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Serre-Tate “general” Theorem

In positive characteristic, there is an equivalence of categories
relating{

deformations of an
abelian variety

}
←→

{
deformations of its
p-divisible group

}

Serre-Tate Coordinates Theorem
For an ordinary abelian variety over a field k,{

local deformations
of A to R

}
←→

{
choice of g2 “local

coordinates” in 1 + mR

}
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Deformations of Abelian Schemes

Deformations of Abelian Schemes

Let A
/
S be an abelian scheme and let S → T be a morphism of

schemes.

Definition
Then a deformation of A

/
S to T is an abelian scheme A

/
T

together with an isomorphism over S:

F : A×T S ∼= A.

In other words, the following diagram commutes:

F : A×T S ∼= A //___

���
�
� A

��
S // T.
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Deformations of Abelian Schemes

We’ll be interested in cases where

S = Spec(R0)

T = Spec(R)

S → T induced by R� R0

Definition
Such a deformation is also called a lift of A from R0 to R. Even
more, if R is local artinian and R0 = k is a field, then a
deformation A

/
R is called an infinitessimal (or local) deformation

(or lift).
F : A⊗R R0

∼= A //_____

���
�
� A

��
Spec(R0) // Spec(R).
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Deformations of Abelian Schemes

Other deformation objects

Let G be an object defined over Spec(R0), then we can also talk
about deformations of G to R.

F : ?⊗R R0
∼= G //_____

���
�
� ?

��
Spec(R0) // Spec(R).

G is a p-divisible group

G is an abelian scheme with additional structure (polarization,
endomorphism...)
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Deformations of Abelian Schemes

The category Ck
Let k be a field and let

W :=

{
k char(k) = 0

W (k) char(k) > 0

Objects

Pairs (R,φ)

R is local artinian W -algebras

φ : k ∼= R
/
mR is a fixed isomorphism such that the following

diagram commutes

W //

��

R

��
k

φ // R
/
mR
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Deformations of Abelian Schemes

The category Ck
Let k be a field and let

W :=

{
k char(k) = 0

W (k) char(k) > 0

Objects

Pairs (R,φ)

Morphisms

local W -algebra homomorphisms

Examples

k[ε]
/

(εn) when k has characteristic 0

W (k)
/

(pn) when k has positive characteristic
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Deformations of Abelian Schemes

Local Deformation Functor

Fix an abelian variety A
/
k.

M̂
A
/
k

: Ck // Set

R
� // {deformations of A to R}

Definition
M̂

A
/
k

is called the local (or infinitessimal) deformation functor

associated with A
/
k.
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Deformations of Abelian Schemes

Representability of M̂
A
/
k

Theorem (Grothendieck)

Let A
/
k be an abelian variety and M̂

A
/
k

its associated local

deformation functor. Then M̂
A
/
k

is pro-representable by the

complete, local noetherian ring

O = W [[t11, . . . , tgg]]

where g is the dimension of A.
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Deformations of Abelian Schemes

Remark
We can also construct local deformation functors that carry “extra
structure”, say for (A, λ) with λ a principal polarization. In
general, the local deformation functor is pro-representable by a
O
/
a where a is a suitably defined ideal depending on the extra

structure. For example M̂(A,λ) is pro-representable by

O = W [[t11, . . . , tgg]]
/

(. . . , tij − tji, . . .).
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Serre-Tate “general” Theorem

Serre-Tate “general” Theorem

In positive characteristic, there is an equivalence of categories
relating{

deformations of an
abelian variety

}
←→

{
deformations of its
p-divisible group

}
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Serre-Tate “general” Theorem

The categories

AbR

Let R be a ring. Then we let AbR denote the category abelian
schemes over R:

Objects

Abelian schemes over R; that is, smooth, proper group schemes
π : A→ R whose geometric fibres are connected.

Morphisms

Group homomorphisms over R
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Serre-Tate “general” Theorem

The categories

Def(R,R0)

Let R be a ring where p is nilpotent, and let R� R0 be a fixed
surjective ring homomorphism. The category Def(R,R0) is given by

Objects

Triples (A0, G, ε) where

A0 is an abelian scheme over R0

G is a p-divisible group over R

ε : G0 → A0(p
∞) an ismorphism of p-divisible groups over R0

In other words, (G, ε) is a lift of the p-divisible group of A0 to R.
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Serre-Tate “general” Theorem

The categories

Def(R,R0)

Objects

Triples (A0, G, ε)

Morphisms

A morphism (A0, G, εA)→ (B0, H, εB) is a pair (f0, g) where

f0 : A0 → B0 morphism of abelian schemes
/
R0

g : G→ H morphisms of p-divisible groups
/
R

such that f0(p
∞) = g0; that is,

G0
g0 //

εA
��

H0

εB
��

A0(p
∞)

f0(p∞)
// B0(p

∞)
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Serre-Tate “general” Theorem

Theorem

Serre-Tate Theorem

Theorem
Let R be a ring in which p is nilpotent, with I ⊂ R a nilpotent
ideal. Write R0 = R

/
I. Then, there is an equivalence of

categories given by

AbR
// Def(R,R0)

A
� // (A0 = A⊗R R0, A(p∞)).
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Serre-Tate “general” Theorem

Proof

Key facts

Let R be a ring in which p is nilpotent, with I ⊂ R a nilpotent
ideal. Write R0 = R

/
I.

Suppose Iν+1 = 0 and write q = pn for some n such that pn = 0.

If G is an abelian scheme or p-divisible group over R:

G is q-divisible as a group

GI is killed by qν where

GI(S) := ker(G(S)→ G(S
/
IS))
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Serre-Tate “general” Theorem

Proof

Lemma

If G,H are an abelian schemes or p-divisible groups over R:

1 HomR(G,H) and HomR0(G0, H0) have no q-torsion

Proof
G and G0 and q-divisible
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Serre-Tate “general” Theorem

Proof

Lemma

If G,H are an abelian schemes or p-divisible groups over R:

1 HomR(G,H) and HomR0(G0, H0) have no q-torsion

2 Reduction modulo I is injective on hom sets:

Hom (G,H) ↪→ Hom (G0, H0)

Proof
The kernel of this map is Hom (G,HI), applying the “key facts”
immediately shows this is trivial.
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Serre-Tate “general” Theorem

Proof

Lemma

If G,H are an abelian schemes or p-divisible groups over R:

1 HomR(G,H) and HomR0(G0, H0) have no q-torsion
2 Reduction modulo I is injective on hom sets:

Hom (G,H) ↪→ Hom (G0, H0)

3 For any f0 ∈ Hom (G0, H0), qνf0 lifts uniquely to some

q̃νf0 ∈ Hom (G,H)

Proof
Let L be any lift H(S

/
IS)→ H(S):

G(S)
q̃νf0 //__________________

mod I %%JJJJJJJJJ
H(S)

G(S
/
IS)

f0 // H(S
/
IS)

qν×L

99ttttttttt
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Serre-Tate “general” Theorem

Proof

Lemma

If G,H are an abelian schemes or p-divisible groups over R:

1 HomR(G,H) and HomR0(G0, H0) have no q-torsion

2 Reduction modulo I is injective on hom sets:

Hom (G,H) ↪→ Hom (G0, H0)

3 For any f0 ∈ Hom (G0, H0), qνf0 lifts uniquely to some

q̃νf0 ∈ Hom (G,H)

4 f0 ∈ Hom (G0, H0) lifts uniquely to some f ∈ Hom (G,H) if

and only if q̃νf0 annihilates G[qν ].
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Serre-Tate “general” Theorem

Proof

Lemma

If G,H are an abelian schemes or p-divisible groups over R:

f0 ∈ Hom (G0, H0) lifts uniquely to some f ∈ Hom (G,H) if

and only if q̃νf0 annihilates G[qν ]

Proof

Necessary: since f lifts f0, then qνf = q̃νf0 by Lemma part 2

Sufficient: since q̃νf0 annihilates G[qν ], construct F such that

G
F

~~}
}

}
}

q̃νf0
��

H
qν

// H // 0

qνF0 = qνf0 implies F0 = f0 since Hom (G0, H0) has no
q-torsion.
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Serre-Tate “general” Theorem

Proof

Equivalence of categories

A→ Def(A) = (A0, A(p∞), εA)

Let A,B ∈ AbR and (f0, f(p∞)) : Def(A)→ Def(B) in
Def(R,R0).

Faithful
Hom (A,B) ↪→ Hom (A0, B0) so any lift of f0 is unique
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Serre-Tate “general” Theorem

Proof

Full

A→ Def(A) = (A0, A(p∞), εA)

Let A,B ∈ AbR and (f0, f(p∞)) : Def(A)→ Def(B) in
Def(R,R0).

A lift F : A→ B of f0 exists if and only if q̃νf0 kills A[qν ]

Necessarily, q̃νf0(p
∞) lifts qν(f0(p

∞))

Uniqueness of lifts implies q̃νf0(p
∞) = qνf(p∞)

q̃νf0(p
∞) kills A(p∞)[qν ] = A[qν ]

For the lift F : A→ B of f0, F (p∞) lifts f0(p
∞) so

F (p∞) = f(p∞) (uniqueness of lifts)
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Serre-Tate “general” Theorem

Proof

Essentially Surjective

Take (A0, G, ε) ∈ Def(R,R0)
Let B

/
R be a lift of A0 via an isomorphism

α0 : B0 = B ⊗R R0 → A0.

This induces an isomorphism of p-divisible groups,

α0(p
∞) : B0(p

∞)→ A0(p
∞),

and, let
˜qνα0(p∞) : B(p∞)→ G

be the unique lift of qνα0(p
∞).
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Serre-Tate “general” Theorem

Proof

Essentially surjective

˜qνα0(p∞) : B(p∞)→ G

is an isogeny, and it has an “inverse” in the sense that there exists

a lift ˜qνα0(p∞)
−1

of qνα0(p
∞)−1 such that

˜qνα0(p∞)
−1
◦ ˜qνα0(p∞) = q2ν

and
˜qνα0(p∞) ◦ ˜qνα0(p∞)

−1
= q2ν

Therefore, setting K = ker( ˜qνα0(p∞)), we obtain a finite, flat
subgroup of B[q2ν ].
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Serre-Tate “general” Theorem

Proof

Essentially surjective

Taking A = B
/
K gives Def(A) = (A0, G, ε):

By construction, K lifts B0[q
ν ], so A is a lift of

B0

/
B0[q

ν ] ∼= B0
∼= A0.

Furthermore,
A(p∞) ∼= B(p∞)

/
K ∼= G.
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Serre-Tate Local Coordinates

Serre-Tate Local Coordinates Theorem

For an ordinary abelian variety over a field k = k̄ and R ∈ Ck,{
local deformations

of A to R

}
←→

{
choice of g2 “local

coordinates” in 1 + mR

}



Serre-Tate Theorems

Serre-Tate Local Coordinates

Ordinary Abelian Varieties

Definition
Let k be an algebraically closed field of characteristic p > 0. Then
an abelian variety A of dimension g over k is ordinary if the
following equivalent conditions are satisfied:

#A[p](k) = pg

The largest étale quotient of A[p] has rank g.

A(p∞) ∼= Ĝg
m ⊕ (Qp

/
Zp)g
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Serre-Tate Local Coordinates

Theorem

Serre-Tate Coordinates

Theorem (Part 1)

Let A be an ordinary abelian variety over k = k̄ of characteristic p,
and let TpA = lim←−A[pn] be its Tate module. Then

there is an isomorphism of functors on the category Ck:

M̂
A
/
k
(−) ∼= HomZp(TpA(k)⊗Zp TpA

∨(k), Ĝm(−)).
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Serre-Tate Local Coordinates

Theorem

Interpreting Part 1

What does this mean when we apply the isomorphism to a
particular R ∈ Ck?
We can show that Ĝm(R) = 1 + mR, and picking a basis for
TpA(k) and TpA

∨(k) as free Zp-modules:

M̂
A
/
k
(R) =

{
deformations

of A to R

}
←→

{
Zp-bilinear maps

q : TpA(k)× TpA∨(k)→ 1 + mR

}
←→

{
choice of g2 “local

coordinates” in 1 + mR

}
A
/
R←→ qA : TpA(k)× TpA∨(k)→ 1 + mR
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Serre-Tate Local Coordinates

Theorem

Theorem (Part 2)

Let A be an ordinary abelian over k = k̄ of characteristic p, and let
Tp(A) = lim←−A[pn] be its Tate module. Then

For any lift A
/
R of A

/
k, its dual A∨

/
R is a lift of A∨

/
k. If

A admits a principal polarization, we get the symmetry
condition:

qA(x, y) = qA∨(y, x)

for all x ∈ TpA(k), y ∈ TpA∨(k).

Remark
We canonically identify A ∼= (A∨)∨ through the principal
polarization in order to consider qA∨ as a bilinear form on
TpA

∨(k)× TpA(k) as opposed to TpA
∨(k)× Tp(A∨)∨(k).
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Serre-Tate Local Coordinates

Theorem

Interpreting Part 2

What does this mean when we apply the isomorphism to a
particular R ∈ Ck?

M̂(A,λ)(R) =

{
deformations

of (A, λ) to R

}
←→

{
symmetric Zp-bilinear maps

q : TpA(k)× TpA∨(k)→ 1 + mR

}
←→

{
choice of g(g + 1)/2 “local

coordinates” in 1 + mR

}
(A, λA)

/
R←→ qA : TpA(k)× TpA∨(k)→ 1 + mR
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Serre-Tate Local Coordinates

Theorem

Theorem (Part 3)

Let A be an ordinary abelian over k = k̄ of characteristic p, and let
Tp(A) = lim←−A[pn] be its Tate module. Then

for R ∈ Ck, and let A
/
R, B

/
R be deformations of two

ordinary abelian varieties A
/
k and B

/
k respectively with

corresponding bilinear forms qA and qB. A homomorphism
f : A→ B extends to a homomorphism f : A → B if and only
if

qA(x, f∨(y)) = qB(f(x), y)

for all x ∈ TpA(k), y ∈ TpB∨(k).
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Applications

Canonical Lifts

Canonical Lifts

Definition
A lift of A

/
k to R is called the canonical lift of A to R and

denoted Acan
/
R if its corresponding bilinear form is the trivial one.

M̂
A
/
k
(R)←→

{
Zp-bilinear maps

q : TpA(k)× TpA∨(k)→ 1 + mR

}
A
/
R←→ qA

Acan
/
R←→1
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Applications

Canonical Lifts

Lifting from characteristic p to characteristic 0

Let k = F̄p. Since Rn = W (k)
/
pnW (k) ∈ Ck for all n ∈ N, one

can form a limit object

lim−→A
can
/
Rn

giving rise to a canonical lift of A to W (k), Acan
/
W (k). So this is

a case where lifts from characteristic p (k) to characteristic zero
(W (k)) exist!
Again,

A
/
W (k)←→ qA

Acan
/
W (k)←→ qA = 1

By descent arguments one gets similar results for k
non-algebraically closed fields. This means we can get lifts from
finite fields to p-adic fields.
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Applications

Canonical Lifts

Characterization by Endomorphisms

Q: When is a lift A
/
W (k) the canonical lift?

Recall:

f ∈ End (A) lifts ⇔ qA(x, f∨(y)) = qA(f(x), y)

Observation: every endomorphism of A
/
k lifts to Acan

/
W (k).

Theorem
Let A

/
Fq and k = F̄q. Then A

/
W (k) = Acan

/
W (k) if and only if

all endomorphisms of A lift to A if and only if Frq lifts.
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Applications

Canonical Lifts

Characterization by Endomorphisms

Theorem
Let A

/
Fq and k = F̄q. Then A

/
W (k) = Acan

/
W (k) if and only if

all endomorphisms of A lift to A if and only if Frq lifts.

Idea of proof

For f = Frq, f
∨ = V erq. But Frobenius and Verschibung act very

differently on µq and Z
/
qZ, so the condition that

qA(x, f∨(y)) = qA(f(x), y)

can only be satisfied when qA is trivial.
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Applications

Structure of Moduli Spaces

Moduli Space of Principally Polarized Abelian Varieties

Let M be the moduli functor of principally polarized abelian
varieties with full level n structure (n ≥ 3, (n, p) = 1).

M is a fine moduli scheme

If x is an ordinary closed point x ∈M(k) corresponding to

(A, λ), M̂x = M̂(A,λ)

By the Serre-Tate local coordinates theorem,

M̂x = M̂(A,λ)
∼= Ĝ

g(g+1)
2

m .

This means that on the ordinary locus, M is non-singular of
dimension g(g + 1)/2.
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Extro

Thank you!
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