ideal. Write $R_0 = R/I$. Suppose $I^{\nu+1} = 0$ and write $q = p^n$ for some n such that $p^n = 0$.

If G is an abelian scheme or p-divisible group over R:

- *G* is *q*-divisible as a group
- G_I is killed by q^{ν} where

$$G_I(S) := \ker(G(S) \to G(S/IS))$$

Lemma

If G,H are an abelian schemes or p-divisible groups over R: \blacksquare $\operatorname{Hom}_R(G,H)$ and $\operatorname{Hom}_{R_0}(G_0,H_0)$ have no q-torsion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof

 $\boldsymbol{G} \text{ and } \boldsymbol{G}_0 \text{ and } \boldsymbol{q}\text{-divisible}$

Lemma

- If G, H are an abelian schemes or p-divisible groups over R:
 - **1** $\operatorname{Hom}_R(G,H)$ and $\operatorname{Hom}_{R_0}(G_0,H_0)$ have no q-torsion
 - **2** Reduction modulo *I* is injective on hom sets:

 $\mathsf{Hom}\,(G,H) \hookrightarrow \mathsf{Hom}\,(G_0,H_0)$

Proof

The kernel of this map is $\text{Hom}(G, H_I)$, applying the "key facts" immediately shows this is trivial.

Serre-Tate Theorems Serre-Tate "general" Theorem Proof

Lemma

- If G, H are an abelian schemes or *p*-divisible groups over *R*: **1** Hom_{*R*}(*G*, *H*) and Hom_{*R*₀}(*G*₀, *H*₀) have no *q*-torsion
 - **2** Reduction modulo I is injective on hom sets:

 $\mathsf{Hom}\,(G,H) \hookrightarrow \mathsf{Hom}\,(G_0,H_0)$

3 For any $f_0 \in \text{Hom}(G_0, H_0)$, $q^{\nu} f_0$ lifts uniquely to some $\widetilde{q^{\nu} f_0} \in \text{Hom}(G, H)$

Proof

Let L be any lift $H(S/IS) \rightarrow H(S)$:

Lemma

- If G, H are an abelian schemes or p-divisible groups over R:
 - **1** Hom_R(G, H) and Hom_{R₀} (G_0, H_0) have no q-torsion
 - **2** Reduction modulo *I* is injective on hom sets:

 $\operatorname{Hom}(G,H) \hookrightarrow \operatorname{Hom}(G_0,H_0)$

- 3 For any $f_0 \in \text{Hom}(G_0, H_0)$, $q^{\nu} f_0$ lifts uniquely to some $\widetilde{q^{\nu} f_0} \in \text{Hom}(G, H)$
- 4 $f_0 \in \text{Hom}(G_0, H_0)$ lifts uniquely to some $f \in \text{Hom}(G, H)$ if and only if $q^{\nu}f_0$ annihilates $G[q^{\nu}]$.

Serre-Tate Theorems Serre-Tate "general" Theorem Proof

Lemma

If G, H are an abelian schemes or p-divisible groups over R:

• $f_0 \in \operatorname{Hom} (G_0, H_0)$ lifts uniquely to some $f \in \operatorname{Hom} (G, H)$ if and only if $\widetilde{q^{\nu} f_0}$ annihilates $G[q^{\nu}]$

Proof

- Necessary: since f lifts f_0 , then $q^{\nu}f = \widetilde{q^{\nu}f_0}$ by Lemma part 2
- Sufficient: since $q^{\nu}f_0$ annihilates $G[q^{\nu}]$, construct F such that

 $q^{\nu}F_0 = q^{\nu}f_0$ implies $F_0 = f_0$ since Hom (G_0, H_0) has no q-torsion.

Equivalence of categories

 $A \to \mathsf{Def}(A) = (A_0, A(p^\infty), \varepsilon_A)$ $\in \mathsf{Abp} \text{ and } (f_0, f(p^\infty)) : \mathsf{Def}(A) \to \mathsf{Def}(B)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $A, B \in Ab_{R}$ and $(f_{0}, f(p^{\infty})) : Def(A) \rightarrow Def(B)$ in $Def(R, R_{0})$.

Faithful

 $\operatorname{Hom}(A,B) \hookrightarrow \operatorname{Hom}(A_0,B_0)$ so any lift of f_0 is unique

Serre-Tate Theorems Serre-Tate "general" Theorem Proof

Full

$$A \to \mathsf{Def}(A) = (A_0, A(p^\infty), \varepsilon_A)$$

Let $A, B \in Ab_{\mathsf{R}}$ and $(f_0, f(p^{\infty})) : \mathsf{Def}(A) \to \mathsf{Def}(B)$ in $\mathsf{Def}(\mathsf{R}, \mathsf{R}_0)$.

- A lift $F: A \to B$ of f_0 exists if and only if $q^{\nu} f_0$ kills $A[q^{\nu}]$
- Necessarily, $q^{\nu}f_0(p^{\infty})$ lifts $q^{\nu}(f_0(p^{\infty}))$
- Uniqueness of lifts implies $\widetilde{q^{\nu}f_0}(p^{\infty}) = q^{\nu}f(p^{\infty})$

•
$$q^{\nu} f_0(p^{\infty})$$
 kills $A(p^{\infty})[q^{\nu}] = A[q^{\nu}]$

For the lift $F: A \to B$ of f_0 , $F(p^{\infty})$ lifts $f_0(p^{\infty})$ so $F(p^{\infty}) = f(p^{\infty})$ (uniqueness of lifts)

Proof

Serre-Tate "general" Theorem

Essentially Surjective

Take $(A_0, G, \varepsilon) \in \text{Def}(\mathbb{R}, \mathbb{R}_0)$ Let B/R be a lift of A_0 via an isomorphism

$$\alpha_0: B_0 = B \otimes_R R_0 \to A_0.$$

This induces an isomorphism of p-divisible groups,

$$\alpha_0(p^\infty): B_0(p^\infty) \to A_0(p^\infty),$$

and, let

$$q^{\nu} \widetilde{\alpha_0(p^{\infty})} : B(p^{\infty}) \to G$$

be the unique lift of $q^{\nu}\alpha_0(p^{\infty})$.

└─ Serre-Tate "general" Theorem └─ Proof

Essentially surjective

$$q^{\nu} \widetilde{\alpha_0(p^{\infty})} : B(p^{\infty}) \to G$$

is an isogeny, and it has an "inverse" in the sense that there exists a lift $\widetilde{q^{\nu}\alpha_0(p^\infty)}^{-1}$ of $q^{\nu}\alpha_0(p^\infty)^{-1}$ such that

$$\widetilde{q^{\nu}\alpha_0(p^{\infty})}^{-1} \circ \widetilde{q^{\nu}\alpha_0(p^{\infty})} = q^{2\nu}$$

and

$$\widetilde{q^{\nu}\alpha_0(p^{\infty})} \circ \widetilde{q^{\nu}\alpha_0(p^{\infty})}^{-1} = q^{2\nu}$$

Therefore, setting $K = \ker(q^{\nu}\alpha_0(p^{\infty}))$, we obtain a finite, flat subgroup of $B[q^{2\nu}]$.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

└─Serre-Tate "general" Theorem └─Proof

Essentially surjective

Taking A = B/K gives $Def(A) = (A_0, G, \varepsilon)$: By construction, K lifts $B_0[q^{\nu}]$, so A is a lift of

$$B_0 / B_0[q^\nu] \cong B_0 \cong A_0.$$

Furthermore,

$$A(p^{\infty}) \cong B(p^{\infty}) \big/ K \cong G.$$

Serre-Tate Local Coordinates Theorem

For an *ordinary* abelian variety over a field $k = \overline{k}$ and $R \in C_k$,

$$\left\{\begin{array}{c} \text{local deformations} \\ \text{of } A \text{ to } R \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{choice of } g^2 \text{ "local} \\ \text{coordinates" in } 1 + \mathbf{m}_R \end{array}\right\}$$

Ordinary Abelian Varieties

Definition

Let k be an algebraically closed field of characteristic p > 0. Then an abelian variety A of dimension g over k is *ordinary* if the following equivalent conditions are satisfied:

$$\blacksquare \ \# A[p](k) = p^g$$

• The largest étale quotient of A[p] has rank g.

•
$$A(p^{\infty}) \cong \hat{\mathbb{G}}_m^g \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^g$$

— Theorem

Serre-Tate Coordinates

Theorem (Part 1)

Let A be an ordinary abelian variety over $k = \overline{k}$ of characteristic p, and let $T_pA = \varprojlim A[p^n]$ be its Tate module. Then

• there is an isomorphism of functors on the category C_k :

$$\widehat{\mathcal{M}}_{A/k}(-) \cong \operatorname{Hom}_{\mathbb{Z}_p}(T_pA(k) \otimes_{\mathbb{Z}_p} T_pA^{\vee}(k), \hat{\mathbb{G}}_m(-)).$$

└─ Theorem

Interpreting Part 1

What does this mean when we apply the isomorphism to a particular $R \in C_k$? We can show that $\hat{\mathbb{G}}_m(R) = 1 + \mathbf{m}_R$, and picking a basis for $T_pA(k)$ and $T_pA^{\vee}(k)$ as free \mathbb{Z}_p -modules:

$$\begin{split} \widehat{\mathcal{M}}_{A/k}(R) &= \left\{ \begin{array}{l} \text{deformations} \\ \text{of } A \text{ to } R \end{array} \right\} \\ &\longleftrightarrow \left\{ \begin{array}{l} \mathbb{Z}_p\text{-bilinear maps} \\ q: T_pA(k) \times T_pA^{\vee}(k) \to 1 + \mathbf{m}_R \end{array} \right\} \\ &\longleftrightarrow \left\{ \begin{array}{l} \text{choice of } g^2 \text{ "local} \\ \text{coordinates" in } 1 + \mathbf{m}_R \end{array} \right\} \\ \mathcal{A}/R &\longleftrightarrow q_{\mathcal{A}}: T_pA(k) \times T_pA^{\vee}(k) \to 1 + \mathbf{m}_R \end{split}$$

Theorem (Part 2)

Let A be an ordinary abelian over $k = \overline{k}$ of characteristic p, and let $T_p(A) = \lim A[p^n]$ be its Tate module. Then

• For any lift A/R of A/k, its dual A^{\vee}/R is a lift of A^{\vee}/k . If A admits a principal polarization, we get the symmetry condition:

$$q_{\mathcal{A}}(x,y) = q_{\mathcal{A}^{\vee}}(y,x)$$

for all
$$x \in T_pA(k), y \in T_pA^{\vee}(k)$$
.

Remark

We canonically identify $A \cong (A^{\vee})^{\vee}$ through the principal polarization in order to consider $q_{A^{\vee}}$ as a bilinear form on $T_p A^{\vee}(k) \times T_p A(k)$ as opposed to $T_p A^{\vee}(k) \times T_p (A^{\vee})^{\vee}(k)$.

Interpreting Part 2

What does this mean when we apply the isomorphism to a particular $R \in \mathcal{C}_k$?

$$\begin{split} \widehat{\mathcal{M}}_{(A,\lambda)}(R) &= \left\{ \begin{array}{l} \text{deformations} \\ \text{of } (A,\lambda) \text{ to } R \end{array} \right\} \\ &\longleftrightarrow \left\{ \begin{array}{l} \text{symmetric } \mathbb{Z}_p\text{-bilinear maps} \\ q: T_pA(k) \times T_pA^{\vee}(k) \to 1 + \mathbf{m}_R \end{array} \right\} \\ &\longleftrightarrow \left\{ \begin{array}{l} \text{choice of } g(g+1)/2 \text{ "local} \\ \text{coordinates" in } 1 + \mathbf{m}_R \end{array} \right\} \\ (\mathcal{A},\lambda_{\mathcal{A}})/R \longleftrightarrow q_{\mathcal{A}}: T_pA(k) \times T_pA^{\vee}(k) \to 1 + \mathbf{m}_R \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Part 3)

Let A be an ordinary abelian over $k = \overline{k}$ of characteristic p, and let $T_p(A) = \underline{\lim} A[p^n]$ be its Tate module. Then

for R ∈ C_k, and let A/R, B/R be deformations of two ordinary abelian varieties A/k and B/k respectively with corresponding bilinear forms q_A and q_B. A homomorphism f : A → B extends to a homomorphism f : A → B if and only if

$$q_{\mathcal{A}}(x, f^{\vee}(y)) = q_{\mathcal{B}}(f(x), y)$$

for all $x \in T_pA(k), y \in T_pB^{\vee}(k)$.

Canonical Lifts

Definition

A lift of A/k to R is called the *canonical lift* of A to R and denoted \mathcal{A}^{can}/R if its corresponding bilinear form is the trivial one.

$$\begin{split} \widehat{\mathcal{M}}_{A/k}(R) &\longleftrightarrow \left\{ \begin{array}{c} \mathbb{Z}_{p}\text{-bilinear maps} \\ q: T_{p}A(k) \times T_{p}A^{\vee}(k) \to 1 + \mathbf{m}_{R} \end{array} \right\} \\ \mathcal{A}/R &\longleftrightarrow q_{\mathcal{A}} \\ \mathcal{A}^{can}/R &\longleftrightarrow 1 \end{split}$$

Canonical Lifts

Lifting from characteristic p to characteristic 0

Let $k=\bar{\mathbb{F}}_p.$ Since $R_n=W(k)\big/p^nW(k)\in\mathcal{C}_k$ for all $n\in\mathbb{N},$ one can form a limit object

$$\varinjlim \mathcal{A}^{can}/R_n$$

giving rise to a canonical lift of A to W(k), $\mathcal{A}^{can}/W(k)$. So this is a case where lifts from characteristic p(k) to characteristic zero (W(k)) exist! Again,

$$\frac{\mathcal{A}/W(k)\longleftrightarrow q_{\mathcal{A}}}{\mathcal{A}^{can}/W(k)\longleftrightarrow q_{\mathcal{A}}} = 1$$

By descent arguments one gets similar results for knon-algebraically closed fields. This means we can get lifts from finite fields to p-adic fields. Applications

Canonical Lifts

Characterization by Endomorphisms

Q: When is a lift $\mathcal{A} \big/ W(k)$ the canonical lift? Recall:

$$f \in \operatorname{End}(A)$$
 lifts $\Leftrightarrow q_{\mathcal{A}}(x, f^{\vee}(y)) = q_{\mathcal{A}}(f(x), y)$

Observation: every endomorphism of A/k lifts to $\mathcal{A}^{can}/W(k)$.

Theorem

Let A/\mathbb{F}_q and $k = \overline{\mathbb{F}}_q$. Then $\mathcal{A}/W(k) = \mathcal{A}^{can}/W(k)$ if and only if all endomorphisms of A lift to \mathcal{A} if and only if Fr_q lifts.

Applications

Canonical Lifts

Characterization by Endomorphisms

Theorem

Let A/\mathbb{F}_q and $k = \overline{\mathbb{F}}_q$. Then $\mathcal{A}/W(k) = \mathcal{A}^{can}/W(k)$ if and only if all endomorphisms of A lift to \mathcal{A} if and only if Fr_q lifts.

Idea of proof

For $f = Fr_q$, $f^{\vee} = Ver_q$. But Frobenius and Verschibung act very differently on μ_q and $\mathbb{Z}/q\mathbb{Z}$, so the condition that

$$q_{\mathcal{A}}(x, f^{\vee}(y)) = q_{\mathcal{A}}(f(x), y)$$

can only be satisfied when q_A is trivial.

Applications

└─Structure of Moduli Spaces

Moduli Space of Principally Polarized Abelian Varieties

Let \mathcal{M} be the moduli functor of principally polarized abelian varieties with full level n structure $(n \ge 3, (n, p) = 1)$.

- \mathcal{M} is a fine moduli scheme
- If x is an ordinary closed point $x \in \mathcal{M}(k)$ corresponding to (A, λ) , $\widehat{\mathcal{M}}_x = \widehat{\mathcal{M}}_{(A, \lambda)}$

By the Serre-Tate local coordinates theorem,

$$\widehat{\mathcal{M}}_x = \widehat{\mathcal{M}}_{(A,\lambda)} \cong \widehat{\mathbb{G}}_m^{\frac{g(g+1)}{2}}$$

This means that on the ordinary locus, ${\mathcal M}$ is non-singular of dimension g(g+1)/2.

Extro

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(の)